The Distribution of Wealth and the MPC: Implications of New European Data

Keynote Address by Christopher Carroll
Johns Hopkins University and NBER
ccarroll@jhu.edu

Based on joint work with
Jiri Slacalek1 Kiichi Tokuoka2

1European Central Bank
jiri.slacalek@ecb.int

2MoF, Japan
kiichi.tokuoka@mof.go.jp

ECB Conference on Household Finance and Consumption,
October 2013
Why Worry About the MPC ($\equiv \kappa$)?

Nobody who made a macro forecast in 2008-2012 would ask:

- In U.S. 2008-10, big ‘stimulus’ tax cuts
- In EZ, 2010-12, ‘austerity’

In either case, κ should be central to analysis of effect

- Keynesian multipliers should be big in a liquidity trap
 (even Christiano, Eichenbaum, and Rebelo (2011)!)
Why Worry About the MPC ($\equiv \kappa$)?

Nobody who made a macro forecast in 2008-2012 would ask:

- In U.S. 2008-10, big 'stimulus' tax cuts
- In EZ, 2010-12, 'austerity'

In either case, κ should be central to analysis of effect

- Keynesian multipliers should be big in a liquidity trap
 (even Christiano, Eichenbaum, and Rebelo (2011)!)
Why Worry About the MPC ($\equiv \kappa$)?

Nobody who made a macro forecast in 2008-2012 would ask:

- In U.S. 2008-10, big ‘stimulus’ tax cuts
- In EZ, 2010-12, ‘austerity’

In either case, κ should be central to analysis of effect

- Keynesian multipliers should be big in a liquidity trap (even Christiano, Eichenbaum, and Rebelo (2011)!)
Why Worry About the MPC ($\equiv \kappa$)?

Nobody who made a macro forecast in 2008-2012 would ask:

- In U.S. 2008-10, big ‘stimulus’ tax cuts
- In EZ, 2010-12, ‘austerity’

In either case, κ should be central to analysis of effect

- Keynesian multipliers should be big in a liquidity trap
 (even Christiano, Eichenbaum, and Rebelo (2011)!)
Why Worry About the MPC ($\equiv \kappa$)?

Nobody who made a macro forecast in 2008-2012 would ask:

- In U.S. 2008-10, big ‘stimulus’ tax cuts
- In EZ, 2010-12, ‘austerity’

In either case, κ should be central to analysis of effect

- Keynesian multipliers should be big in a liquidity trap
 (even Christiano, Eichenbaum, and Rebelo (2011)!)
Why Worry About the MPC ($\equiv \kappa$)?

Nobody who made a macro forecast in 2008-2012 would ask:

- In U.S. 2008-10, big ‘stimulus’ tax cuts
- In EZ, 2010-12, ‘austerity’

In either case, κ should be central to analysis of effect
- Keynesian multipliers should be big in a liquidity trap
 (even Christiano, Eichenbaum, and Rebelo (2011)!)
Crude Keynesianism

Multiplier is \(\frac{1}{1 - \kappa} - 1 \)

- If \(\kappa = 0.75 \) then multiplier is \(4 - 1 = 3 \)
 - (some micro estimates of \(\kappa \) are this large)
- If \(\kappa = 0.05 \) then multiplier is only \(\approx 0.05 \)
 - (this is max \(\kappa \) in Rep Agent models; as low as 0.02)
- IMF's *mea culpa*: Our multipliers were much too low
 - \(\Rightarrow \) serious underestimate of GDP effects of austerity
 - (Blanchard and Leigh (2013))
Crude Keynesianism

Multiplier is $1/(1 - \kappa) - 1$

- If $\kappa = 0.75$ then multiplier is $4-1=3$
 - (some micro estimates of κ are this large)
- If $\kappa = 0.05$ then multiplier is only ≈ 0.05
 - (this is max κ in Rep Agent models; as low as 0.02)
- IMF’s *mea culpa*: Our multipliers were much too low
 - \Rightarrow serious underestimate of GDP effects of austerity
 - (Blanchard and Leigh (2013))
Crude Keynesianism

Multiplier is $1/(1 - \kappa) - 1$

- If $\kappa = 0.75$ then multiplier is $4-1=3$
 - (some micro estimates of κ are this large)
- If $\kappa = 0.05$ then multiplier is only ≈ 0.05
 - (this is max κ in Rep Agent models; as low as 0.02)
- IMF’s *mea culpa*: Our multipliers were much too low
 - \Rightarrow serious underestimate of GDP effects of austerity
 - (Blanchard and Leigh (2013))
Crude Keynesianism

Multiplier is $1/(1 - \kappa) - 1$

- If $\kappa = 0.75$ then multiplier is $4-1=3$
 - (some micro estimates of κ are this large)
- If $\kappa = 0.05$ then multiplier is only ≈ 0.05
 - (this is max κ in Rep Agent models; as low as 0.02)
- IMF’s *mea culpa*: Our multipliers were much too low
 - \Rightarrow serious underestimate of GDP effects of austerity
 - (Blanchard and Leigh (2013))
Crude Keynesianism

Multiplier is $1/(1 - \kappa) - 1$

- If $\kappa = 0.75$ then multiplier is $4-1=3$
 - (some micro estimates of κ are this large)
- If $\kappa = 0.05$ then multiplier is only ≈ 0.05
 - (this is max κ in Rep Agent models; as low as 0.02)
- IMF’s *mea culpa*: Our multipliers were much too low
 - \Rightarrow serious underestimate of GDP effects of austerity
 - (Blanchard and Leigh (2013))
Crude Keynesianism

Multiplier is $1/(1 - \kappa) - 1$

- If $\kappa = 0.75$ then multiplier is $4-1=3$

 (some micro estimates of κ are this large)

- If $\kappa = 0.05$ then multiplier is only ≈ 0.05

 (this is max κ in Rep Agent models; as low as 0.02)

- IMF’s *mea culpa*: Our multipliers were much too low

 ⇒ serious underestimate of GDP effects of austerity

 (Blanchard and Leigh (2013))
Crude Keynesianism

Multiplier is $1/(1 - \kappa) - 1$
- If $\kappa = 0.75$ then multiplier is $4-1=3$
 - (some micro estimates of κ are this large)
- If $\kappa = 0.05$ then multiplier is only ≈ 0.05
 - (this is max κ in Rep Agent models; as low as 0.02)
- IMF’s *mea culpa*: Our multipliers were much too low
 - \Rightarrow serious underestimate of GDP effects of austerity
 - (Blanchard and Leigh (2013))
Crude Keynesianism

Multiplier is $1/(1 - \kappa) - 1$

- If $\kappa = 0.75$ then multiplier is $4 - 1 = 3$
 - (some micro estimates of κ are this large)
- If $\kappa = 0.05$ then multiplier is only ≈ 0.05
 - (this is max κ in Rep Agent models; as low as 0.02)
- IMF’s *mea culpa*: Our multipliers were much too low
 - \Rightarrow serious underestimate of GDP effects of austerity
 - (Blanchard and Leigh (2013))
Wealth Distribution (U.S. Data) and Consumption Concavity (Theory)

Histogram: empirical density of \(\frac{m_t}{p_t W_t} \) (right scale)

Consumption/(quarterly) permanent income ratio for least patient
in \(\beta \)-Dist (left scale)

\(\beta \)-Point (left scale)

\(\beta \)-Dist (left scale)

for most patient in \(\beta \)-Dist (left scale)
Lorenz Curves for Income, Net Wealth; US vs Euro Area
Substantial Differences in Inequality (Gini Coefficients)
How Should Differences in Inequality Relate to the MPC?

For each country:

- Calibrate standard microeconomic consumption/saving model (with permanent/transitory income *a la* Carroll, Slacalek, and Tokuoka (2013))
- Find best-fit preference parameters (e.g., impatience):
 - Parameters s.t. model wealth distribution best matches data
- Back out implications of best-fit model for aggregate κ
How Should Differences in Inequality Relate to the MPC?

For each country:

- Calibrate standard microeconomic consumption/saving model (with permanent/transitory income *a la* Carroll, Slacalek, and Tokuoka (2013))
- Find best-fit preference parameters (e.g., impatience):
 - Parameters s.t. model wealth distribution best matches data
 - Back out implications of best-fit model for aggregate κ
How Should Differences in Inequality Relate to the MPC?

For each country:

- Calibrate standard microeconomic consumption/saving model (with permanent/transitory income *a la* Carroll, Slacalek, and Tokuoka (2013))
- Find best-fit preference parameters (e.g., impatience):
 - Parameters s.t. model wealth distribution best matches data
- Back out implications of best-fit model for aggregate κ
How Should Differences in Inequality Relate to the MPC?

For each country:

- Calibrate standard microeconomic consumption/saving model (with permanent/transitory income *a la* Carroll, Slacalek, and Tokuoka (2013))
- Find best-fit preference parameters (e.g., impatience):
 - Parameters s.t. model wealth distribution best matches data
- Back out implications of best-fit model for aggregate κ
Bottom Line—Heterogeneity Is Crucial!

Kinds of heterogeneity:
- *ex ante*
 - Newborn consumers differ (e.g., in impatience)
- *ex post*
 - Even ex-ante identical consumers draw idiosyncratic shocks

Key conclusions:
- *Both* kinds of heterogeneity are necessary to match the data
- Models that match \neq have much higher κ than Rep Agent
- Less \neq in Europe implies somewhat lower MPCs than U.S.
Bottom Line—Heterogeneity Is Crucial!

Kinds of heterogeneity:
- \textit{ex ante}
 - Newborn consumers differ (e.g., in impatience)
- \textit{ex post}
 - Even \textit{ex-ante} identical consumers draw idiosyncratic shocks

Key conclusions:
- \textit{Both} kinds of heterogeneity are necessary to match the data
- Models that match \(\neq \) have much higher \(\kappa \) than Rep Agent
- Less \(\neq \) in Europe implies somewhat lower MPCs than U.S.
Kinds of heterogeneity:

- **ex ante**
 - Newborn consumers differ (e.g., in impatience)

- **ex post**
 - Even *ex-ante* identical consumers draw idiosyncratic shocks

Key conclusions:

- *Both* kinds of heterogeneity are necessary to match the data
- Models that match \neq have much higher κ than Rep Agent
- Less \neq in Europe implies somewhat lower MPCs than U.S.
Bottom Line—Heterogeneity Is Crucial!

Kinds of heterogeneity:

- **ex ante**
 - Newborn consumers differ (e.g., in impatience)

- **ex post**
 - Even *ex-ante* identical consumers draw idiosyncratic shocks

Key conclusions:

- *Both* kinds of heterogeneity are necessary to match the data
- Models that match ≠ have much higher κ than Rep Agent
- Less ≠ in Europe implies somewhat lower MPCs than U.S.
Bottom Line—Heterogeneity Is Crucial!

Kinds of heterogeneity:
- **ex ante**
 - Newborn consumers differ (e.g., in impatience)
- **ex post**
 - Even *ex-ante* identical consumers draw idiosyncratic shocks

Key conclusions:
- *Both* kinds of heterogeneity are necessary to match the data
- Models that match \neq have much higher κ than Rep Agent
- Less \neq in Europe implies somewhat lower MPCs than U.S.
Bottom Line—Heterogeneity Is Crucial!

Kinds of heterogeneity:
- **ex ante**
 - Newborn consumers differ (e.g., in impatience)
- **ex post**
 - Even *ex-ante* identical consumers draw idiosyncratic shocks

Key conclusions:
- *Both* kinds of heterogeneity are necessary to match the data
- Models that match \neq have much higher κ than Rep Agent
- Less \neq in Europe implies somewhat lower MPCs than U.S.
Bottom Line—Heterogeneity Is Crucial!

Kinds of heterogeneity:
- **ex ante**
 - Newborn consumers differ (e.g., in impatience)
- **ex post**
 - Even *ex-ante* identical consumers draw idiosyncratic shocks

Key conclusions:
1. *Both* kinds of heterogeneity are necessary to match the data
2. Models that match \neq have much higher κ than Rep Agent
3. *Less* \neq in Europe implies somewhat lower MPCs than U.S.
Bottom Line—Heterogeneity Is Crucial!

Kinds of heterogeneity:
- **ex ante**
 - Newborn consumers differ (e.g., in impatience)
- **ex post**
 - Even *ex-ante* identical consumers draw idiosyncratic shocks

Key conclusions:
1. *Both* kinds of heterogeneity are necessary to match the data
2. Models that match ≠ have much higher κ than Rep Agent
3. Less ≠ in Europe implies somewhat lower MPCs than U.S.
Bottom Line—Heterogeneity Is Crucial!

Kinds of heterogeneity:
- **ex ante**
 - Newborn consumers differ (e.g., in impatience)
- **ex post**
 - Even *ex-ante* identical consumers draw idiosyncratic shocks

Key conclusions:
1. *Both* kinds of heterogeneity are necessary to match the data
2. Models that match \neq have much higher κ than Rep Agent
3. Less \neq in Europe implies somewhat lower MPCs than U.S.
The Model: Carroll, Slacalek, and Tokuoka (2013)

Key Ingredients

- Uninsurable idiosyncratic income uncertainty
- Permanent and transitory income shocks
 - Permanent shocks boost wealth heterogeneity
 - Transitory shocks increase concavity of C function
- Blanchard (1985) finite lifetimes model
- Modest heterogeneity in impatience
 - Lets the model match wealth distribution
 - In U.S.: $\beta_{\text{most patient}} - \beta_{\text{least impatient}} \approx 0.04$
The Model: Carroll, Slacalek, and Tokuoka (2013)

Key Ingredients

- Uninsurable idiosyncratic income uncertainty
- **Permanent** and transitory income shocks
 - Permanent shocks boost wealth heterogeneity
 - Transitory shocks increase concavity of C function
- Blanchard (1985) finite lifetimes model
- Modest heterogeneity in impatience
 - Lets the model match wealth distribution
 - In U.S.: $\beta_{\text{most patient}} - \beta_{\text{least impatient}} \approx 0.04$
The Model: Carroll, Slacalek, and Tokuoka (2013)

Key Ingredients

- Uninsurable idiosyncratic income uncertainty
- Permanent and transitory income shocks
 - Permanent shocks boost wealth heterogeneity
 - Transitory shocks increase concavity of C function
- Blanchard (1985) finite lifetimes model
- Modest heterogeneity in impatience
 - Lets the model match wealth distribution
 - In U.S.: $\beta_{\text{most patient}} - \beta_{\text{least impatient}} \approx 0.04$
The Model: Carroll, Slacalek, and Tokuoka (2013)

Key Ingredients

- Uninsurable idiosyncratic income uncertainty
- Permanent and transitory income shocks
 - Permanent shocks boost wealth heterogeneity
 - Transitory shocks increase concavity of C function
- Blanchard (1985) finite lifetimes model
- Modest heterogeneity in impatience
 - Lets the model match wealth distribution
 - In U.S.: $\beta_{\text{most patient}} - \beta_{\text{least impatient}} \approx 0.04$
The Model: Carroll, Slacalek, and Tokuoka (2013)

Key Ingredients

- Uninsurable idiosyncratic income uncertainty
- Permanent and transitory income shocks
 - Permanent shocks boost wealth heterogeneity
 - Transitory shocks increase concavity of C function
- Blanchard (1985) finite lifetimes model
- Modest heterogeneity in impatience
 - Lets the model match wealth distribution
 - In U.S.: $\beta_{\text{most patient}} - \beta_{\text{least impatient}} \approx 0.04$
The Model: Carroll, Slacalek, and Tokuoka (2013)

Key Ingredients

- Uninsurable idiosyncratic income uncertainty
- Permanent and transitory income shocks
 - Permanent shocks boost wealth heterogeneity
 - Transitory shocks increase concavity of C function
- Blanchard (1985) finite lifetimes model
- Modest heterogeneity in impatience
 - Lets the model match wealth distribution
 - In U.S.: $\beta_{\text{most patient}} - \beta_{\text{least impatient}} \approx 0.04$
The Model: Carroll, Slacalek, and Tokuoka (2013)

Key Ingredients

- Uninsurable idiosyncratic income uncertainty
- **Permanent** and transitory income shocks
 - Permanent shocks boost wealth heterogeneity
 - Transitory shocks increase concavity of C function
- Blanchard (1985) finite lifetimes model
- Modest heterogeneity in impatience
 - Lets the model match wealth distribution
 - In U.S.: $\beta_{\text{most patient}} - \beta_{\text{least impatient}} \approx 0.04$
Motivation

The Data

Results

Conclusions

References

The Model: Carroll, Slacalek, and Tokuoka (2013)

Key Ingredients

- Uninsurable idiosyncratic income uncertainty
- **Permanent** and transitory income shocks
 - Permanent shocks boost wealth heterogeneity
 - Transitory shocks increase concavity of C function
- Blanchard (1985) finite lifetimes model
- **Modest** heterogeneity in impatience
 - Lets the model match wealth distribution
 - In U.S.: $\beta_{\text{most patient}} - \beta_{\text{least impatient}} \approx 0.04$
Household Problem

\[v(m_t) = \max_{\{c_t\}} u(c_t) + \beta \mathbb{E}_t \left[\psi_{t+1}^{1-\rho} v(m_{t+1}) \right] \]

s.t.
\[
\begin{align*}
 a_t &= m_t - c_t \\
 a_t &\geq 0 \\
 k_{t+1} &= a_t / (\mathbb{D}_t \psi_{t+1}) \\
 m_{t+1} &= (\bar{\ell} + r) k_{t+1} + \xi_{t+1} \\
 r &= \alpha a(K/\bar{L})^{\alpha - 1}
\end{align*}
\]

Variables normalized by permanent labor income \((p_t W)\)

Carroll, Slacalek and Tokuoka
The Distribution of Wealth and the MPC
Both Ex Post and (A Bit of) Ex Ante Heterogeneity

Model of Heterogenous Impatience

- Assume uniformly distributed β across households
- Estimate the band $[\hat{\beta} - \nabla, \hat{\beta} + \nabla]$ by minimizing distance between model (w) and data (ω) net worth held by the top 20, 40, 60, 80%

$$\min_{\{\hat{\beta}, \nabla\}} \sum_{i=20,40,60,80} (w_i - \omega_i)^2,$$

s.t. aggregate net worth–output ratio matches the steady-state value from the perfect foresight model
- Country-by-country estimation
Both Ex Post and (A Bit of) Ex Ante Heterogeneity

Model of Heterogenous Impatience

- Assume uniformly distributed β across households
- Estimate the band $[\beta - \nabla, \beta + \nabla]$ by minimizing distance between model (w) and data (ω) net worth held by the top 20, 40, 60, 80%

$$\min_{\{\beta, \nabla\}} \sum_{i=20,40,60,80} (w_i - \omega_i)^2,$$

s.t. aggregate net worth–output ratio matches the steady-state value from the perfect foresight model

- Country-by-country estimation
Model of Heterogenous Impatience

- Assume uniformly distributed β across households
- Estimate the band $[\hat{\beta} - \nabla, \hat{\beta} + \nabla]$ by minimizing distance between model (w) and data (ω) net worth held by the top 20, 40, 60, 80%

$$\min_{\{\hat{\beta}, \nabla\}} \sum_{i=20,40,60,80} (w_i - \omega_i)^2,$$

s.t. aggregate net worth–output ratio matches the steady-state value from the perfect foresight model

- Country-by-country estimation
Both Ex Post and (A Bit of) Ex Ante Heterogeneity

Model of Heterogenous Impatience

- Assume uniformly distributed β across households
- Estimate the band $[\hat{\beta} - \nabla, \hat{\beta} + \nabla]$ by minimizing distance between model (w) and data (ω) net worth held by the top 20, 40, 60, 80%

$$\min_{\{\hat{\beta}, \nabla\}} \sum_{i=20,40,60,80} (w_i - \omega_i)^2,$$

s.t. aggregate net worth–output ratio matches the steady-state value from the perfect foresight model

- Country-by-country estimation
Income Dynamics:

‘Standard’ Process with **Permanent** and Transitory Component

‘Friedman/Buffer Stock’ Income Process

Large literature on US data estimating process:

\[y_{t+1} = p_{t+1} \xi_{t+1} \]
\[p_{t+1} = p_t \psi_{t+1} \]

\(p_t = \) permanent income
\(\xi_t = \) transitory income
\(\psi_{t+1} = \) permanent shock
Income Parameters: US Estimates

- $\sigma_\psi^2 \approx 0.01+$, $\sigma_\xi^2 \approx 0.01+$

<table>
<thead>
<tr>
<th>Authors</th>
<th>Permanent σ_ψ^2</th>
<th>Transitory σ_ξ^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MaCurdy (1982)‡</td>
<td>0.013</td>
<td>0.031</td>
</tr>
<tr>
<td>Topel (1991)</td>
<td>0.013</td>
<td>0.017</td>
</tr>
<tr>
<td>Topel and Ward (1992)</td>
<td>0.017</td>
<td>0.013</td>
</tr>
<tr>
<td>Meghir and Pistaferri (2004)§</td>
<td>0.031</td>
<td>0.032</td>
</tr>
<tr>
<td>Nielsen and Vissing-Jorgensen (2006)¶</td>
<td>0.005</td>
<td>0.015</td>
</tr>
<tr>
<td>Krebs, Krishna, and Maloney (2007)¶</td>
<td>~ 0.01</td>
<td>~ 0.1</td>
</tr>
<tr>
<td>Jensen and Shore (2008)¶</td>
<td>0.054</td>
<td>0.171</td>
</tr>
<tr>
<td>Guvenen (2009)</td>
<td>0.015</td>
<td>0.061</td>
</tr>
<tr>
<td>Heathcote, Perri, and Violante (2010)*</td>
<td>$0.01-0.03$</td>
<td>$0.05-0.1$</td>
</tr>
<tr>
<td>Hryshko (2010)¶</td>
<td>0.038</td>
<td>0.118</td>
</tr>
<tr>
<td>Low, Meghir, and Pistaferri (2010)</td>
<td>0.011</td>
<td>-</td>
</tr>
<tr>
<td>Sabelhaus and Song (2010)§</td>
<td>0.03</td>
<td>0.08</td>
</tr>
<tr>
<td>Guvenen, Ozkan, and Song (2012)§</td>
<td>~ 0.05</td>
<td>~ 0.125</td>
</tr>
<tr>
<td>Karahan and Ozkan (2012)‡</td>
<td>~ 0.013</td>
<td>~ 0.09</td>
</tr>
<tr>
<td>DeBaccker, Graber, and Mogstad (2013) ‡</td>
<td>~ 0.015</td>
<td>~ 0.025</td>
</tr>
<tr>
<td>Household data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carroll (1992)</td>
<td>0.016</td>
<td>0.027</td>
</tr>
<tr>
<td>Carroll and Samwick (1997)</td>
<td>0.022</td>
<td>0.044</td>
</tr>
<tr>
<td>Storesletten, Telner, and Yaron (2004a)</td>
<td>0.017</td>
<td>0.063</td>
</tr>
<tr>
<td>Storesletten, Telner, and Yaron (2004b)</td>
<td>0.008-0.026</td>
<td>0.316</td>
</tr>
<tr>
<td>Blundell, Pistaferri, and Preston (2008)§</td>
<td>0.010-0.030</td>
<td>0.029-0.055</td>
</tr>
<tr>
<td>Review of Economic Dynamics (2010)☆</td>
<td>0.02-0.05</td>
<td>0.02-0.1</td>
</tr>
<tr>
<td>Blundell, Low, and Preston (2013)☆</td>
<td>~ 0.005</td>
<td></td>
</tr>
<tr>
<td>DeBacker, Heim, Panousi, Rammath, and Vidangos (2013)§</td>
<td>0.007-0.010</td>
<td>0.15-0.20</td>
</tr>
</tbody>
</table>
Model Fits U.S. Wealth Distribution Data Remarkably Well

Carroll, Slacalek and Tokuoka

The Distribution of Wealth and the MPC
Income Parameters: (Limited) Evidence from Europe

- Estimates comparable with US

<table>
<thead>
<tr>
<th>Country/Authors</th>
<th>Variance of Income Shocks</th>
<th>Dataset</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Permanent σ^2_ψ</td>
<td>Transitory σ^2_ξ</td>
</tr>
<tr>
<td>France</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Le Blanc and Georgarakos (2013)*</td>
<td>0.010</td>
<td>0.031</td>
</tr>
<tr>
<td>Germany</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Le Blanc and Georgarakos (2013)*</td>
<td>0.006</td>
<td>0.030</td>
</tr>
<tr>
<td>Fuchs-Schuendeln, Krueger, and Sommer (2010)‡</td>
<td>0.01–0.096</td>
<td>0.04–0.19</td>
</tr>
<tr>
<td>Italy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Le Blanc and Georgarakos (2013)*</td>
<td>0.007</td>
<td>0.105</td>
</tr>
<tr>
<td>Jappelli and Pistaferri (2010)‡</td>
<td>0.02</td>
<td>0.075</td>
</tr>
<tr>
<td>Spain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Le Blanc and Georgarakos (2013)*</td>
<td>0.001</td>
<td>0.113</td>
</tr>
<tr>
<td>Albarran, Carrasco, and Martinez-Granado (2009)°</td>
<td>0.015–0.157</td>
<td>0.032–0.162</td>
</tr>
<tr>
<td>Pijoan-Mas and Sanchez-Marcos (2010)‡</td>
<td>0.01–0.15</td>
<td>\sim 0.03</td>
</tr>
<tr>
<td>United States</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carroll, Slacalek, and Tokuoka (2013a)</td>
<td>0.010</td>
<td>0.010</td>
</tr>
</tbody>
</table>
Other Calibration

Matches the 2010 JEDC volume
Empirical Wealth Distribution Across Countries

Data: Eurosystem Household Finance and Consumption Survey
Memo: Inequality in Net Wealth Driven by Homeownership

The Distribution of Wealth and the MPC

Carroll, Slacalek and Tokuoka
Stylized Facts

Liquid Assets More Concentrated Near Zero—where C Function Steep
Motivation

The Model

The Data

Results

Conclusions

References

Model-Implied κ Matching Distribution of Net Wealth

- **Aggregate MPC:** $0.1–0.2$
- Almost every country estimated to have less heterogeneity in impatience than in U.S. (∇ small)

Table 4 Marginal Propensity to Consume, Matching Distribution of Net Wealth

<table>
<thead>
<tr>
<th></th>
<th>AT</th>
<th>BE</th>
<th>CY</th>
<th>DE</th>
<th>ES</th>
<th>FI</th>
<th>FR</th>
<th>GR</th>
<th>IT</th>
<th>LU</th>
<th>MT</th>
<th>NL</th>
<th>PT</th>
<th>SI</th>
<th>SK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Average</td>
<td>0.13</td>
<td>0.16</td>
<td>0.13</td>
<td>0.19</td>
<td>0.14</td>
<td>0.13</td>
<td>0.13</td>
<td>0.1</td>
<td>0.14</td>
<td>0.12</td>
<td>0.11</td>
<td>0.11</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>By wealth/permanenl income ratio</td>
<td></td>
</tr>
<tr>
<td>Top 1%</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>Top 10%</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>Top 20%</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>Top 40%</td>
<td>0.06</td>
<td>0.07</td>
<td>0.06</td>
<td>0.07</td>
<td>0.07</td>
<td>0.06</td>
<td>0.06</td>
<td>0.07</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>Top 50%</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.08</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.06</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>Top 60%</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.08</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>Bottom 50%</td>
<td>0.19</td>
<td>0.25</td>
<td>0.14</td>
<td>0.19</td>
<td>0.3</td>
<td>0.19</td>
<td>0.19</td>
<td>0.13</td>
<td>0.22</td>
<td>0.17</td>
<td>0.14</td>
<td>0.16</td>
<td>0.15</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>By income</td>
<td></td>
</tr>
<tr>
<td>Top 1%</td>
<td>0.09</td>
<td>0.13</td>
<td>0.07</td>
<td>0.09</td>
<td>0.13</td>
<td>0.08</td>
<td>0.09</td>
<td>0.09</td>
<td>0.07</td>
<td>0.08</td>
<td>0.09</td>
<td>0.07</td>
<td>0.08</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>Top 10%</td>
<td>0.1</td>
<td>0.13</td>
<td>0.07</td>
<td>0.1</td>
<td>0.14</td>
<td>0.09</td>
<td>0.1</td>
<td>0.1</td>
<td>0.07</td>
<td>0.1</td>
<td>0.07</td>
<td>0.09</td>
<td>0.07</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>Top 20%</td>
<td>0.11</td>
<td>0.14</td>
<td>0.08</td>
<td>0.11</td>
<td>0.15</td>
<td>0.09</td>
<td>0.11</td>
<td>0.1</td>
<td>0.08</td>
<td>0.1</td>
<td>0.1</td>
<td>0.08</td>
<td>0.09</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>Top 40%</td>
<td>0.12</td>
<td>0.15</td>
<td>0.1</td>
<td>0.12</td>
<td>0.16</td>
<td>0.11</td>
<td>0.12</td>
<td>0.12</td>
<td>0.09</td>
<td>0.11</td>
<td>0.12</td>
<td>0.11</td>
<td>0.11</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>Top 50%</td>
<td>0.13</td>
<td>0.15</td>
<td>0.1</td>
<td>0.13</td>
<td>0.16</td>
<td>0.12</td>
<td>0.13</td>
<td>0.12</td>
<td>0.1</td>
<td>0.11</td>
<td>0.12</td>
<td>0.11</td>
<td>0.11</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Top 60%</td>
<td>0.13</td>
<td>0.16</td>
<td>0.11</td>
<td>0.13</td>
<td>0.17</td>
<td>0.12</td>
<td>0.13</td>
<td>0.13</td>
<td>0.1</td>
<td>0.13</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Bottom 50%</td>
<td>0.13</td>
<td>0.17</td>
<td>0.1</td>
<td>0.13</td>
<td>0.22</td>
<td>0.16</td>
<td>0.13</td>
<td>0.14</td>
<td>0.1</td>
<td>0.17</td>
<td>0.12</td>
<td>0.12</td>
<td>0.11</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>By employment status</td>
<td></td>
</tr>
<tr>
<td>Employed</td>
<td>0.12</td>
<td>0.15</td>
<td>0.1</td>
<td>0.12</td>
<td>0.18</td>
<td>0.13</td>
<td>0.12</td>
<td>0.12</td>
<td>0.09</td>
<td>0.14</td>
<td>0.11</td>
<td>0.1</td>
<td>0.1</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>Unemployed</td>
<td>0.25</td>
<td>0.33</td>
<td>0.2</td>
<td>0.25</td>
<td>0.36</td>
<td>0.21</td>
<td>0.25</td>
<td>0.24</td>
<td>0.19</td>
<td>0.23</td>
<td>0.23</td>
<td>0.2</td>
<td>0.22</td>
<td>0.21</td>
<td></td>
</tr>
<tr>
<td>Time preference parameters β, ∇</td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>0.989</td>
<td>0.988</td>
<td>0.99</td>
<td>0.989</td>
<td>0.988</td>
<td>0.989</td>
<td>0.989</td>
<td>0.989</td>
<td>0.99</td>
<td>0.988</td>
<td>0.988</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td></td>
</tr>
<tr>
<td>∇</td>
<td>0.003</td>
<td>0.005</td>
<td>0.002</td>
<td>0.003</td>
<td>0.005</td>
<td>0.002</td>
<td>0.003</td>
<td>0.003</td>
<td>0.001</td>
<td>0.003</td>
<td>0.003</td>
<td>0.002</td>
<td>0.002</td>
<td>0.001</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Notes: Average (aggregate) propensities in annual terms. Annual MPC is calculated by $\frac{1}{4} - (1 - \text{quarterly MPC}) \frac{1}{4}$. $\hat{\beta}$: Discount factors are uniformly distributed over the interval $[\beta - \nabla, \beta + \nabla]$. 10

Carroll, Slacalek and Tokuoka

The Distribution of Wealth and the MPC
Motivation

The Model

The Data

Results

Conclusions

References

Model-Implied κ Matching Distribution of Net Wealth

- Aggregate MPC: $0.1–0.2$
- Almost every country estimated to have less heterogeneity in impatience than in U.S. (∇ small)

Table 4 Marginal Propensity to Consume, Matching Distribution of Net Wealth

<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>AT</th>
<th>BE</th>
<th>CY</th>
<th>DE</th>
<th>ES</th>
<th>FI</th>
<th>FR</th>
<th>GR</th>
<th>IT</th>
<th>LU</th>
<th>MT</th>
<th>NL</th>
<th>PT</th>
<th>SI</th>
<th>SK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Average</td>
<td>0.13</td>
<td>0.16</td>
<td>0.1</td>
<td>0.13</td>
<td>0.19</td>
<td>0.14</td>
<td>0.13</td>
<td>0.13</td>
<td>0.1</td>
<td>0.14</td>
<td>0.12</td>
<td>0.1</td>
<td>0.11</td>
<td>0.11</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>By wealth/permanent income ratio</td>
<td></td>
</tr>
<tr>
<td>Top 1%</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.05</td>
<td>0.06</td>
</tr>
<tr>
<td>Top 10%</td>
<td>0.06</td>
</tr>
<tr>
<td>Top 20%</td>
<td>0.06</td>
</tr>
<tr>
<td>Top 40%</td>
<td>0.06</td>
</tr>
<tr>
<td>Top 50%</td>
<td>0.07</td>
<td>0.06</td>
<td>0.06</td>
<td>0.07</td>
<td>0.07</td>
<td>0.08</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>Top 60%</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.08</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.06</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.06</td>
</tr>
<tr>
<td>Bottom 50%</td>
<td>0.19</td>
<td>0.25</td>
<td>0.14</td>
<td>0.19</td>
<td>0.3</td>
<td>0.2</td>
<td>0.19</td>
<td>0.19</td>
<td>0.13</td>
<td>0.22</td>
<td>0.17</td>
<td>0.14</td>
<td>0.16</td>
<td>0.15</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td>By income</td>
<td></td>
</tr>
<tr>
<td>Top 1%</td>
<td>0.09</td>
<td>0.13</td>
<td>0.07</td>
<td>0.09</td>
<td>0.13</td>
<td>0.08</td>
<td>0.09</td>
<td>0.09</td>
<td>0.07</td>
<td>0.08</td>
<td>0.09</td>
<td>0.07</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
<td>0.07</td>
</tr>
<tr>
<td>Top 10%</td>
<td>0.1</td>
<td>0.13</td>
<td>0.07</td>
<td>0.1</td>
<td>0.14</td>
<td>0.09</td>
<td>0.1</td>
<td>0.1</td>
<td>0.07</td>
<td>0.1</td>
<td>0.1</td>
<td>0.09</td>
<td>0.07</td>
<td>0.08</td>
<td>0.08</td>
<td>0.07</td>
</tr>
<tr>
<td>Top 20%</td>
<td>0.11</td>
<td>0.14</td>
<td>0.08</td>
<td>0.11</td>
<td>0.15</td>
<td>0.09</td>
<td>0.11</td>
<td>0.1</td>
<td>0.08</td>
<td>0.1</td>
<td>0.1</td>
<td>0.08</td>
<td>0.09</td>
<td>0.09</td>
<td>0.08</td>
<td>0.08</td>
</tr>
<tr>
<td>Top 40%</td>
<td>0.12</td>
<td>0.15</td>
<td>0.1</td>
<td>0.12</td>
<td>0.16</td>
<td>0.11</td>
<td>0.12</td>
<td>0.12</td>
<td>0.09</td>
<td>0.11</td>
<td>0.1</td>
<td>0.11</td>
<td>0.1</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
</tr>
<tr>
<td>Top 50%</td>
<td>0.13</td>
<td>0.15</td>
<td>0.1</td>
<td>0.13</td>
<td>0.16</td>
<td>0.12</td>
<td>0.13</td>
<td>0.12</td>
<td>0.1</td>
<td>0.11</td>
<td>0.1</td>
<td>0.11</td>
<td>0.1</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
</tr>
<tr>
<td>Top 60%</td>
<td>0.13</td>
<td>0.16</td>
<td>0.11</td>
<td>0.13</td>
<td>0.17</td>
<td>0.12</td>
<td>0.13</td>
<td>0.13</td>
<td>0.1</td>
<td>0.13</td>
<td>0.11</td>
<td>0.12</td>
<td>0.11</td>
<td>0.11</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Bottom 50%</td>
<td>0.13</td>
<td>0.17</td>
<td>0.1</td>
<td>0.13</td>
<td>0.22</td>
<td>0.16</td>
<td>0.13</td>
<td>0.14</td>
<td>0.1</td>
<td>0.17</td>
<td>0.12</td>
<td>0.1</td>
<td>0.11</td>
<td>0.11</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>By employment status</td>
<td></td>
</tr>
<tr>
<td>Employed</td>
<td>0.12</td>
<td>0.15</td>
<td>0.1</td>
<td>0.12</td>
<td>0.18</td>
<td>0.13</td>
<td>0.12</td>
<td>0.12</td>
<td>0.09</td>
<td>0.14</td>
<td>0.11</td>
<td>0.1</td>
<td>0.1</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
</tr>
<tr>
<td>Unemployed</td>
<td>0.25</td>
<td>0.33</td>
<td>0.2</td>
<td>0.25</td>
<td>0.36</td>
<td>0.21</td>
<td>0.25</td>
<td>0.24</td>
<td>0.19</td>
<td>0.23</td>
<td>0.23</td>
<td>0.2</td>
<td>0.22</td>
<td>0.21</td>
<td>0.19</td>
<td>0.18</td>
</tr>
</tbody>
</table>

Time preference parameters

| β | 0.989 | 0.988 | 0.99 | 0.989 | 0.988 | 0.989 | 0.989 | 0.989 | 0.989 | 0.9 | 0.989 | 0.989 | 0.99 | 0.99 | 0.99 | 0.99 |
| ∇ | 0.003 | 0.005 | 0.002 | 0.003 | 0.005 | 0.002 | 0.003 | 0.003 | 0.001 | 0.003 | 0.003 | 0.002 | 0.002 | 0.002 | 0.002 | 0.001 | 0.
Aggregate MPC: 0.2–0.4

- Greater impatience (than for net worth); still less than in U.S.

Table 5

Average (Aggregate) Marginal Propensity to Consume in Annual Terms (matching distribution of liquid financial and retirement assets)

<table>
<thead>
<tr>
<th>Overall Average</th>
<th>All</th>
<th>AT</th>
<th>BE</th>
<th>CY</th>
<th>DE</th>
<th>ES</th>
<th>FI</th>
<th>FR</th>
<th>GR</th>
<th>IT</th>
<th>LU</th>
<th>MT</th>
<th>NL</th>
<th>PT</th>
<th>SI</th>
<th>SK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.27</td>
<td>0.25</td>
<td>0.27</td>
<td>0.25</td>
<td>0.24</td>
<td>0.45</td>
<td>0.28</td>
<td>0.31</td>
<td>0.34</td>
<td>0.33</td>
<td>0.23</td>
<td>0.18</td>
<td>0.19</td>
<td>0.31</td>
<td>0.29</td>
<td>0.23</td>
</tr>
<tr>
<td>By wealth/permanent income ratio</td>
<td></td>
</tr>
<tr>
<td>Top 1%</td>
<td>0.12</td>
</tr>
<tr>
<td>Top 10%</td>
<td>0.12</td>
<td>0.13</td>
<td>0.12</td>
<td>0.13</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td>Top 20%</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.14</td>
<td>0.13</td>
</tr>
<tr>
<td>Top 40%</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.19</td>
<td>0.14</td>
<td>0.14</td>
<td>0.15</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td>Top 50%</td>
<td>0.15</td>
<td>0.14</td>
<td>0.15</td>
<td>0.14</td>
<td>0.13</td>
<td>0.23</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
<td>0.15</td>
<td>0.13</td>
<td>0.13</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
<td>0.13</td>
</tr>
<tr>
<td>Top 60%</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.25</td>
<td>0.16</td>
<td>0.17</td>
<td>0.19</td>
<td>0.18</td>
<td>0.14</td>
<td>0.13</td>
<td>0.14</td>
<td>0.14</td>
<td>0.17</td>
<td>0.16</td>
</tr>
<tr>
<td>Bottom 50%</td>
<td>0.38</td>
<td>0.35</td>
<td>0.35</td>
<td>0.34</td>
<td>0.34</td>
<td>0.62</td>
<td>0.46</td>
<td>0.44</td>
<td>0.49</td>
<td>0.47</td>
<td>0.31</td>
<td>0.24</td>
<td>0.24</td>
<td>0.44</td>
<td>0.42</td>
<td>0.31</td>
</tr>
<tr>
<td>By income</td>
<td></td>
</tr>
<tr>
<td>Top 1%</td>
<td>0.23</td>
<td>0.21</td>
<td>0.22</td>
<td>0.21</td>
<td>0.19</td>
<td>0.31</td>
<td>0.24</td>
<td>0.25</td>
<td>0.29</td>
<td>0.23</td>
<td>0.19</td>
<td>0.15</td>
<td>0.15</td>
<td>0.26</td>
<td>0.25</td>
<td>0.19</td>
</tr>
<tr>
<td>Top 10%</td>
<td>0.23</td>
<td>0.21</td>
<td>0.23</td>
<td>0.21</td>
<td>0.19</td>
<td>0.32</td>
<td>0.24</td>
<td>0.25</td>
<td>0.29</td>
<td>0.24</td>
<td>0.19</td>
<td>0.15</td>
<td>0.15</td>
<td>0.26</td>
<td>0.25</td>
<td>0.19</td>
</tr>
<tr>
<td>Top 20%</td>
<td>0.24</td>
<td>0.22</td>
<td>0.24</td>
<td>0.22</td>
<td>0.22</td>
<td>0.32</td>
<td>0.25</td>
<td>0.26</td>
<td>0.3</td>
<td>0.24</td>
<td>0.2</td>
<td>0.16</td>
<td>0.17</td>
<td>0.27</td>
<td>0.26</td>
<td>0.2</td>
</tr>
<tr>
<td>Top 40%</td>
<td>0.25</td>
<td>0.24</td>
<td>0.25</td>
<td>0.24</td>
<td>0.21</td>
<td>0.36</td>
<td>0.27</td>
<td>0.27</td>
<td>0.31</td>
<td>0.27</td>
<td>0.22</td>
<td>0.18</td>
<td>0.18</td>
<td>0.29</td>
<td>0.27</td>
<td>0.22</td>
</tr>
<tr>
<td>Top 50%</td>
<td>0.26</td>
<td>0.24</td>
<td>0.26</td>
<td>0.24</td>
<td>0.21</td>
<td>0.38</td>
<td>0.26</td>
<td>0.28</td>
<td>0.32</td>
<td>0.28</td>
<td>0.23</td>
<td>0.18</td>
<td>0.19</td>
<td>0.3</td>
<td>0.27</td>
<td>0.23</td>
</tr>
<tr>
<td>Top 60%</td>
<td>0.26</td>
<td>0.25</td>
<td>0.26</td>
<td>0.25</td>
<td>0.23</td>
<td>0.39</td>
<td>0.28</td>
<td>0.29</td>
<td>0.32</td>
<td>0.29</td>
<td>0.23</td>
<td>0.19</td>
<td>0.19</td>
<td>0.3</td>
<td>0.28</td>
<td>0.23</td>
</tr>
<tr>
<td>Bottom 50%</td>
<td>0.28</td>
<td>0.26</td>
<td>0.28</td>
<td>0.26</td>
<td>0.27</td>
<td>0.51</td>
<td>0.3</td>
<td>0.34</td>
<td>0.36</td>
<td>0.38</td>
<td>0.23</td>
<td>0.18</td>
<td>0.19</td>
<td>0.32</td>
<td>0.31</td>
<td>0.23</td>
</tr>
<tr>
<td>By employment status</td>
<td></td>
</tr>
<tr>
<td>Employed</td>
<td>0.25</td>
<td>0.23</td>
<td>0.25</td>
<td>0.23</td>
<td>0.23</td>
<td>0.43</td>
<td>0.26</td>
<td>0.29</td>
<td>0.32</td>
<td>0.32</td>
<td>0.21</td>
<td>0.17</td>
<td>0.18</td>
<td>0.29</td>
<td>0.27</td>
<td>0.21</td>
</tr>
<tr>
<td>Unemployed</td>
<td>0.47</td>
<td>0.44</td>
<td>0.47</td>
<td>0.44</td>
<td>0.4</td>
<td>0.63</td>
<td>0.5</td>
<td>0.52</td>
<td>0.61</td>
<td>0.49</td>
<td>0.39</td>
<td>0.29</td>
<td>0.29</td>
<td>0.55</td>
<td>0.52</td>
<td>0.38</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time preference parameters</th>
<th>β</th>
<th>ν</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>0.969</td>
<td>0.969</td>
</tr>
<tr>
<td>ν</td>
<td>0.006</td>
<td>0.006</td>
</tr>
</tbody>
</table>

Notes:
- Annual MPC is calculated by \(1 - (1 - \text{quarterly MPC})^{\frac{1}{4}} \).
- \(\beta \): Discount factors are uniformly distributed over the interval \([\beta - \nu, \beta + \nu]\).
Model-Implied κ: Matching Distribution of Liquid Assets

- Aggregate MPC: 0.2–0.4
- Greater impatience (than for net worth); still less than in U.S.

Table 5
Average (Aggregate) Marginal Propensity to Consume in Annual Terms (matching distribution of liquid financial and retirement assets)

<table>
<thead>
<tr>
<th>By wealth/permanent income ratio</th>
<th>AT</th>
<th>BE</th>
<th>CY</th>
<th>DE</th>
<th>ES</th>
<th>FI</th>
<th>FR</th>
<th>GR</th>
<th>IT</th>
<th>LU</th>
<th>MT</th>
<th>NL</th>
<th>PT</th>
<th>SI</th>
<th>SK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Average</td>
<td>0.27</td>
<td>0.25</td>
<td>0.27</td>
<td>0.25</td>
<td>0.24</td>
<td>0.45</td>
<td>0.28</td>
<td>0.31</td>
<td>0.34</td>
<td>0.33</td>
<td>0.23</td>
<td>0.18</td>
<td>0.19</td>
<td>0.31</td>
<td>0.29</td>
</tr>
<tr>
<td>By wealth/permanent income ratio</td>
<td></td>
</tr>
<tr>
<td>Top 1%</td>
<td>0.12</td>
</tr>
<tr>
<td>Top 10%</td>
<td>0.12</td>
<td>0.13</td>
<td>0.12</td>
<td>0.13</td>
<td>0.13</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td>Top 20%</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.14</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td>Top 40%</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.19</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
<td>0.15</td>
<td>0.13</td>
<td>0.13</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
<td>0.13</td>
</tr>
<tr>
<td>Top 50%</td>
<td>0.15</td>
<td>0.14</td>
<td>0.15</td>
<td>0.14</td>
<td>0.13</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
<td>0.15</td>
<td>0.13</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
<td>0.13</td>
</tr>
<tr>
<td>Top 60%</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.25</td>
<td>0.16</td>
<td>0.17</td>
<td>0.19</td>
<td>0.18</td>
<td>0.14</td>
<td>0.13</td>
<td>0.14</td>
<td>0.17</td>
<td>0.16</td>
</tr>
<tr>
<td>Bottom 50%</td>
<td>0.38</td>
<td>0.35</td>
<td>0.35</td>
<td>0.34</td>
<td>0.34</td>
<td>0.49</td>
<td>0.49</td>
<td>0.47</td>
<td>0.31</td>
<td>0.23</td>
<td>0.24</td>
<td>0.44</td>
<td>0.42</td>
<td>0.31</td>
<td></td>
</tr>
<tr>
<td>By income</td>
<td></td>
</tr>
<tr>
<td>Top 1%</td>
<td>0.23</td>
<td>0.21</td>
<td>0.22</td>
<td>0.21</td>
<td>0.19</td>
<td>0.31</td>
<td>0.24</td>
<td>0.25</td>
<td>0.29</td>
<td>0.23</td>
<td>0.19</td>
<td>0.15</td>
<td>0.15</td>
<td>0.26</td>
<td>0.25</td>
</tr>
<tr>
<td>Top 10%</td>
<td>0.23</td>
<td>0.21</td>
<td>0.21</td>
<td>0.21</td>
<td>0.19</td>
<td>0.32</td>
<td>0.24</td>
<td>0.25</td>
<td>0.29</td>
<td>0.24</td>
<td>0.19</td>
<td>0.15</td>
<td>0.15</td>
<td>0.26</td>
<td>0.25</td>
</tr>
<tr>
<td>Top 20%</td>
<td>0.24</td>
<td>0.22</td>
<td>0.24</td>
<td>0.22</td>
<td>0.2</td>
<td>0.32</td>
<td>0.25</td>
<td>0.26</td>
<td>0.3</td>
<td>0.24</td>
<td>0.2</td>
<td>0.16</td>
<td>0.17</td>
<td>0.27</td>
<td>0.26</td>
</tr>
<tr>
<td>Top 40%</td>
<td>0.25</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.21</td>
<td>0.36</td>
<td>0.27</td>
<td>0.27</td>
<td>0.31</td>
<td>0.27</td>
<td>0.22</td>
<td>0.18</td>
<td>0.18</td>
<td>0.29</td>
<td>0.27</td>
</tr>
<tr>
<td>Top 50%</td>
<td>0.26</td>
<td>0.24</td>
<td>0.26</td>
<td>0.24</td>
<td>0.21</td>
<td>0.38</td>
<td>0.26</td>
<td>0.28</td>
<td>0.32</td>
<td>0.28</td>
<td>0.23</td>
<td>0.18</td>
<td>0.19</td>
<td>0.3</td>
<td>0.27</td>
</tr>
<tr>
<td>Top 60%</td>
<td>0.26</td>
<td>0.25</td>
<td>0.26</td>
<td>0.25</td>
<td>0.23</td>
<td>0.39</td>
<td>0.28</td>
<td>0.29</td>
<td>0.32</td>
<td>0.29</td>
<td>0.23</td>
<td>0.19</td>
<td>0.19</td>
<td>0.3</td>
<td>0.28</td>
</tr>
<tr>
<td>Bottom 50%</td>
<td>0.28</td>
<td>0.26</td>
<td>0.28</td>
<td>0.26</td>
<td>0.27</td>
<td>0.51</td>
<td>0.3</td>
<td>0.34</td>
<td>0.36</td>
<td>0.38</td>
<td>0.23</td>
<td>0.18</td>
<td>0.19</td>
<td>0.32</td>
<td>0.31</td>
</tr>
<tr>
<td>By employment status</td>
<td></td>
</tr>
<tr>
<td>Employed</td>
<td>0.25</td>
<td>0.23</td>
<td>0.25</td>
<td>0.23</td>
<td>0.23</td>
<td>0.43</td>
<td>0.26</td>
<td>0.29</td>
<td>0.32</td>
<td>0.32</td>
<td>0.21</td>
<td>0.17</td>
<td>0.18</td>
<td>0.29</td>
<td>0.27</td>
</tr>
<tr>
<td>Unemployed</td>
<td>0.47</td>
<td>0.44</td>
<td>0.47</td>
<td>0.44</td>
<td>0.4</td>
<td>0.63</td>
<td>0.5</td>
<td>0.52</td>
<td>0.61</td>
<td>0.49</td>
<td>0.39</td>
<td>0.29</td>
<td>0.29</td>
<td>0.3</td>
<td>0.55</td>
</tr>
</tbody>
</table>

Time preference parameters:
- $\beta = 0.969, 0.969, 0.969, 0.969, 0.97, 0.959, 0.969, 0.967, 0.967, 0.966, 0.97, 0.971, 0.971, 0.968, 0.968, 0.97$
- $\gamma = 0.006, 0.006, 0.006, 0.006, 0.005, 0.019, 0.007, 0.008, 0.009, 0.009, 0.005, 0.002, 0.002, 0.008, 0.007, 0.005$
Notes: Figure shows range of aggregate MPCs implied by the distribution of net wealth (lower bound) and of liquid assets (upper bound).
Model Fits Upper Tail Surprisingly Well

- Share of top 10%: \(\frac{\text{model}}{\text{data}} \) mostly \(\sim 1 \), especially for net wealth
Empirical Evidence: $\text{MPC} \sim 0.2-0.6$ ($\gg 0.02-0.04$)

Mostly From US

<table>
<thead>
<tr>
<th>Authors</th>
<th>Consumption Measure</th>
<th>Event/Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blundell, Pistaferri, and Preston (2008)‡</td>
<td>0.05</td>
<td>Estimation Sample: 1980–92</td>
</tr>
<tr>
<td>Browning and Collado (2001)</td>
<td>~ 0</td>
<td>Spanish ECPF Data, 1985–95</td>
</tr>
<tr>
<td>Coronado, Lupton, and Sheiner (2005)</td>
<td>0.36</td>
<td>2003 Tax Cut</td>
</tr>
<tr>
<td>Hausman (2012)</td>
<td>0.6–0.75</td>
<td>1936 Veterans’ Bonus</td>
</tr>
<tr>
<td>Hsieh (2003)‡</td>
<td>~ 0</td>
<td>CEX, 1980–2001</td>
</tr>
<tr>
<td>Jappelli and Pistaferri (2013)</td>
<td>0.48</td>
<td>Italy, 2010</td>
</tr>
<tr>
<td>Johnson, Parker, and Souleles (2009)</td>
<td>~ 0.25</td>
<td>2003 Child Tax Credit</td>
</tr>
<tr>
<td>Lusardi (1996)‡</td>
<td>0.2–0.5</td>
<td>2008 Economic Stimulus Estimation Sample: 1980–87</td>
</tr>
<tr>
<td>Parker, Souleles, Johnson, and McClelland (2011)</td>
<td>0.12–0.30</td>
<td>2008 Economic Stimulus</td>
</tr>
<tr>
<td>Shapiro and Slemrod (2009)</td>
<td>~ 1/3</td>
<td>The Reagan Tax Cuts of the Early 1980s</td>
</tr>
<tr>
<td>Souleles (2002)</td>
<td>0.6–0.9</td>
<td></td>
</tr>
</tbody>
</table>
Quick Summary So Far

- Modest heterogeneity in impatience captures wealth distribution
- Essential to include low-wealth/high-MPC households in analysis (Rep Agent models can’t do it)
- Models that match wealth distribution boost aggregate MPC: $\sim 0.04 \rightarrow \sim 0.1$–$0.4$ in European countries (cf. up to 0.6 in U.S.)
- **Heterogeneity matters!**
Quick Summary So Far

- Modest heterogeneity in impatience captures wealth distribution
- Essential to include low-wealth/high-MPC households in analysis (Rep Agent models can’t do it)
- Models that match wealth distribution boost aggregate MPC: \(\sim 0.04 \uparrow \sim 0.1 - 0.4 \) in European countries (cf. up to 0.6 in U.S.)
- Heterogeneity matters!
Quick Summary So Far

- Modest heterogeneity in impatience captures wealth distribution
- Essential to include low-wealth/high-MPC households in analysis (Rep Agent models can’t do it)
- Models that match wealth distribution boost aggregate MPC: $\sim 0.04 \uparrow \sim 0.1–0.4$ in European countries (cf. up to 0.6 in U.S.)
- **Heterogeneity matters!**
Quick Summary So Far

- Modest heterogeneity in impatience captures wealth distribution
- Essential to include low-wealth/high-MPC households in analysis (Rep Agent models can’t do it)
- Models that match wealth distribution boost aggregate MPC: $\sim 0.04 \uparrow \sim 0.1–0.4$ in European countries (cf. up to 0.6 in U.S.)
- **Heterogeneity matters!**
Wealth Inequality and the MPC

- Inequality implies higher MPC, especially for liquid assets
Empirical Distribution of Liquid Financial Assets vs Theoretical Consumption Functions (for U.S.)

Most impatient (left scale)
Most patient (left scale)

Histogram: empirical density of liquid financial asset + retirement assets (right scale)
Histogram: empirical density of net worth (right scale)
Larger transitory shocks \Rightarrow Bigger κ

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Low σ^2_ψ</th>
<th>High σ^2_ψ</th>
<th>Very High σ^2_ψ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\sigma^2 = 0.01$</td>
<td>$\sigma^2 = 0.005$</td>
<td>$\sigma^2 = 0.01$</td>
<td>$\sigma^2 = 0.01$</td>
</tr>
<tr>
<td></td>
<td>$\sigma^2 = 0.01$</td>
<td>$\sigma^2 = 0.01$</td>
<td>$\sigma^2 = 0.05$</td>
<td>$\sigma^2 = 0.10$</td>
</tr>
<tr>
<td>Overall Average</td>
<td>0.12</td>
<td>0.12</td>
<td>0.14</td>
<td>0.17</td>
</tr>
<tr>
<td>By wealth/permanent income ratio</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Top 1%</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>Top 10%</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>Top 20%</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>Top 40%</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>Top 50%</td>
<td>0.07</td>
<td>0.07</td>
<td>0.05</td>
<td>0.07</td>
</tr>
<tr>
<td>Top 60%</td>
<td>0.07</td>
<td>0.06</td>
<td>0.07</td>
<td>0.08</td>
</tr>
<tr>
<td>Bottom 50%</td>
<td>0.17</td>
<td>0.17</td>
<td>0.22</td>
<td>0.26</td>
</tr>
<tr>
<td>By income</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Top 1%</td>
<td>0.09</td>
<td>0.08</td>
<td>0.1</td>
<td>0.11</td>
</tr>
<tr>
<td>Top 10%</td>
<td>0.09</td>
<td>0.09</td>
<td>0.1</td>
<td>0.12</td>
</tr>
<tr>
<td>Top 20%</td>
<td>0.1</td>
<td>0.1</td>
<td>0.11</td>
<td>0.12</td>
</tr>
<tr>
<td>Top 40%</td>
<td>0.11</td>
<td>0.11</td>
<td>0.12</td>
<td>0.14</td>
</tr>
<tr>
<td>Top 50%</td>
<td>0.12</td>
<td>0.11</td>
<td>0.12</td>
<td>0.14</td>
</tr>
<tr>
<td>Top 60%</td>
<td>0.12</td>
<td>0.11</td>
<td>0.13</td>
<td>0.15</td>
</tr>
<tr>
<td>Bottom 50%</td>
<td>0.12</td>
<td>0.13</td>
<td>0.16</td>
<td>0.2</td>
</tr>
<tr>
<td>By employment status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employed</td>
<td>0.11</td>
<td>0.11</td>
<td>0.14</td>
<td>0.16</td>
</tr>
<tr>
<td>Unemployed</td>
<td>0.23</td>
<td>0.24</td>
<td>0.25</td>
<td>0.27</td>
</tr>
</tbody>
</table>

Notes: Annual MPC is calculated by $1 - \left(1 - \text{quarterly MPC}\right)^{4}$.
‡: Discount factors are uniformly distributed over the interval $[`\beta` - \Delta \beta, `\beta` + \Delta \beta]$. The targeted wealth distribution is the distribution of net wealth in all countries.
Summary

Take-aways

- Aggregate MPC for Net Wealth: 0.1–0.2
- Aggregate MPC for Liquid Assets: 0.2–0.4
- MPC Higher for countries with more wealth inequality
 - MPC in Europe lower than in US (because less ≠)
- MPC much bigger for low-wealth/low-income/unemployed
Take-aways

- Aggregate MPC for Net Wealth: 0.1–0.2
- Aggregate MPC for Liquid Assets: 0.2–0.4
- MPC Higher for countries with more wealth inequality
 - MPC in Europe lower than in US (because less ≠)
- MPC much bigger for low-wealth/low-income/unemployed
Aggregate MPC for Net Wealth: 0.1–0.2
Aggregate MPC for Liquid Assets: 0.2–0.4
MPC Higher for countries with more wealth inequality
 - MPC in Europe lower than in US (because less ≠)
 - MPC much bigger for low-wealth/low-income/unemployed
Take-aways

- Aggregate MPC for Net Wealth: 0.1–0.2
- Aggregate MPC for Liquid Assets: 0.2–0.4
- MPC Higher for countries with more wealth inequality
 - MPC in Europe lower than in US (because less ≠)
- MPC much bigger for low-wealth/low-income/unemployed
Take-aways

- Aggregate MPC for Net Wealth: 0.1–0.2
- Aggregate MPC for Liquid Assets: 0.2–0.4
- MPC Higher for countries with more wealth inequality
 - MPC in Europe lower than in US (because less ≠)
- MPC much bigger for low-wealth/low-income/unemployed

