Heterogeneity, Macroeconomics, and Reality

Christopher Carroll¹

¹Johns Hopkins University and NBER ccarroll@jhu.edu

Sloan-BoE-OFR Conference on Heterogeneous Agent Macroeconomics U.S. Department of the Treasury

September 22, 2017

크

Larry Summers

- FT interview in 2011
 - In the crisis, standard macro models were useless
- Recent Brookings Panel Discussion
 - Little progress since 2008 in modeling events like the crisis
 - Contagion from Lehmann Bros to Israel???
 - \circ . "Network analysis" : No connections Lehmann pprox Israel.
- Looking forward right now:
 - Would failed debt ceiling brinksmanship trigger another panic?
 My best guess: probably not
 - But in 2008, many economists thought letting Lehmann fail would be a non-event
 - We still do not have a handle on how to model expectations

Larry Summers

- FT interview in 2011
 - In the crisis, standard macro models were useless
- Recent Brookings Panel Discussion
 - Little progress since 2008 in modeling events like the crisis
 - Contagion from Lehmann Bros to Israel (?)
 - "Network analysis": No connections Lehmann = Israel
- Looking forward right now:
 - Would failed debt ceiling brinksmanship trigger another panic?
 My best guess probably not
 - But in 2008, many economists thought letting Lehmann fail would be a non-event
 - We still do not have a handle on how to model expectations

Larry Summers

- FT interview in 2011
 - In the crisis, standard macro models were useless
- Recent Brookings Panel Discussion
 - Little progress since 2008 in modeling events like the crisis
 Contagion from Lehmann Bros to Israel???
 "Report analysis" of No connections Lehmann and Israel

• Looking forward right now:

- Would failed debt ceiling brinksmanship trigger another panic?
 My best guess: probably not
- But in 2008, many economists thought letting Lehmann fail would be a non-event
- We still do not have a handle on how to model expectations

Larry Summers

- FT interview in 2011
 - In the crisis, standard macro models were useless
- Recent Brookings Panel Discussion
 - Little progress since 2008 in modeling events like the crisis
 - Contagion from Lehmann Bros to Israel???
 - "Network analysis" : No connections Lehmann \rightleftharpoons Israel
- Looking forward right now:
 - Would failed debt ceiling brinksmanship trigger another panic?
 My best guess: probably not
 - But in 2008, many economists thought letting Lehmann fail would be a non-event
 - We still do not have a handle on how to model expectations

Larry Summers

- FT interview in 2011
 - In the crisis, standard macro models were useless
- Recent Brookings Panel Discussion
 - Little progress since 2008 in modeling events like the crisis
 - Contagion from Lehmann Bros to Israel???
 - \bullet "Network analysis" : No connections Lehmann \rightleftarrows Israel
- Looking forward right now:
 - Would failed debt ceiling brinksmanship trigger another panic?
 My best guess: probably not
 - But in 2008, many economists thought letting Lehmann fail would be a non-event
 - We still do not have a handle on how to model expectations

- Larry Summers
 - FT interview in 2011
 - In the crisis, standard macro models were useless
- Recent Brookings Panel Discussion
 - Little progress since 2008 in modeling events like the crisis
 - Contagion from Lehmann Bros to Israel???
 - "Network analysis" : No connections Lehmann \rightleftarrows Israel
- Looking forward right now:
 - Would failed debt ceiling brinksmanship trigger another panic?
 My best guess: probably not
 - But in 2008, many economists thought letting Lehmann fail would be a non-event
 - We still do not have a handle on how to model expectations

- Larry Summers
 - FT interview in 2011
 - In the crisis, standard macro models were useless
- Recent Brookings Panel Discussion
 - Little progress since 2008 in modeling events like the crisis
 - Contagion from Lehmann Bros to Israel???
 - $\bullet \quad ``Network \ analysis'' \ : \ No \ connections \ Lehmann \ \rightleftarrows \ \mathsf{Israel}$
- Looking forward right now:
 - Would failed debt ceiling brinksmanship trigger another panic?
 My best guess: probably not
 - But in 2008, many economists thought letting Lehmann fail would be a non-event
 - We still do not have a handle on how to model expectations

Larry Summers

- FT interview in 2011
 - In the crisis, standard macro models were useless
- Recent Brookings Panel Discussion
 - Little progress since 2008 in modeling events like the crisis
 - Contagion from Lehmann Bros to Israel???
 - "Network analysis" : No connections Lehmann \rightleftarrows Israel

• Looking forward right now:

- Would failed debt ceiling brinksmanship trigger another panic?
 My best guess: probably not
- But in 2008, many economists thought letting Lehmann fail would be a non-event
- We still do not have a handle on how to model expectations

- Larry Summers
 - FT interview in 2011
 - In the crisis, standard macro models were useless
- Recent Brookings Panel Discussion
 - Little progress since 2008 in modeling events like the crisis
 - Contagion from Lehmann Bros to Israel???
 - "Network analysis" : No connections Lehmann \rightleftarrows Israel
- Looking forward right now:
 - Would failed debt ceiling brinksmanship trigger another panic?
 - My best guess: probably not
 - But in 2008, many economists thought letting Lehmann fail would be a non-event
 - We still do not have a handle on how to model expectations

- Larry Summers
 - FT interview in 2011
 - In the crisis, standard macro models were useless
- Recent Brookings Panel Discussion
 - Little progress since 2008 in modeling events like the crisis
 - Contagion from Lehmann Bros to Israel???
 - $\bullet \quad ``Network \ analysis'' \ : \ No \ connections \ Lehmann \ \rightleftarrows \ \mathsf{Israel}$
- Looking forward right now:
 - Would failed debt ceiling brinksmanship trigger another panic?
 - My best guess: probably not
 - But in 2008, many economists thought letting Lehmann fail would be a non-event
 - We still do not have a handle on how to model expectations

- Larry Summers
 - FT interview in 2011
 - In the crisis, standard macro models were useless
- Recent Brookings Panel Discussion
 - Little progress since 2008 in modeling events like the crisis
 - Contagion from Lehmann Bros to Israel???
 - "Network analysis" : No connections Lehmann \rightleftarrows Israel
- Looking forward right now:
 - Would failed debt ceiling brinksmanship trigger another panic?
 - My best guess: probably not
 - But in 2008, many economists thought letting Lehmann fail would be a non-event
 - We still do not have a handle on how to model expectations

- Larry Summers
 - FT interview in 2011
 - In the crisis, standard macro models were useless
- Recent Brookings Panel Discussion
 - Little progress since 2008 in modeling events like the crisis
 - Contagion from Lehmann Bros to Israel???
 - $\bullet \quad ``Network \ analysis'' \ : \ No \ connections \ Lehmann \ \rightleftarrows \ \mathsf{Israel}$
- Looking forward right now:
 - Would failed debt ceiling brinksmanship trigger another panic?
 - My best guess: probably not
 - But in 2008, many economists thought letting Lehmann fail would be a non-event
 - We still do not have a handle on how to model expectations

• At root, every paper this year was about "expectations" ('E')

- At center of macroeconomics since Keynes ...
- "Identical Model-Consistent Expectations" ('IMCE')
 - (Better description than "Rational")
 - For some model of the economy m:
 - (... (Everybody believes (Everybody believes m)))
 - Usually: Identical circumstances (wealth, income, uncertainty)
 —> Representative Agent (RA)
- ${\scriptstyle \bullet}$ IMCE has the great virtue that it can be rejected
 - Defect: Every paper does reject it

- At root, every paper this year was about "expectations" ('E')
 At center of macroeconomics since Keynes ...
- "Identical Model-Consistent Expectations" ('IMCE')
 - (Better description than "Rational")
 - For some model of the economy m:
 - (... (Everybody believes (Everybody believes m)))
 - Usually: Identical circumstances (wealth, income, uncertainty)
 Representative Agent (RA)
- $\bullet~\mathsf{IMC}\mathbb{E}$ has the great virtue that it can be rejected
 - Defect: Every paper does reject it

- At root, every paper this year was about "expectations" (' \mathbb{E} ')
 - At center of macroeconomics since Keynes ...
- "Identical Model-Consistent Expectations" ('IMC \mathbb{E} ')
 - (Better description than "Rational")
 - For some model of the economy *m*:
 - (... (Everybody believes (Everybody believes m)))
 - Usually: Identical circumstances (wealth, income, uncertainty)
 ⇒ Representative Agent (RA)
- \bullet IMCE has the great virtue that it can be rejected
 - Defect: Every paper does reject it

- At root, every paper this year was about "expectations" (' \mathbb{E} ')
 - At center of macroeconomics since Keynes ...
- "Identical Model-Consistent Expectations" ('IMC \mathbb{E} ')
 - (Better description than "Rational")
 - For some model of the economy *m*:
 - (... (Everybody believes (Everybody believes m)))
 - Usually: Identical circumstances (wealth, income, uncertainty)
 ⇒ Representative Agent (RA)
- \bullet IMCE has the great virtue that it can be rejected
 - Defect: Every paper does reject it

- At root, every paper this year was about "expectations" ('E')
 - At center of macroeconomics since Keynes ...
- "Identical Model-Consistent Expectations" ('IMCE')
 - (Better description than "Rational")
 - For some model of the economy *m*:
 - (... (Everybody believes (Everybody believes m)))
 - Usually: Identical circumstances (wealth, income, uncertainty)
 ⇒ Representative Agent (RA)
- \bullet IMCE has the great virtue that it can be rejected
 - Defect: Every paper does reject it

- At root, every paper this year was about "expectations" ('E')
 - At center of macroeconomics since Keynes ...
- "Identical Model-Consistent Expectations" ('IMCE')
 - (Better description than "Rational")
 - For some model of the economy *m*:
 - (... (Everybody believes (Everybody believes m)))
 - Usually: Identical circumstances (wealth, income, uncertainty)
 ⇒ Representative Agent (RA)
- \bullet IMCE has the great virtue that it can be rejected
 - Defect: Every paper does reject it

- At root, every paper this year was about "expectations" ('E')
 - At center of macroeconomics since Keynes ...
- "Identical Model-Consistent Expectations" ('IMCE')
 - (Better description than "Rational")
 - For some model of the economy *m*:
 - (... (Everybody believes (Everybody believes m)))
 - Usually: Identical circumstances (wealth, income, uncertainty)

 \Rightarrow Representative Agent (RA)

 \bullet IMCE has the great virtue that it can be rejected

• Defect: Every paper does reject it

- At root, every paper this year was about "expectations" ('E')
 - At center of macroeconomics since Keynes ...
- "Identical Model-Consistent Expectations" ('IMCE')
 - (Better description than "Rational")
 - For some model of the economy *m*:
 - (... (Everybody believes (Everybody believes m)))
 - Usually: Identical circumstances (wealth, income, uncertainty)
 - \Rightarrow Representative Agent (RA)
- IMC $\mathbb E$ has the great virtue that it can be rejected
 - Defect: Every paper does reject it

- At root, every paper this year was about "expectations" ('E')
 - At center of macroeconomics since Keynes ...
- "Identical Model-Consistent Expectations" ('IMCE')
 - (Better description than "Rational")
 - For some model of the economy *m*:
 - (... (Everybody believes (Everybody believes m)))
 - Usually: Identical circumstances (wealth, income, uncertainty)

 \Rightarrow Representative Agent (RA)

 $\bullet~\mbox{IMC}\mathbb{E}$ has the great virtue that it can be rejected

• Defect: Every paper *does* reject it

- At root, every paper this year was about "expectations" ('E')
 - At center of macroeconomics since Keynes ...
- "Identical Model-Consistent Expectations" ('IMCE')
 - (Better description than "Rational")
 - For some model of the economy *m*:
 - (... (Everybody believes (Everybody believes m)))
 - Usually: Identical circumstances (wealth, income, uncertainty)

 \Rightarrow Representative Agent (RA)

- $\bullet~\mbox{IMC}\mathbb{E}$ has the great virtue that it can be rejected
 - Defect: Every paper does reject it

- E can be measured(!)
- People behave in ways consistent with measured ${\mathbb E}$
- Idea: Test models of $\mathbb E$ by comparison to data!
- Discussion
 - No need for more papers that just reject IMCE; a dead horse
 - ullet But: Every new paper has its own unique new model of ${\mathbb E}$
 - Need to whittle down to small set of canonical models
 - ... with some reliable wisdom about when each works

- \mathbb{E} can be measured(!)
- ullet People behave in ways consistent with measured ${\mathbb E}$
- Idea: Test models of $\mathbb E$ by comparison to data!
- Discussion
 - No need for more papers that just reject IMCE; a dead horse
 - ullet But: Every new paper has its own unique new model of ${\mathbb E}$
 - Need to whittle down to small set of canonical models
 - ... with some reliable wisdom about when each works

• Chuck Manski (2017) survey paper:

- \mathbb{E} can be measured(!)
- ${\ensuremath{\,\circ\,}}$ People behave in ways consistent with measured ${\ensuremath{\mathbb E}}$
- Idea: Test models of $\mathbb E$ by comparison to data!
- Discussion

No need for more papers that just reject IMCE; a dead horse
But: Every new paper has its own unique new model of E
Need to whittle down to *small* set of canonical models ...

• Chuck Manski (2017) survey paper:

- \mathbb{E} can be measured(!)
- ${\ensuremath{\,\circ\,}}$ People behave in ways consistent with measured ${\ensuremath{\mathbb E}}$
- Idea: Test models of ${\mathbb E}$ by comparison to data!
- Discussion

No need for more papers that just reject IMCE; a dead horse
But: Every new paper has its own unique new model of E
Need to whittle down to *small* set of canonical models ...
... with some reliable wisdom about when each works

• Chuck Manski (2017) survey paper:

- \mathbb{E} can be measured(!)
- ${\ensuremath{\,\circ\,}}$ People behave in ways consistent with measured ${\ensuremath{\mathbb E}}$
- Idea: Test models of ${\mathbb E}$ by comparison to data!

Discussion

- No need for more papers that just reject IMCE; a dead horse
- But: Every new paper has its own unique new model of ${\mathbb E}$
- Need to whittle down to *small* set of canonical models . . .
- ... with some reliable wisdom about when each works

- \mathbb{E} can be measured(!)
- ${\ensuremath{\,\circ\,}}$ People behave in ways consistent with measured ${\ensuremath{\mathbb E}}$
- Idea: Test models of ${\mathbb E}$ by comparison to data!
- Discussion
 - $\bullet\,$ No need for more papers that just reject IMCE; a dead horse
 - ullet But: Every new paper has its own unique new model of ${\mathbb E}$
 - Need to whittle down to *small* set of canonical models . . .
 - ... with some reliable wisdom about when each works

- \mathbb{E} can be measured(!)
- ${\ensuremath{\,\circ\,}}$ People behave in ways consistent with measured ${\ensuremath{\mathbb E}}$
- $\bullet\,$ Idea: Test models of $\mathbb E$ by comparison to data!
- Discussion
 - $\bullet\,$ No need for more papers that just reject IMCE; a dead horse
 - $\bullet\,$ But: Every new paper has its own unique new model of $\mathbb E$
 - Need to whittle down to small set of canonical models ...
 - ... with some reliable wisdom about when each works

- \mathbb{E} can be measured(!)
- ${\ensuremath{\,\circ\,}}$ People behave in ways consistent with measured ${\ensuremath{\mathbb E}}$
- $\bullet\,$ Idea: Test models of $\mathbb E$ by comparison to data!
- Discussion
 - $\bullet\,$ No need for more papers that just reject IMCE; a dead horse
 - $\bullet\,$ But: Every new paper has its own unique new model of $\mathbb E$
 - Need to whittle down to small set of canonical models
 - ... with some reliable wisdom about when each works

- Chuck Manski (2017) survey paper:
 - \mathbb{E} can be measured(!)
 - ${\ensuremath{\,\circ\,}}$ People behave in ways consistent with measured ${\ensuremath{\mathbb E}}$
 - $\bullet\,$ Idea: Test models of $\mathbb E$ by comparison to data!
- Discussion
 - $\bullet\,$ No need for more papers that just reject IMCE; a dead horse
 - $\bullet\,$ But: Every new paper has its own unique new model of $\mathbb E$
 - Need to whittle down to small set of canonical models ...
 - ... with some reliable wisdom about when each works

Akerlof and Shiller: "Animal Spirits" (2009)

- 1990-91 recession
 - I992 AEA session: "autonomous sharp decline in C"
 - A&S: Huge oil price spike invoked bad memories of 1970s

- Investment
- Finance

Akerlof and Shiller: "Animal Spirits" (2009)

- 1990-91 recession?
 - 1992 AEA session: "autonomous sharp decline in C"
 - (big negative error term in C equation in VAR)
 - A&S: Huge oil price spike invoked bad memories of 1970s
 - Support: Survey answers to "What do you think the unemployment rate will be in a year?" spiked upward right when C dropped
- Investment
- Finance

Akerlof and Shiller: "Animal Spirits" (2009)

- 1990-91 recession?
 - 1992 AEA session: "autonomous sharp decline in C"
 - (big negative error term in C equation in VAR)
 - A&S: Huge oil price spike invoked bad memories of 1970s
 - Support: Survey answers to "What do you think the unemployment rate will be in a year?" spiked upward right when C dropped
- Investment
- Finance

Narratives Progress How to Make Progress HA Macro HABM 'Animal Spirits' King The Problem A Solution Epidemiology Akerlof and Shiller: "Animal Spirits" (2009)

- 1990-91 recession?
 - 1992 AEA session: "autonomous sharp decline in C"
 - (big negative error term in C equation in VAR)
 - A&S: Huge oil price spike invoked bad memories of 1970s
 - Support: Survey answers to "What do you think the unemployment rate will be in a year?" spiked upward right when C dropped
- Investment
- Finance

Most macro fluctuations reflect changes in "narratives"

- 1990-91 recession?
 - 1992 AEA session: "autonomous sharp decline in C"
 - (big negative error term in C equation in VAR)
 - A&S: Huge oil price spike invoked bad memories of 1970s
 - Support: Survey answers to "What do you think the unemployment rate will be in a year?" spiked upward right when C dropped
- Investment
- Finance

Most macro fluctuations reflect changes in "narratives"

- 1990-91 recession?
 - 1992 AEA session: "autonomous sharp decline in C"
 - (big negative error term in C equation in VAR)
 - A&S: Huge oil price spike invoked bad memories of 1970s
 - Support: Survey answers to "What do you think the unemployment rate will be in a year?" spiked upward right when C dropped
- Investment
- Finance

Most macro fluctuations reflect changes in "narratives"

- 1990-91 recession?
 - 1992 AEA session: "autonomous sharp decline in C"
 - (big negative error term in C equation in VAR)
 - A&S: Huge oil price spike invoked bad memories of 1970s
 - Support: Survey answers to "What do you think the unemployment rate will be in a year?" spiked upward right when C dropped

Investment

Finance

Most macro fluctuations reflect changes in "narratives"

- 1990-91 recession?
 - 1992 AEA session: "autonomous sharp decline in C"
 - (big negative error term in C equation in VAR)
 - A&S: Huge oil price spike invoked bad memories of 1970s
 - Support: Survey answers to "What do you think the unemployment rate will be in a year?" spiked upward right when C dropped
- Investment
- Finance

- Views similar to Summers about benchmark models
- Views similar to A&S on centrality of "narratives"
 - Among bankers and central bankers:
 - Many more financial markets are "bank-like" than we thought
- Useful refinement:
 - Your narrative ⇒ your behavior (decision rule/heuristic)

- Views similar to Summers about benchmark models
- Views similar to A&S on centrality of "narratives"
 - Among bankers and central bankers:
 - Many more financial markets are "bank-like" than we thought
- Useful refinement:
 - Your narrative ⇒ your behavior (decision rule/heuristic)

- Views similar to Summers about benchmark models
- Views similar to A&S on centrality of "narratives"
 - Among bankers and central bankers:
 - Many more financial markets are "bank-like" than we thought
- Useful refinement:
 - Your narrative ⇒ your behavior (decision rule/heuristic)

Mervyn King (2016); 2017 Feldstein Lecture at NBER

- Views similar to Summers about benchmark models
- Views similar to A&S on centrality of "narratives"
 - Among bankers and central bankers:
 - Many more financial markets are "bank-like" than we thought
- Useful refinement:

• Your narrative \Rightarrow your behavior (decision rule/heuristic)

- Views similar to Summers about benchmark models
- Views similar to A&S on centrality of "narratives"
 - Among bankers and central bankers:
 - Many more financial markets are "bank-like" than we thought
- Useful refinement:
 - Your narrative \Rightarrow your behavior (decision rule/heuristic)

- Views similar to Summers about benchmark models
- Views similar to A&S on centrality of "narratives"
 - Among bankers and central bankers:
 - Many more financial markets are "bank-like" than we thought
- Useful refinement:
 - Your narrative \Rightarrow your behavior (decision rule/heuristic)

- Unclear how to translate NA into practice. Needed:
 - Explicit, quantitative models

 - Nowhere to download "American Economic Narratives Survey"

- Unclear how to translate NA into practice. Needed:
 - Explicit, quantitative models ...
 - ullet ... that can be tested against the same data that reject IMC $\mathbb E$
 - How to represent "narratives" quantitatively?
 - Nowhere to download "American Economic Narratives Survey"

- Unclear how to translate NA into practice. Needed:
 - Explicit, quantitative models . . .
 - ullet ... that can be tested against the same data that reject IMC $\mathbb E$
 - How to represent "narratives" quantitatively?
 - Nowhere to download "American Economic Narratives Survey"

- Unclear how to translate NA into practice. Needed:
 - Explicit, quantitative models . . .
 - \bullet \ldots that can be tested against the same data that reject $\mathsf{IMC}\mathbb{E}$
 - How to represent "narratives" quantitatively?
 - Nowhere to download "American Economic Narratives Survey"

- Unclear how to translate NA into practice. Needed:
 - Explicit, quantitative models . . .
 - \bullet \ldots that can be tested against the same data that reject $\mathsf{IMC}\mathbb{E}$
 - How to represent "narratives" quantitatively?
 - Nowhere to download "American Economic Narratives Survey"

- Unclear how to translate NA into practice. Needed:
 - Explicit, quantitative models ...
 - \bullet \ldots that can be tested against the same data that reject $\mathsf{IMC}\mathbb{E}$
 - How to represent "narratives" quantitatively?
 - Nowhere to download "American Economic Narratives Survey"

- Generate narratives from alternative IMC $\mathbb E$ models:
 - Experts have sharply different forecasts of pty growth γ
 Generate forecasts that would arise for γ ∈ [0.0, 2.5]
- Given a person's measured expectations, impute to them the narrative that most closely fits those expectations
- So, in 1990-91, A&S story would be that C dropped because dominant 'narrative' changed to low pty scenario
- Begs the question: Why do narratives change?

- Generate narratives from alternative IMC $\mathbb E$ models:
 - Experts have sharply different forecasts of pty growth γ
 Generate forecasts that would arise for γ ∈ [0.0, 2.5]
- Given a person's measured expectations, impute to them the narrative that most closely fits those expectations
- So, in 1990-91, A&S story would be that C dropped because dominant 'narrative' changed to low pty scenario
- Begs the question: Why do narratives change?

One Idea

 \bullet Generate narratives from alternative IMC ${\mathbb E}$ models:

- $\bullet\,$ Experts have sharply different forecasts of pty growth $\gamma\,$
- Generate forecasts that would arise for $\gamma \in [0.0, 2.5]$
- Given a person's measured expectations, impute to them the narrative that most closely fits those expectations
- So, in 1990-91, A&S story would be that *C* dropped because dominant 'narrative' changed to low pty scenario
- Begs the question: Why do narratives change?

- \bullet Generate narratives from alternative IMC ${\mathbb E}$ models:
 - $\bullet\,$ Experts have sharply different forecasts of pty growth γ
 - Generate forecasts that would arise for $\gamma \in [0.0, 2.5]$
- Given a person's measured expectations, impute to them the narrative that most closely fits those expectations
- So, in 1990-91, A&S story would be that *C* dropped because dominant 'narrative' changed to low pty scenario
- Begs the question: Why do narratives change?

- \bullet Generate narratives from alternative IMC ${\mathbb E}$ models:
 - $\bullet\,$ Experts have sharply different forecasts of pty growth $\gamma\,$
 - Generate forecasts that would arise for $\gamma \in [0.0, 2.5]$
- Given a person's measured expectations, impute to them the narrative that most closely fits those expectations
- So, in 1990-91, A&S story would be that C dropped because dominant 'narrative' changed to low pty scenario
- Begs the question: Why do narratives change?

- \bullet Generate narratives from alternative IMC ${\mathbb E}$ models:
 - $\bullet\,$ Experts have sharply different forecasts of pty growth $\gamma\,$
 - Generate forecasts that would arise for $\gamma \in [0.0, 2.5]$
- Given a person's measured expectations, impute to them the narrative that most closely fits those expectations
- So, in 1990-91, A&S story would be that C dropped because dominant 'narrative' changed to low pty scenario
- Begs the question: Why do narratives change?

- \bullet Generate narratives from alternative IMC ${\mathbb E}$ models:
 - $\bullet\,$ Experts have sharply different forecasts of pty growth γ
 - Generate forecasts that would arise for $\gamma \in [0.0, 2.5]$
- Given a person's measured expectations, impute to them the narrative that most closely fits those expectations
- So, in 1990-91, A&S story would be that C dropped because dominant 'narrative' changed to low pty scenario
- Begs the question: Why do narratives change?

Assume "Narratives" spread like diseases ("contagion")

• Infection from "common sources": News media

Progress How to Make Progress HA Macro HABN

- Communicable via "direct contact": Facebook
 - Eriends may have had personal experiences.
 - Layoffs announced; employer profits declined
 - Friends also might read news sources.
- Call this proposal 'Epidemiological Expectations' (E \mathbb{E})

Assume "Narratives" spread like diseases ("contagion")

• Infection from "common sources": News media

Progress How to Make Progress HA Macro HABN

• Communicable via "direct contact": Facebook

- Friends may have had personal experiences
- Layoffs announced; employer profits declined ...
- Friends also might read news sources

Assume "Narratives" spread like diseases ("contagion")

• Infection from "common sources": News media

Progress How to Make Progress HA Macro HABN

- Communicable via "direct contact": Facebook
 - Friends may have had personal experiences
 - Layoffs announced; employer profits declined ...
 - Friends also might read news sources

- Infection from "common sources": News media
- Communicable via "direct contact": Facebook
 - Friends may have had personal experiences
 - Layoffs announced; employer profits declined ...
 - Friends also might read news sources

- Infection from "common sources": News media
- Communicable via "direct contact": Facebook
 - Friends may have had personal experiences
 - Layoffs announced; employer profits declined ...
 - Friends also might read news sources

- Infection from "common sources": News media
- Communicable via "direct contact": Facebook
 - Friends may have had personal experiences
 - Layoffs announced; employer profits declined ...
 - Friends also might read news sources

- Infection from "common sources": News media
- Communicable via "direct contact": Facebook
 - Friends may have had personal experiences
 - Layoffs announced; employer profits declined ...
 - Friends also might read news sources

- Infection from "common sources": News media
- Communicable via "direct contact": Facebook
 - Friends may have had personal experiences
 - Layoffs announced; employer profits declined ...
 - Friends also might read news sources

Explicit, quantitative EE models? Agent Based Modeling

- Many of the pioneers of ABM are at this conference
- Successes
 - Actual contagion (of diseases)
 - . Asset prices modeled by direct spread of profitable behaviors
 - Contagion of ideas

- So far, not used much for explicit modeling of:
 - Expectations data (a la Manski)

Explicit, quantitative EE models? Agent Based Modeling

• Many of the pioneers of ABM are at this conference

- Successes
 - Actual contagion (of diseases)
 - Epstein (2009)
 - Asset prices modeled by direct spread of profitable behaviors
 Survey: LeBaron (2006)
 - Contagion of ideas
 - Through terrorist networks.
 - Transmission of 'fake news'
- So far, not used much for explicit modeling of:
 - Transmission of economic narratives
 - Expectations data (a la Manski)
 - Eccept for Cars Hommes

Explicit, quantitative $E\mathbb{E}$ models? Agent Based Modeling

- Many of the pioneers of ABM are at this conference
- Successes
 - Actual contagion (of diseases)
 - Epstein (2009)
 - Asset prices modeled by direct spread of profitable behaviors
 Survey: LeBaron (2006)
 - Contagion of ideas
 - Through terrorist networks
 - Transmission of 'fake news'
- So far, not used much for explicit modeling of:
 - Transmission of economic narratives
 - Say, via news media exposure, Facebook-Twitter forwards
 - Expectations data (a la Manski)
 - Eccept for Cars Hommes

Explicit, quantitative $E\mathbb{E}$ models? Agent Based Modeling

- Many of the pioneers of ABM are at this conference
- Successes
 - Actual contagion (of diseases)
 - Epstein (2009)
 - Asset prices modeled by direct spread of profitable behaviors
 Survey: LeBaron (2006)
 - Contagion of ideas
 - Through terrorist networks
 - Transmission of 'fake news'
- So far, not used much for explicit modeling of:
 - Transmission of economic narratives
 - Expectations data (a la Manski)
 - Except for Cars Hommes

Explicit, quantitative EE models? Agent Based Modeling

- Many of the pioneers of ABM are at this conference
- Successes
 - Actual contagion (of diseases)
 - Epstein (2009)
 - Asset prices modeled by direct spread of profitable behaviors
 Survey: LeBaron (2006)
 - Contagion of ideas
 - Through terrorist networks
 - Transmission of 'fake news'
- So far, not used much for explicit modeling of:
 - Transmission of economic narratives
 - Say, via news media exposure, Facebook-Twitter forwards
 - Expectations data (a la Manski)
 - Except for Cars Hommes

- Many of the pioneers of ABM are at this conference
- Successes
 - Actual contagion (of diseases)
 - Epstein (2009)
 - Asset prices modeled by direct spread of profitable behaviors
 - Survey: LeBaron (2006)
 - Contagion of ideas
 - Through terrorist networks
 - Transmission of 'fake news'
- So far, not used much for explicit modeling of:
 - Transmission of economic narratives
 - Say, via news media exposure, Facebook-Twitter forwards....
 - Expectations data (a la Manski)
 - Except for Cars Hommes

- Many of the pioneers of ABM are at this conference
- Successes
 - Actual contagion (of diseases)
 - Epstein (2009)
 - Asset prices modeled by direct spread of profitable behaviors
 - Survey: LeBaron (2006)
 - Contagion of ideas
 - Through terrorist networks
 - Transmission of 'fake news'
- So far, not used much for explicit modeling of:
 - Transmission of economic narratives
 - Say via news media exposure, Facebook-Twitter forwards
 - Expectations data (a la Manski)
 - Except for Cars Hommes

- Many of the pioneers of ABM are at this conference
- Successes
 - Actual contagion (of diseases)
 - Epstein (2009)
 - Asset prices modeled by direct spread of profitable behaviors
 - Survey: LeBaron (2006)
 - Contagion of ideas
 - Through terrorist networks
 - Transmission of 'fake news'
- So far, not used much for explicit modeling of:
 - Transmission of economic narratives
 - Say, via news media exposure, Eacebook-Twitter forwards....
 - Expectations data (a la Manski)
 - Except for Cars Hommes

- Many of the pioneers of ABM are at this conference
- Successes
 - Actual contagion (of diseases)
 - Epstein (2009)
 - Asset prices modeled by direct spread of profitable behaviors
 - Survey: LeBaron (2006)
 - Contagion of ideas
 - Through terrorist networks
 - Transmission of 'fake news
- So far, not used much for explicit modeling of:
 - Transmission of economic narratives
 - Expectations data (a la Manski)
 - Eccept for Cars Hommes

- Many of the pioneers of ABM are at this conference
- Successes
 - Actual contagion (of diseases)
 - Epstein (2009)
 - Asset prices modeled by direct spread of profitable behaviors
 - Survey: LeBaron (2006)
 - Contagion of ideas
 - Through terrorist networks
 - Transmission of 'fake news'
- So far, not used much for explicit modeling of:
 - Transmission of economic narratives
 - Say, via news media exposure, Facebook-Twitter forwards
 - Expectations data (a la Manski)
 - Eccept for Cars Hommes

- Many of the pioneers of ABM are at this conference
- Successes
 - Actual contagion (of diseases)
 - Epstein (2009)
 - Asset prices modeled by direct spread of profitable behaviors
 - Survey: LeBaron (2006)
 - Contagion of ideas
 - Through terrorist networks
 - Transmission of 'fake news'
- So far, not used much for explicit modeling of:
 - Transmission of economic narratives
 - Say, via news media exposure, Facebook-Twitter forwards ...
 - Expectations data (a la Manski)
 - Except for Cars Hommes

- Many of the pioneers of ABM are at this conference
- Successes
 - Actual contagion (of diseases)
 - Epstein (2009)
 - Asset prices modeled by direct spread of profitable behaviors
 - Survey: LeBaron (2006)
 - Contagion of ideas
 - Through terrorist networks
 - Transmission of 'fake news'
- So far, not used much for explicit modeling of:
 - Transmission of economic narratives
 - Say, via news media exposure, Facebook-Twitter forwards ...
 - Expectations data (a la Manski)
 - Except for Cars Hommes

- Many of the pioneers of ABM are at this conference
- Successes
 - Actual contagion (of diseases)
 - Epstein (2009)
 - Asset prices modeled by direct spread of profitable behaviors
 - Survey: LeBaron (2006)
 - Contagion of ideas
 - Through terrorist networks
 - Transmission of 'fake news'
- So far, not used much for explicit modeling of:
 - Transmission of economic narratives
 - Say, via news media exposure, Facebook-Twitter forwards ...
 - Expectations data (a la Manski)
 - Except for Cars Hommes

- Many of the pioneers of ABM are at this conference
- Successes
 - Actual contagion (of diseases)
 - Epstein (2009)
 - Asset prices modeled by direct spread of profitable behaviors
 - Survey: LeBaron (2006)
 - Contagion of ideas
 - Through terrorist networks
 - Transmission of 'fake news'
- So far, not used much for explicit modeling of:
 - Transmission of economic narratives
 - Say, via news media exposure, Facebook-Twitter forwards ...
 - Expectations data (a la Manski)
 - Except for Cars Hommes

- Many of the pioneers of ABM are at this conference
- Successes
 - Actual contagion (of diseases)
 - Epstein (2009)
 - Asset prices modeled by direct spread of profitable behaviors
 - Survey: LeBaron (2006)
 - Contagion of ideas
 - Through terrorist networks
 - Transmission of 'fake news'
- So far, not used much for explicit modeling of:
 - Transmission of economic narratives
 - Say, via news media exposure, Facebook-Twitter forwards ...
 - Expectations data (a la Manski)
 - Except for Cars Hommes

We Need a Canonical Off-the-Shelf $E\mathbb{E}$ Model ...

One reason ABM's are resisted:

- Results depend sensitively on huge number of assumptions
- Every paper makes a different set of assumptions

We Need a Canonical Off-the-Shelf $E\mathbb{E}$ Model ...

One reason ABM's are resisted:

- Results depend sensitively on huge number of assumptions
- Every paper makes a different set of assumptions

Using Facebook data:

- Persons A and B live in Des Moines in 2008-10
- ... and are identical on 'observables'
- ... but person A has more friends in 'busting' markets

- Person A is more pessimistic about Des Moines house prices
- ullet Is less likely to buy a house \checkmark
- ullet If they buy a house, it will be cheaper \checkmark

Using Facebook data:

- Persons A and B live in Des Moines in 2008-10
- ... and are identical on 'observables'
- ... but person A has more friends in 'busting' markets Then:
 - Person A is more pessimistic about Des Moines house prices
 - ullet Is less likely to buy a house \checkmark
 - ullet If they buy a house, it will be cheaper \checkmark

Using Facebook data:

- Persons A and B live in Des Moines in 2008-10
- ... and are identical on 'observables'

• ... but person A has more friends in 'busting' markets Then:

- Person A is more pessimistic about Des Moines house prices
- ullet Is less likely to buy a house \checkmark
- ullet If they buy a house, it will be cheaper \checkmark

Using Facebook data:

- Persons A and B live in Des Moines in 2008-10
- ... and are identical on 'observables'
- ... but person A has more friends in 'busting' markets
- Person A is more pessimistic about Des Moines house prices
- Is less likely to buy a house \checkmark
- ullet If they buy a house, it will be cheaper \checkmark

Using Facebook data:

- Persons A and B live in Des Moines in 2008-10
- ... and are identical on 'observables'
- ... but person A has more friends in 'busting' markets
- Person A is more pessimistic about Des Moines house prices
- Is less likely to buy a house \checkmark
- ullet If they buy a house, it will be cheaper \checkmark

Using Facebook data:

- Persons A and B live in Des Moines in 2008-10
- ... and are identical on 'observables'
- ... but person A has more friends in 'busting' markets

- Person A is more pessimistic about Des Moines house prices
- Is less likely to buy a house v
- ullet If they buy a house, it will be cheaper \checkmark

Using Facebook data:

- Persons A and B live in Des Moines in 2008-10
- ... and are identical on 'observables'
- ... but person A has more friends in 'busting' markets

- Person A is more pessimistic about Des Moines house prices
- Is less likely to buy a house \checkmark
- ullet If they buy a house, it will be cheaper \checkmark

Using Facebook data:

- Persons A and B live in Des Moines in 2008-10
- ... and are identical on 'observables'
- ... but person A has more friends in 'busting' markets

- Person A is more pessimistic about Des Moines house prices
- Is less likely to buy a house \checkmark
- ullet If they buy a house, it will be cheaper \checkmark

Using Facebook data:

- Persons A and B live in Des Moines in 2008-10
- ... and are identical on 'observables'
- ... but person A has more friends in 'busting' markets

- Person A is more pessimistic about Des Moines house prices
- Is less likely to buy a house \checkmark
- $\bullet\,$ If they buy a house, it will be cheaper $\checkmark\,$

Using Facebook data:

- Persons A and B live in Des Moines in 2008-10
- ... and are identical on 'observables'
- ... but person A has more friends in 'busting' markets

- Person A is more pessimistic about Des Moines house prices
- Is less likely to buy a house \checkmark
- $\bullet\,$ If they buy a house, it will be cheaper $\checkmark\,$

Using Facebook data:

- Persons A and B live in Des Moines in 2008-10
- ... and are identical on 'observables'
- ... but person A has more friends in 'busting' markets

- Person A is more pessimistic about Des Moines house prices
- Is less likely to buy a house \checkmark
- If they buy a house, it will be cheaper \checkmark

Use their data to construct:

- A benchmark network structure for friends
- A benchmark person-to-person infection rate

Use other data to construct:

• Infection rate from 'common sources': News media

- Don't invent new model of expecations for every paper!
- At most, recalibrate 'infectiousness'
 - . Reople gossip more about house prices than inflation rate

Use their data to construct:

- A benchmark network structure for friends
- A benchmark person-to-person infection rate

Use other data to construct:

• Infection rate from 'common sources': News media

- Don't invent new model of expecations for every paper!
- At most, recalibrate 'infectiousness'
 - Reople gossip more about house prices than inflation rate.

Use their data to construct:

- A benchmark network structure for friends
- A benchmark person-to-person infection rate

Use other data to construct:

• Infection rate from 'common sources': News media

- Don't invent new model of expecations for every paper!
- At most, recalibrate 'infectiousness'
 - Reople gossip more about house prices than inflation rate.

Use their data to construct:

- A benchmark network structure for friends
- A benchmark person-to-person infection rate

Use other data to construct:

• Infection rate from 'common sources': News media

- Don't invent new model of expecations for every paper!
- At most, recalibrate 'infectiousness'
 - Reople gossip more about house prices than inflation rate.

Use their data to construct:

- A benchmark network structure for friends
- A benchmark person-to-person infection rate

Use other data to construct:

• Infection rate from 'common sources': News media

- Don't invent new model of expecations for every paper!
- At most, recalibrate 'infectiousness'
 - Reople gossip more about house prices than inflation rate.

Use their data to construct:

- A benchmark network structure for friends
- A benchmark person-to-person infection rate

Use other data to construct:

• Infection rate from 'common sources': News media

- Don't invent new model of expecations for every paper!
- At most, recalibrate 'infectiousness'
 - Reople gossip more about house prices than inflation rate.

Use their data to construct:

- A benchmark network structure for friends
- A benchmark person-to-person infection rate

Use other data to construct:

• Infection rate from 'common sources': News media

Make that a plug-and-play module:

- Don't invent new model of expecations for every paper!
- At most, recalibrate 'infectiousness'

People gossip more about house prices than inflation rate

Use their data to construct:

- A benchmark network structure for friends
- A benchmark person-to-person infection rate

Use other data to construct:

• Infection rate from 'common sources': News media

- Don't invent new model of expecations for every paper!
- At most, recalibrate 'infectiousness'
 - People gossip more about house prices than inflation rate

Use their data to construct:

- A benchmark network structure for friends
- A benchmark person-to-person infection rate

Use other data to construct:

• Infection rate from 'common sources': News media

- Don't invent new model of expecations for every paper!
- At most, recalibrate 'infectiousness'
 - People gossip more about house prices than inflation rate

HA model starting point: Microeconomic models

- Constructed to match measured heterogeneity
- For example, a consumption model that matches
 Income dynamics, income inequality, Generating
 MPC

• \Rightarrow decision rules contingent on expectations ('narrative') Acro outcomes:

- Generated by simulating populations of micro agents
- Taking account of feedbacks from macro back to micro
- Expectations are standard IMCE
- HA do much better than RA models on important questions

HA model starting point: Microeconomic models

- Constructed to match measured heterogeneity
- For example, a consumption model that matches
 - Income dynamics, income inequality, wealth inequality
 MPC

• \Rightarrow decision rules contingent on expectations ('narrative') Aacro outcomes:

- Generated by simulating populations of micro agents
- Taking account of feedbacks from macro back to micro
- Expectations are standard IMCE
- HA do much better than RA models on important questions

HA model starting point: Microeconomic models

- Constructed to match measured heterogeneity
- For example, a consumption model that matches
 - Income dynamics, income inequality, wealth inequality
 MPC

• \Rightarrow decision rules contingent on expectations ('narrative') Macro outcomes:

- Generated by simulating populations of micro agents
- Taking account of feedbacks from macro back to micro
- Expectations are standard IMCE
- HA do much better than RA models on important questions

HA model starting point: Microeconomic models

- Constructed to match measured heterogeneity
- For example, a consumption model that matches
 - Income dynamics, income inequality, wealth inequality
 - MPC

• \Rightarrow decision rules contingent on expectations ('narrative') Macro outcomes:

- Generated by simulating populations of micro agents
- Taking account of feedbacks from macro back to micro
- Expectations are standard IMCE
- HA do much better than RA models on important questions

HA model starting point: Microeconomic models

- Constructed to match measured heterogeneity
- For example, a consumption model that matches
 - Income dynamics, income inequality, wealth inequality
 - MPC

• \Rightarrow decision rules contingent on expectations ('narrative') Acro outcomes:

- Generated by simulating populations of micro agents
- Taking account of feedbacks from macro back to micro
- Expectations are standard IMCE
- HA do much better than RA models on important questions

HA model starting point: Microeconomic models

- Constructed to match measured heterogeneity
- For example, a consumption model that matches
 - Income dynamics, income inequality, wealth inequality
 - MPC

• \Rightarrow decision rules contingent on expectations ('narrative') Acro outcomes:

- Generated by simulating populations of micro agents
- Taking account of feedbacks from macro back to micro
- Expectations are standard IMCE
- HA do much better than RA models on important questions

HA model starting point: Microeconomic models

- Constructed to match measured heterogeneity
- For example, a consumption model that matches
 - Income dynamics, income inequality, wealth inequality
 - MPC
- \Rightarrow decision rules contingent on expectations ('narrative')

- Generated by simulating populations of micro agents
- Taking account of feedbacks from macro back to micro
- Expectations are standard IMC $\mathbb E$
- HA do much better than RA models on important questions
 How do fiscal and monetary policy work?

HA model starting point: Microeconomic models

- Constructed to match measured heterogeneity
- For example, a consumption model that matches
 - Income dynamics, income inequality, wealth inequality
 - MPC
- \Rightarrow decision rules contingent on expectations ('narrative')

- Generated by simulating populations of micro agents
- Taking account of feedbacks from macro back to micro
- Expectations are standard IMC $\mathbb E$
- HA do much better than RA models on important questions
 How do fiscal and monetary policy work?

HA model starting point: Microeconomic models

- Constructed to match measured heterogeneity
- For example, a consumption model that matches
 - Income dynamics, income inequality, wealth inequality
 - MPC
- \Rightarrow decision rules contingent on expectations ('narrative')

- Generated by simulating populations of micro agents
- Taking account of feedbacks from macro back to micro
- Expectations are standard IMC $\mathbb E$
- HA do much better than RA models on important questions
 How do fiscal and monetary policy work?

HA model starting point: Microeconomic models

- Constructed to match measured heterogeneity
- For example, a consumption model that matches
 - Income dynamics, income inequality, wealth inequality
 - MPC
- \Rightarrow decision rules contingent on expectations ('narrative')

Macro outcomes:

- Generated by simulating populations of micro agents
- Taking account of feedbacks from macro back to micro
- $\bullet~\mbox{Expectations}$ are standard $\mbox{IMC}\mathbb{E}$
- HA do much better than RA models on important questions

• How do fiscal and monetary policy work?

HA model starting point: Microeconomic models

- Constructed to match measured heterogeneity
- For example, a consumption model that matches
 - Income dynamics, income inequality, wealth inequality
 - MPC
- \Rightarrow decision rules contingent on expectations ('narrative')

- Generated by simulating populations of micro agents
- Taking account of feedbacks from macro back to micro
- $\bullet~\mbox{Expectations}$ are standard $\mbox{IMC}\mathbb{E}$
- HA do much better than RA models on important questions
 - How do fiscal and monetary policy work?

What do expectations/narratives do? King (2016) is right:

- Determine your decision rule
- If $\mathbb{E}_{i}[\Delta p_{i+1}] < x_{i} p(\text{sell})$ is higher
- Start with HA macro model, and change only one thing:
 - Replace IMCE with EE
 - Keep Rest of the HA Macro Structure
 - ullet Including decision rules, *contingent* on $\mathbb E$

What do expectations/narratives do? King (2016) is right:

- Determine your decision rule
 - If $\mathbb{E}_t[\Delta p_{t+1}] > x$, p(buy) is higher
 - If $\mathbb{E}_t[\Delta p_{t+1}] < x$, p(sell) is higher

- Replace IMCE with EE
- Keep Rest of the HA Macro Structure
- ullet Including decision rules, *contingent* on $\mathbb E$

What do expectations/narratives do? King (2016) is right:

- Determine your decision rule
 - If $\mathbb{E}_t[\Delta p_{t+1}] > x$, p(buy) is higher
 - If $\mathbb{E}_t[\Delta p_{t+1}] < x$, p(sell) is higher

- Replace IMCE with EE
- Keep Rest of the HA Macro Structure
- ullet Including decision rules, *contingent* on $\mathbb E$

What do expectations/narratives do? King (2016) is right:

- Determine your decision rule
 - If $\mathbb{E}_t[\Delta p_{t+1}] > x$, $p(\mathsf{buy})$ is higher
 - If $\mathbb{E}_t[\Delta p_{t+1}] < x$, p(sell) is higher

- Replace IMCE with EE
- Keep Rest of the HA Macro Structure
- Including decision rules, *contingent* on $\mathbb E$

What do expectations/narratives do? King (2016) is right:

- Determine your decision rule
 - If $\mathbb{E}_t[\Delta p_{t+1}] > x$, $p(\mathsf{buy})$ is higher
 - If $\mathbb{E}_t[\Delta p_{t+1}] < x$, p(sell) is higher

- Replace IMCE with EE
- Keep Rest of the HA Macro Structure
- Including decision rules, *contingent* on $\mathbb E$

What do expectations/narratives do? King (2016) is right:

- Determine your decision rule
 - If $\mathbb{E}_t[\Delta p_{t+1}] > x$, p(buy) is higher
 - If $\mathbb{E}_t[\Delta p_{t+1}] < x$, p(sell) is higher
- Start with HA macro model, and change only one thing:
 - $\bullet~\mbox{Replace IMC} \mathbb E$ with $\mbox{E} \mathbb E$
 - Keep Rest of the HA Macro Structure
 - ullet Including decision rules, *contingent* on $\mathbb E$

What do expectations/narratives do? King (2016) is right:

- Determine your decision rule
 - If $\mathbb{E}_t[\Delta p_{t+1}] > x$, p(buy) is higher
 - If $\mathbb{E}_t[\Delta p_{t+1}] < x$, p(sell) is higher

- Replace IMC \mathbb{E} with $E\mathbb{E}$
- Keep Rest of the HA Macro Structure
- Including decision rules, *contingent* on $\mathbb E$

What do expectations/narratives do? King (2016) is right:

- Determine your decision rule
 - If $\mathbb{E}_t[\Delta p_{t+1}] > x$, p(buy) is higher
 - If $\mathbb{E}_t[\Delta p_{t+1}] < x$, p(sell) is higher

- $\bullet~\mbox{Replace IMC}\xspace$ with $\mbox{E}\xspace$
- Keep Rest of the HA Macro Structure
- \bullet Including decision rules, $\mathit{contingent}$ on $\mathbb E$

• Gives a way to use many kinds of existing evidence

- Narratives (say, from analysis of news stories)
- Expectations (say, from surveys)
- Behaviors (directly observed in micro data)
- Outcomes (micro: wealth distribution; macro: C)

and integrate them with each other

- Suggests new kinds of data that should be collected
 - Ask people *why* they think what they do (e.g., about u)
 - Personal experience ("I remember the last oil price shock").
 - Conversations with friends and family
 - News stories
 - o 777
 - Measure behaviors and expectations on the same survey
- Builds bridge between macroeconomists and ABM community

• Gives a way to use many kinds of existing evidence

- Narratives (say, from analysis of news stories)
- Expectations (say, from surveys)
- Behaviors (directly observed in micro data)
- Outcomes (micro: wealth distribution; macro: C)

and integrate them with each other

• Suggests new kinds of data that should be collected

- Ask people why they think what they do (e.g., about u)
 - Personal experience ("I remember the last oil price shock").
 - Conversations with friends and family
 - News stories
 - o 777
 - Measure behaviors and expecations on the same survey

• Gives a way to use many kinds of existing evidence

- Narratives (say, from analysis of news stories)
- Expectations (say, from surveys)
- Behaviors (directly observed in micro data)
- Outcomes (micro: wealth distribution; macro: C)

and integrate them with each other

• Suggests new kinds of data that should be collected

- Ask people why they think what they do (e.g., about u)
 - Personal experience ("I remember the last oil price shock").
 - Conversations with friends and family
 - News stories
 - o 777
 - Measure behaviors and expectations on the same survey

• Gives a way to use many kinds of existing evidence

- Narratives (say, from analysis of news stories)
- Expectations (say, from surveys)
- Behaviors (directly observed in micro data)
- Outcomes (micro: wealth distribution; macro: C)

and integrate them with each other

• Suggests new kinds of data that should be collected

- Ask people why they think what they do (e.g., about u)
 - Personal experience ("I remember the last oil price shock")
 - Conversations with friends and family
 - News stories
 - o 777
 - Measure behaviors and expecations on the same survey

• Gives a way to use many kinds of existing evidence

- Narratives (say, from analysis of news stories)
- Expectations (say, from surveys)
- Behaviors (directly observed in micro data)
- Outcomes (micro: wealth distribution; macro: C)
- and integrate them with each other
- Suggests new kinds of data that should be collected
 - Ask people why they think what they do (e.g., about u)
 - Personal experience ("I remember the last oil price shock").
 - Conversations with friends and family
 - News stories
 - o ???
 - Measure behaviors and expecations on the same survey
- Builds bridge between macroeconomists and ABM community

- Gives a way to use many kinds of existing evidence
 - Narratives (say, from analysis of news stories)
 - Expectations (say, from surveys)
 - Behaviors (directly observed in micro data)
 - Outcomes (micro: wealth distribution; macro: C)

and integrate them with each other

• Suggests new kinds of data that should be collected

- Ask people why they think what they do (e.g., about u)
 - Personal experience ("I remember the last oil price shock")
 - Conversations with friends and family
 - News stories
 - ???
 - Measure behaviors and expecations on the same survey

• Builds bridge between macroeconomists and ABM community

▲ □ ▶ ▲ 三 ▶ ▲

- Gives a way to use many kinds of existing evidence
 - Narratives (say, from analysis of news stories)
 - Expectations (say, from surveys)
 - Behaviors (directly observed in micro data)
 - Outcomes (micro: wealth distribution; macro: C)

and integrate them with each other

• Suggests new kinds of data that should be collected

- Ask people *why* they think what they do (e.g., about u)
 - Personal experience ("I remember the last oil price shock")
 - Conversations with friends and family
 - News stories
 - ???
 - Measure behaviors and expecations on the same survey

- Gives a way to use many kinds of existing evidence
 - Narratives (say, from analysis of news stories)
 - Expectations (say, from surveys)
 - Behaviors (directly observed in micro data)
 - Outcomes (micro: wealth distribution; macro: C)

and integrate them with each other

• Suggests new kinds of data that should be collected

- Ask people *why* they think what they do (e.g., about u)
 - Personal experience ("I remember the last oil price shock")
 - Conversations with friends and family
 - News stories
 - ???
 - Measure behaviors and expecations on the same survey

- Gives a way to use many kinds of existing evidence
 - Narratives (say, from analysis of news stories)
 - Expectations (say, from surveys)
 - Behaviors (directly observed in micro data)
 - Outcomes (micro: wealth distribution; macro: C)

and integrate them with each other

• Suggests new kinds of data that should be collected

- Ask people *why* they think what they do (e.g., about u)
 - Personal experience ("I remember the last oil price shock")
 - Conversations with friends and family
 - News stories
 - ???
 - Measure behaviors and expecations on the same survey

- Gives a way to use many kinds of existing evidence
 - Narratives (say, from analysis of news stories)
 - Expectations (say, from surveys)
 - Behaviors (directly observed in micro data)
 - Outcomes (micro: wealth distribution; macro: C)

and integrate them with each other

• Suggests new kinds of data that should be collected

- Ask people *why* they think what they do (e.g., about u)
 - Personal experience ("I remember the last oil price shock")
 - Conversations with friends and family
 - News stories
 - ???
 - Measure behaviors and expecations on the same survey

- Gives a way to use many kinds of existing evidence
 - Narratives (say, from analysis of news stories)
 - Expectations (say, from surveys)
 - Behaviors (directly observed in micro data)
 - Outcomes (micro: wealth distribution; macro: C)

and integrate them with each other

• Suggests new kinds of data that should be collected

- Ask people *why* they think what they do (e.g., about u)
 - Personal experience ("I remember the last oil price shock")
 - Conversations with friends and family
 - News stories
 - ???
 - Measure behaviors and expecations on the same survey

- Gives a way to use many kinds of existing evidence
 - Narratives (say, from analysis of news stories)
 - Expectations (say, from surveys)
 - Behaviors (directly observed in micro data)
 - Outcomes (micro: wealth distribution; macro: C)

and integrate them with each other

• Suggests new kinds of data that should be collected

- Ask people *why* they think what they do (e.g., about u)
 - Personal experience ("I remember the last oil price shock")
 - Conversations with friends and family
 - News stories
 - ???
 - Measure behaviors and expecations on the same survey

- Gives a way to use many kinds of existing evidence
 - Narratives (say, from analysis of news stories)
 - Expectations (say, from surveys)
 - Behaviors (directly observed in micro data)
 - Outcomes (micro: wealth distribution; macro: C)

and integrate them with each other

• Suggests new kinds of data that should be collected

- Ask people *why* they think what they do (e.g., about u)
 - Personal experience ("I remember the last oil price shock")
 - Conversations with friends and family
 - News stories
 - ???
 - Measure behaviors and expecations on the same survey

- Choose an existing HA macro model of house prices
- For each observed belief about E[Δp_h], find a scenario in the HA model that would produce that path (a narrative)
- Construct EE model in which you can be 'infected' with new narrative by talking to a friend or (say) from reading a narrative in a newspaper
- Match the patterns of transmission of expectations in the model and the data

- Choose an existing HA macro model of house prices
- For each observed belief about E[Δp_h], find a scenario in the HA model that would produce that path (a narrative)
- Construct EE model in which you can be 'infected' with new narrative by talking to a friend or (say) from reading a narrative in a newspaper
- Match the patterns of transmission of expectations in the model and the data

- Choose an existing HA macro model of house prices
- For each observed belief about E[Δp_h], find a scenario in the HA model that would produce that path (a narrative)
- Construct EE model in which you can be 'infected' with new narrative by talking to a friend or (say) from reading a narrative in a newspaper
- Match the patterns of transmission of expectations in the model and the data

- Choose an existing HA macro model of house prices
- For each observed belief about E[Δp_h], find a scenario in the HA model that would produce that path (a narrative)
- Construct EE model in which you can be 'infected' with new narrative by talking to a friend or (say) from reading a narrative in a newspaper
- Match the patterns of transmission of expectations in the model and the data

Confession:

• Whole Talk Was a Pitch for Econ-ARK/HARK project

- Already contains the HA Macro part
- $\bullet\,$ Need to add ABM tools to construct EE
 - On our near term agenda; part of what we promised Sloan

Confession:

- Whole Talk Was a Pitch for Econ-ARK/HARK project
- Already contains the HA Macro part
- Need to add ABM tools to construct EE
 On our near term agenda; part of what we promised Slo

Confession:

- Whole Talk Was a Pitch for Econ-ARK/HARK project
- Already contains the HA Macro part
- \bullet Need to add ABM tools to construct $\mathsf{E}\mathbb{E}$

• On our near term agenda; part of what we promised Sloan

Confession:

- Whole Talk Was a Pitch for Econ-ARK/HARK project
- Already contains the HA Macro part
- \bullet Need to add ABM tools to construct $\mathsf{E}\mathbb{E}$
 - On our near term agenda; part of what we promised Sloan

Confession:

- Whole Talk Was a Pitch for Econ-ARK/HARK project
- Already contains the HA Macro part
- \bullet Need to add ABM tools to construct $\mathsf{E}\mathbb{E}$
 - On our near term agenda; part of what we promised Sloan

Confession:

- Whole Talk Was a Pitch for Econ-ARK/HARK project
- Already contains the HA Macro part
- \bullet Need to add ABM tools to construct $\mathsf{E}\mathbb{E}$
 - On our near term agenda; part of what we promised Sloan

Wealth Inequality

Figure: Distribution of Net Worth (Lorenz Curve)

References

- BAPTISTA, RAFA, J DOYNE FARMER, MARC HINTERSCHWEIGER, KATIE LOW, DANIEL TANG, AND ARZU ULUC (2016): "Macroprudential policy in an agent-based model of the UK housing market," Bank of England Staff Working Paper No. 619: Macroprudential policy in an agent-based model of the UK housing market - Rafa Baptista, J Doyne Farmer, Marc Hinterschweiger, Katie Low, Daniel Tang and Arzu Uluc.
- CARROLL, CHRISTOPHER D., JIRI SLACALEK, KIICHI TOKUOKA, AND MATTHEW N. WHITE (2017, Forthcoming): "The Distribution of Wealth and the Marginal Propensity to Consume," *Quantitative Economics*, At http://econ.jhu.edu/people/ccarroll/papers/cstwMPC.

EPSTEIN, JOSHUA M (2009): "Modelling to contain pandemics," Nature, 460(7256), 687-687.

- GEANAKOPLOS, JOHN, ROBERT AXTELL, DOYNE J FARMER, PETER HOWITT, BENJAMIN CONLEE, JONATHAN GOLDSTEIN, MATTHEW HENDREY, NATHAN M PALMER, AND CHUN-YI YANG (2012): "Getting at systemic risk via an agent-based model of the housing market," *The American Economic Review*, 102(3), 53–58.
- KING, MERVYN A. (2016): The end of alchemy : money, banking and the future of the global economy. Little, Brown, London.
- LEBARON, BLAKE (2006): "Agent-based computational finance," Handbook of computational economics, 2, 1187–1233.
- MANSKI, CHARLES F. (2017): Survey Measurement of Probabilistic Macroeconomic Expectations: Progress and PromiseUniversity of Chicago Press.
- QIU, XIAOYAN, DIEGO FM OLIVEIRA, ALIREZA SAHAMI SHIRAZI, ALESSANDRO FLAMMINI, AND FILIPPO MENCZER (2017): "Limited individual attention and online virality of low-quality information," Nature Human Behavior, 1, 0132.
- SUMMERS, LAWRENCE H. (2011): "Larry Summers and Martin Wolf on New Economic Thinking," Financial Times interview, http://larrysummers.com/commentary/speeches/brenton-woods-speech/.

(日) (同) (三) (三)