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Abstract

Macroeconomists have long emphasized the importance of expectations in deter-
mining macroeconomic outcomes, and an enormous theoretical literature has devel-
oped examining many models of expectations formation. This paper proposes a new
approach, based on epidemiological models, in which only a small set of agents (pro-
fessional forecasters) formulate their own expectations, which then spread through
the population via the news media in a manner analogous to the spread of a disease.
The paper shows that the very simplest epidemiological model, called the ‘common
source’ model, does a good job of explaining the dynamics of inflation and un-
employment expectations, and more complicated epidemiological models produce
dynamics similar to those that emerge from the common source model.
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1 Introduction

Economists have long understood that macroeconomic outcomes depend critically
upon agents’ expectations. Keynes (1936) believed that economies could experience
booms and busts that reflected movements in ‘animal spirits’ (a view that has some
appeal at the current moment of dot-com hangover), but the basis for most of
today’s macro models is the rational expectations approach pioneered in the 1970s
by Lucas, Sargent, Barro, and others. This approach makes a set of assumptions
that are much stronger than rationality alone. In particular, the framework assumes
that all agents in the economy are not merely rational, but also share identical
(correct) beliefs about the structure of the economy, and have instantaneous and
costless access to all the latest economic data. Each agent combines these data
with the true macroeconomic model to obtain a forecast for the future path of
the economy, on the assumption that all other agents have identical beliefs and
information (and therefore forecasts).

This set of assumptions has turned out to be a powerful vehicle for macroeco-
nomic modeling, but has never been free from the criticism that it does not resemble
the real world of conflicting opinions and forecasts, workers (and even some business
leaders) who may not pay much attention to macroeconomic matters, and informa-
tion that can sometimes be costly to obtain and process. Rational expectations
models also have problems explaining some robust stylized facts, such as the ap-
parent inexorability of the tradeoff between inflation and unemployment rate (see
Ball (1994)) or Mankiw (2001)). Partly in response to these problems, an emerging
literature has been exploring models based on an assumption that agents engage in
some form of data-based learning process to form their expectations; for surveys,
see Sargent (1993) or Evans and Honkapohja (2001). But the rational expectations
framework remains the dominant approach, partly because it tends to be mathe-
matically more tractable than many proposed alternatives.

This paper proposes a tractable alternative framework for the formation of a
typical person’s expectations. Rather than having their own macroeconomic model
and constantly feeding it the latest statistics, typical people are assumed to obtain
their views about the future path of the economy from the news media, directly or
indirectly. Furthermore (and importantly), not every person pays close attention
to all macroeconomic news; instead, people are assumed to absorb the economic
content of news reports probabilistically, in a way that resembles the spread of
disease in a population, so that it may take quite some time for news of changed
macroeconomic circumstances to penetrate to all agents in the economy.

Roberts (1998) and Mankiw and Reis (2001, 2002) have recently proposed ag-
gregate expectations equations that are mathematically very similar to aggregate
implications of the baseline epidemiological model of expectations proposed derived
here. Roberts’s work was motivated by his separate findings in Roberts (1995, 1997)
that empirical macro models perform better in a variety of dimensions when survey-
based inflation expectations are used in place of constructed model-consistent ra-
tional expectations. Mankiw and Reis (2001, 2002) obtain similar findings, and



particularly emphasize the point that these models can explain the inexorability
of an inflation-unemployment tradeoff much better than the standard model with
rational expectations does.

However, neither Roberts (1998) nor Mankiw and Reis (2001, 2002) devote much
effort to explaining why the dynamics of aggregate expectations should evolve as
they proposed (though Roberts does suggest that his equation might result from the
diffusion of press reports). Mankiw and Reis motivate their model by suggesting
that there are costs either of obtaining or of processing inflation every time an agent
updates; however, they do not provide an explicit information-costs or processing-
costs microfoundation.

This paper provides an explicit microfoundation for a simple aggregate expec-
tations equation, based on simple models of the spread of disease. Rather than
tracking the spread of a disease through a population, the model tracks the spread
of a piece of information (specifically, the latest rational forecast of inflation).

A companion paper, Carroll (2003), estimates the baseline model and finds that
it does a good job at capturing the dynamics of household survey expectations about
both inflation and unemployment. Furthermore, that paper shows that household
inflation expectations are closer to the expectations of professional forecasters during
periods when there is more news coverage of inflation, and that the speed with which
household expectations adjust to professional expectations is faster when there is
more news coverage.

After providing the epidemiological foundation for the model estimated in Car-
roll (2003) and summarizing the basic empirical results from that paper, this paper
explores the implications of several extensions to the model, using the kinds of
‘agent-based’ simulation techniques pioneered at the Santa Fe Institute and at the
Center for Social and Economic Dynamics (CSED) at the Brookings Institution.

The first extension is to allow heterogeneity in the extent to which different
households pay attention to macroeconomic news. This version of the model is
capable of generating demographic differences in macroeconomic expectations like
those documented in Souleles (forthcoming), which are very hard to rationalize in
a rational expectations model. Both this extension and the baseline version of the
model are then simulated in order to derive implications for the standard deviation
of inflation expectations across agents. When the simulated data are compared to
the empirical data, the results are mixed. On one hand, the patterns over time
of the empirical and the simulated standard deviations bear a strong resemblance,
rising sharply in the late 1970s and early 1980s and then gradually falling off again.
On the other hand, the level of the standard deviation in the empirical data is much
higher than in the simulated data; however, I show that adding simple forms of
memory error can make the model and the data match up reasonably well.

The next extension examines what happens when the model is generalized to
a more standard epidemiological context: A ‘random mixing’ framework in which
people can be ‘infected’ with updated inflation expectations by conversations with
random other individuals in the population. It turns out that when the baseline
framework that assumes infection only from news sources is estimated on simulated
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data from the random mixing model, the baseline framework does an excellent job
of capturing the dynamics of mean inflation expectations; this suggests that the
‘common source’ simplification is probably not too problematic.

The final extension is to a context in which people communicate only with near
‘neighbors’ in some social sense, rather than with random other individuals in the
population. Simulation and estimation of the baseline model on this population
finds that the baseline model again does a good job of capturing expectational
dynamics; however, in one particular respect the results in this framework are a
better match for the empirical results than is the baseline model.

The paper concludes with some general lessons and ideas for future research.

2 The Epidemiology of Expectations

2.1 The SIR Model

Epidemiologists have developed a rich set of models for the transmission of disease
in a population. The general framework consists of a set of assumptions about
who is susceptible to the disease, who among the susceptible becomes infected, and
whether and how individuals recover from the infection (leading to the framework’s
designation as the ‘SIR’ model).

The standard assumption is that a susceptible individual who is exposed to
the disease in a given period has a fixed probability p of catching the disease.
Designating the set of newly infected individuals in period t as Nt and the set of
susceptible individuals as St,

Nt = pSt. (1)

The next step is to determine susceptibility. The usual assumption is that in
order to be susceptible, a healthy individual must have contact with an already-
infected person. In a population where each individual has an equal probability
of encountering any other person in the population (a ‘well-mixed’ population),
the growth rate of the disease will depend upon the fraction of the population
already infected; if very few individuals are currently infected, the small population
of diseased people can infect only a small absolute number of new victims.

However, there is a special case that is even simpler. This occurs when the
disease is not spread person-to-person, but through contact with a ‘common source’
of infection. The classic example is Legionnaire’s disease, which was transmitted to
a group of hotel guests via a contaminated air conditioning system (see Fraser et.
al. (1977) for a description from the epidemiological literature). Another application
is to illness caused by common exposure to an environmental factor such as air
pollution. In these cases, the transmission model is extremely simple: Any healthy
individual is simply assumed to have a constant probability per period of becoming
infected from the common source. This is the case we will examine, since below we
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will assume that news reports represent a ‘common source’ of information available
to all members of the population.

One further assumption is needed to complete the model: The probability that
someone who is infected will recover from the disease. The simplest possible as-
sumption (which we will use) is that infected individuals never recover.

Under this set of assumptions, the dynamics of the disease are as follows. In
the first period, proportion p of the population catches the disease, leaving (1 − p)
uninfected. In period 2, proportion p of these people catch the disease, leading to a
new infection rate of p(1− p) and to a fraction p + p(1− p) of the population being
infected. Spinning this process out, it is easy to see that starting from period 0 at
the beginning of which nobody is infected, the total proportion infected at the end
of t periods is

Fraction Ill = p + p(1 − p) + p(1 − p)2 . . . + p(1 − p)t (2)

= p
t∑

s=0

(1 − p)s (3)

whose limit as t → ∞ is p/p = 1, implying that (since there is no recovery) everyone
will eventually become infected. In the case where ‘infection’ is interpreted as
reflecting an agent’s knowledge of a piece of information, this simply says that
eventually everyone in the economy will learn a given piece of news.

2.2 The Epidemiology of Inflation Expectations

Now consider a world where most people form their expectations about future infla-
tion by reading newspaper articles. Imagine for the moment that every newspaper
inflation article contains a complete forecast of the inflation rate for all future quar-
ters, and suppose (again momentarily) that any person who reads such an article
can subsequently recall the entire forecast. Finally, suppose that at any point in
time t all newspaper articles print identical forecasts.1

Assume that not everybody reads every newspaper article on inflation. Instead,
reading an article on inflation is like becoming infected with a common-source dis-
ease: In any given period each individual faces a constant probability λ of becoming
‘infected’ with the latest forecast by reading an article. Individuals who do not en-
counter an inflation article simply continue to believe the last forecast they read
about.2

Call πt+1 the inflation rate between quarter t and quarter t + 1,

πt+1 = log(pt+1) − log(pt), (4)

1This subsection is largely drawn from Carroll (2003); however, that paper does not discuss
the epidemiological interpretation of the derivations, as this derivation does.

2This is mathematically very similar to the Calvo (1983) model in which firms change their
prices with probability p.
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where pt is the aggregate price index in period t. If we define Mt as the operator
that yields the population-mean value of inflation expectations at time t and denote
the Newspaper forecast printed in quarter t for inflation in quarter s ≥ t as Nt[πs],
by analogy with equation (2) we have that

Mt[πt+1] = λNt[πt+1] + (1 − λ) {λNt−1[πt+1] + (1 − λ) (λNt−2[πt+1] + . . .)}

(5)

The derivation of this equation is as follows. In period t a fraction λ of the
population will have been ‘infected’ with the current-period newspaper forecast of
the inflation rate next quarter, Nt[πt+1]. Fraction (1 − λ) of the population retains
the views that they held in period t−1 of period t+1’s inflation rate. Those period-
t− 1 views in turn can be decomposed into a fraction λ of people who encountered
an article in period t − 1 and obtained the newspaper forecast of period t + 1’s
forecast, Nt−1[πt+1], and a fraction (1 − λ) who retained their period-t − 2 views
about the inflation forecast in period t+1. Recursion leads to the remainder of the
equation.

This expression for inflation expectations is identical to the one proposed by
Mankiw and Reis (2001, 2002), except that in their model the updating agents
construct their own rational forecast of the future course of the macroeconomy
rather than learning about the experts’ forecast from the news media. The equation
is also similar to a formulation estimated by Roberts (1997), except that Roberts
uses past realizations of the inflation rate on the right hand side rather than past
forecasts.

Mankiw and Reis loosely motivate the equation by arguing that developing a
full-blown inflation forecast is a costly activity, which people might therefore engage
in only occasionally. It is undoubtedly true that developing a reasonably rational
quarter-by-quarter forecast of the inflation rate arbitrarily far into the future would
be a very costly enterprise for a typical person. If this were really what people were
doing, one might expect them to make forecasts only very rarely indeed. However,
reading a newspaper article about inflation, or hearing a news story on television or
the radio, is not costly in either time or money. There is no reason to suppose that
people need to make forecasts themselves if news reports provide such forecasts
essentially for free. Thus the epidemiological derivation of this equation seems
considerably more attractive than the loose calculation-costs motivation provided
by Mankiw and Reis, both because this is a fully specified model and because it
delivers further testable implications (for example, if there is empirical evidence that
people with higher levels of education are more likely to pay attention to news, the
model implies that their inflation forecasts will on average be closer to the rational
forecast; see below for more discussion of possible variation in λ across population
groups).

Of course, real newspaper articles do not contain a quarter-by-quarter forecast
of the inflation rate into the infinite future as assumed in the derivation of (5), and
even if they did it is very unlikely that a typical person would be able to remember
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the detailed pattern of inflation rates far into the future. In order to relax these
unrealistic assumptions it turns out to be necessary to impose some structure on
households’ implicit views about the inflation process.

Suppose people believe that at any given time the economy has an underly-
ing “fundamental” inflation rate. Furthermore, suppose people believe that future
changes in the fundamental rate are unforecastable; that is, after the next period
the fundamental rate follows a random walk. Finally, suppose the person believes
that the actual inflation rate in a given quarter is equal to that period’s fundamental
rate plus an error term εt which reflects unforecastable transitory inflation shocks
(reflected in the ‘special factors’ that newspaper inflation stories often emphasize).
Thus, the person believes that the inflation process is captured by

πt = πf
t + εt (6)

πf
t+1 = πf

t + ηt+1, (7)
...

...

where εt is a transitory shock to the inflation rate in period t while ηt is the perma-
nent innovation in the fundamental inflation rate in period t. We further assume
that consumers believe that values of η beyond period t+1, and values of ε beyond
period t, are unforecastable white noise variables; that is, future changes in the
fundamental inflation rate are unforecastable, and transitory shocks are expected
to go away.3

Before proceeding it is worth considering whether this is a plausible view of
the inflation process; we would not want to build a model on an assumption that
people believe something patently absurd. Certainly, it would not be plausible
to suppose that people always and everywhere believe that the inflation rate is
characterized by (6)-(7); for example, Ball (2000) shows that in the US from 1879-
1914 the inflation rate was not persistent in the US, while in other countries there
have been episodes of hyperinflation (and rapid disinflation) in which views like (6)-
(7) would have been nonsense.

However, the relevant question for the purposes of this paper is whether this
view of the inflation process is plausible for the period for which I have inflation
expectations data. Perhaps the best way to examine this is to ask whether the
univariate statistical process for the inflation rate implied by (6) and (7) is strongly
at odds with the actual univariate inflation process. In other words, after allowing
for transitory shocks, does the inflation rate approximately follow a random walk?

The appropriate statistical test is an augmented Dickey-Fuller test. Table 1
presents the results from such a test. The second row shows that even with more
than 160 quarters of data it is not possible to reject at a 5 percent significance level
the proposition that the core inflation rate follows a random walk with a one-period

3Note that we are allowing people to have some idea about how next quarter’s fundamental rate
may differ from the current quarter’s rate, because we did not impose that consumers’ expectations
of ηt+1 must equal zero.
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Lags Degrees of Freedom ADF Test Statistic
0 166 3.59∗∗∗

1 165 2.84∗

2 164 2.28

This table presents results of standard Dickey-Fuller and Augmented Dickey-Fuller tests for the
presence of a unit root in the core rate of inflation (results are similar for CPI inflation). The
column labelled ‘Lags’ indicates how many lags of the change in the inflation rate are included
in the regression. With zero lags, the test is the original Dickey-Fuller test; with multiple lags,
the test is an Augmented Dickey Fuller test. In both cases a constant term is permitted in the
regression equation. The sample is from 1959q3 to 2001q2 (quarterly data from my DRI database
begin in 1959q1. In order to have the same sample for all three tests, the sample must be restricted
to 1959q3 and after.) One, two, and three stars indicate rejections of a unit root at the 10 percent,
5 percent, and one percent thresholds. RATS code generating these and all other empirical results
is available at the author’s website.

Table 1: Dickey-Fuller and Augmented Dickey-Fuller Tests for a Unit Root in In-
flation

transitory component - that is, it is not possible to reject the process defined by (6)-
(7).4 When the transitory shock is allowed to have effects that last for two quarters
rather than one, it is not possible to reject a random walk in the fundamental
component even at the 10 percent level of significance (the last row in the table).

Note that the unit root (or near unit root) in inflation does not imply that future
inflation rates are totally unpredictable, only that the history of inflation by itself is
not very useful in forecasting future inflation changes (beyond the disappearance of
the transitory component of the current period’s shock). This does not exclude the
possibility that current and lagged values of other variables might have predictive
power. Thus, this view of the inflation rate is not necessarily in conflict with
the vast and venerable literature showing that other variables (most notably the
unemployment rate) do have considerable predictive power for the inflation rate
(see Staiger, Stock, and Watson (2001) for a recent treatment).

Suppose now that rather than containing a forecast for the entire quarter-by-
quarter future history of the inflation rate, newspaper articles simply contain a
forecast of the inflation rate over the next year. The next step is to figure out how
such a one-year forecast for inflation can be integrated into some modified version
of equation (5). To capture this, we must introduce a bit more notation. Define πs,t

as the inflation rate between periods s and t, converted to an annual rate. Thus,
for example, in quarterly data we can define the inflation rate for quarter t + 1 at

4The near-unit-root feature of the inflation rate in the post-1959 period is well known to
inflation researchers; some authors find that a unit root can be rejected for some measures of
inflation over some time periods, but it seems fair to say that the conventional wisdom is that at
least since the late 1950s inflation is ‘close’ to a unit root process. See Barsky (1987) for a more
complete analysis, or Ball (2000) for a more recent treatment.
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an annual rate as

πt,t+1 = 4(log pt+1 − log pt) (8)

= 4πt+1 (9)

where the factor of four is required to convert the quarterly price change to an
annual rate.

Under this set of assumptions, Carroll (2003) shows that the process for inflation
expectations can be rewritten as

Mt[πt,t+4] = λNt[πt,t+4] + (1 − λ)Mt−1[πt−1,t+3]. (10)

That is, mean measured inflation expectations for the next year should be a
weighted average between the current newspaper forecast and last period’s mean
measured inflation expectations. This equation is therefore directly estimable, as-
suming an appropriate proxy for newspaper expectations can be constructed.5

2.3 Estimates

Estimating (10) empirically requires the identification of empirical counterparts
for household-level inflation expectations and newspaper inflation forecasts. Con-
veniently, the University of Michigan’s Survey Research Center has been asking
households about their inflation expectations for well over thirty years. To be pre-
cise, households are first asked

“During the next 12 months, do you think that prices in general will go
up, or go down, or stay where they are right now?”

and then those who say “go up” (the vast majority) are asked

“By about what percent do you expect prices to go up, on the average,
during the next 12 months?”

The Survey Research Center uses the answers to these questions to construct an
index of mean inflation expectations, which is an almost exact counterpart to the
object required by the theory. (For details of index construction, see Curtin (1996)).

Measuring the forecasts that people are assumed to encounter in the news media
is a thornier problem. But typical newspaper articles on inflation tend to quote
professional forecasters, and so it seems reasonable to use the mean forecast from
the Survey of Professional Forecasters (SPF) as a proxy for what the news media
are reporting.

5This equation is basically the same as equation (5) in Roberts (1998), except that Roberts
proposes that the forecast toward which household expectations are moving is the ‘mathematically
rational’ forecast (and he simply proposes the equation without examining the underlying logic
that might produce it).
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Carroll (2003) estimates equation (10) using the Michigan survey index for Mt

and the SPF for Nt. Results are reproduced in the upper panel of table 2 (where
Nt changes to St to indicate the use of the SPF).

Table 2:
Estimating and Testing the Baseline Model

Estimating Equation Mt[•t,t+4] = α0 + α1St[•t,t+4] + α2Mt−1[•t−1,t+3] + εt

Durbin- Test
Eqn α0 α1 α2 R̄2 Watson StdErr p-value

Estimating Baseline Model on Inflation Expectations
Memo: 4.34 0.00 0.29 0.88 α0 = 0

(0.19)∗∗∗ 0.000
1 0.36 0.66 0.76 1.97 0.43 α1 + α2 = 1

(0.09)∗∗∗ (0.08)∗∗∗ 0.178
2 0.27 0.73 0.76 2.12 0.43 α1 = 0.25

(0.07)∗∗∗ (0.07)∗∗∗ 0.724
3 1.22 0.51 0.26 0.84 1.74 0.35 α0 = 0

(0.20)∗∗∗ (0.08)∗∗∗ (0.09)∗∗∗ 0.000
Estimating Baseline Model on Unemployment Expectations

Memo: 6.27 0.00 0.07 1.25 α0 = 0
(0.31)∗∗∗ 0.000

1 0.30 0.69 0.95 1.59 0.28 α1 + α2 = 1
(0.07)∗∗∗ (0.07)∗∗∗ 0.036

2 0.30 0.70 0.94 1.50 0.29 α1 = 0.25
(0.07)∗∗∗ (0.07)∗∗∗ 0.476

3 −0.03 0.30 0.69 0.95 1.60 0.29 α0 = 0
(0.19) (0.08)∗∗∗ (0.07)∗∗∗ 0.890

Mt[•t,t+4] is the Michigan household survey measure of mean inflation expectations or projected

unemployment expectations in quarter t, St[•t,t+4] is the Survey of Professional Forecasters mean

inflation or unemployment forecast over the next year. Inflation equations are estimated over

the period 1981q3 to 2000q2 for which both Michigan and SPF inflation forecasts are available;

Unemployment equations are estimated over the period 1978q1 to 2000q2 for which both Michigan

and SPF inflation forecasts are available. All standard errors are corrected for heteroskedasticity

and serial correlation using a Newey-West procedure (a Bartlett kernel) with four lags. Results

are not sensitive to the choice of lags.

The first line of the table (‘Memo:’) presents results for the simplest possible
model: that the value of the Michigan index of inflation expectations Mt[πt,t+4] is
equal to a constant, α0. By definition the R̄2 is equal to zero; the standard error of
the estimate is 0.88. The last column is reserved for reporting the results of various
tests; for example, the test performed in the ‘Memo:’ equation is for whether the

9



average value of the expectations index is zero, α0 = 0, which is rejected at a very
high level of statistical significance, as indicated by a p-value of zero.

Equation 1 in the table reflects the estimation of an equation of the form

Mt[πt,t+4] = α1St[πt,t+4] + α2Mt[πt−1,t+3] + νt. (11)

Comparing this to (10) provides the testable restriction that α2 = 1 − α1 or,
equivalently,

α1 + α2 = 1. (12)

The point estimates in equation 1 of α1 = 0.36 and α2 = 0.66 suggest that the
restriction (12) is very close to holding true, and the last column confirms that the
proposition is easily accepted by the data (the p-value is far above the usual critical
level of 0.05 which would signal a rejection).

Estimation results when the restriction (12) is imposed in estimation are pre-
sented in the next row of the table, yielding our central estimate of the model’s
main parameter: λ = 0.27. This point estimate is remarkably close to the value
of 0.25 assumed by Mankiw and Reis (2001, 2002) in their simulation experiments;
unsurprisingly, the test reported in the last column for equation 2 indicates that
the proposition α1 = λ = 0.25 is easily accepted by the data. Thus, the model
implies that in each quarter, only about one fourth of households have a completely
up-to-date forecast of the inflation rate over the coming year. On the other hand,
this estimate also indicates that only about 32 percent (= (1−0.25)4) of households
have inflation expectations that are more than a year out of date.

Intutitively it might seem that if almost 70 percent of agents have inflation
expectations that are of a vintage of a year or less, the behavior of the macroeconomy
could not be all that different from what would be expected if all expectations were
completely up-to-date. The surprising message of Roberts (1995, 1997) and Mankiw
and Reis (2001, 2002) is that this intuition is wrong. Mankiw and Reis show that an
economy with λ = 0.25 behaves in ways that are sharply different from an economy
with fully rational expectations (λ = 1), and argue that in each case where behavior
is different the behavior of the λ = 0.25 economy corresponds better with empirical
evidence.

Equation 3 in the table reports some bad news for the model: When a constant
term is permitted in the regression equation, it turns out to be highly statistically
significant. The model (10) did not imply the presence of a constant term, so this is
somewhat disappointing. On the other hand, despite being statistically significant
the constant term does not improve the fit of the equation much: The standard error
of the estimate only declines from 0.43 to 0.35. Furthermore, a version of the model
with a constant term cannot be plausibly interpreted as a true ‘structural’ model of
the expectations process, since it implies that even if the inflation rate were to go
to zero forever, and all forecasters were to begin forecasting zero inflation forever,
households would never catch on. A more plausible interpretation of the positive
constant term is that it may reflect some form of misspecification of the model.
Below, I will present simulation results showing that if expectations are transmitted
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from person to person in addition to through the news media, and an equation of
the form of (10) is estimated on the data generated by the modified model, the
regression equation returns a positive and statistically significant constant term;
thus, the presence of the constant term can be interpreted as evidence that the
simple ‘common-source’ epidemiological model postulated here may be a bit too
simple.

The bottom panel of the table presents results for estimating an equation for
unemployment expectations that is parallel to the estimate for inflation expecta-
tions.6 Equation 2 of this panel presents the version of the model that restricts the
coefficients to sum to 1; the point estimate of the fraction of updaters is λ = 0.31,
but this estimate is not significantly different from the estimate of λ = 0.27 ob-
tained for inflation expectations or from the λ = 0.25 postulated by Mankiw and
Reis (2001, 2002). The last equation shows that the unemployment expectations
equation does not particularly want an intercept term, so the model actually fits
better for unemployment expectations than for inflation expectations.

In sum, it seems fair to say that the simple ‘common-source’ epidemiological
equation (10) does a remarkably good job of capturing much of the predictable
behavior of both the inflation and the unemployment expectations indexes.

3 Agent Based Models of Inflation Expectations

One of the most fruitful trends in empirical macroeconomics over the last fifteen
years has been the effort to construct rigorous microfoundations for macroeconomic
models. Broadly speaking, the goal is to find empirically sensible models for the
behavior of the individual agents (people, firms, banks), which can then be aggre-
gated to derive implications about macroeconomic dynamics. Separately, but in a
similar spirit, researchers at the Santa Fe Institute, the CSED, and elsewhere have
been exploring ‘agent-based’ models that examine the complex behavior that can
sometimes emerge from the interactions between collections of simple agents.

One of the primary attractions of an agent-based or microfounded approach to
modeling macroeconomic behavior is the prospect of being able to test a model
using large microeconomic datasets. This is an opportunity that has largely been
neglected so far in the area of expectations formation; I have found only three
existing research papers that have examined the raw household-level expectations
data from the Michigan survey. Two are by Nicholas Souleles (2000, forthcoming).
For present purposes, the more interesting of these is Souleles (forthcoming), which
demonstrates (among other things) that there are highly statistically significant dif-
ferences across demographic groups in forecasts of several macroeconomic variables.
Clearly, in a world where everyone’s expectations were purely rational, there should

6Some data construction was necessary to do this, because the Michigan survey does not ask
people directly what their expectations are for the level of the unemployment rate, but instead asks
whether they think the unemployment rate will rise or fall over the next year. See Carroll (2003)
for details about how the unemployment expectations data are constructed.
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be no demographic differences in such expectations.
An agent-based version of the epidemiological model above could in principle

account for such demographic differences. The simplest approach would be to as-
sume that there are differences across demographic groups in the propensity to pay
attention to economic news (different λ’s); it is even conceivable that one could cal-
ibrate these differences using existing facts about the demographics of newspaper
readership (or CNBC viewership).

Without access to the underlying micro data it is difficult to tell whether de-
mographic heterogeneity in λ would be enough to explain Souleles’s findings about
systematic demographic differences in macro expectations. Even without the raw
micro data, however, an agent-based model has considerable utility. In particular,
an agent-based approach permits us to examine the consequences of relaxing some
of the model’s assumptions to see how robust its predictions are. Given our hypoth-
esis that Souleles’s results on demographic differences in expectations might be due
to differences in λ across groups, the most important application of the agent-based
approach is to determining the consequences of heterogeneity in λ.7

3.1 Heterogeneity in λ

Consider a model in which there are two categories of people, each of which makes
up half the population, but with different newspaper-reading propensities, λ1 and
λ2.

For each group it will be possible to derive an equation like (10),

Mi,t[πt,t+4] = λiNt[πt,t+4] + (1 − λi)Mi,t−1[πt−1,t+3]. (13)

But note that (dropping the π arguments for simplicity) aggregate expectations
will just be the population-weighted sum of expectations for each group,

Mt = (M1,t + M2,t)/2 (14)

=

(
λ1 + λ2

2

)

Nt + ((1 − λ1)M1,t−1 + (1 − λ2)M2,t−1)/2 (15)

7The final paper I know of that examines the micro data underlying the Michigan inflation
expectations index is by Branch (2001), who proposes an interesting model in which individual
consumers dynamically choose between competing models for predicting inflation, but are subject
to idiosyncratic errors. He finds evidence that people tend to switch toward whichever model
has recently produced the lowest mean squared error in its forecasts. This interesting approach
deserves further study.
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Replace M1,t−1 by Mt−1 + (M1,t−1 − Mt−1) and similarly for M2,t−1 to obtain

Mt =

(
λ1 + λ2

2

)

Nt +

(

1 −

(
λ1 + λ2

2

))

Mt−1 +

=0
︷ ︸︸ ︷(

M1,t−1 + M2,t−1

2

)

− Mt−1

−

(
λ1(M1,t−1 − Mt−1) + λ2(M2,t−1 − Mt−1)

2

)

(16)

Mt = λ̂Nt + (1 − λ̂)Mt−1 −

(
λ1(M1,t−1 − Mt−1) + λ2(M2,t−1 − Mt−1)

2

)

(17)

where λ̂ = (λ1 + λ2)/2.
Thus, the dynamics of aggregate inflation expectations with heterogeneity in λ

have a component λ̂Nt + (1 − λ̂)Mt−1 that behaves just like a version of the model
when everybody has the same λ equal to the average value in the population, plus
a term (in big parentheses in (17)) that depends on the joint distribution of λ’s
and the deviation by group of the difference between the previous period’s rational
forecast and the group’s forecast.

Now consider estimating the baseline equation

Mt = λNt + (1 − λ)Mt−1 (18)

on a population with heterogeneous λ’s. The coefficient estimates will be biased
in a way that depends on the correlations of Nt, Mt−1 and Mt with the last term

in equation (17),
(

λ1(M1,t−1−Mt−1)+λ2(M2,t−1−Mt−1)

2

)

. There is no analytical way to

determine the magnitude or nature of the bias without making a specific assumption
about the time series process for Nt, and even with such an assumption all that could
be obtained is an expected asymptotic bias. The bias in any particular small sample
would depend on the specific history of Nt in that sample.

The only sensible way to evaluate whether the bias problem is likely to be large
given the actual history of inflation and inflation forecasts in the US is to simulate
a model with households who have heterogeneous λ’s and to estimate the baseline
equation on aggregate statistics generated by that sample.

Specifically, the experiment is as follows. A population of P agents is cre-
ated, indexed by i; each of them begins by drawing a value of λi from a uni-
form distribution on the interval (λ, λ). In an initial period 0, each agent is en-
dowed with an initial value of Mi,0 = 2 percent. Thus the population mean value

M0 = (1/P )
∑P

i=1 Mi,0 = 2. For period 1, each agent draws a random variable
distributed on the interval [0, 1]. If that draw is less than or equal to the agent’s
λi, the agent updates Mi,1 = N1 where N1 is taken to be the ‘Newspaper’ forecast
of the next year’s inflation rate in period t; if the random draw is less than λi the
agent’s Mi,1 = Mi,0. The population-average value of M1 is calculated, and the
simulation then proceeds to the next period.

For the simulations, the ‘news’ series Nt is chosen as the concatenation of 1) the
actual inflation rate from 1960q1 to 1981q2 and 2) the SPF forecast of inflation from
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Estimating Mt[πt,t+4] = α1St[πt,t+4] + α2Mt−1[πt−1,t+3] + εt

λ Durbin-
Range α1 α2 R̄2 Watson StdErr

[0.25,0.25] 0.250 0.750 1.000 1.94 0.006
(0.001)∗∗∗ (0.001)∗∗∗

[0.00,0.50] 0.265 0.743 0.999 0.11 0.039
(0.010)∗∗∗ (0.009)∗∗∗

[0.20,0.30] 0.249 0.751 1.000 2.03 0.005
(0.001)∗∗∗ (0.001)∗∗∗

[0.15,0.35] 0.244 0.756 1.000 0.64 0.009
(0.002)∗∗∗ (0.002)∗∗∗

Mt[πt,t+4] is mean inflation expectations in quarter t, Nt[πt,t+4] is the news signal corresponding

to the SPF mean inflation forecast after 1981q3 and the previous year inflation rate before 1981q3.

All equations are estimated over the period 1981q3 to 2001q2.

Table 3: Estimating the Baseline Model on Simulated Data with Heterogeneous λs

1981q3 to 2001q2. Then regression equations corresponding to (18) are estimated on
the subsample corresponding to the empirical subsample, 1981q3 to 2001q2. Thus,
the simulation results should indicate the dynamics of Mt that would have been
observed if actual newspaper forecasts of inflation had been a random walk until
1981q2 and then had tracked the SPF once the SPF data began to be published.

The results of estimating (10) on the data generated by this simulation when
the population is P = 250, 000 are presented in Table 3. For comparison, and
to verify that the simulation programs are working properly, equation (1) presents
results when all agents’ λ’s are exogenously set to 0.25. As expected, the simulation
returns an estimate of λ = 0.25, and the equation fits so precisely that there are
essentially no residuals.

The remaining rows of the table present the results in the case where λ values
are heterogeneous in the population. The second row presents the most extreme
example, [λ, λ] = [0.00, 0.50]. Fortunately, even in this case the regression yields
an estimate of the speed-of-adjustment parameter λ that, at around 0.26, is still
quite close to the true average value 0.25 in the population. Interestingly, however,
one consequence of the heterogeneity in λ is that there is now a very large amount
of serial correlation in the residuals of the equation; the Durbin-Watson statistic
indicates that this serial correlation is postive and a Q test shows it to be highly
statistically significant.

Heterogeneous λ’s induce serial correlation primarily because the views of people
with λ’s below λ̄ are slow to change. For example, if the ‘rational’ forecast is highly
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serially correlated, an agent with a λ close to zero will be expected to make errors
of the same size and direction for many periods in a row after a shock to the
fundamental inflation rate, until finally updating.

The comparison of the high serial correlation that emerges from this simulation
to the low serial correlation that emerged in the empirical estimation in Table 2
suggests that heterogeneity in λ is probably not as great as the assumed uniform
distribution between 0.0 and 0.5. Results are therefore presented for a third ex-
periment, in which λ’s are uniformly distributed between 0.2 and 0.3. Estimation
on the simulated data from this experiment yields an estimate of λ very close to
0.25 and a Durbin-Watson statistic that indicates much less serial correlation than
emerged with the broad [0, 0.5] range of possible λ’s. Finally, the last row presents
results when λ is uniformly distributed over the interval [0.15,0.35]. This case is
intermediate: the estimate of λ is still close to 0.25, but the Durbin-Watson statistic
now begins to indicate substantial serial correlation.

On the whole, the simulation results suggest that the serial correlation properties
of the empirical data are consistent with a moderate degree of heterogeneity in λ, but
not with extreme heterogeneity. It is important to point out, however, that empirical
data contain a degree of measurement and sampling error that is absent in the
simulated data. To the extent that these sources can be thought of as white noise,
they should bias the Durbin-Watson statistic up in comparison to the ‘true’ Durbin-
Watson, so the scope for heterogeneity in λ is probably considerably larger than
would be indicated by a simple comparison of the measured and simulated Durbin-
Watson statistics. Furthermore, since the error term is very tiny (the standard errors
are less than 4/100 of one percentage point), so any serial correlation properties it
has cannot be of much econometric consequence. Thus the serial correlation results
should not be taken as very serious evidence against substantial heterogeneity in λ.

A few last words on serial correlation. The important point in Mankiw and
Reis (2001, 2002), as well as in work by Ball (2000) and others, is that the presence
of some people whose expectations are not fully and instantaneously forward-looking
profoundly changes the behavior of macro models. Thus, the possibility of heter-
geneity in λ, and the resulting serial correlation in errors, has an importance here
beyond its usual econometric ramifications for standard errors and inference. If
there are some consumers whose expectations are very slow to update, they may
be primarily responsible for important deviations between the rational expectations
model and macroeconomic reality.

3.2 Matching the Standard Deviation of Inflation Expecta-

tions

Thus far all our tests of the model have been based on its predictions for behavior
of mean inflation expectations. Of course, the model also generates predictions for
other statistics like the standard deviation of expectations across households at a
point in time. Some households will have expectations that correspond to the most
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Standard Deviation of Inflation Expectations
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Figure 1: Standard Deviation of Inflation Expectations from Data and Simulations

recent inflation forecast, while others will have expectations that are out of date
by varying amounts. One prediction of the model is that (for a constant λ) if SPF
inflation forecasts have remained stable for a long time, the standard deviation of
expectations across households should be low, while if there have been substantial
recent changes in the rational forecast of inflation we should expect to see more
cross-section variability in households’ expectations.

This is testable. Curtin (1996) reports average values for the standard deviation
for the Michigan survey’s inflation expectations over the period from 1978 to 1995;
results are plotted as the solid line in figure 1. It is true that the empirical standard
deviation was higher in the early 1980s, a time when inflation rates and SPF inflation
expectations changed rapidly over the course of a few years, than later when the
inflation rate was lower and more stable.
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The short and long dashed loci in the figure depict the predictions of the ho-
mogeneous λ = 0.25 and heterogeneous λ ∈ [0.0, 0.5] versions of the agent-based
model. There is considerable similarity between the time paths of the actual and
simulated standard deviations: The standard deviation is greatest for both simu-
lated and actual data in the late 1970s and early 1980s, because that is the period
when the levels of both actual and expected inflation changed the most. In both
simulated and real data the standard deviation falls gradually over time, but shows
an uptick around the 1990 recession and recovery before returning to its downward
path.

However, the levels of the standard deviations are very different between the
simulations and the data; the scale for the Michigan data on the right axis ranges
from 4 to 11, while the scale for the simulated standard deviations on the left
axis ranges from 0 to 3. Over the entire sample period, the standard deviation of
household inflation expectations is about 6.5 in the real data, compared to only
about 0.5 in the simulated data.

Curtin (1996) analyzes the sources of the large standard deviation in inflation
expectations across households. He finds that part of the high variability is at-
tributable to small numbers of households with very extreme views of inflation.
Curtin’s interpretation is that these households are probably just ill-informed, and
he proposes a variety of other ways to extract the data’s central tendency that are
intended to be robust to the presence of these outlying households. However, even
Curtin’s preferred measure of dispersion in inflation expectations, the size of the
range from the 25th to the 75th percentile in expectations, has an average span of
almost 5 percentage points over the 81q3-95q4 period, much greater than would be
produced by any of the simulation models considered above.8

The first observation to make about the excessive cross-section variability of
household inflation expectations is that such variability calls into question almost
all standard models of wage setting in which well-informed workers demand nom-
inal wage increases in line with a rational expectation about the future inflation
rate.9 If a large fraction of workers have views about the future inflation rate that
are a long way from rational, it is hard to believe that those views have much im-
pact on the wage-setting process. Perhaps it is possible to construct a model in
which equilibrium is determined by average inflation expectations, with individual
variations making little or no no difference to individual wages. Constructing such

8Curtin advocates use of the median rather than the mean as the summary statistic for ‘typical’
inflation expectations. However, the epidemiological model has simple analytical predictions for
the mean but not the median of household expectations, so the empirical work in this paper uses
the mean.

9The only prominent exception I am aware of is the two papers by Akerlof, Dickens, and
Perry (1996, 2000) mentioned briefly above. In these models workers do not bother to learn about
the inflation rate unless it is sufficiently high to make the research worthwhile. However such a
model would presumably imply a modest upper bound to inflation expectation errors, since people
who suspected the inflation rate was very high would have the incentive to learn the truth. In fact,
Curtin (1996) finds that the most problematic feature of the empirical data is the small number
of households with wildly implausibly high forecasts.
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a model is beyond the scope of this paper; but whether or not such a model is
proposed, it seems likely that any thorough understanding of the relation between
inflation expectations in the aggregate and actual inflation will need a model of how
individuals’ inflation expectations are determined.

The simplest method of generating extra individual variability in expectations
is to assume that when people encounter a news report on inflation, the process of
committing the associated inflation forecast to memory is error-prone.10

To be specific, suppose that whenever an agent encounters a news report and
updates his expectations, the actual expectation stored in memory is given by the
expectation printed in the news report times a mean-one lognormally distributed
storage error. Since the errors average out in the population as a whole, this as-
sumption generates dynamics of aggregate inflation expectations that are identical
to those of the baseline model. Figure 2 plots the predictions for the standard de-
viation of inflation expectations across households of the baseline λ = 0.25 model
with a lognormally distributed error with a standard error of 0.5. The figure shows
that the change in the standard deviation of inflation residuals over time is very
similar in the model and in the data, but the level of the standard deviation is still
considerably smaller in the model. This could of course be rectified by including an
additive error in addition to the multiplicative error. Such a proposed solution could
be tested by examining more detailed information on the structure of expectations
at the household level like that examined by Souleles (forthcoming).

3.3 Social Transmission of Inflation Expectations

As noted above, the standard model of disease transmission is one in which illness
is transmitted by person-to-person contact. Analogously, it is likely that some peo-
ple’s views about inflation are formed by conversations with others rather than by
direct contact with news reports. For the purposes of this paper the most impor-
tant question is whether the simple formula (10) would do a reasonably good job
in capturing the dynamics of inflation expectations even when social transmission
occurs.

Simulation of an agent-based model with both modes of transmission is straight-
forward. The extended model works as follows. In each period, every person has
a probability λ of obtaining the latest forecast by reading a news story. Among
the (1 − λ) who do not encounter the news source, the algorithm is as follows. For
each person i, there is some probability p that he will have a conversation about
inflation with a randomly-selected other person j in the population. If j has an
inflation forecast that is of more recent vintage than i’s forecast, then i adopts j’s
forecast, and vice-versa.11

10Alternatively, one could assume that retrieval from memory is error-prone. The implications
are very similar but not identical.

11This rules out the possibility that the less-recent forecast would be adopted by the person with
a more-recent information. The reason to rule this out is that if there were no directional bias
(more recent forecasts push out older ones), the swapping of information would not change the
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Estimating Mt = α0 + α1St + α2Mt−1 + εt

Prob. of Durbin- Test
Social Exchange α0 α1 α2 R̄2 Watson StdErr p-value

p = 0.25 0.311 0.689 1.000 2.26 0.020 α1 + α2 = 1
(0.003)∗∗∗ (0.003)∗∗∗ 0.1357

0.009 0.303 0.694 1.000 2.15 0.020 α0 = 0
(0.009) (0.006)∗∗∗ (0.006)∗∗∗ 0.2939

p = 0.10 0.276 0.724 1.000 1.69 0.009 α1 + α2 = 1
(0.001)∗∗∗ (0.001)∗∗∗ 0.2172

0.000 0.274 0.725 1.000 1.66 0.009 α0 = 0
(0.004) (0.003)∗∗∗ (0.003)∗∗∗ 0.9006

Mt is the mean value of inflation expectations across all agents in the simulated population; St is

the actual annual inflation rate from 1960q1 to 1981q2, and the SPF inflation forecast from 1981q3

to 2000q2. Estimation is restricted to the simulation periods corresponding to 1981q3 to 2000q2

for which actual SPF data are available. All standard errors are corrected for heteroskedasticity

and serial correlation using a Newey-West procedure (a Bartlett kernel) with four lags. Results

are not sensitive to the choice of lags.

Table 4: Estimating Baseline Model on Random Mixing Simulations

Table 4 presents results of estimating equation (10) on the aggregate inflation
expectations data that result from this agent-based simulation under a uniform
fixed λ = 0.25 probability of news-reading. The first two rows present results when
the probability of a social transmission event is p = 0.25. The primary effect of
social transmission is to bias upward the estimated speed of adjustment term. The
point estimate is about 0.31, or about 6 percentage points too high. However,
the R̄2 of the equation is virtually 100 percent, indicating that even when there
is social transmission of information, the common-source model does an excellent
job of explaining the dynamics of aggregate expectations. The next row shows the
results when the rate of social transmission is p = 0.10. Unsurprisingly, the size of
the bias in the estimate of λ is substantially smaller in this case, and the model
continues to perform well in an R̄2 sense.

A potential objection to these simulations is that they assume ‘random mixing.’
That is, every member of the population is equally likely to encounter any other
member. Much of the literature on agent-based models has examined the behavior
of populations that are distributed over a landscape in which most interactions
occur between adjacent locations on the landscape. Often models with local but no
global interaction yield quite different outcomes from ‘random mixing’ models.

To explore a model in which social communication occurs locally but not glob-
ally, I constructed a population distributed over a two dimensional lattice, of size
500x500, with one agent at each lattice point. I assumed that a fraction η of agents

distribution of forecasts in the population and therefore would not result in aggregate dynamics
any different from those when no social communication is allowed.
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are ‘well informed’ - that is, as soon as a new inflation forecast is released, these
agents learn the new forecast with zero lag. Other agents in the population obtain
their views of inflation solely through interaction with neighbors.12 Thus, in this
model, news travels out in concentric patterns (one step on the landscape per pe-
riod) from its geographical origination points (the news agents, who are scattered
randomly across the landscape). As in the random mixing model, I assume that
new news drives out old news.

Estimating Mt = α0 + α1St + α2Mt−1 + εt

Up-to-date Durbin- Test
Agents α0 α1 α2 R̄2 Watson StdErr p-value
η = 0.25 0.234 0.696 0.992 0.10 0.135 α1 + α2 = 1

(0.025)∗∗∗ (0.034)∗∗∗ 0.0000
0.386 0.315 0.499 1.000 1.03 0.007 α0 = 0

(0.003)∗∗∗ (0.001)∗∗∗ (0.001)∗∗∗ 0.0000
η = 0.15 0.098 0.853 0.988 0.13 0.117 α1 + α2 = 1

(0.017)∗∗∗ (0.027)∗∗∗ 0.0000
0.475 0.185 0.587 1.000 1.15 0.008 α0 = 0

(0.004)∗∗∗ (0.001)∗∗∗ (0.001)∗∗∗ 0.0000

Mt is the mean value of inflation expectations across all agents in the simulated population; St is

the actual annual inflation rate from 1960q1 to 1981q2, and the SPF inflation forecast from 1981q3

to 2000q2. Estimation is restricted to the simulation periods corresponding to 1981q3 to 2000q2

for which actual SPF data are available. All standard errors are corrected for heteroskedasticity

and serial correlation using a Newey-West procedure (a Bartlett kernel) with four lags. Results

are not sensitive to the choice of lags.

Table 5: Estimating Baseline Model on Local Interactions Simulations

Results from estimating the baseline model on data produced by the ‘local in-
teractions’ simulations are presented in table 5. For comparability with the baseline
estimate of λ = 0.25 in the common-source model, I have assumed that proportion
η = 0.25 of the agents in the new model are the well-informed types whose infla-
tionary expectations are always up to date. Interestingly, estimating the baseline
model yields a coefficient of about α1 = 0.22 on the SPF forecast, even though
25 percent of agents always have expectations exactly equal to the SPF forecast.
The coefficient on lagged expectations gets a value of about 0.71, and the last col-
umn indicates that a test of the proposition that α1 + α2 = 1 now rejects strongly.
However, the regression still has an R̄2 of around 0.99, so the basic common-source
model still does an excellent job of capturing the dynamics of aggregate inflation
expectations.

12For the purposes of the simulation, an agent’s neighbors are the agents in the eight cells
surrounding him. For agents at the borders of the grid, neighborhoods are assumed to wrap
around to the opposite side of the grid; implicitly this assumes the agents live on a torus.
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The most interesting result, however, is shown in the next row: The estimation
now finds a highly statistically significant role for a nonnegligible constant term.
Recall that the only real empirical problem with the common-source model was
that the estimation found a statistically significant role for a constant term.

Results in the next rows show what happens when the proportion of news agents
is reduced to η = 0.15. As expected, the estimate of α1 falls; indeed, the downward
bias is now even more pronounced than with 25 percent well-informed. However,
when a constant is allowed into the equation, the constant term itself is highly
significant and the estimate of α1 jumps to about 0.18, not far from the fraction of
always-up-to-date agents in the population.

What these simulation results suggest is that the empirical constant term may
somehow be reflecting the fact that some transmission of inflation expectations is
through social exchange rather than directly through the news media. Furthermore,
and happily, it is clear from the structure of the local interactions model that this
population would eventually learn the true correct expectation of inflation if the
SPF forecasts permanently settled down to a nonstochastic steady-state. Thus it is
considerably more appealing to argue that the constant term reflects misspecifica-
tion of the model (by leaving out social interactions) than to accept the presence of
a true constant term (and its associated implication of permanent bias).

A final caveat is in order. The central lesson of Mankiw and Reis (2001, 2002)
and others is that the extent to which inflation can be reduced without increasing
unemployment depends upon the speed with which a new view of inflation can be
communicated to the entire population. It is not at all clear that the predictions
about the medium-term inflation/unemployment tradeoff of a model with social
transmission of expectations, or even of the common-source model with heteroge-
neous λ’s, are similar to the predictions of the homogeneous λ model examined by
Mankiw and Reis (2001, 2002). Investigating this question should be an interesting
project for future research.

4 Conclusions

This paper was written to provide a specific example of a more general proposi-
tion: That many of the puzzles confronting standard macroeconomic models today
could be resolved by abandoning the mathematically elegant but patently false as-
sumptions of rational expectations models and replacing them with more realistic
and explicit models of how people obtain their ideas about economic topics, in-
volving some form of learning or social transmission of knowledge and information.
While the paper confines itself to presenting results from agent-based simulations
of such a model of inflation expectaitons, the closely related work by Mankiw and
Reis (2001, 2002) shows that macroeconomic dynamics are much more plausible
when expectations are governed by a model like the ones explored here.

Other puzzles that might yield to such an approach are legion. For example,
excess smoothness in aggregate consumption (releative to the rational expectations
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benchmark) may reflect precisely the same kind of inattention posited for inflation
expectations here (I am actively pursuing this possibility in ongoing work). A plau-
sible explanation for the equity premium puzzle might be to suppose that it has
taken a long time for news of the favorable risk/return tradeoff of stocks to spread
from experts like Mehra and Prescott (1985) to the general population. The strong
systematic relationship of productivity growth and the natural rate of unemploy-
ment documented, for example, by Staiger, Stock, and Watson (2001) and Ball
and Moffitt (2001) may reflect workers’ imperfect knowledge about productivity
growth (and the slow social transmission of such information). The detailed dy-
namics of productivity itself can surely be captured better by models in which new
technologies spread gradually in a population than by models in which new tech-
nologies instantaneously boost productivity upon the date of invention (which is the
conventional ‘technology shock’ approach in rational expectations models). And a
substantial literature now exists arguing that social transmission of information in
a population of investing agents may be able to explain the excess volatility of asset
prices compared to the rational expectations benchmark (see LeBaron (forthcom-
ing) for a summary).
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