House Price Beliefs
and Mortgage Leverage Choice
by
Bailey Davlia Kuchler Stroebel

Discussion by Christopher Carroll

1Johns Hopkins University
ccarroll@jhu.edu

NBER Behavioral Macroeconomics Workshop, July 14, 2017
All the Ingredients for Good ‘Behavioral Macroeconomics’
All the Ingredients for Good ‘Behavioral Macroeconomics’

1. Deviation from well understood models is well-defined ...
All the Ingredients for Good ‘Behavioral Macroeconomics’

1. Deviation from well understood models is well-defined ...
 - Expectations Not ‘Rational’ But ‘Epidemiological’
All the Ingredients for Good ‘Behavioral Macroeconomics’

1. Deviation from well understood models is well-defined ...
 ▶ Expectations Not ‘Rational’ But ‘Epidemiological’
 ▶ They Measure The Infection Rate!
All the Ingredients for Good ‘Behavioral Macroeconomics’

1. Deviation from well understood models is well-defined ... ▶ Expectations Not ‘Rational’ But ‘Epidemiological’ ▶ They Measure The Infection Rate!
2. Disciplined by All the Relevant Micro Data ...
All the Ingredients for Good ‘Behavioral Macroeconomics’

1. Deviation from well understood models is well-defined ...
 - Expectations Not ‘Rational’ But ‘Epidemiological’
 - They Measure The Infection Rate!
2. Disciplined by All the Relevant Micro Data ...
 - NY Fed Survey of Expectations, etc etc ...
All the Ingredients for Good ‘Behavioral Macroeconomics’

1. Deviation from well understood models is well-defined ...
 - Expectations Not ‘Rational’ But ‘Epidemiological’
 - They Measure The Infection Rate!
2. Disciplined by All the Relevant Micro Data ...
 - NY Fed Survey of Expectations, etc etc ...
3. Explored with Rigorous and Clear Theory ...

What’s Not to Like? ...
All the Ingredients for Good ‘Behavioral Macroeconomics’

1. Deviation from well understood models is well-defined ...
 ▶ Expectations Not ‘Rational’ But ‘Epidemiological’
 ▶ They Measure The Infection Rate!
2. Disciplined by All the Relevant Micro Data ...
 ▶ NY Fed Survey of Expectations, etc etc ...
3. Explored with Rigorous and Clear Theory ...
4. That Reaches Conclusions About Important Macro Topics
All the Ingredients for Good ‘Behavioral Macroeconomics’

1. Deviation from well understood models is well-defined ...
 ▶ Expectations Not ‘Rational’ But ‘Epidemiological’
 ▶ They Measure The Infection Rate!
2. Disciplined by All the Relevant Micro Data ...
 ▶ NY Fed Survey of Expectations, etc etc ...
3. Explored with Rigorous and Clear Theory ...
4. That Reaches Conclusions About Important Macro Topics
5. What’s Not to Like? ...
Behavioral Macro Implications of Facebook?

What Could One Do?

- Calibrate ‘Epidemiological Expectations’ Model with FB Data
Behavioral Macro Implications of Facebook?

What Could One Do?

- Calibrate ‘Epidemiological Expectations’ Model with FB Data
- Examine implications, say, for, bubbles.

A Likely Hypothesis:

- Shift of sources of ‘infection’ from local to nonlocal makes:
 - Local housing bubbles less likely
 - Your bubble is punctured by your distant friends
 - National bubbles more likely
 - Distant friends can share their bubble with you
Behavioral Macro Implications of Facebook?

What Could One Do?

- Calibrate ‘Epidemiological Expectations’ Model with FB Data
- Examine implications, say, for, bubbles.
Behavioral Macro Implications of Facebook?

What Could One Do?

- Calibrate ‘Epidemiological Expectations’ Model with FB Data
- Examine implications, say, for, bubbles.

A Likely Hypothesis:
Behavioral Macro Implications of Facebook?

What Could One Do?

- Calibrate ‘Epidemiological Expectations’ Model with FB Data
- Examine implications, say, for, bubbles.

A Likely Hypothesis:

- Shift of sources of ‘infection’ from local to nonlocal makes:
Behavioral Macro Implications of Facebook?

What Could One Do?

- Calibrate ‘Epidemiological Expectations’ Model with FB Data
- Examine implications, say, for, bubbles.

A Likely Hypothesis:

- Shift of sources of ‘infection’ from local to nonlocal makes:
 - Local housing bubbles less likely
Behavioral Macro Implications of Facebook?

What Could One Do?
- Calibrate ‘Epidemiological Expectations’ Model with FB Data
- Examine implications, say, for, bubbles.

A Likely Hypothesis:
- Shift of sources of ‘infection’ from local to nonlocal makes:
 - Local housing bubbles less likely
 - Your bubble is punctured by your distant friends
Behavioral Macro Implications of Facebook?

What Could One Do?
- Calibrate ‘Epidemiological Expectations’ Model with FB Data
- Examine implications, say, for, bubbles.

A Likely Hypothesis:
- Shift of sources of ‘infection’ from local to nonlocal makes:
 - Local housing bubbles less likely
 - Your bubble is punctured by your distant friends
 - National bubbles more likely
Behavioral Macro Implications of Facebook?

What Could One Do?
- Calibrate ‘Epidemiological Expectations’ Model with FB Data
- Examine implications, say, for, bubbles.

A Likely Hypothesis:
- Shift of sources of ‘infection’ from local to nonlocal makes:
 - Local housing bubbles less likely
 - Your bubble is punctured by your distant friends
 - National bubbles more likely
 - Distant friends can share their bubble with you
Their goal is much more modest

- Use nonrational ‘infection’ as an exogenous shifter of $\mathbb{E}[\Delta p^h]$
Their goal is much more modest

- Use nonrational ‘infection’ as an exogenous shifter of $\mathbb{E}[\Delta p^h]$
- See whether people make same choices that would be rational if their $\mathbb{E}[\Delta p^h]$ were rational
BDKS Key Empirical Finding (Stylized)

Persons A and B live in Des Moines

... and are identical on ‘observables’

... but person A has more friends in ‘busting’ markets in 2008-10

Is more pessimistic about Des Moines house prices

Check Effect of Expectations on Behavior: In 2008-10, Person A:

1. Is less likely to buy a house

2. If they buy a house, it will be cheaper

3. If they buy, they will put down a smaller down payment

Last is focus of this paper.

Develop a Model In Which It Would Be Rational
BDKS Key Empirical Finding (Stylized)

- Persons A and B live in Des Moines
Persons A and B live in Des Moines

... and are identical on ‘observables’
BDKS Key Empirical Finding (Stylized)

- Persons A and B live in Des Moines
- ... and are identical on ‘observables’
- ... but person A has more friends in ‘busting’ markets
BDKS Key Empirical Finding (Stylized)

- Persons A and B live in Des Moines
- ... and are identical on ‘observables’
- ... but person A has more friends in ‘busting’ markets
 - in 2008-10

Check Effect of Expectations on Behavior: In 2008-10, Person A:
1. Is less likely to buy a house
2. If they buy a house, it will be cheaper
3. If they buy, they will put down a smaller down payment

Last is focus of this paper.

Develop a Model In Which It Would Be Rational
BDKS Key Empirical Finding (Stylized)

- Persons A and B live in Des Moines
- ... and are identical on ‘observables’
- ... but person A has more friends in ‘busting’ markets
 - in 2008-10
 - Is more pessimistic about *Des Moines* house prices

Check Effect of Expectations on Behavior: In 2008-10, Person A:
1. Is less likely to buy a house ✓
2. If they buy a house, it will be cheaper ✓
3. If they buy, they will put down a smaller down payment

Last is focus of this paper.

Develop a Model In Which It Would Be Rational
BDKS Key Empirical Finding (Stylized)

- Persons A and B live in Des Moines
- ... and are identical on ‘observables’
- ... but person A has more friends in ‘busting’ markets
 - in 2008-10
 - Is more pessimistic about *Des Moines* house prices
BDKS Key Empirical Finding (Stylized)

- Persons A and B live in Des Moines
- ... and are identical on ‘observables’
- ... but person A has more friends in ‘busting’ markets
 - in 2008-10
 - Is more pessimistic about Des Moines house prices

Check Effect of Expectations on Behavior: In 2008-10, Person A:
- [✓] Is less likely to buy a house
- [✓] If they buy a house, it will be cheaper
- [] If they buy, they will put down a smaller down payment

Last is focus of this paper.

Develop a Model In Which It Would Be Rational
BDKS Key Empirical Finding (Stylized)

- Persons A and B live in Des Moines
- ... and are identical on ‘observables’
- ... but person A has more friends in ‘busting’ markets
 - in 2008-10
 - Is more pessimistic about Des Moines house prices

Check Effect of Expectations on Behavior: In 2008-10, Person A:

1. Is less likely to buy a house
Persons A and B live in Des Moines

... and are identical on ‘observables’

... but person A has more friends in ‘busting’ markets

 ▶ in 2008-10
 ▶ Is more pessimistic about *Des Moines* house prices

Check Effect of Expectations on Behavior: In 2008-10, Person A:

1. Is less likely to buy a house
BDKS Key Empirical Finding (Stylized)

- Persons A and B live in Des Moines
- ... and are identical on ‘observables’
- ... but person A has more friends in ‘busting’ markets
 - in 2008-10
 - Is more pessimistic about Des Moines house prices

Check Effect of Expectations on Behavior: In 2008-10, Person A:

1. Is less likely to buy a house ✓
2. If they buy a house, it will be cheaper
BDKS Key Empirical Finding (Stylized)

- Persons A and B live in Des Moines
- ... and are identical on ‘observables’
- ... but person A has more friends in ‘busting’ markets
 - in 2008-10
 - Is more pessimistic about *Des Moines* house prices

Check Effect of Expectations on Behavior: In 2008-10, Person A:

1. Is less likely to buy a house ✓
2. If they buy a house, it will be cheaper
BDKS Key Empirical Finding (Stylized)

- Persons A and B live in Des Moines
- ... and are identical on ‘observables’
- ... but person A has more friends in ‘busting’ markets
 - in 2008-10
 - Is more pessimistic about *Des Moines* house prices

Check Effect of Expectations on Behavior: In 2008-10, Person A:

1. Is less likely to buy a house ✓
2. If they buy a house, it will be cheaper ✓
3. **If they buy, they will put down a smaller down payment**
BDKS Key Empirical Finding (Stylized)

- Persons A and B live in Des Moines
- ... and are identical on ‘observables’
- ... but person A has more friends in ‘busting’ markets
 - in 2008-10
 - Is more pessimistic about *Des Moines* house prices

Check Effect of Expectations on Behavior: In 2008-10, Person A:

1. Is less likely to buy a house ✓
2. If they buy a house, it will be cheaper ✓
3. If they buy, they will put down a smaller down payment
Persons A and B live in Des Moines
... and are identical on ‘observables’
... but person A has more friends in ‘busting’ markets
 in 2008-10
 Is more pessimistic about Des Moines house prices

Check Effect of Expectations on Behavior: In 2008-10, Person A:

1. Is less likely to buy a house ✓
2. If they buy a house, it will be cheaper ✓
3. **If they buy, they will put down a smaller down payment**

Last is focus of this paper.

Develop a Model In Which It Would Be Rational
Digression

A certain well-known person, if introduced to the field, might tweet:

R^2 never more than about 0.3 using observables...

R^2 for their 'main result' is 0.16.

So, stuff about which we (they) have no clue explains:

Best case: 70 percent
BDKS case: 84 percent

Interpretations:
Optimist: Glass is 30 (or 16) percent full!
Pessimist: Glass is 70 (or 84) percent empty!
Realist:
H_0: All results are attributable to unobserved heterogeneity
Deaton: Even a 'perfect instrument' doesn't solve this...
... if the outcome you are modeling is affected by prior choices affected by instrument...
... and the heterogeneity affects those choices.
Digression

A certain well-known person, if introduced to the field, might tweet: Applied Micro Is Sad.
Digression

A certain well-known person, if introduced to the field, might tweet: Applied Micro Is Sad. SAD!

...
Digression

A certain well-known person, if introduced to the field, might tweet: Applied Micro Is Sad. SAD!

- R^2 never more than about 0.3 using observables ...
Digression

A certain well-known person, if introduced to the field, might tweet: Applied Micro Is Sad. SAD!

- R^2 never more than about 0.3 using observables ...
- R^2 for their 'main result' is 0.16

Interpretations:
- Optimist: Glass is 30 (or 16) percent full!
- Pessimist: Glass is 70 (or 84) percent empty!
- Realist: H_0: All results are attributable to unobserved heterogeneity
 Deaton: Even a 'perfect instrument' doesn't solve this ...
 ... if the outcome you are modeling is affected by prior
 choices affected by instrument
 ... and the heterogeneity affects those choices
Digression

A certain well-known person, if introduced to the field, might tweet: Applied Micro Is Sad. SAD!

- R^2 never more than about 0.3 using observables ...
- R^2 for their 'main result' is 0.16
- So, stuff about which we (they) have no clue explains:

Best case: 70 percent

BDKS case: 84 percent

Interpretations:

- Optimist: Glass is 30 (or 16) percent full!
- Pessimist: Glass is 70 (or 84) percent empty!
- Realist:
 - H_0: All results are attributable to unobserved heterogeneity
 - Deaton: Even a 'perfect instrument' doesn't solve this ...
 - if the outcome you are modeling is affected by prior choices affected by instrument
 - and the heterogeneity affects those choices
Digression

A certain well-known person, if introduced to the field, might tweet: Applied Micro Is Sad. SAD!

- R^2 never more than about 0.3 using observables ...
- R^2 for their 'main result' is 0.16
- So, stuff about which we (they) have no clue explains:
 - Best case: 70 percent
Digression

A certain well-known person, if introduced to the field, might tweet: Applied Micro Is Sad. SAD!

- R^2 never more than about 0.3 using observables ...
- R^2 for their 'main result' is 0.16
- So, stuff about which we (they) have no clue explains:
 - Best case: 70 percent
 - BDKS case: 84 percent
Digression

A certain well-known person, if introduced to the field, might tweet: Applied Micro Is Sad. SAD!

- R^2 never more than about 0.3 using observables ...
- R^2 for their 'main result' is 0.16
- So, stuff about which we (they) have no clue explains:
 - Best case: 70 percent
 - BDKS case: 84 percent
Digression

A certain well-known person, if introduced to the field, might tweet: Applied Micro Is Sad. SAD!

- R^2 never more than about 0.3 using observables ...
- R^2 for their 'main result' is 0.16
- So, stuff about which we (they) have no clue explains:
 - Best case: 70 percent
 - BDKS case: 84 percent

Interpretations:
Digression

A certain well-known person, if introduced to the field, might tweet: Applied Micro Is Sad. SAD!

- R^2 never more than about 0.3 using observables ...
- R^2 for their 'main result' is 0.16
- So, stuff about which we (they) have no clue explains:
 - Best case: 70 percent
 - BDKS case: 84 percent

Interpretations:
- Optimist: Glass is 30 (or 16) percent full!
Digression

A certain well-known person, if introduced to the field, might tweet: Applied Micro Is Sad. SAD!

- R^2 never more than about 0.3 using observables ...
- R^2 for their ’main result’ is 0.16
- So, stuff about which we (they) have no clue explains:
 - Best case: 70 percent
 - BDKS case: 84 percent

Interpretations:

- Optimist: Glass is 30 (or 16) percent full!
- Pessimist: Glass is 70 (or 84) percent empty!
Digression

A certain well-known person, if introduced to the field, might tweet: Applied Micro Is Sad. SAD!

- R^2 never more than about 0.3 using observables ...
- R^2 for their 'main result' is 0.16
- So, stuff about which we (they) have no clue explains:
 - Best case: 70 percent
 - BDKS case: 84 percent

Interpretations:

- Optimist: Glass is 30 (or 16) percent full!
- Pessimist: Glass is 70 (or 84) percent empty!
- Realist:
Digression

A certain well-known person, if introduced to the field, might tweet: Applied Micro Is Sad. SAD!

- R^2 never more than about 0.3 using observables ...
- R^2 for their 'main result' is 0.16
- So, stuff about which we (they) have no clue explains:
 - Best case: 70 percent
 - BDKS case: 84 percent

Interpretations:
- Optimist: Glass is 30 (or 16) percent full!
- Pessimist: Glass is 70 (or 84) percent empty!
- Realist:
 - H_0: All results are attributable to unobserved heterogeneity
Digression

A certain well-known person, if introduced to the field, might tweet: Applied Micro Is Sad. SAD!

- R^2 never more than about 0.3 using observables ...
- R^2 for their 'main result' is 0.16
- So, stuff about which we (they) have no clue explains:
 - Best case: 70 percent
 - BDKS case: 84 percent

Interpretations:

- Optimist: Glass is 30 (or 16) percent full!
- Pessimist: Glass is 70 (or 84) percent empty!
- Realist:
 - H_0: All results are attributable to unobserved heterogeneity
 - Deaton: Even a ‘perfect instrument’ doesn’t solve this ...
Digression

A certain well-known person, if introduced to the field, might tweet: Applied Micro Is Sad. SAD!

- R^2 never more than about 0.3 using observables ...
- R^2 for their ‘main result’ is 0.16
- So, stuff about which we (they) have no clue explains:
 - Best case: 70 percent
 - BDKS case: 84 percent

Interpretations:

- Optimist: Glass is 30 (or 16) percent full!
- Pessimist: Glass is 70 (or 84) percent empty!
- Realist:
 - H_0: All results are attributable to unobserved heterogeneity
 - Deaton: Even a ‘perfect instrument’ doesn’t solve this ...
 - ... if the outcome you are modeling is affected by prior *choices*
 affected by instrument
Digression

A certain well-known person, if introduced to the field, might tweet: Applied Micro Is Sad. SAD!

- R^2 never more than about 0.3 using observables ...
- R^2 for their 'main result' is 0.16
- So, stuff about which we (they) have no clue explains:
 - Best case: 70 percent
 - BDKS case: 84 percent

Interpretations:

- Optimist: Glass is 30 (or 16) percent full!
- Pessimist: Glass is 70 (or 84) percent empty!
- Realist:
 - H_0 : All results are attributable to unobserved heterogeneity
 - Deaton: Even a ‘perfect instrument’ doesn’t solve this ...
 - ... if the outcome you are modeling is affected by prior choices
 affected by instrument
 - ... and the heterogeneity affects those choices
Selection on Unobservables (Heckman; Deaton)

Among type-A people, some did buy ... for unobservable reasons. What might those reasons be?

- Lower Relative Risk Aversion (compared to non-buyers)
- A kid arrived ...
- A job change ...
- Neighbor whose house you covet, died in freak drone accident...
Selection on Unobservables (Heckman; Deaton)

- Among type-A people, some did buy ...
Selection on Unobservables (Heckman; Deaton)

- Among type-A people, *some* did buy ...
- ... for unobservable reasons
Selection on Unobservables (Heckman; Deaton)

- Among type-A people, some did buy ...
- ... for unobservable reasons
Selection on Unobservables (Heckman; Deaton)

- Among type-A people, some did buy ...
- ... for unobservable reasons

What might those reasons be?
- Lower Relative Risk Aversion (compared to non-buyers)
Selection on Unobservables (Heckman; Deaton)

- Among type-A people, *some* did buy ...
- ... for unobservable reasons

What might those reasons be?
- Lower Relative Risk Aversion (compared to non-buyers)
- A kid arrived ...
Selection on Unobservables (Heckman; Deaton)

- Among type-A people, some did buy ...
- ... for unobservable reasons

What might those reasons be?
- Lower Relative Risk Aversion (compared to non-buyers)
- A kid arrived ...
- A job change ...
Among type-A people, *some* did buy ...
... for unobservable reasons

What might those reasons be?
- Lower Relative Risk Aversion (compared to non-buyers)
- A kid arrived ...
- A job change ...
- Neighbor whose house you covet, died in freak drone accident
Selection on Unobservables (Heckman; Deaton)

- Among type-A people, *some* did buy ...
- ... for unobservable reasons

What might those reasons be?
- Lower Relative Risk Aversion (compared to non-buyers)
- A kid arrived ...
- A job change ...
- Neighbor whose house you covet, died in freak drone accident
- ...

...
Example: Heterogeneous Relative Risk Aversion

Subtypes among people with ‘buster’ friends:

▶ Aa: High RRA
▶ Ab: Low RRA

Person Ab:
▶ Won’t have much of a ‘buffer stock’
▶ Won’t worry as much about bad shocks
▶ ceteris paribus, more likely to buy despite ‘buster’ friends

Conclusion: Kind of person more likely to buy (Ab), is kind of person who would have low downpayment if they do buy
Example: Heterogeneous Relative Risk Aversion

Subtypes among people with ‘buster’ friends:

- **Aa:** High RRA
- **Ab:** Low RRA

Person Ab:
- Won't have much of a ‘buffer stock’
- Won't worry as much about bad shocks

 ceteris paribus, more likely to buy despite ‘buster’ friends

Conclusion: Kind of person more likely to buy (Ab), is kind of person who would have low downpayment if they do buy.
Example: Heterogeneous Relative Risk Aversion

Subtypes among people with ‘buster’ friends:
▶ Aa: High RRA

Person Ab:
▶ Won’t have much of a ‘buffer stock’
▶ Won’t worry as much about bad shocks

\(\text{ceteris paribus},\) more likely to buy despite ‘buster’ friends

Conclusion: Kind of person more likely to buy (Ab), is kind of person who would have low downpayment if they do buy.
Example: Heterogeneous Relative Risk Aversion

Subtypes among people with ‘buster’ friends:

- Aa: High RRA
- Ab: Low RRA

Person Ab:
- Won’t have much of a ‘buffer stock’
- Won’t worry as much about bad shocks
ceteris paribus, more likely to buy despite ‘buster’ friends

Conclusion: Kind of person more likely to buy (Ab), is kind of person who would have low downpayment if they do buy
Example: Heterogeneous Relative Risk Aversion

Subtypes among people with ‘buster’ friends:

- Aa: High RRA
- Ab: Low RRA

Person Ab:
- Won’t have much of a ‘buffer stock’
- Won’t worry as much about bad shocks
 \(\text{ceteris paribus} \), more likely to buy despite ‘buster’ friends

Conclusion: Kind of person more likely to buy (Ab), is kind of person who would have low downpayment if they do buy.
Example: Heterogeneous Relative Risk Aversion

Subtypes among people with ‘buster’ friends:

- Aa: High RRA
- Ab: Low RRA

Person Ab:

- Won’t have much of a ‘buffer stock’
- Won’t worry as much about bad shocks
- \textit{ceteris paribus}, more likely to buy despite ‘buster’ friends

Conclusion: Kind of person more likely to buy (Ab), is kind of person who would have low downpayment if they do buy.
Example: Heterogeneous Relative Risk Aversion

Subtypes among people with ‘buster’ friends:

- Aa: High RRA
- Ab: Low RRA

Person Ab:

- Won’t have much of a ‘buffer stock’
Example: Heterogeneous Relative Risk Aversion

Subtypes among people with ‘buster’ friends:

- Aa: High RRA
- Ab: Low RRA

Person Ab:

- Won’t have much of a ‘buffer stock’
- Won’t worry as much about bad shocks
Example: Heterogeneous Relative Risk Aversion

Subtypes among people with ‘buster’ friends:

- Aa: High RRA
- Ab: Low RRA

Person Ab:

- Won’t have much of a ‘buffer stock’
- Won’t worry as much about bad shocks
 - *ceteris paribus*, more likely to buy despite ‘buster’ friends
Subtypes among people with ‘buster’ friends:

- Aa: High RRA
- Ab: Low RRA

Person Ab:

- Won’t have much of a ‘buffer stock’
- Won’t worry as much about bad shocks
 - *ceteris paribus*, more likely to buy despite ‘buster’ friends
Example: Heterogeneous Relative Risk Aversion

Subtypes among people with ‘buster’ friends:
 ▶ Aa: High RRA
 ▶ Ab: Low RRA

Person Ab:
 ▶ Won’t have much of a ‘buffer stock’
 ▶ Won’t worry as much about bad shocks
 ▶ *ceteris paribus*, more likely to buy despite ‘buster’ friends

Conclusion: Kind of person more likely to buy (Ab), is kind of person who would have low downpayment *if* they *do* buy
A Classic Heckman (1974) Selection Problem, Right?

\[b \quad - \quad \text{Available ‘balances’ that can be used for down payment} \]

\[d \quad - \quad \text{downpayment} \]

You buy if \(b + \alpha \mathbb{E}[p^h] + \epsilon > 0 \)

If you buy, you choose downpayment of

\[d \quad = \quad \gamma b + \omega \mathbb{E}[p^h] + \zeta \] (1)

But authors do not observe \(b \). They estimate:

\[d \quad = \quad \tilde{\omega} \mathbb{E}[p^h] + \eta \] (2)

But then \(\tilde{\omega} \) is biased estimate of \(\omega \), because \(\text{cov}(\eta, \epsilon) \) is nonzero.

Problem is generic if \(\exists \) any unobserved \(b \) affecting both purchase decision and downpayment.
Authors’ Model

If \mathbb{P} is prob of defaulting and PDV benefit of defaulting is Z

Then cost of mortgage is:

$$(1 - \mathbb{P}) E[\text{payments if no default}] - \mathbb{P}Z$$

So if $\partial \mathbb{P} / \partial E[\Delta ph] < 0$, optimistic person believes there is less benefit from default mortgage option.

BIG Caveat (which authors admit): Logic applies only in non-recourse states.

My bias: Finance models imported to household choice always get a lot deeply wrong. Here: No risk aversion ...
If φ is prob of defaulting and PDV benefit of defaulting is Z
If ϕ is prob of defaulting and PDV benefit of defaulting is Z
Then cost of mortgage is:
Authors’ Model

- If φ is prob of defaulting and PDV benefit of defaulting is Z
- Then cost of mortgage is:
 - $(1 - \varphi) \mathbb{E}[\text{payments if no default}] - \varphi Z$

\text{BIG Caveat (which authors admit):} Logic applies only in non-recourse states

My bias: Finance models imported to household choice always get a lot deeply wrong. Here: No risk aversion...
If φ is prob of defaulting and PDV benefit of defaulting is Z

Then cost of mortgage is:

$$(1 - \varphi) \mathbb{E}[\text{payments if no default}] - \varphi Z$$

So if $\partial \varphi / \partial \mathbb{E}[\Delta p^h] < 0$, optimistic person believes there is less benefit from default mortgage option
If φ is prob of defaulting and PDV benefit of defaulting is Z

Then cost of mortgage is:

$(1 - \varphi) \mathbb{E}[\text{payments if no default}] - \varphi Z$

So if $\partial \varphi / \partial \mathbb{E}[\Delta p^h] < 0$, optimistic person believes there is less benefit from default mortgage option
Authors’ Model

- If φ is prob of defaulting and PDV benefit of defaulting is Z
- Then cost of mortgage is:
 - $(1 - \varphi) \mathbb{E}[\text{payments if no default}] - \varphi Z$
- So if $\frac{\partial \varphi}{\partial \mathbb{E}[\Delta p^h]} < 0$, optimistic person believes there is less benefit from default mortgage option

BIG Caveat (which authors admit):
If ϕ is prob of defaulting and PDV benefit of defaulting is Z

Then cost of mortgage is:

$(1 - \phi) \mathbb{E}[\text{payments if no default}] - \phi Z$

So if $\partial\phi/\partial \mathbb{E}[\Delta p^h] < 0$, optimistic person believes there is less benefit from default mortgage option

BIG Caveat (which authors admit):

Logic applies only in non-recourse states
Authors’ Model

► If ϕ is prob of defaulting and PDV benefit of defaulting is Z
► Then cost of mortgage is:
 ▶ $(1 - \phi) \mathbb{E}[\text{payments if no default}] - \phi Z$
► So if $\partial \phi / \partial \mathbb{E}[\Delta p^h] < 0$, optimistic person believes there is less benefit from default mortgage option

BIG Caveat (which authors admit):
► Logic applies only in non-recourse states
Authors’ Model

- If \wp is prob of defaulting and PDV benefit of defaulting is Z
- Then cost of mortgage is:
 - $(1 - \wp) \mathbb{E}[\text{payments if no default}] - \wp Z$
- So if $\partial \wp / \partial \mathbb{E}[\Delta p^h] < 0$, optimistic person believes there is less benefit from default mortgage option

BIG Caveat (which authors admit):
- Logic applies only in non-recourse states

My bias: Finance models imported to household choice always get a lot deeply wrong. Here: No risk aversion ...
'Main Results'

\[
\text{CLTV} = \eta_0 + \eta_1 \text{Mean}(\Delta \text{Friends } p^h) + \eta_2 \text{StdDev}(\Delta \text{Friends } p^h)
\]

<table>
<thead>
<tr>
<th>\Delta \text{ Friends } p^h</th>
<th>1999-2006</th>
<th>2008-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>\eta_1: \text{Mean}</td>
<td>-0.032</td>
<td>-0.278***</td>
</tr>
<tr>
<td>\eta_2: \text{StdDev}</td>
<td>0.118*</td>
<td>0.639***</td>
</tr>
</tbody>
</table>

1. If right, model should apply all the time, not just 2008-10
2. Mean estimates would imply low downpayments in boom!
▶ Last sentence: So, boom must have been supply not demand
▶ I agree, but my priors are not moved much by their argument
‘Main Results’

\[
\text{CLTV} = \eta_0 + \eta_1 \text{Mean}(\Delta \text{Friends } p^h) + \eta_2 \text{StdDev}(\Delta \text{Friends } p^h)
\]

<table>
<thead>
<tr>
<th>Δ Friends p^h</th>
<th>1999-2006</th>
<th>2008-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>η_1:Mean</td>
<td>-0.032</td>
<td>-0.278^{***}</td>
</tr>
<tr>
<td>η_2:StdDev</td>
<td>0.118^*</td>
<td>0.639^{***}</td>
</tr>
</tbody>
</table>

Hmmm

1. If right, model should apply all the time, not just 2008-10
2. Mean estimates would imply low downpayments in boom!

▶ Last sentence: So, boom must have been supply not demand
▶ I agree, but my priors are not moved much by their argument
‘Main Results’

\[
\text{CLTV} = \eta_0 + \eta_1 \text{Mean}(\Delta \text{Friends } p^h) + \eta_2 \text{StdDev}(\Delta \text{Friends } p^h)
\]

<table>
<thead>
<tr>
<th>\Delta \text{Friends } p^h</th>
<th>1999-2006</th>
<th>2008-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>\eta_1: \text{Mean}</td>
<td>-0.032</td>
<td>-0.278***</td>
</tr>
<tr>
<td>\eta_2 : \text{StdDev}</td>
<td>0.118*</td>
<td>0.639***</td>
</tr>
</tbody>
</table>

Hmmm

1. If right, model should apply all the time, not just 2008-10
‘Main Results’

\[\text{CLTV} = \eta_0 + \eta_1 \text{Mean}(\Delta \text{Friends } p^h) + \eta_2 \text{StdDev}(\Delta \text{Friends } p^h) \]

<table>
<thead>
<tr>
<th>\Delta \text{ Friends } p^h</th>
<th>1999-2006</th>
<th>2008-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>\eta_1 : \text{Mean}</td>
<td>-0.032</td>
<td>-0.278***</td>
</tr>
<tr>
<td>\eta_2 : \text{StdDev}</td>
<td>0.118*</td>
<td>0.639***</td>
</tr>
</tbody>
</table>

Hmmm

1. If right, model should apply all the time, not just 2008-10
2. Mean estimates would imply *low* downpayments in boom!
Main Results

\[
\text{CLTV} = \eta_0 + \eta_1 \text{Mean}(\Delta \text{Friends } p^h) + \eta_2 \text{StdDev}(\Delta \text{Friends } p^h)
\]

<table>
<thead>
<tr>
<th>(\Delta \text{ Friends } p^h)</th>
<th>1999-2006</th>
<th>2008-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\eta_1: \text{Mean})</td>
<td>-0.032</td>
<td>-0.278***</td>
</tr>
<tr>
<td>(\eta_2 : \text{StdDev})</td>
<td>0.118*</td>
<td>0.639***</td>
</tr>
</tbody>
</table>

Hmmm

1. If right, model should apply all the time, not just 2008-10
2. Mean estimates would imply low downpayments in boom!
 ▶ Last sentence: So, boom must have been supply not demand
‘Main Results’

\[\text{CLTV} = \eta_0 + \eta_1 \text{Mean}(\Delta \text{Friends } p^h) + \eta_2 \text{StdDev}(\Delta \text{Friends } p^h) \]

<table>
<thead>
<tr>
<th>(\Delta \text{ Friends } p^h)</th>
<th>1999-2006</th>
<th>2008-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\eta_1 : \text{Mean})</td>
<td>-0.032</td>
<td>-0.278***</td>
</tr>
<tr>
<td>(\eta_2 : \text{StdDev})</td>
<td>0.118*</td>
<td>0.639***</td>
</tr>
</tbody>
</table>

Hmmm

1. If right, model should apply all the time, not just 2008-10
2. Mean estimates would imply low downpayments in boom!

 ▶ Last sentence: So, boom must have been supply not demand
 ▶ I agree, but my priors are not moved much by their argument
‘Main Results’ - Uncovering Some Hidden Heterogeneity

\[\text{CLTV} = \eta_0 + \eta_1 \text{Mean}(\Delta \text{Friends } p^h) + \eta_2 \text{StdDev}(\Delta \text{Friends } p^h) \]

\[
\begin{array}{cccc}
\Delta \text{ Friends } p^h & 1999-2006 & 2008-10 & \text{Same-College} \\
\eta_1 : \text{Mean} & -0.032 & -0.278*** & -0.179 \\
\eta_2 : \text{StdDev} & 0.118* & 0.639*** & 0.403*** \\
\end{array}
\]

Hmmm

1. If right, model should apply all the time, not just 2008-10

Judging by my college classmates, \text{Same-College} accounts for only a small part of unobserved heterogeneity

[Last sentence: So, boom must have been supply not demand]

[▶ I agree, but my priors are not moved much by their argument]
CLTV = \eta_0 + \eta_1 \text{Mean}(\Delta \text{Friends} \ p^h) + \eta_2 \text{StdDev}(\Delta \text{Friends} \ p^h)

<table>
<thead>
<tr>
<th>\Delta \text{Friends} \ p^h</th>
<th>1999-2006</th>
<th>2008-10</th>
<th>Same-College</th>
</tr>
</thead>
<tbody>
<tr>
<td>\eta_1: Mean</td>
<td>-0.032</td>
<td>-0.278***</td>
<td>-0.179</td>
</tr>
<tr>
<td>\eta_2 :StdDev</td>
<td>0.118*</td>
<td>0.639***</td>
<td>0.403***</td>
</tr>
</tbody>
</table>

Hmmm

1. If right, model should apply all the time, not just 2008-10
2. Mean estimates would imply low downpayments in boom!
CLTV = $\eta_0 + \eta_1 \text{Mean}(\Delta \text{Friends } p^h) + \eta_2 \text{StdDev}(\Delta \text{Friends } p^h)$

<table>
<thead>
<tr>
<th>Δ Friends p^h</th>
<th>1999-2006</th>
<th>2008-10</th>
<th>Same-College</th>
</tr>
</thead>
<tbody>
<tr>
<td>η_1:Mean</td>
<td>-0.032</td>
<td>-0.278***</td>
<td>-0.179</td>
</tr>
<tr>
<td>η_2:StdDev</td>
<td>0.118*</td>
<td>0.639***</td>
<td>0.403***</td>
</tr>
</tbody>
</table>

Hmmm

1. If right, model should apply all the time, not just 2008-10
2. Mean estimates would imply *low* downpayments in boom!
 - Last sentence: So, boom must have been supply not demand
‘Main Results’ - Uncovering Some Hidden Heterogeneity

\[
\text{CLTV} = \eta_0 + \eta_1 \text{Mean}(\Delta \text{Friends } \rho^h) + \eta_2 \text{StdDev}(\Delta \text{Friends } \rho^h)
\]

<table>
<thead>
<tr>
<th>\Delta \text{ Friends } \rho^h</th>
<th>1999-2006</th>
<th>2008-10</th>
<th>Same-College</th>
</tr>
</thead>
<tbody>
<tr>
<td>\eta_1 : \text{Mean}</td>
<td>-0.032</td>
<td>-0.278***</td>
<td>-0.179</td>
</tr>
<tr>
<td>\eta_2 : \text{StdDev}</td>
<td>0.118*</td>
<td>0.639***</td>
<td>0.403***</td>
</tr>
</tbody>
</table>

Hmmm

1. If right, model should apply all the time, not just 2008-10
2. Mean estimates would imply low downpayments in boom!
 ▶ Last sentence: So, boom must have been supply not demand
 ▶ I agree, but my priors are not moved much by their argument
‘Main Results’ - Uncovering Some Hidden Heterogeneity

\[\text{CLTV} = \eta_0 + \eta_1 \text{Mean} (\Delta \text{Friends } p^h) + \eta_2 \text{StdDev} (\Delta \text{Friends } p^h) \]

<table>
<thead>
<tr>
<th>(\Delta \text{ Friends } p^h)</th>
<th>1999-2006</th>
<th>2008-10</th>
<th>Same-College</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\eta_1):Mean</td>
<td>-0.032</td>
<td>-0.278***</td>
<td>-0.179</td>
</tr>
<tr>
<td>(\eta_2):StdDev</td>
<td>0.118*</td>
<td>0.639***</td>
<td>0.403***</td>
</tr>
</tbody>
</table>

Hmmm

1. If right, model should apply all the time, not just 2008-10
2. Mean estimates would imply low downpayments in boom!
 ▶ Last sentence: So, boom must have been supply not demand
 ▶ I agree, but my priors are not moved much by their argument
‘Main Results’ - Uncovering Some Hidden Heterogeneity

\[\text{CLTV} = \eta_0 + \eta_1 \text{Mean}(\Delta \text{Friends } p^h) + \eta_2 \text{StdDev}(\Delta \text{Friends } p^h) \]

<table>
<thead>
<tr>
<th>(\Delta \text{ Friends } p^h)</th>
<th>1999-2006</th>
<th>2008-10</th>
<th>Same-College</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\eta_1 : \text{Mean})</td>
<td>-0.032</td>
<td>-0.278***</td>
<td>-0.179</td>
</tr>
<tr>
<td>(\eta_2 : \text{StdDev})</td>
<td>0.118*</td>
<td>0.639***</td>
<td>0.403***</td>
</tr>
</tbody>
</table>

Hmmm

1. If right, model should apply all the time, not just 2008-10
2. Mean estimates would imply low downpayments in boom!
 - Last sentence: So, boom must have been supply not demand
 - I agree, but my priors are not moved much by their argument

Judging by my college classmates, Same-College accounts for only a small part of unobserved heterogeneity
Verdict: Not Proven (at best)

- Really wanted to be unqualified fan of this paper
Verdict: Not Proven (at best)

- Really wanted to be unqualified fan of this paper
- They include all the right ingredients

Advice: Work on More Compelling Topics!
Verdict: Not Proven (at best)

- Really wanted to be unqualified fan of this paper
- They include all the right ingredients
- Each is executed well
Verdict: Not Proven (at best)

- Really wanted to be unqualified fan of this paper
- They include all the right ingredients
- Each is executed well
- But in the end I don’t buy it:

When someone thinks house prices are collapsing, but that person buys anyway, do they really say to themselves, ‘now is a great time to get a big mortgage so I can walk away if prices keep collapsing’?

If so, should be big differences in borrower downpayment choices between recourse and non-recourse states

So far, no such evidence

Advice: Work on More Compelling Topics!
Verdict: Not Proven (at best)

- Really wanted to be unqualified fan of this paper
- They include all the right ingredients
- Each is executed well
- But in the end I don’t buy it:
 - When someone thinks house prices are collapsing, but that person buys anyway, do they really say to themselves, ‘now is a great time to get a big mortgage so I can walk away if prices keep collapsing’?
Verdict: Not Proven (at best)

- Really wanted to be unqualified fan of this paper
- They include all the right ingredients
- Each is executed well
- But in the end I don’t buy it:
 - When someone thinks house prices are collapsing, but that person buys anyway, do they really say to themselves, ‘now is a great time to get a big mortgage so I can walk away if prices keep collapsing’?
 - If so, should be *big* differences in borrower downpayment choices between recourse and non-recourse states
Verdict: Not Proven (at best)

- Really wanted to be unqualified fan of this paper
- They include all the right ingredients
- Each is executed well
- But in the end I don’t buy it:
 - When someone thinks house prices are collapsing, but that person buys anyway, do they really say to themselves, ‘now is a great time to get a big mortgage so I can walk away if prices keep collapsing’?
 - If so, should be big differences in borrower downpayment choices between recourse and non-recourse states
 - So far, no such evidence
Verdict: Not Proven (at best)

- Really wanted to be unqualified fan of this paper
- They include all the right ingredients
- Each is executed well
- But in the end I don’t buy it:
 - When someone thinks house prices are collapsing, but that person buys anyway, do they really say to themselves, ‘now is a great time to get a big mortgage so I can walk away if prices keep collapsing’?
 - If so, should be *big* differences in borrower downpayment choices between recourse and non-recourse states
 - So far, no such evidence
- Advice: Work on More Compelling Topics!