Christopher Carroll1

1Johns Hopkins University and NBER
ccarroll@jhu.edu

Sloan-BoE-OFR Conference on Heterogeneous Agent Macroeconomics
U.S. Department of the Treasury

September 22, 2017
How Are Macroeconomists Doing on ‘Reality’?

- **Larry Summers**
 - FT interview in 2011
 - In the crisis, standard macro models were useless

- **Recent Brookings Panel Discussion**
 - Little progress since 2008 in modeling events like the crisis
 - Contagion from Lehmann Bros to Israel???
 - "Network analysis": No connections Lehmann ⇄ Israel

- **Looking forward right now:**
 - Would failed debt ceiling brinksmanship trigger another panic?
 - My best guess: probably not
 - But in 2008, many economists thought letting Lehmann fail would be a non-event
 - We still do not have a handle on how to model expectations
How Are Macroeconomists Doing on ‘Reality’?

- Larry Summers
 - FT interview in 2011
 - In the crisis, standard macro models were useless

- Recent Brookings Panel Discussion
 - Little progress since 2008 in modeling events like the crisis
 - Contagion from Lehmann Bros to Israel???
 - "Network analysis" - No connections Lehmann ⇄ Israel

- Looking forward right now:
 - Would failed debt ceiling brinksmanship trigger another panic?
 - My best guess: probably not
 - But in 2008, many economists thought letting Lehmann fail would be a non-event
 - We still do not have a handle on how to model expectations
How Are Macroeconomists Doing on ‘Reality’?

- **Larry Summers**
 - *FT interview in 2011*
 - In the crisis, standard macro models were useless

- **Recent Brookings Panel Discussion**
 - Little progress since 2008 in modeling events like the crisis
 - Contagion from Lehmann Bros to Israel???
 - "Network analysis": No connections Lehmann ↔ Israel

- **Looking forward right now:**
 - Would failed debt ceiling brinksmanship trigger another panic?
 - My best guess: probably not
 - But in 2008, many economists thought letting Lehmann fail would be a non-event
 - We still do not have a handle on how to model expectations
How Are Macroeconomists Doing on ‘Reality’?

- Larry Summers
 - FT interview in 2011
 - In the crisis, standard macro models were useless

- Recent Brookings Panel Discussion
 - Little progress since 2008 in modeling events like the crisis
 - Contagion from Lehmann Bros to Israel???
 - “Network analysis” : No connections Lehmann ⇄ Israel

- Looking forward right now:
 - Would failed debt ceiling brinkmanship trigger another panic?
 - My best guess: probably not
 - But in 2008, many economists thought letting Lehmann fail would be a non-event
 - We still do not have a handle on how to model expectations
How Are Macroeconomists Doing on ‘Reality’?

- Larry Summers
 - FT interview in 2011
 - In the crisis, standard macro models were useless

- Recent Brookings Panel Discussion
 - Little progress since 2008 in modeling events like the crisis
 - Contagion from Lehmann Bros to Israel???
 - “Network analysis” : No connections Lehmann ⇄ Israel

- Looking forward right now:
 - Would failed debt ceiling brinksmanship trigger another panic?
 - My best guess: probably not
 - But in 2008, many economists thought letting Lehmann fail would be a non-event
 - We still do not have a handle on how to model expectations
How Are Macroeconomists Doing on ‘Reality’?

- Larry Summers
 - FT interview in 2011
 - In the crisis, standard macro models were useless

- Recent Brookings Panel Discussion
 - Little progress since 2008 in modeling events like the crisis
 - Contagion from Lehmann Bros to Israel???
 - “Network analysis” : No connections Lehmann ⇔ Israel

- Looking forward right now:
 - Would failed debt ceiling brinksmanship trigger another panic?
 - My best guess: probably not
 - But in 2008, many economists thought letting Lehmann fail would be a non-event
 - We still do not have a handle on how to model expectations
How Are Macroeconomists Doing on ‘Reality’?

- Larry Summers
 - FT interview in 2011
 - In the crisis, standard macro models were useless
- Recent Brookings Panel Discussion
 - Little progress since 2008 in modeling events like the crisis
 - Contagion from Lehmann Bros to Israel???
 - “Network analysis” : No connections Lehmann ⇔ Israel
- Looking forward right now:
 - Would failed debt ceiling brinkmanship trigger another panic?
 - My best guess: probably not
 - But in 2008, many economists thought letting Lehmann fail would be a non-event
 - We still do not have a handle on how to model expectations
How Are Macroeconomists Doing on ‘Reality’?

- Larry Summers
 - *FT interview in 2011*
 - In the crisis, standard macro models were useless

- Recent Brookings Panel Discussion
 - Little progress since 2008 in modeling events like the crisis
 - Contagion from Lehmann Bros to Israel???
 - “Network analysis” : No connections Lehmann ⇔ Israel

- Looking forward right now:
 - Would failed debt ceiling brinksmanship trigger another panic?
 - My best guess: probably not
 - But in 2008, many economists thought letting Lehmann fail would be a non-event
 - We still do not have a handle on how to model expectations
How Are Macroeconomists Doing on ‘Reality’?

Larry Summers

- FT interview in 2011
 - In the crisis, standard macro models were useless

Recent Brookings Panel Discussion

- Little progress since 2008 in modeling events like the crisis
 - Contagion from Lehmann Bros to Israel???
 - “Network analysis” : No connections Lehmann ⇄ Israel

Looking forward right now:

- Would failed debt ceiling brinksmanship trigger another panic?
 - My best guess: probably not
- But in 2008, many economists thought letting Lehmann fail would be a non-event
- We still do not have a handle on how to model expectations
How Are Macroeconomists Doing on ‘Reality’?

Larry Summers
- *FT interview in 2011*
 - In the crisis, standard macro models were useless

Recent Brookings Panel Discussion
- Little progress since 2008 in modeling events like the crisis
 - Contagion from Lehmann Bros to Israel???
 - “Network analysis” : No connections Lehmann ⇔ Israel

Looking forward right now:
- Would failed debt ceiling brinksmanship trigger another panic?
 - My best guess: probably not
- But in 2008, many economists thought letting Lehmann fail would be a non-event
- We still do not have a handle on how to model expectations
How Are Macroeconomists Doing on ‘Reality’?

- Larry Summers
 - FT interview in 2011
 - In the crisis, standard macro models were useless
- Recent Brookings Panel Discussion
 - Little progress since 2008 in modeling events like the crisis
 - Contagion from Lehmann Bros to Israel???
 - “Network analysis” : No connections Lehmann ⇄ Israel
- Looking forward right now:
 - Would failed debt ceiling brinksmanship trigger another panic?
 - My best guess: probably not
 - But in 2008, many economists thought letting Lehmann fail would be a non-event
 - We still do not have a handle on how to model expectations
How Are Macroeconomists Doing on ‘Reality’?

- Larry Summers
 - FT interview in 2011
 - In the crisis, standard macro models were useless

- Recent Brookings Panel Discussion
 - Little progress since 2008 in modeling events like the crisis
 - Contagion from Lehmann Bros to Israel???
 - “Network analysis” : No connections Lehmann ⇄ Israel

- Looking forward right now:
 - Would failed debt ceiling brinksmanship trigger another panic?
 - My best guess: probably not
 - But in 2008, many economists thought letting Lehmann fail would be a non-event
 - We still do not have a handle on how to model expectations
At root, every paper this year was about “expectations” (‘E’)
- At center of macroeconomics since Keynes...
- “Identical Model-Consistent Expectations” (‘IMC_E’)
 - (Better description than “Rational”)
 - For some model of the economy \(m \):
 - (... (Everybody believes (Everybody believes \(m \)))
 - Usually: Identical circumstances (wealth, income, uncertainty)
 - Representative Agent (RA)
- IMC_E has the great virtue that it can be rejected
 - Defect: Every paper does reject it
At root, every paper this year was about “expectations” (‘E’)
- At center of macroeconomics since Keynes ...
- “Identical Model-Consistent Expectations” (‘IMCE’)
 - (Better description than “Rational”)
 - For some model of the economy m:
 - (... (Everybody believes (Everybody believes m)))
 - Usually: Identical circumstances (wealth, income, uncertainty)
 - Representative Agent (RA)
- IMCE has the great virtue that it can be rejected
 - Defect: Every paper does reject it
At root, every paper this year was about “expectations” (‘E’)
 - At center of macroeconomics since Keynes ...

“Identical Model-Consistent Expectations” (‘IMCE’)
 - (Better description than “Rational”)
 - For some model of the economy m:
 (... (Everybody believes (Everybody believes m)))
 - Usually: Identical circumstances (wealth, income, uncertainty)
 \Rightarrow Representative Agent (RA)

IMCE has the great virtue that it can be rejected
 - Defect: Every paper does reject it
At root, every paper this year was about “expectations” (‘E’)
 - At center of macroeconomics since Keynes ...
 - “Identical Model-Consistent Expectations” (‘IMCE’)
 - (Better description than “Rational”)
 - For some model of the economy m:
 - (... (Everybody believes (Everybody believes m)))
 - Usually: Identical circumstances (wealth, income, uncertainty)
 - \Rightarrow Representative Agent (RA)
 - IMCE has the great virtue that it can be rejected
 - Defect: Every paper does reject it
At root, every paper this year was about “expectations” (‘E’)

 At center of macroeconomics since Keynes ...

“Identical Model-Consistent Expectations” (‘IMCE’)

 (Better description than “Rational”)

 For some model of the economy m:

 (... (Everybody believes (Everybody believes m)))

 Usually: Identical circumstances (wealth, income, uncertainty)

 \Rightarrow Representative Agent (RA)

IMCE has the great virtue that it can be rejected

 Defect: Every paper does reject it
At root, every paper this year was about “expectations” (‘E’)
- At center of macroeconomics since Keynes ...
- “Identical Model-Consistent Expectations” (‘IMCE’)
 - (Better description than “Rational”)
 - For some model of the economy m:
 - (... (Everybody believes (Everybody believes m)))
 - Usually: Identical circumstances (wealth, income, uncertainty)
 - \Rightarrow Representative Agent (RA)
- IMCE has the great virtue that it can be rejected
 - Defect: Every paper does reject it
At root, every paper this year was about “expectations” (‘E’)
 - At center of macroeconomics since Keynes ...

“Identical Model-Consistent Expectations” (‘IMCE’)
 - (Better description than “Rational”)
 - For some model of the economy m:
 - (... (Everybody believes (Everybody believes m)))
 - Usually: Identical circumstances (wealth, income, uncertainty)
 ⇒ Representative Agent (RA)

IMCE has the great virtue that it can be rejected
 - Defect: Every paper does reject it
At root, every paper this year was about “expectations” (‘E’)
 - At center of macroeconomics since Keynes ...
- “Identical Model-Consistent Expectations” (‘IMC\(E\)’)
 - (Better description than “Rational”)
 - For some model of the economy \(m\):
 - (... (Everybody believes (Everybody believes \(m\))))
 - Usually: Identical circumstances (wealth, income, uncertainty)
 - ⇒ Representative Agent (RA)
- IMCE\(E\) has the great virtue that it can be rejected
 - Defect: Every paper does reject it
At root, every paper this year was about “expectations” (‘E’)
 - At center of macroeconomics since Keynes ...
“Identical Model-Consistent Expectations” (‘IMCE’)
 - (Better description than “Rational”)
 - For some model of the economy \(m \):
 - (... (Everybody believes (Everybody believes \(m \))))
 - Usually: Identical circumstances (wealth, income, uncertainty)
 \(\Rightarrow \) Representative Agent (RA)
IMCE has the great virtue that it can be rejected
 - Defect: Every paper does reject it
At root, every paper this year was about “expectations” (‘E’)
- At center of macroeconomics since Keynes ...
- “Identical Model-Consistent Expectations” (‘IMCE’)
 - (Better description than “Rational”)
 - For some model of the economy \(m \):
 - (... (Everybody believes (Everybody believes \(m \))))
 - Usually: Identical circumstances (wealth, income, uncertainty)
 - \(\Rightarrow \) Representative Agent (RA)
- IMCE has the great virtue that it can be rejected
 - Defect: Every paper does reject it
Chuck Manski (2017) survey paper:

- E can be measured(!)
- People behave in ways consistent with measured E
- Idea: Test models of E by comparison to data!

Discussion

- No need for more papers that just reject IMCE; a dead horse
- But: Every new paper has its own unique new model of E
- Need to whittle down to small set of canonical models . . .
- . . . with some reliable wisdom about when each works
Chuck Manski (2017) survey paper:

- E can be measured(!)
- People behave in ways consistent with measured E
- Idea: Test models of E by comparison to data!

Discussion

- No need for more papers that just reject IMCE; a dead horse
- But: Every new paper has its own unique new model of E
- Need to whittle down to small set of canonical models . . .
- . . . with some reliable wisdom about when each works
Chuck Manski (2017) survey paper:

- E can be measured(!)
- People behave in ways consistent with measured E
- Idea: Test models of E by comparison to data!

Discussion

- No need for more papers that just reject IMCE; a dead horse
- But: Every new paper has its own unique new model of E
- Need to whittle down to small set of canonical models . . .
- . . . with some reliable wisdom about when each works
Chuck Manski (2017) survey paper:
- E can be measured(!)
- People behave in ways consistent with measured E
- Idea: Test models of E by comparison to data!

Discussion
- No need for more papers that just reject IMCE; a dead horse
- But: Every new paper has its own unique new model of E
- Need to whittle down to small set of canonical models . . .
- . . . with some reliable wisdom about when each works
Chuck Manski (2017) survey paper:

- E can be measured(!)
- People behave in ways consistent with measured E
- Idea: Test models of E by comparison to data!

Discussion

- No need for more papers that just reject IMCE; a dead horse
- But: Every new paper has its own unique new model of E
- Need to whittle down to small set of canonical models . . .
- . . . with some reliable wisdom about when each works
Chuck Manski (2017) survey paper:

- \(E \) can be measured(!)
- People behave in ways consistent with measured \(E \)
- Idea: Test models of \(E \) by comparison to data!

Discussion

- No need for more papers that just reject IMC\(E \); a dead horse
- But: Every new paper has its own unique new model of \(E \)
- Need to whittle down to small set of canonical models . . .
- . . . with some reliable wisdom about when each works
Chuck Manski (2017) survey paper:

- E can be measured(!)
- People behave in ways consistent with measured E
- Idea: Test models of E by comparison to data!

Discussion

- No need for more papers that just reject IMCE; a dead horse
- But: Every new paper has its own unique new model of E
 - Need to whittle down to small set of canonical models . . .
 - . . . with some reliable wisdom about when each works
Chuck Manski (2017) survey paper:

- \(E \) can be measured(!)
- People behave in ways consistent with measured \(E \)
- Idea: Test models of \(E \) by comparison to data!

Discussion

- No need for more papers that just reject IMCE; a dead horse
- But: Every new paper has its own unique new model of \(E \)
- Need to whittle down to small set of canonical models . . .
- . . . with some reliable wisdom about when each works
Chuck Manski (2017) survey paper:

- E can be measured(!)
- People behave in ways consistent with measured E
- Idea: Test models of E by comparison to data!

Discussion

- No need for more papers that just reject IMCE; a dead horse
- But: Every new paper has its own unique new model of E
- Need to whittle down to small set of canonical models . . .
- . . . with some reliable wisdom about when each works

Most macro fluctuations reflect changes in “narratives”

- 1990-91 recession?
- 1992 AEA session: “autonomous sharp decline in C”
- A&S: Huge oil price spike invoked bad memories of 1970s

- Investment
- Finance

Most macro fluctuations reflect changes in “narratives”

- 1990-91 recession?
 - 1992 AEA session: “autonomous sharp decline in C”
 - (big negative error term in C equation in VAR)
 - A&S: Huge oil price spike invoked bad memories of 1970s
 - Support: Survey answers to “What do you think the unemployment rate will be in a year?” spiked upward right when C dropped

- Investment
- Finance
Most macro fluctuations reflect changes in “narratives”

- 1990-91 recession?
 - 1992 AEA session: “autonomous sharp decline in C”
 - (big negative error term in C equation in VAR)
 - A&S: Huge oil price spike invoked bad memories of 1970s
 - Support: Survey answers to “What do you think the unemployment rate will be in a year?” spiked upward right when C dropped
Most macro fluctuations reflect changes in “narratives”

- 1990-91 recession?
 - 1992 AEA session: “autonomous sharp decline in C”
 - (big negative error term in C equation in VAR)
 - A&S: Huge oil price spike invoked bad memories of 1970s
 - Support: Survey answers to “What do you think the unemployment rate will be in a year?” spiked upward right when C dropped

- Investment
- Finance

Most macro fluctuations reflect changes in “narratives”

- 1990-91 recession?
 - 1992 AEA session: “autonomous sharp decline in C”
 - (big negative error term in C equation in VAR)
 - A&S: Huge oil price spike invoked bad memories of 1970s
 - Support: Survey answers to “What do you think the unemployment rate will be in a year?” spiked upward right when C dropped

- Investment
- Finance

Most macro fluctuations reflect changes in “narratives”

- 1990-91 recession?
 - 1992 AEA session: “autonomous sharp decline in C”
 - (big negative error term in C equation in VAR)
 - A&S: Huge oil price spike invoked bad memories of 1970s
 - Support: Survey answers to “What do you think the unemployment rate will be in a year?” spiked upward right when C dropped

Most macro fluctuations reflect changes in “narratives”

- 1990-91 recession?
 - 1992 AEA session: “autonomous sharp decline in C”
 - (big negative error term in C equation in VAR)
 - A&S: Huge oil price spike invoked bad memories of 1970s
 - Support: Survey answers to “What do you think the unemployment rate will be in a year?” spiked upward right when C dropped

- Investment
- Finance

Most macro fluctuations reflect changes in “narratives”

- 1990-91 recession?
 - 1992 AEA session: “autonomous sharp decline in C”
 - (big negative error term in C equation in VAR)
 - A&S: Huge oil price spike invoked bad memories of 1970s
 - Support: Survey answers to “What do you think the unemployment rate will be in a year?” spiked upward right when C dropped

- Investment

- Finance
‘The End of Alchemy’

Mervyn King (2016); 2017 Feldstein Lecture at NBER

- Views similar to Summers about benchmark models
- Views similar to A&S on centrality of “narratives”
 - Among bankers and central bankers:
 - Many more financial markets are “bank-like” than we thought
- Useful refinement:
 - Your narrative ⇒ your behavior (decision rule/heuristic)
Mervyn King (2016); 2017 Feldstein Lecture at NBER

- Views similar to Summers about benchmark models
- Views similar to A&S on centrality of “narratives”
 - Among bankers and central bankers:
 - Many more financial markets are “bank-like” than we thought
- Useful refinement:
 - Your narrative \Rightarrow your behavior (decision rule/heuristic)
Mervyn King (2016); 2017 Feldstein Lecture at NBER

- Views similar to Summers about benchmark models
- Views similar to A&S on centrality of “narratives”
 - Among bankers and central bankers:
 - Many more financial markets are “bank-like” than we thought
- Useful refinement:
 - Your narrative ⇒ your behavior (decision rule/heuristic)
Mervyn King (2016); 2017 Feldstein Lecture at NBER

- Views similar to Summers about benchmark models
- Views similar to A&S on centrality of “narratives”
 - Among bankers and central bankers:
 - Many more financial markets are “bank-like” than we thought

- Useful refinement:
 - Your narrative ⇒ your behavior (decision rule/heuristic)
Mervyn King (2016); 2017 Feldstein Lecture at NBER

- Views similar to Summers about benchmark models
- Views similar to A&S on centrality of “narratives”
 - Among bankers and central bankers:
 - Many more financial markets are “bank-like” than we thought

- Useful refinement:
 - Your narrative ⇒ your behavior (decision rule/heuristic)
Mervyn King (2016); 2017 Feldstein Lecture at NBER

- Views similar to Summers about benchmark models
- Views similar to A&S on centrality of “narratives”
 - Among bankers and central bankers:
 - Many more financial markets are “bank-like” than we thought
- Useful refinement:
 - Your narrative \Rightarrow your behavior (decision rule/heuristic)
Why Hasn’t “Narrative Approach” (NA) Caught On?

Why don’t all those papers rejecting IMCE test whether “Narrative Approach” does better?

- Unclear how to translate NA into practice. Needed:
 - Explicit, quantitative models
 - … that can be tested against the same data that reject IMCE
 - How to represent “narratives” quantitatively
 - Nowhere to download “American Economic Narratives Survey”
Why Hasn’t “Narrative Approach” (NA) Caught On?

Why don’t all those papers rejecting IMCE test whether “Narrative Approach” does better?

- Unclear how to translate NA into practice. Needed:
 - Explicit, quantitative models . . .
 - . . . that can be tested against the same data that reject IMCE
 - How to represent “narratives” quantitatively?
 - Nowhere to download “American Economic Narratives Survey”
Why Hasn’t “Narrative Approach” (NA) Caught On?

Why don’t all those papers rejecting IME test whether “Narrative Approach” does better?

- Unclear how to translate NA into practice. Needed:
 - Explicit, quantitative models …
 - … that can be tested against the same data that reject IME
 - How to represent “narratives” quantitatively?
 - Nowhere to download “American Economic Narratives Survey”
Why Hasn’t “Narrative Approach” (NA) Caught On?

Why don’t all those papers rejecting IMC test whether “Narrative Approach” does better?

- Unclear how to translate NA into practice. Needed:
 - Explicit, quantitative models . . .
 - . . . that can be tested against the same data that reject IMC
 - How to represent “narratives” quantitatively?
 - Nowhere to download “American Economic Narratives Survey”
Why Hasn’t “Narrative Approach” (NA) Caught On?

Why don’t all those papers rejecting IMCE test whether “Narrative Approach” does better?

- Unclear how to translate NA into practice. Needed:
 - Explicit, quantitative models . . .
 - . . . that can be tested against the same data that reject IMCE
 - How to represent “narratives” quantitatively?
 - Nowhere to download “American Economic Narratives Survey”
Why Hasn’t “Narrative Approach” (NA) Caught On?

Why don’t all those papers rejecting IMCE test whether “Narrative Approach” does better?

- Unclear how to translate NA into practice. Needed:
 - Explicit, quantitative models . . .
 - . . . that can be tested against the same data that reject IMCE
 - How to represent “narratives” quantitatively?
 - Nowhere to download “American Economic Narratives Survey”
Quantitative Representation of A ‘Narrative’?

One Idea

- Generate narratives from alternative IMCE models:
 - Experts have sharply different forecasts of pty growth γ
 - Generate forecasts that would arise for $\gamma \in [0.0, 2.5]$
- Given a person's measured expectations, impute to them the narrative that most closely fits those expectations
- So, in 1990-91, A&S story would be that C dropped because dominant 'narrative' changed to low pty scenario
- begs the question: Why do narratives change?
Quantitative Representation of A ‘Narrative’?

One Idea

- Generate narratives from alternative IMCE models:
 - Experts have sharply different forecasts of pty growth γ
 - Generate forecasts that would arise for $\gamma \in [0.0, 2.5]$
 - Given a person’s measured expectations, impute to them the narrative that most closely fits those expectations
 - So, in 1990-91, A&S story would be that C dropped because dominant ‘narrative’ changed to low pty scenario
 - Begs the question: Why do narratives change?
Quantitative Representation of A ‘Narrative’?

One Idea

- Generate narratives from alternative IMCE models:
 - Experts have sharply different forecasts of pty growth γ
 - Generate forecasts that would arise for $\gamma \in [0.0, 2.5]$
- Given a person’s measured expectations, impute to them the narrative that most closely fits those expectations
- So, in 1990-91, A&S story would be that C dropped because dominant ‘narrative’ changed to low pty scenario
- Begs the question: Why do narratives change?
Quantitative Representation of A ‘Narrative’?

One Idea

- Generate narratives from alternative IMCE\(\mathbb E\) models:
 - Experts have sharply different forecasts of pty growth \(\gamma\)
 - Generate forecasts that would arise for \(\gamma \in [0.0, 2.5]\)

- Given a person’s measured expectations, impute to them the narrative that most closely fits those expectations

- So, in 1990-91, A&S story would be that C dropped because dominant ‘narrative’ changed to low pty scenario

- Begs the question: Why do narratives change?
Quantitative Representation of A ‘Narrative’?

One Idea

- Generate narratives from alternative IMCEE models:
 - Experts have sharply different forecasts of pty growth γ
 - Generate forecasts that would arise for $\gamma \in [0.0, 2.5]$
- Given a person’s measured expectations, impute to them the narrative that most closely fits those expectations
 - So, in 1990-91, A&S story would be that C dropped because dominant ‘narrative’ changed to low pty scenario
- Begs the question: Why do narratives change?
One Idea

- Generate narratives from alternative IMCE models:
 - Experts have sharply different forecasts of pty growth γ
 - Generate forecasts that would arise for $\gamma \in [0.0, 2.5]$

- Given a person’s measured expectations, impute to them the narrative that most closely fits those expectations

- So, in 1990-91, A&S story would be that C dropped because dominant ‘narrative’ changed to low pty scenario

- Begs the question: Why do narratives change?
Quantitative Representation of A ‘Narrative’?

One Idea

- Generate narratives from alternative IMCE models:
 - Experts have sharply different forecasts of pty growth γ
 - Generate forecasts that would arise for $\gamma \in [0.0, 2.5]$

- Given a person’s measured expectations, impute to them the narrative that most closely fits those expectations

- So, in 1990-91, A&S story would be that C dropped because dominant ‘narrative’ changed to low pty scenario

- Begs the question: Why do narratives change?
Assume “Narratives” spread like diseases (“contagion”)

- Infection from “common sources”: News media
- Communicable via “direct contact”: Facebook
 - Friends may have had personal experiences
 - Layoffs announced; employer profits declined ...
 - Friends also might read news sources

Call this proposal ‘Epidemiological Expectations’ (EE)
Assume “Narratives” spread like diseases (‘contagion’)

- Infection from “common sources”: News media
- Communicable via “direct contact”: Facebook
 - Friends may have had personal experiences
 - Layoffs announced; employer profits declined ...
 - Friends also might read news sources

Call this proposal ‘Epidemiological Expectations’ (EE)
Assume “Narratives” spread like diseases (“contagion”)

- Infection from “common sources”: News media
- Communicable via “direct contact”: Facebook
 - Friends may have had personal experiences
 - Layoffs announced; employer profits declined ...
 - Friends also might read news sources

Call this proposal ‘Epidemiological Expectations’ (EE)
Assume “Narratives” spread like diseases (“contagion”)

- Infection from “common sources”: News media
- Communicable via “direct contact”: Facebook
 - Friends may have had personal experiences
 - Layoffs announced; employer profits declined ...
 - Friends also might read news sources

Call this proposal ‘Epidemiological Expectations’ (EE)
Assume “Narratives” spread like diseases (“contagion”)

- Infection from “common sources”: News media
- Communicable via “direct contact”: Facebook
 - Friends may have had personal experiences
 - Layoffs announced; employer profits declined ...
 - Friends also might read news sources

Call this proposal ‘Epidemiological Expectations’ (EE)
Assume “Narratives” spread like diseases (“contagion”)

- Infection from “common sources”: News media
- Communicable via “direct contact”: Facebook
 - Friends may have had personal experiences
 - Layoffs announced; employer profits declined ...
 - Friends also might read news sources

Call this proposal ‘Epidemiological Expectations’ (EE)
Assume “Narratives” spread like diseases ("contagion")

- Infection from “common sources”: News media
- Communicable via “direct contact”: Facebook
 - Friends may have had personal experiences
 - Layoffs announced; employer profits declined ...
 - Friends also might read news sources

Call this proposal ‘Epidemiological Expectations’ (EE)
Assume “Narratives” spread like diseases (“contagion”)

- Infection from “common sources”: News media
- Communicable via “direct contact”: Facebook
 - Friends may have had personal experiences
 - Layoffs announced; employer profits declined ...
 - Friends also might read news sources

Call this proposal ‘Epidemiological Expectations’ (EE)
Explicit, quantitative models? Agent Based Modeling

- Many of the pioneers of ABM are at this conference
- Successes
 - Actual contagion (of diseases)
 - Asset prices modeled by direct spread of profitable behaviors
 - Contagion of ideas
- So far, not used much for explicit modeling of:
 - Transmission of economic narratives
 - Expectations data (a la Manski)
Explicit, quantitative EE models? Agent Based Modeling

- Many of the pioneers of ABM are at this conference

Successes

- Actual contagion (of diseases)
 - Epstein (2009)
- Asset prices modeled by direct spread of profitable behaviors
- Contagion of ideas
 - Through terrorist networks
 - Transmission of "fake news"

So far, not used much for explicit modeling of:

- Transmission of economic narratives
 - Say, via news media exposure, Facebook-Twitter forwards ...
- Expectations data (a la Manski)
 - Except for Cars Hommes
Explicit, quantitative models? Agent Based Modeling

- Many of the pioneers of ABM are at this conference
- Successes
 - Actual contagion (of diseases)
 - Epstein (2009)
 - Asset prices modeled by direct spread of profitable behaviors
 - Contagion of ideas
 - Through terrorist networks
 - Transmission of ‘fake news’
- So far, *not* used much for explicit modeling of:
 - Transmission of economic narratives
 - Say, via news media exposure, Facebook-Twitter forwards...
 - Expectations data (*a la* Manski)
 - Except for Cars Hommes
Explicit, quantitative models? Agent Based Modeling

- Many of the pioneers of ABM are at this conference
- Successes
 - Actual contagion (of diseases)
 - Epstein (2009)
 - Asset prices modeled by direct spread of profitable behaviors
 - Contagion of ideas
 - Through terrorist networks
 - Transmission of ‘fake news’
 - So far, not used much for explicit modeling of:
 - Transmission of economic narratives
 - Say, via news media exposure, Facebook-Twitter forwards...
 - Expectations data (a la Manski)
 - Except for Cars Hommes Carroll
Explicit, quantitative models? Agent Based Modeling

- Many of the pioneers of ABM are at this conference
- Successes
 - Actual contagion (of diseases)
 - Epstein (2009)
 - Asset prices modeled by direct spread of profitable behaviors
 - Contagion of ideas
 - Through terrorist networks
 - Transmission of ‘fake news’
- So far, not used much for explicit modeling of:
 - Transmission of economic narratives
 - Say, via news media exposure, Facebook-Twitter forwards ...
 - Expectations data (à la Manski)
 - Except for Cars Hommes
Explicit, quantitative models? Agent Based Modeling

- Many of the pioneers of ABM are at this conference
- Successes
 - Actual contagion (of diseases)
 - Epstein (2009)
 - Asset prices modeled by direct spread of profitable behaviors
 - Contagion of ideas
 - Through terrorist networks
 - Transmission of ‘fake news’
- So far, not used much for explicit modeling of:
 - Transmission of economic narratives
 - Say, via news media exposure, Facebook-Twitter forwards...
 - Expectations data (a la Manski)
 - Except for Cars Hommes
Explicit, quantitative models? Agent Based Modeling

- Many of the pioneers of ABM are at this conference

- Successes
 - Actual contagion (of diseases)
 - Epstein (2009)
 - Asset prices modeled by direct spread of profitable behaviors
 - Contagion of ideas
 - Through terrorist networks
 - Transmission of ‘fake news’

- So far, *not* used much for explicit modeling of:
 - Transmission of economic narratives
 - Expectations data (*à la* Manski)
 - Except for Cars Hommes...
Explicit, quantitative models? Agent Based Modeling

- Many of the pioneers of ABM are at this conference

 Successes
 - Actual contagion (of diseases)
 - Epstein (2009)
 - Asset prices modeled by direct spread of profitable behaviors
 - Contagion of ideas
 - Through terrorist networks
 - Transmission of ‘fake news’

- So far, *not* used much for explicit modeling of:
 - Transmission of economic narratives
 - Say, via news media exposure, Facebook-Twitter forwards ...
 - Expectations data (*a la* Manski)
 - Except for Cars Hommes
Many of the pioneers of ABM are at this conference

Successes

- Actual contagion (of diseases)
 - Epstein (2009)
- Asset prices modeled by direct spread of profitable behaviors
- Contagion of ideas
 - Through terrorist networks
 - Transmission of ‘fake news’

So far, not used much for explicit modeling of:

- Transmission of economic narratives
 - Say, via news media exposure, Facebook-Twitter forwards ...
- Expectations data (a la Manski)
 - Except for Cars Hommes

Explicit, quantitative models? Agent Based Modeling
Explicit, quantitative models? Agent Based Modeling

- Many of the pioneers of ABM are at this conference

Successes
- Actual contagion (of diseases)
 - Epstein (2009)
- Asset prices modeled by direct spread of profitable behaviors
- Contagion of ideas
 - Through terrorist networks
 - Transmission of ‘fake news’

- So far, *not* used much for explicit modeling of:
 - Transmission of economic narratives
 - Say, via news media exposure, Facebook-Twitter forwards ...
 - Expectations data (*a la* Manski)
 - Except for Cars Hommes Carroll

Behavioral Macro
Many of the pioneers of ABM are at this conference

Successes

- Actual contagion (of diseases)
 - Epstein (2009)
- Asset prices modeled by direct spread of profitable behaviors
- Contagion of ideas
 - Through terrorist networks
 - Transmission of ‘fake news’

So far, *not* used much for explicit modeling of:

- Transmission of economic narratives
 - Say, via news media exposure, Facebook-Twitter forwards ...
- Expectations data (*a la* Manski)
 - Except for Cars Hommes
Explicit, quantitative models? Agent Based Modeling

- Many of the pioneers of ABM are at this conference

Successes

- Actual contagion (of diseases)
 - Epstein (2009)
- Asset prices modeled by direct spread of profitable behaviors
- Contagion of ideas
 - Through terrorist networks
 - Transmission of ‘fake news’

- So far, *not* used much for explicit modeling of:
 - Transmission of economic narratives
 - Say, via news media exposure, Facebook-Twitter forwards ...
 - Expectations data (*a la* Manski)
 - Except for Cars Hommes
Explicit, quantitative models? Agent Based Modeling

- Many of the pioneers of ABM are at this conference
- Successes
 - Actual contagion (of diseases)
 - Epstein (2009)
 - Asset prices modeled by direct spread of profitable behaviors
 - Contagion of ideas
 - Through terrorist networks
 - Transmission of ‘fake news’
- So far, not used much for explicit modeling of:
 - Transmission of economic narratives
 - Say, via news media exposure, Facebook-Twitter forwards ...
 - Expectations data (a la Manski)
 - Except for Cars Hommes
Explicit, quantitative models? Agent Based Modeling

- Many of the pioneers of ABM are at this conference
- Successes
 - Actual contagion (of diseases)
 - Epstein (2009)
 - Asset prices modeled by direct spread of profitable behaviors
 - Contagion of ideas
 - Through terrorist networks
 - Transmission of ‘fake news’
- So far, not used much for explicit modeling of:
 - Transmission of economic narratives
 - Say, via news media exposure, Facebook-Twitter forwards ...
 - Expectations data (a la Manski)
 - Except for Cars Hommes
Explicit, quantitative models? Agent Based Modeling

- Many of the pioneers of ABM are at this conference
- Successes
 - Actual contagion (of diseases)
 - Epstein (2009)
 - Asset prices modeled by direct spread of profitable behaviors
 - Contagion of ideas
 - Through terrorist networks
 - Transmission of ‘fake news’
- So far, not used much for explicit modeling of:
 - Transmission of economic narratives
 - Say, via news media exposure, Facebook-Twitter forwards ...
 - Expectations data (a la Manski)
 - Except for Cars Hommes
We Need a Canonical Off-the-Shelf Model ...

One reason ABM’s are resisted:

- Results depend sensitively on huge number of assumptions
- Every paper makes a different set of assumptions
We Need a Canonical Off-the-Shelf Epidemiology Model ...

One reason ABM’s are resisted:

- Results depend sensitively on huge number of assumptions
- Every paper makes a different set of assumptions
A Concrete Example: BDKS

Using Facebook data:

- Persons A and B live in Des Moines in 2008-10
- ... and are identical on ‘observables’
- ... but person A has more friends in ‘busting’ markets

Then:

- Person A is more pessimistic about Des Moines house prices
- Is less likely to buy a house ✓
- If they buy a house, it will be cheaper ✓
A Concrete Example: BDKS

Using Facebook data:

- Persons A and B live in Des Moines in 2008-10
- ... and are identical on ‘observables’
- ... but person A has more friends in ‘busting’ markets

Then:

- Person A is more pessimistic about Des Moines house prices
- Is less likely to buy a house ✓
- If they buy a house, it will be cheaper ✓
A Concrete Example: BDKS

Using Facebook data:

- Persons A and B live in Des Moines in 2008-10
- ... and are identical on ‘observables’
- ... but person A has more friends in ‘busting’ markets

Then:

- Person A is more pessimistic about Des Moines house prices
- Is less likely to buy a house ✓
- If they buy a house, it will be cheaper ✓
A Concrete Example: BDKS

Using Facebook data:
- Persons A and B live in Des Moines in 2008-10
- ... and are identical on ‘observables’
- ... but person A has more friends in ‘busting’ markets

Then:
- Person A is more pessimistic about Des Moines house prices
- Is less likely to buy a house ✓
- If they buy a house, it will be cheaper ✓
A Concrete Example: BDKS

Using Facebook data:

- Persons A and B live in Des Moines in 2008-10
- ... and are identical on ‘observables’
- ... but person A has more friends in ‘busting’ markets

Then:

- Person A is more pessimistic about Des Moines house prices
- Is less likely to buy a house ✓
- If they buy a house, it will be cheaper ✓
Using Facebook data:

- Persons A and B live in Des Moines in 2008-10
- ... and are identical on ‘observables’
- ... but person A has more friends in ‘busting’ markets

Then:

- Person A is more pessimistic about *Des Moines* house prices
 - Is less likely to buy a house ✓
 - If they buy a house, it will be cheaper ✓
A Concrete Example: BDKS

Using Facebook data:

- Persons A and B live in Des Moines in 2008-10
- ... and are identical on ‘observables’
- ... but person A has more friends in ‘busting’ markets

Then:

- Person A is more pessimistic about *Des Moines* house prices
- Is less likely to buy a house ✓
- If they buy a house, it will be cheaper ✓
A Concrete Example: BDKS

Using Facebook data:

- Persons A and B live in Des Moines in 2008-10
- ... and are identical on ‘observables’
- ... but person A has more friends in ‘busting’ markets

Then:

- Person A is more pessimistic about *Des Moines* house prices
- Is less likely to buy a house ✓
- If they buy a house, it will be cheaper ✓
A Concrete Example: BDKS

Using Facebook data:
- Persons A and B live in Des Moines in 2008-10
- ... and are identical on ‘observables’
- ... but person A has more friends in ‘busting’ markets

Then:
- Person A is more pessimistic about *Des Moines* house prices
- Is less likely to buy a house ✓
- If they buy a house, it will be cheaper ✓
A Concrete Example: BDKS

Using Facebook data:

- Persons A and B live in Des Moines in 2008-10
- ... and are identical on ‘observables’
- ... but person A has more friends in ‘busting’ markets

Then:

- Person A is more pessimistic about *Des Moines* house prices
- Is less likely to buy a house ✓
- If they buy a house, it will be cheaper ✓
A Concrete Example: BDKS

Using Facebook data:

- Persons A and B live in Des Moines in 2008-10
- ... and are identical on ‘observables’
- ... but person A has more friends in ‘busting’ markets

Then:

- Person A is more pessimistic about *Des Moines* house prices
- Is less likely to buy a house ✓
- If they buy a house, it will be cheaper ✓
Proposal

Use their data to construct:
- A benchmark network structure for friends
- A benchmark person-to-person infection rate

Use other data to construct:
- Infection rate from 'common sources': News media

Make that a plug-and-play module:
- Don't invent new model of expectations for every paper!
- At most, recalibrate ‘infectiousness’
 - People gossip more about house prices than inflation rate
Proposal

Use their data to construct:

- A benchmark network structure for friends
- A benchmark person-to-person infection rate

Use other data to construct:

- Infection rate from 'common sources': News media

Make that a plug-and-play module:

- Don’t invent new model of expectations for every paper!
- At most, recalibrate ‘infectiousness’
 - People gossip more about house prices than inflation rate
Proposal

Use their data to construct:

- A benchmark network structure for friends
- A benchmark person-to-person infection rate

Use other data to construct:

- Infection rate from 'common sources': News media

Make that a plug-and-play module:

- Don’t invent new model of expectations for every paper!
- At most, recalibrate ‘infectiousness’
 - People gossip more about house prices than inflation rate
Proposal

Use their data to construct:
- A benchmark network structure for friends
- A benchmark person-to-person infection rate

Use other data to construct:
- Infection rate from 'common sources': News media

Make that a plug-and-play module:
- Don't invent new model of expectations for every paper!
- At most, recalibrate 'infectiousness'
 - People gossip more about house prices than inflation rate
Proposal

Use their data to construct:

- A benchmark network structure for friends
- A benchmark person-to-person infection rate

Use other data to construct:

- Infection rate from 'common sources': News media

Make that a plug-and-play module:

- Don’t invent new model of expectations for every paper!
- At most, recalibrate ‘infectiousness’
 - People gossip more about house prices than inflation rate
Proposal

Use their data to construct:

- A benchmark network structure for friends
- A benchmark person-to-person infection rate

Use other data to construct:

- Infection rate from ’common sources’: News media

Make that a plug-and-play module:

- Don’t invent new model of expectations for every paper!
- At most, recalibrate ‘infectiousness’
 - People gossip more about house prices than inflation rate
Proposal

Use their data to construct:
- A benchmark network structure for friends
- A benchmark person-to-person infection rate

Use other data to construct:
- Infection rate from 'common sources': News media

Make that a plug-and-play module:
- Don’t invent new model of expectations for every paper!
- At most, recalibrate ‘infectiousness’
 - People gossip more about house prices than inflation rate
Proposal

Use their data to construct:
- A benchmark network structure for friends
- A benchmark person-to-person infection rate

Use other data to construct:
- Infection rate from 'common sources': News media

Make that a plug-and-play module:
- Don’t invent new model of expectations for every paper!
- At most, recalibrate ‘infectiousness’
 - People gossip more about house prices than inflation rate
Proposal

Use their data to construct:
- A benchmark network structure for friends
- A benchmark person-to-person infection rate

Use other data to construct:
- Infection rate from ‘common sources’: News media

Make that a plug-and-play module:
- Don’t invent new model of expectations for every paper!
- At most, recalibrate ‘infectiousness’
 - People gossip more about house prices than inflation rate
Connection to Heterogeneous Agent (HA) macro models

HA model starting point: Microeconomic models
- Constructed to match measured heterogeneity
 - For example, a consumption model that matches
 - Income dynamics, income inequality, wealth inequality
 - MPC
 - \(\Rightarrow \) decision rules contingent on expectations (‘narrative’)

Macro outcomes:
- Generated by simulating populations of micro agents
- Taking account of feedbacks from macro back to micro
- Expectations are standard IMCE
- HA do much better than RA models on important questions
 - How do fiscal and monetary policy work?
Connection to Heterogeneous Agent (HA) macro models

HA model starting point: Microeconomic models

- Constructed to match measured heterogeneity
- For example, a consumption model that matches
 - Income dynamics, income inequality, wealth inequality
 - MPC
- \(\Rightarrow \) decision rules contingent on expectations (‘narrative’)

Macro outcomes:

- Generated by simulating populations of micro agents
- Taking account of feedbacks from macro back to micro
- Expectations are standard IMCE
- HA do much better than RA models on important questions
 - How do fiscal and monetary policy work?
Connection to Heterogeneous Agent (HA) macro models

HA model starting point: Microeconomic models

- Constructed to match measured heterogeneity
- For example, a consumption model that matches
 - Income dynamics, income inequality, wealth inequality
 - MPC
- \(\Rightarrow\) decision rules contingent on expectations (‘narrative’)

Macro outcomes:

- Generated by simulating populations of micro agents
- Taking account of feedbacks from macro back to micro
- Expectations are standard IMCE
- HA do much better than RA models on important questions
 - How do fiscal and monetary policy work?
Connection to Heterogeneous Agent (HA) macro models

HA model starting point: Microeconomic models

- Constructed to match measured heterogeneity
- For example, a consumption model that matches
 - Income dynamics, income inequality, wealth inequality
 - MPC
- ⇒ decision rules contingent on expectations (‘narrative’)

Macro outcomes:

- Generated by simulating populations of micro agents
- Taking account of feedbacks from macro back to micro
- Expectations are standard IMCE
- HA do much better than RA models on important questions
 - How do fiscal and monetary policy work?
Connection to Heterogeneous Agent (HA) macro models

HA model starting point: Microeconomic models

- Constructed to match measured heterogeneity
- For example, a consumption model that matches
 - Income dynamics, income inequality, wealth inequality
 - MPC

 \[\Rightarrow \text{decision rules contingent on expectations ('narrative')} \]

Macro outcomes:

- Generated by simulating populations of micro agents
- Taking account of feedbacks from macro back to micro
- Expectations are standard IMCE
- HA do much better than RA models on important questions
 - How do fiscal and monetary policy work?
Connection to Heterogeneous Agent (HA) macro models

HA model starting point: Microeconomic models
- Constructed to match measured heterogeneity
- For example, a consumption model that matches
 - Income dynamics, income inequality, wealth inequality
 - MPC
- \(\Rightarrow \) decision rules contingent on expectations (‘narrative’)

Macro outcomes:
- Generated by simulating populations of micro agents
- Taking account of feedbacks from macro back to micro
- Expectations are standard IMCE
- HA do much better than RA models on important questions
 - How do fiscal and monetary policy work?
Connection to Heterogeneous Agent (HA) macro models

HA model starting point: Microeconomic models
- Constructed to match measured heterogeneity
- For example, a consumption model that matches
 - Income dynamics, income inequality, wealth inequality
 - MPC
- ⇒ decision rules contingent on expectations (‘narrative’)

Macro outcomes:
- Generated by simulating populations of micro agents
- Taking account of feedbacks from macro back to micro
- Expectations are standard IMCE
- HA do much better than RA models on important questions
 - How do fiscal and monetary policy work?
Connection to Heterogeneous Agent (HA) macro models

HA model starting point: Microeconomic models

- Constructed to match measured heterogeneity
- For example, a consumption model that matches
 - Income dynamics, income inequality, wealth inequality
 - MPC
- \(\Rightarrow\) decision rules contingent on expectations (‘narrative’)

Macro outcomes:

- Generated by simulating populations of micro agents
- Taking account of feedbacks from macro back to micro
- Expectations are standard IMC
- HA do much better than RA models on important questions
 - How do fiscal and monetary policy work?
Connection to Heterogeneous Agent (HA) macro models

HA model starting point: Microeconomic models
- Constructed to match measured heterogeneity
- For example, a consumption model that matches
 - Income dynamics, income inequality, wealth inequality
 - MPC
- \Rightarrow decision rules contingent on expectations (‘narrative’)

Macro outcomes:
- Generated by simulating populations of micro agents
- Taking account of feedbacks from macro back to micro
- Expectations are standard IMCE
- HA do much better than RA models on important questions
 - How do fiscal and monetary policy work?
Connection to Heterogeneous Agent (HA) macro models

HA model starting point: Microeconomic models

- Constructed to match measured heterogeneity
- For example, a consumption model that matches
 - Income dynamics, income inequality, wealth inequality
 - MPC
- \(\Rightarrow\) decision rules contingent on expectations (‘narrative’)

Macro outcomes:

- Generated by simulating populations of micro agents
- Taking account of feedbacks from macro back to micro
- Expectations are standard IMC
- HA do much better than RA models on important questions
 - How do fiscal and monetary policy work?
Connection to Heterogeneous Agent (HA) macro models

HA model starting point: Microeconomic models
- Constructed to match measured heterogeneity
- For example, a consumption model that matches
 - Income dynamics, income inequality, wealth inequality
 - MPC
-decision rules contingent on expectations (‘narrative’)

Macro outcomes:
- Generated by simulating populations of micro agents
- Taking account of feedbacks from macro back to micro
- Expectations are standard IMC
- HA do much better than RA models on important questions
 - How do fiscal and monetary policy work?
My Proposal: A Hybrid

What do expectations/narratives do? King (2016) is right:

- Determine your decision rule
 - If $E_t[\Delta p_{t+1}] > x$, $p(\text{buy})$ is higher
 - If $E_t[\Delta p_{t+1}] < x$, $p(\text{sell})$ is higher

Start with HA macro model, and change only one thing:

- Replace IMCE with $E E$
- Keep Rest of the HA Macro Structure
- Including decision rules, contingent on E
My Proposal: A Hybrid

What do expectations/narratives do? King (2016) is right:

- Determine your decision rule
 - If $\mathbb{E}_t[\Delta p_{t+1}] > x$, $p(\text{buy})$ is higher
 - If $\mathbb{E}_t[\Delta p_{t+1}] < x$, $p(\text{sell})$ is higher

Start with HA macro model, and change only one thing:

- Replace IMCE with $\mathbb{E}\mathbb{E}$
- Keep Rest of the HA Macro Structure
- Including decision rules, contingent on \mathbb{E}
My Proposal: A Hybrid

What do expectations/narratives do? King (2016) is right:

- Determine your decision rule
 - If $\mathbb{E}_t[\Delta p_{t+1}] > x$, $p(\text{buy})$ is higher
 - If $\mathbb{E}_t[\Delta p_{t+1}] < x$, $p(\text{sell})$ is higher

Start with HA macro model, and change only one thing:

- Replace IMCE with \mathbb{E}
- Keep Rest of the HA Macro Structure
- Including decision rules, contingent on \mathbb{E}
My Proposal: A Hybrid

What do expectations/narratives do? King (2016) is right:

- Determine your decision rule
 - If $\mathbb{E}_t[\Delta p_{t+1}] > x$, $p(\text{buy})$ is higher
 - If $\mathbb{E}_t[\Delta p_{t+1}] < x$, $p(\text{sell})$ is higher

Start with HA macro model, and change only one thing:

- Replace IMCE with $\mathbb{E}E$
- Keep Rest of the HA Macro Structure
- Including decision rules, contingent on \mathbb{E}
What do expectations/narratives do? King (2016) is right:

- Determine your decision rule
 - If $\mathbb{E}_t[\Delta p_{t+1}] > x$, $p(\text{buy})$ is higher
 - If $\mathbb{E}_t[\Delta p_{t+1}] < x$, $p(\text{sell})$ is higher

Start with HA macro model, and change only one thing:

- Replace IMCE with \mathbb{E}
- Keep Rest of the HA Macro Structure
- Including decision rules, *contingent* on \mathbb{E}
What do expectations/narratives do? King (2016) is right:

- Determine your decision rule
 - If $\mathbb{E}_t[\Delta p_{t+1}] > x$, $p(\text{buy})$ is higher
 - If $\mathbb{E}_t[\Delta p_{t+1}] < x$, $p(\text{sell})$ is higher

Start with HA macro model, and change only one thing:

- Replace IMC with \mathbb{E}
- Keep Rest of the HA Macro Structure
- Including decision rules, contingent on \mathbb{E}
My Proposal: A Hybrid

What do expectations/narratives do? King (2016) is right:

- Determine your decision rule
 - If $\mathbb{E}_t[\Delta p_{t+1}] > x$, $p(\text{buy})$ is higher
 - If $\mathbb{E}_t[\Delta p_{t+1}] < x$, $p(\text{sell})$ is higher

Start with HA macro model, and change only one thing:

- Replace IMCE with $E \mathbb{E}$
- Keep Rest of the HA Macro Structure
 - Including decision rules, *contingent* on E
My Proposal: A Hybrid

What do expectations/narratives do? King (2016) is right:

- Determine your decision rule
 - If $\mathbb{E}_t[\Delta p_{t+1}] > x$, $p(buy)$ is higher
 - If $\mathbb{E}_t[\Delta p_{t+1}] < x$, $p(sell)$ is higher

Start with HA macro model, and change only one thing:

- Replace IMC\mathbb{E} with $\mathbb{E}\mathbb{E}$
- Keep Rest of the HA Macro Structure
- Including decision rules, contingent on \mathbb{E}
This proposal

- Gives a way to use many kinds of existing evidence
 - Narratives (say, from analysis of news stories)
 - Expectations (say, from surveys)
 - Behaviors (directly observed in micro data)
 - Outcomes (micro: wealth distribution; macro: C)

 and integrate them with each other

- Suggests new kinds of data that should be collected
 - Ask people why they think what they do (e.g., about u)
 - Personal experience (“I remember the last oil price shock”)
 - Conversations with friends and family
 - News stories
 - ???
 - Measure behaviors and expectations on the same survey

- Builds bridge between macroeconomists and ABM community
This proposal

- Gives a way to use many kinds of existing evidence
 - Narratives (say, from analysis of news stories)
 - Expectations (say, from surveys)
 - Behaviors (directly observed in micro data)
 - Outcomes (micro: wealth distribution; macro: C)

 and integrate them with each other

- Suggests new kinds of data that should be collected
 - Ask people why they think what they do (e.g., about u)
 - Personal experience (“I remember the last oil price shock”)
 - Conversations with friends and family
 - News stories
 - ???
 - Measure behaviors and expectations on the same survey

- Builds bridge between macroeconomists and ABM community
This proposal

- Gives a way to use many kinds of existing evidence
 - Narratives (say, from analysis of news stories)
 - Expectations (say, from surveys)
 - Behaviors (directly observed in micro data)
 - Outcomes (micro: wealth distribution; macro: C)

 and integrate them with each other

- Suggests new kinds of data that should be collected
 - Ask people why they think what they do (e.g., about u)
 - Personal experience (“I remember the last oil price shock”)
 - Conversations with friends and family
 - News stories
 - ???
 - Measure behaviors and expectations on the same survey

- Builds bridge between macroeconomists and ABM community
This proposal

- Gives a way to use many kinds of existing evidence
 - Narratives (say, from analysis of news stories)
 - Expectations (say, from surveys)
 - Behaviors (directly observed in micro data)
 - Outcomes (micro: wealth distribution; macro: C)

 and integrate them with each other

- Suggests new kinds of data that should be collected
 - Ask people why they think what they do (e.g., about u)
 - Personal experience (“I remember the last oil price shock”)
 - Conversations with friends and family
 - News stories

- Measure behaviors and expectations on the same survey

- Builds bridge between macroeconomists and ABM community
This proposal

- Gives a way to use many kinds of existing evidence
 - Narratives (say, from analysis of news stories)
 - Expectations (say, from surveys)
 - Behaviors (directly observed in micro data)
 - Outcomes (micro: wealth distribution; macro: C)

and integrate them with each other

- Suggests new kinds of data that should be collected
 - Ask people why they think what they do (e.g., about u)
 - Personal experience (“I remember the last oil price shock”)
 - Conversations with friends and family
 - News stories
 - Measure behaviors and expectations on the same survey

- Builds bridge between macroeconomists and ABM community
This proposal

- Gives a way to use many kinds of existing evidence
 - Narratives (say, from analysis of news stories)
 - Expectations (say, from surveys)
 - Behaviors (directly observed in micro data)
 - Outcomes (micro: wealth distribution; macro: C) and integrate them with each other

- Suggests new kinds of data that should be collected
 - Ask people why they think what they do (e.g., about u)
 - Personal experience (“I remember the last oil price shock”)
 - Conversations with friends and family
 - News stories
 - ???
 - Measure behaviors and expectations on the same survey

- Builds bridge between macroeconomists and ABM community
This proposal

- Gives a way to use many kinds of existing evidence
 - Narratives (say, from analysis of news stories)
 - Expectations (say, from surveys)
 - Behaviors (directly observed in micro data)
 - Outcomes (micro: wealth distribution; macro: C)

 and integrate them with each other

- Suggests new kinds of data that should be collected
 - Ask people *why* they think what they do (e.g., about u)
 - Personal experience ("I remember the last oil price shock")
 - Conversations with friends and family
 - News stories
 - ???
 - Measure behaviors and expectations *on the same survey*

- Builds bridge between macroeconomists and ABM community
This proposal

- Gives a way to use many kinds of existing evidence
 - Narratives (say, from analysis of news stories)
 - Expectations (say, from surveys)
 - Behaviors (directly observed in micro data)
 - Outcomes (micro: wealth distribution; macro: C)

 and integrate them with each other

- Suggests new kinds of data that should be collected
 - Ask people why they think what they do (e.g., about u)
 - Personal experience (“I remember the last oil price shock”)
 - Conversations with friends and family
 - News stories
 - ???
 - Measure behaviors and expectations on the same survey

- Builds bridge between macroeconomists and ABM community
This proposal

- Gives a way to use many kinds of existing evidence
 - Narratives (say, from analysis of news stories)
 - Expectations (say, from surveys)
 - Behaviors (directly observed in micro data)
 - Outcomes (micro: wealth distribution; macro: C)

 and integrate them with each other

- Suggests new kinds of data that should be collected
 - Ask people why they think what they do (e.g., about u)
 - Personal experience (“I remember the last oil price shock”)
 - Conversations with friends and family
 - News stories
 - ???
 - Measure behaviors and expectations on the same survey

- Builds bridge between macroeconomists and ABM community
This proposal

- Gives a way to use many kinds of existing evidence
 - Narratives (say, from analysis of news stories)
 - Expectations (say, from surveys)
 - Behaviors (directly observed in micro data)
 - Outcomes (micro: wealth distribution; macro: C)

 and integrate them with each other

- Suggests new kinds of data that should be collected
 - Ask people _why_ they think what they do (e.g., about u)
 - Personal experience ("I remember the last oil price shock")
 - Conversations with friends and family
 - News stories
 - ???
 - Measure behaviors and expectations _on the same survey_

- Builds bridge between macroeconomists and ABM community
This proposal

- Gives a way to use many kinds of existing evidence
 - Narratives (say, from analysis of news stories)
 - Expectations (say, from surveys)
 - Behaviors (directly observed in micro data)
 - Outcomes (micro: wealth distribution; macro: C)

 and integrate them with each other

- Suggests new kinds of data that should be collected
 - Ask people *why* they think what they do (e.g., about u)
 - Personal experience ("I remember the last oil price shock")
 - Conversations with friends and family
 - News stories
 - ???

 - Measure behaviors and expectations *on the same survey*

- Builds bridge between macroeconomists and ABM community
This proposal

- Gives a way to use many kinds of existing evidence
 - Narratives (say, from analysis of news stories)
 - Expectations (say, from surveys)
 - Behaviors (directly observed in micro data)
 - Outcomes (micro: wealth distribution; macro: C)

 and integrate them with each other

- Suggests new kinds of data that should be collected
 - Ask people why they think what they do (e.g., about u)
 - Personal experience (“I remember the last oil price shock”)
 - Conversations with friends and family
 - News stories
 - ???
 - Measure behaviors and expectations *on the same survey*

- Builds bridge between macroeconomists and ABM community
This proposal

- Gives a way to use many kinds of existing evidence
 - Narratives (say, from analysis of news stories)
 - Expectations (say, from surveys)
 - Behaviors (directly observed in micro data)
 - Outcomes (micro: wealth distribution; macro: C)

 and integrate them with each other

- Suggests new kinds of data that should be collected
 - Ask people *why* they think what they do (e.g., about u)
 - Personal experience (“I remember the last oil price shock”)
 - Conversations with friends and family
 - News stories
 - ???
 - Measure behaviors and expectations *on the same survey*

- Builds bridge between macroeconomists and ABM community
No macro implications derived (say, about house price dynamics)
Steps to get there:

- Choose an existing HA macro model of house prices
- For each observed belief about $E[\Delta p_h]$, find a scenario in the HA model that would produce that path (a narrative)
- Construct $E\overline{E}$ model in which you can be ‘infected’ with new narrative by talking to a friend or (say) from reading a narrative in a newspaper
- Match the patterns of transmission of expectations in the model and the data
BDKS Is Not Yet A Macroeconomic Model

No macro implications derived (say, about house price dynamics)

Steps to get there:

- Choose an existing HA macro model of house prices
- For each observed belief about $\mathbb{E}[\Delta p_h]$, find a scenario in the HA model that would produce that path (a narrative)
- Construct $\mathbb{E}\mathbb{E}$ model in which you can be ‘infected’ with new narrative by talking to a friend or (say) from reading a narrative in a newspaper
- Match the patterns of transmission of expectations in the model and the data
No macro implications derived (say, about house price dynamics)

Steps to get there:

- Choose an existing HA macro model of house prices
- For each observed belief about $\mathbb{E}[\Delta p_h]$, find a scenario in the HA model that would produce that path (a narrative)
- Construct $\mathbb{E}\mathbb{E}$ model in which you can be ‘infected’ with new narrative by talking to a friend or (say) from reading a narrative in a newspaper
- Match the patterns of transmission of expectations in the model and the data
No macro implications derived (say, about house price dynamics)

Steps to get there:

- Choose an existing HA macro model of house prices
- For each observed belief about $E[\Delta p_h]$, find a scenario in the HA model that would produce that path (a narrative)
- Construct $E\overline{E}$ model in which you can be ‘infected’ with new narrative by talking to a friend or (say) from reading a narrative in a newspaper
- Match the patterns of transmission of expectations in the model and the data
Conclusion

Confession:

- Whole Talk Was a Pitch for Econ-ARK/HARK project
- Already contains the HA Macro part
- Need to add ABM tools to construct EEEE
 - On our near term agenda; part of what we promised Sloan

If there are listeners who want to help – please do!
Conclusion

Confession:

- Whole Talk Was a Pitch for Econ-ARK/HARK project
- Already contains the HA Macro part
- Need to add ABM tools to construct EE
 - On our near term agenda; part of what we promised Sloan

If there are listeners who want to help – please do!
Confession:

- Whole Talk Was a Pitch for Econ-ARK/HARK project
- Already contains the HA Macro part
- Need to add ABM tools to construct EF
 - On our near term agenda; part of what we promised Sloan

If there are listeners who want to help – please do!
Conclusion

Confession:

- Whole Talk Was a Pitch for Econ-ARK/HARK project
- Already contains the HA Macro part
- Need to add ABM tools to construct EE
 - On our near term agenda; part of what we promised Sloan

If there are listeners who want to help – please do!
Confession:

- Whole Talk Was a Pitch for Econ-ARK/HARK project
- Already contains the HA Macro part
- Need to add ABM tools to construct E
 - On our near term agenda; part of what we promised Sloan

If there are listeners who want to help – please do!
Conclusion

Confession:

- Whole Talk Was a Pitch for Econ-ARK/HARK project
- Already contains the HA Macro part
- Need to add ABM tools to construct E
 - On our near term agenda; part of what we promised Sloan

If there are listeners who want to help – please do!
Wealth Inequality

Figure: Distribution of Net Worth (Lorenz Curve)

Solid curve: Distribution of W in the 2004 SCF
References

