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1 Introduction 

Estimation of Euler equations has occupied a central place in consumption research over the 
more than twenty years since Hall (1978) first derived and tested the consumption Euler 
equation. Unfortunately, despite scores of careful empirical studies using household data, 
Euler equation estimation has not fulfilled its early promise to reliably uncover preference 
parameters like the intertemporal elasticity of substitution. Even more frustrating, the model 
does not even seem to fail in a consistent way: Some studies find strong evidence of ‘excess 
sensitivity’ of consumption to predictable income growth, while others find little or no excess 
sensitivity. 

This paper o ers an explanation for the conflicting empirical results, by showing that 
when the Euler equation estimation methods that have been widely used on household data 
are applied to a set of data generated by simulated consumers behaving exactly according to 
the standard consumption model, those methods are incapable of producing an econometri-
cally consistent estimate of the intertemporal elasticity of substitution. Furthermore, ‘excess 
sensitivity’ tests can find either high or low degrees of sensitivity, depending on the exact 
nature of the test. 

In principle, the theoretical problems with Euler equation estimation stem from approx-
imation error. The standard procedure has been to estimate a log-linearized, or first-order 
approximated, version of the Euler equation. This paper shows, however, that the higher-
order terms are endogenous with respect to the first-order terms (and also with respect to 
omitted variables), rendering consistent estimation of the log-linearized Euler equation impos-
sible. Unfortunately, the second-order approximation fares only slightly better. The paper 
concludes that empirical estimation of approximated consumption Euler equations should 
be abandoned, and discusses some alternative empirical methods for studying consumption 
behavior that are not subject to the problems of Euler equation estimation. 

The paper begins by presenting the specific version of the dynamic optimization problem 
that is solved and simulated. The next section describes the standard empirical methodology 
for estimating Euler equations and summarizes the results that have been reported in the 
literature. Section 4 describes the details of the simulations which generate the data to be 
analyzed. Section 5 is the heart of the paper: It shows that the standard empirical methods 
cannot produce consistent estimates of true model parameter values. The penultimate section 
describes several empirical strategies that are candidates to replace Euler equation estimation, 
and the final section concludes. 

2 The Model 

Consider a consumer solving the following maximization problem (essentially the same as the 
model in Carroll (1992, 1997) and Zeldes (1989)): 
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" # 

T 
X 

βs−t max u(Ct) +Et u(C̃  
s) (1) 

{Ct} 
s=t+1 

s.t. 

Xs+1 = R(Xs − Cs) + Ys+1 

Ys+1 = Ps+1Vs+1 

Ps+1 = GPsNs+1 

C1−ˆ 

u(C) = where ρ > 1 
1 − ρ 

where Ps is permanent labor income, which is bu eted by lognormally distributed mean-one 
shocks N with variance of log N = σ2 , implying that log P follows a random walk with n 

drift; Y is current labor income, which is equal to permanent labor income multiplied by 
a mean-one transitory shock V which is equal to zero with probability p (think of this as 
unemployment) and otherwise is distributed lognormally with variance of log V = σ2 , and v 

with a mean that guarantees that Et[Ṽ  
t+1] = 1;1 the interest rate, the growth rate of income, 

and the time preference factor, respectively R, G, and β, are constant; and the consumer’s 
utility function is of the Constant Relative Risk Aversion form with coeÿcient of relative risk 
aversion ρ > 1. 

The solution to this model obeys the Euler equation: 

h i−ˆ 
˜RβEt Ct+1/Ct = 1. (2) 

As written, this problem has two state variables, the level of liquid assets and the level of 
permanent labor income. Carroll (1996) shows that this problem can be converted to a single-
state-variable problem by dividing through by the level of permanent income Pt, implying 
that at each age of life there is an optimal rule relating the ratio of cash-on-hand to permanent 
income xt = Xt/Pt to the ratio of consumption to permanent income ct = Ct/Pt. 

The model is solved numerically by backwards induction on the Euler equation. In the 
last period of life, the optimal plan is to consume everything, c� (xT ) = xT . In the next-to-last T 

period, designating t = T − 1, the standard Euler equation for marginal utility is 

" !−ˆ# ˜ �Pt+1ct+1(x̃t+1)
RβEt = 1. (3) 

Ptct 

For a given value of xT −1 this equation can be solved numerically to find the optimal value 
of cT −1. This is done for a grid of possible values for xT −1 and a numerical optimal con-
sumption rule c� (xT −1) is constructed by linear interpolation between these points. Given T −1 
� �cT −1(xT −1) the same methods can be used to construct cT −2(xT −2) and so on to any arbitrary 

1The ˘ here and henceforth will be used to indicate a variable whose value is uncertain as of the date at 
which an expectation is being taken. 

2 



�

�
�

�

�

�

number of periods from the end of life.2 Carroll (1996) shows that if Deaton’s ‘impatience’ 
condition RβEt[(GÑ  

t+1)
−ˆ] < 1 holds, these successive optimal consumption rules will con-

verge as the horizon recedes, and consumers behaving according to the converged rule can be 
described as engaging in ‘bu er-stock’ saving. I will denote the optimal consumption rule for 

� � any period t as c (xt) and the converged consumption rule as c �(x) = lim c (x), which t T −n 
n!1 

corresponds to the infinite horizon solution. 
All numerical and simulation results in the paper will be generated from the converged 

consumption rule. Carroll (1997) argues that empirical evidence for US households suggests 
that even consumers with finite horizons behave like impatient (but infinite-horizon) ‘bu er-
stock’ for much of their working lifetimes; that paper argues that the transition from bu er-
stock behavior to something more closely resembling classical life cycle behavior (where the 
problems emphasized in this paper would be lessened) happens for the median household 
somewhere between ages 45 and 50. Cagetti’s (1999) recent paper implies a similar age for 
the transition; Gourinchas and Parker (1999) argue that the transition occurs somewhere 
around age 40.3 Since most empirical microeconometric work has restricted the sample to 
households between the ages of 25 and 60 (to avoid including students and others who have 
not formed a permanent attachment to the labor force on the young end, and early retirees on 
the older end), under any of these estimates bu er-stock saving behavior should be expected 
to obtain for a large proportion of the households in the data that has been used in empirical 
studies. 

To verify accuracy of the numerical solution, Figure 1 plots RβEt [(Ct+1/Ct)
−ˆ] as a 

function of xt. Errors in the numerical solution will lead the function to di er from one at 
points away from the gridpoints chosen for xt (where equality is imposed by the solution 
method). The figure shows that the errors involved in numerical solution are very small; 
the function is so close to one over the entire plotted range (which encompasses the range of 
values of wealth that actually arise when the model is simulated) that it appears to be a solid 
line exactly at one. This figure serves to illustrate the point that the problems with Euler 
equation estimation documented in the rest of the paper are in a sense attributable to the 
use of approximations to the Euler equation, since (as the figure shows) the true nonlinear 
Euler equation always holds by construction. 

3 The Standard Procedure 

3.1 Derivation of the Log-Linearized Consumption Euler Equation 

The “Log-Linearized” consumption Euler equation of this paper’s title is obtained by taking 
a first-order Taylor expansion of the nonlinear Euler equation (2), and making some approxi-
mations. For every possible Ct and Ct+1 there will be some ηt+1 for which Ct+1 = (1+ηt+1)Ct 

(assuming that consumption is always positive). Since we rarely expect to see consumption 

2For more details on the method of solution, see Carroll (1992, 1997). 
3The di erence is probably attributable to the fact that Gourinchas and Parker match mean rather than 

median behavior. The mean includes many high-income households who save much more than the median 
household (in proportion to their incomes), and thus could be expected to reflect a higher average degree of 
patience. 
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Figure 1: Numerical Value of RβEt Ptc�(xt) 

rise or fall dramatically from period to period, it seems reasonable to use the approximation 
(1+ηt+1)

−ˆ ˇ 1−ρηt+1 which corresponds to the first-order Taylor expansion of (1+ηt+1)
−ˆ 

around the point ηt+1 = 0. The Euler equation (2) then becomes: 

RβEt[1 − ρη̃t+1] ˇ 1. (4) 

A simple transformation of this first-order approximation has been the basis for most of the 
estimation of consumption Euler equations. By definition 1 + ηt+1 = Ct+1/Ct and using the 
approximation that for ‘small’ ǫ, log(1+ǫ) ˇ ǫ we obtain ηt+1 ˇ log Ct+1−log Ct = � log Ct+1. 
Substituting this back into equation (4) gives 

Rβ(1 − ρEt[� log C̃  
t+1]) ˇ 1. (5) 

Finally, taking the log of both sides, implicitly defining the time preference rate δ from 
β = 1/(1+ δ) so that log Rβ ˇ r − δ, and using the approximation log(1− ρEt[� log C̃  

t+1]) ˇ 

−ρEt[� log C̃  
t+1] gives 

(r − δ) − ρEt[� log C̃  
t+1] ˇ 0 

Et[� log C̃  
t+1] ˇ ρ−1(r − δ), (6) 

or, defining the expectation error ǫt+1 = � log Ct+1 − Et[� log C̃  
t+1], an alternative way to 

express this result is: 

� log Ct+1 ˇ ρ−1(r − δ) + ǫt+1 (7) 

0.5 1.0 1.5 2.0 2.5 3.0 
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where ǫt+1 is iid and the law of iterated expectations implies that it is uncorrelated with any 
variable known at time t (Hall (1978)). 

Those authors made uncomfortable by the first-order approximations involved in deriving 
equation (7) have sometimes been reassured by a well-known result that suggests that the 
second-order approximation leads to the same estimating equation. The second-order Taylor 

ˆ(ˆ+1) approximation of (1 + ηt+1)
−ˆ around ηt+1 = 0 is (1 + ηt+1)

−ˆ ˇ 1 − ρηt+1 + η2 
2 t+1. 

Solving for � log Ct+1 as above, the end result is 

� � 

ρ + 1 
� log Ct+1 ˇ ρ−1(r − δ) + Et[η̃t 

2
+1] + ǫt+1, (8) 

2 

and if ηt 
2
+1 is uncorrelated with r and δ, then the Et[η̃t 

2
+1] term will be absorbed in the 

constant term of a regression estimate of (7).4 

3.2 Previous Empirical Results 

To keep the notation simple, the derivations thus far have implicitly assumed that ρ, δ, and r 
are constants. Of course, if these parameters were constant across all times, places, and people 
then it would be impossible to estimate a coeÿcient ρ in an equation like (7). In practice, 
Euler equations like (7) have mainly been estimated in two ways. In microeconomic data, 
the most common procedure has been to estimate the equation across di erent consumers 
at a point in time, by identifying groups of consumers for whom di erent interest rates 
apply. In macroeconomic data, the equation has been estimated by exploiting time-variation 
in the aggregate interest rate.5 The principal purpose of this paper is to show that the 
usual cross-section procedures for microeconomic estimation of this equation do not work; 
the penultimate section briefly discusses whether time series estimation methods are similarly 
problematic. 

The instrumental variables approach to estimating the model using microeconomic data 
can be usefully thought of as equivalent to taking means within groups of consumers with 
similar characteristics, and identifying parameter values by di erences in these group-means. 
For example, typical instruments used in the empirical literature are education group or 
occupation group. Henceforth I will denote distinct groups by the subscript j and the group-
mean value of a variable X whose value di ers across members of the group will be designated 
(X)j . For example, if we were to designate the growth rate of consumption for an individ-
ual household as � log Ci,t+1 then the group-mean value of consumption growth across all 
consumers in group j would be designated (� log Ct+1)j which would be calculated (assum-
ing there are m consumers in group j who happen to have index numbers i = 1 . . . m) as 

Pm(� log Ct+1)j = (1/m) � log Ci,t+1. Parameters which are assumed to take a common i=1 

4A common alternative way of deriving essentially the same result is to assume that the consumption 
shocks are lognormally distributed and independent of the other variables in the model; in that case the last 
term in equation (8) is the variance of the consumption innovations rather than the square, and its coeÿcient 
is ˆ/2 rather than (ˆ + 1)/2. 

5A few studies have had enough cross-sections of household data to exploit time-variation in the aggregate 
interest rate using household data. See in particular Attanasio and Weber (1995). 
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value for all members of the group are unobtrusively indicated by a subscript j, e.g. ρj , rj , 
and δj . In this notation, equation (7) becomes: 

ρ−1(� log Ct+1)j ˇ j (rj − δj) + (ǫt+1)j (9) 

Thus, the standard log-linearized empirical Euler equation has been estimated using re-
gression equations of the form 

(� log Ct+1)j = α0 + α1rj + (ǫt+1)j (10) 

where the understanding has been that α1, the coeÿcient on r, should be a consistent estimate 
of the intertemporal elasticity of substitution, ρ−1 . According to equation (9), this will be 
true if three conditions hold: first, the approximations involved in deriving equation (7) are 
not problematic; second, any di erences in δj across groups are uncorrelated with whatever 
di erences there may be in rj ; and, finally, there are no di erences across groups in ρj . 

Empirical results for estimating equations like (10) have been poor. Usually the α1 term is 
estimated to be insignificantly di erent from zero; only a few studies have found significantly 
positive values of ρ. 6 However, the poor results in estimating ρ have often been interpreted as 
reflecting poor identifying information about exogenous di erences in r across groups, rather 
than as important rejections of the Euler equation itself.7 

The potential empirical problems with identifying exogenous variation in interest rates 
across households have led many authors to focus on another feature of the model: Hall’s 
‘random walk’ proposition. Hall (1978) showed that in a model with quadratic utility, con-
sumption should follow a random walk and no information known at time t should help to 
forecast the change in consumption between t and t + 1. The alterative hypothesis has usu-
ally been that consumption is ‘excessively sensitive’ to forecastable income growth. Formally, 
denoting the expected growth rate of income as Et[� log Ỹ  

t+1], the equation most commonly 
estimated has been: 

(� log Ct+1)j = α0 + α1rj + α2(Et[� log Ỹ  
t+1])j + ǫj, (11) 

and the ‘random walk’ proposition implies that α2 = 0 when the expected growth rate of 
income is instrumented using information known by the group j consumers at time t. 

Empirical results estimating equation (11) using micro data have been hardly better than 
those estimating the baseline equation (10).8 In a comprehensive survey article, Browning and 
Lusardi (1996) cite roughly twenty studies that have estimated the coeÿcient on predictable 
income growth. Estimates of the marginal propensity to consume out of predictable income 
growth ranged from zero (consistent with the CEQ LC/PIH model) up to 2. An apologist 
for the model might note that most estimates are in the range between 0 and 0.6. 

6See the survey paper by Browning and Lusardi (1996) for more details. 
7Usually identification has been obtained by calculating a marginal tax rate for each household and using 

the variation in marginal tax rates across households to identify an after-tax interest rate. This is problematic 
if the level of income is correlated with tastes. One simple mechanism for such a correlation is capital 
accumulation: if patient consumers save more they will eventually have a higher level of capital income, 
generating a correlation between tastes and the marginal tax rate. 

8Although, interestingly, when the equation is estimated using aggregate data it reliably generates a coef-
ficient of around 0.5. See below for a potential explanation. 
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3.3 The Explanation? 

Carroll (1992, 1996, 1997) has challenged the foregoing empirical methodology on the grounds 
that theory implies that the higher-order terms in the approximation cannot be ignored 
because they are endogenous and in particular are correlated with ρj, δj , and, fatally, rj and 
(Et[� log Ỹ  

t+1])j . Those papers show show that ‘impatient’ consumers behaving according 
to the standard CRRA intertemporal optimization model will engage in ‘bu er-stock’ or 
target saving behavior,9 and that, among a collection of bu er-stock consumers with the 
same parameter values, if the distribution of x across consumers has converged to its ergodic 
distribution, then average consumption growth across the members of the group will be equal 
to average permanent income growth. 

Thus, if we have j groups of consumers such that within each group j all consumers have 
the same parameter values, and x has converged to its ergodic distribution within each group, 
then 

(� log Ct+1)j = (� log Pt+1)j = gj . (12) 

The intuition for this result is fairly simple: If consumers are behaving according to a bu er-
stock model with a target wealth w̄, then it is impossible for consumption growth to be 
permanently di erent from underlying income growth. If consumption growth were forever 
greater than permanent labor income growth, consumption would eventually exceed labor 
income by an arbitrarily large amount, driving wealth to negative infinity. If consumption 
growth were permanently less than labor income growth, labor income would eventually 
exceed consumption by an arbitrarily large amount, driving wealth to infinity. Thus, in a 
model where there is an ergodic distribution of wealth across consumers, it is impossible for 
average consumption growth to di er permanently from average income growth.10 

As an aid to understanding the nature of the endogeneity problem, suppose that the 
second-order approximation equation (8) captures all of the important endogeneity so that 
the terms of third order and higher can safely be ignored (we will examine this assumption 
carefully below). Assume that ρ does not di er across the groups, and rewrite the second 
order approximation equation (8) in the new notation: 

� � 

1 + ρ 
(� log Ct+1)j ˇ ρ−1(rj − δj) + (Et[η̃t 

2
+1])j . (13) 

2 

If the members of group j are distributed according to their ergodic distribution, it should 
be the case that the average value of η2 across consumers in the group is equal to the t+1 

average of its expected value. Substituting (ηt 
2
+1)j for (Et[η̃t 

2
+1])j in equation (13) we now 

have two equations, (13) and (12), for average consumption growth for members of group j. 
The only way both equations can hold simultaneously is if the (ηt 

2
+1)j term is an endogenous 

equilibrating variable; in particular, the two equations can be solved for the value this term 

9The term ‘impatient’ here and henceforth refers to the condition R Et[(GÑ 
t+1)

−ˆ[< 1. Note that, so 
long as income is growing over time G > 1, consumers can be impatient in the required sense even if = 1 so 
that they do not discount future utility at all. 

10For much more careful discussion and arguments, see Carroll (1996, 1997). 
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must take: 
� � 

2 
(η2 [gj − ρ−1(rj − δj)].t+1)j ˇ (14) 

1 + ρ 

This equation makes abundantly clear the econometric problem with estimating the log-
linearized Euler equation (7): (ηt 

2
+1)j is an omitted varible in the regression equation and 

theory implies that it is correlated with rj (as well as with gj , δj and ρj if they di er across 
groups). Hence it will be impossible to get a consistent estimate of the coeÿcient on rj if the 
(ηt 

2
+1)j term is omitted from the equation. 
The easiest way to understand how the mechanism works is to think of ηt 

2
+1 as a measure 

of the degree of undesirable variation in consumption growth caused by the uncertainty of 
income. Because consumers with less wealth have less ability to bu er consumption against 
income shocks,11 there will be a direct relationship between the level of wealth and the value 
of Et[η̃t 

2
+1]. In fact, the size of the target bu er stock of wealth is the real equilibrating factor 

in the model. For example, consumers who are more impatient (higher δ) will have a lower 
value of the ρ−1(rj − δj) term in the Euler equation. However, impatient consumers will also 
hold less wealth – leading to a higher value of Et[η̃t 

2
+1]. Across steady-states, the higher value 

of the Et[ηt 
2
+1] term should exactly o set the lower value of the ρ−1(rj − δj) term, leaving 

the growth rate of consumption at gj regardless of the value of δj (so long as the impatience 
condition is satisfied).12 

Another thought experiment illustrates the econometric problem very clearly. Consider a 
dataset composed of consumers who satisfy the impatience condition and thus are bu er-stock 
savers. Suppose these consumers are identical in every respect (including having a common 
expected growth rate of permanent income g) except that di erent consumers face di erent 
interest rates. Suppose further that the econometrician can observe each household’s interest 
rate. If equation (10) were a valid econometric specification this would be the ideal dataset 
for estimating the intertemporal elasticity of substitution. But what happens when equation 
(10) is estimated on this dataset? The regression will estimate α0 = g and α1 = 0 regardless 
of the true value of ρ, because the average growth rate of consumption will be equal to g 
for every group despite the di erence in interest rates across groups. The reason is that the 
consumers facing a higher interest rate will hold more wealth, and therefore will have a lower 
value of Et[η̃t 

2
+1] by an amount that exactly o sets the higher interest rate they face. 

The foregoing theoretical arguments are not, in themselves, suÿcient to definitively dis-
credit the estimation of log-linearized Euler equations, because the arguments were predicated 
on two untested assumptions: that consumers within each group are distributed according to 
an ergodic distribution, and that the second-order approximation is not problematic. Only 
simulations can determine whether the behavior of the second-order approximation under 
the ergodicity assumption is a good or bad guide to the behavior of a finite collection of con-
sumers obeying the model over limited time periods. The next section performs the necessary 
simulations. 

11This is an implication of the concavity of the consumption function proven by Carroll and Kimball (1996). 
12This statement assumes that the second-order approximation holds exactly. The more general statement 

would be that all of the higher-order terms together should take on values that make (� log Ct+1)j = gj . 
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Parameter Low Baseline High 

r 0.00 0.02 0.04 
δ 0.00 0.04 0.08 
g 0.02 0.04 0.06 
ρ 1 3 5 
σn 0.05 0.10 0.15 
σv 0.05 0.10 0.15 

Table 1: Parameter Values 

4 The Simulations 

The procedure for generating simulated data from the model is as follows. First, I solve 
the model for the baseline set of parameter values indicated in Table 1, yielding a baseline 
consumption rule c�(x). I then solve the model for two alternative values of each of the 
model’s parameters, leaving the other parameters fixed at their baseline levels. For example, 
I solve the model in the case where all parameter values are at their baseline levels except 
that the interest rate is assumed to be 0 percent, then I solve for the case where the interest 

� �rate is 4 percent. This generates two alternative consumption rules c r=.00(x) and c r=.04(x) 
where the subscripts indicate which parameter is being set to a value di erent from baseline. 

When all of the optimal consumption rules have been generated, I perform the simulations. 
For each combination of parameter values (‘group,’ for short), I set up a population of one 
thousand consumers who begin ‘life’ with zero assets.13 For their first year of life, I draw 
random income shocks from the income distribution functions described above. I next use the 
appropriate consumption rule to determine first period consumption. First period’s income 
and consumption determine the savings with which the consumers enter the second period; I 
draw random income shocks again, and again apply the consumption rule, yielding period two 
consumption and saving. I repeat this exercise for twenty periods (‘years’) in a row, discarding 
the first 9 periods in order to allow the distribution of x across consumers to ‘settle down’ to 
something approximating the ergodic distribution. For the baseline set of parameter values, 
Figure 2 plots the numerical distribution of x after ten years of simulation against the ergodic 
distribution; the match is very close, suggesting that nine years of presample simulation are 
adequate preparation. 

The data from years 10-20 are processed to generate 10,000 observations of � log Ct+1, 
r, � log Yt+1, and the dummy variables indicating group membership for each group. With 
the exception of the interest rate, the simulated data do not contain the actual values of the 
parameters; instead, they contain dummy variables for each parameter that equal one or zero 
for each consumer. Roughly speaking, these dummy variables correspond to the ‘instruments’ 
such as occupation, education, and race used in actual data. 

13Thus, there are 13 groups altogether: the baseline group plus one positive and one negative deviation 
from the baseline parameter value for each of six parameters. 
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Figure 2: Distribution of x After 10 Years (Solid) vs. Ergodic Distribution (Dashing) 

The goal is to characterize the kinds of regression results that an econometrician would 
obtain using a sample of data drawn from these simulations. The appropriate strategy is 
therefore a Monte Carlo procedure which reports both the mean parameter estimates that 
would be obtained by a large number of studies on such data, and the variation in parameter 
estimates that would be found across the di erent studies. 

My Monte Carlo procedure is as follows. For each ‘group’ to be included in a regression, 
I draw a random sample of 1000 observations from the 10,000 available for that group. I 
then perform the regressions and record the coeÿcient estimates and standard errors. I then 
draw another sample of 1000 observations for each group, perform another regression, and 
record the results. I repeat this procedure 10,000 times to obtain a distribution of parameter 
estimates and standard error estimates. 

Note that there are several respects in which the econometrician examining the simulated 
data is better o than his counterpart using actual data. First, there is no measurement 
error in the simulated data for either income or consumption; estimates of the fraction of 
measurement error in the PSID data on food consumption range up to 92 percent. Second, 
the econometrician working with simulated data can directly observe the interest rate that 
applies for each household. In empirical work there is rarely a really convincing way to identify 
exogenous di erences in interest rates across the di erent households in the sample. Third, 
the di erent ‘groups’ in the simulations di er from the baseline parameter values in only a 
single dimension (parameter) at a time. In reality, occupation or education may be correlated 
with several parameters; for example, education is highly correlated with the growth rate 
of income, but may also be correlated with the time preference rate. Finally, the typical 
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empirical dataset probably has fewer than a hundred consumers in any given instrumented 
age/occupation or age/education cell, while I have a thousand consumers for each possible 
combination of parameter values. The purpose of these simulations is to show that even 
in such ideal circumstances, Euler equation estimation by standard microeconometric IV 
methods does not work. There is even less reason to expect it to work under the less than 
ideal circumstances faced in actual data. 

5 Estimating Consumption Euler Equations on the Simulated 

Data 

5.1 The Log-Linearized Euler Equation 

Table 2 presents the results when the log-linearized Euler equation (10) is estimated on the 
simulated data. 

The first of the six panels presents baseline results when equal numbers of consumers 
from each possible parametric combination (except for deviations of ρ from baseline) are 
included.14 (This sample selection is indicated by the text ‘All but ρ’ under the ‘Consumers 
in Sample’ column). The second column indicates the set of instruments used for predicting all 
instrumented variables in the regression. Since r is the only explanatory variable included in 
the regression reported in panel, the dummy variable indicating interest rate group (RDUM) 
is the only instrument that makes sense in these two regressions. 

I exclude from the regressions all consumers for whom income was zero in either period of 
observation, Vt = 0 or Vt+1 = 0, for two reasons. First, such data are typically excluded from 
the empirical regressions whose methods I am trying to duplicate. Second, extreme income 
shocks tend to interact strongly with the nonlinearities of the model, so even a relatively 
small number of such extreme events could heavily influence the results. It is therefore a 
more compelling indictment of the estimation method if it performs badly even when such 
extreme events are excluded. 

As noted above, I estimate the regressions 10,000 times with 10,000 di erent randomly-
chosen collections of 1000 simulated consumers. For each variable, the table presents the 
mean (across the 10,000 regressions) of the coeÿcient estimates and the mean of the estimated 
standard errors. Next to the means are the fifth and ninety-fifth percentiles in the distribution 
of coeÿcient estimates and standard error estimates. The last column indicates the average 
number of observations in each regression. Because the probability that either Vt = 0 or 
Vt+1 = 0 is 0.01, this number should on average be equal to 0.99*1000*(number of groups 
included in regression). For example, one would expect a sample size of 0.99*1000*11 = 
10890 for the first row, since there are 11 distinct possible combinations of parameter values 
excluding combinations where ρ di ers from baseline. The actual average value of NOBS is 
almost exactly right, at 10889. 

14Groups for which ˆ di ers from baseline are excluded because the goal in these equations is to see if the 
estimation can uncover the ‘right’ estimate of ˆ; the question of what the ‘right’ value of ˆ may be is muddled 
if ˆ di ers across groups. 
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Panel 
Consumers 
in Sample† Instruments‡ 

Coe . on rj Coe . on (� log Yt+1)j Average 
NOBS Mean� [.05-.95] Range Mean� [.05-.95] Range 

1 All But 
ρ 

RDUM 0.00 
(0.14) 

[-0.23,0.24] 
(0.14,0.14) 

10889 

2 BASE + 
R 

RDUM 0.00 
(0.15) 

[-0.23,0.24] 
(0.15,0.15) 

2970 

3 All But 
ρ 

RDUM 
+GDUM 

0.00 
(0.14) 

[-0.20,0.20] 
(0.11,0.19) 

0.97 
(0.14) 

[0.79,1.20] 
(0.08,0.25) 

10889 

4 BASE+ 
R + G 

RDUM 
+GDUM 

0.00 
(0.13) 

[-0.20,0.20] 
(0.10,0.18) 

0.97 
(0.14) 

[0.79,1.20] 
(0.07,0.25) 

4950 

5 All But 
ρ 

RDUM 
+Vt 

0.00 
(0.12) 

[-0.21,0.21] 
(0.12,0.13) 

0.09 
(0.01) 

[0.07,0.10] 
(0.01,0.01) 

10889 

6 BASE+ 
R 

RDUM 
+Vt 

0.00 
(0.13) 

[-0.20,0.21] 
(0.12,0.14) 

0.11 
(0.02) 

[0.07,0.14] 
(0.02,0.02) 

2970 

Notes: The dependent variable in all regressions is the growth rate of consumption, � log Ci,t+1. 
†The column labelled ’Consumers In Sample’ indicates which simulated consumers are included the 
sample. For example ’All but ˆ’ in panel 1 means that all simulated consumers are included except 
those for whom ˆ di ers from its baseline value, while ’Base + R’ in Panel 2 means that the sample 
includes consumers with baseline parameter values and those for whom R di ers from the baseline. 
‡The column labelled ’Instruments’ indicates which categories of dummy variables are used as in-
struments for r and (� log Yt+1) when the regression is estimated on the data generated by the 
simulations. For example RDUM indicates use of three dummy variables indicating which of the 
three possible interest rates the consumer faces. 
�The first row in each panel presents the average value and range of the coeÿcient estimates across 
the Monte Carlo simulations. The second row in each panel presents the average value and range 
of values for the regressions’ estimates of the standard error. 

Table 2: Log-Linearized Euler Equation Estimated on Simulated Data 

Turning finally to the results, the mean estimate of the coeÿcient on the rj term in 
panel 1 is 0.00, with a mean standard error of 0.14, so the interest rate term is not remotely 
statistically significant in the typical regression. Furthermore, most of the Monte Carlo 
regressions would be able to reject the true value of 1/ρ = 1/3 with a high degree of confidence. 

Panel 2 narrows the sample to the set which o ers the best hope, in econometric terms: It 
excludes all consumers who di er from the baseline parameter values in any way other than 
in the interest rate they face. (The only consumers in the sample are the ‘BASE’ and ‘R’ 
groups). Results are virtually identical to those in panel 1. Thus, estimation of the standard 
log-linearized Euler equation for consumption does not reveal the intertemporal elasticity of 
substitution even for consumers behaving exactly according to the model. 

The second panel presents results when only the consumers with baseline parameter values 
(group BASE) and those for whom the interest rate di ers from the baseline (group R) are 
included. 

The next panel of table 2 presents the results when the basic log-linearized Euler equation 
is augmented with a term reflecting the predictable growth rate of income, as in equation (11), 
and income growth is instrumented using the set of dummy variables GDUM, which indicate 
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which permanent-income-growth group the consumer belongs to (RDUM remains in the 
instrument set to instrument for the interest rate). Again the equation is estimated for two 
samples, one which includes members with all appropriate parametric combinations, and one 
containing only consumers who are members of the R and G groups. In panel 3, the mean 
coeÿcient on the predictable growth rate of income is 0.97, highly significantly di erent from 
zero, but not significantly di erent from one. Results are similar in panel 4, which restricts 
the sample to the set of consumers for whom one might expect the best results for the Euler 
equation method. Furthermore, in the typical regression the coeÿcient on the interest rate 
term is again estimated to be zero. This result, consumption growth equal to predictable 
permanent income growth but independent of the interest rate, is precisely what the analysis 
in Section 3 and in Carroll (1996, 1997) showed holds if consumers are distributed according 
to the ergodic distribution. Apparently, at least under the parameter values considered here, 
9 years of presample simulation for 1000 consumers suÿce to create a sample that generates 
behavior very similar to that under the ergodic distribution. 

As noted in the literature survey above, empirical point estimates of the excess sensitivity 
of consumption growth to predictable income growth have mostly fallen in the range from 0.0 
to about 0.6. Although many of the studies could not reject a coeÿcient of 1 on the income 
growth term, the bulk of the estimates were closer to zero than to one. It might seem, 
then, that these results rescue the Euler equation from the Scylla of a (rejected) prediction 
that α1 = 0 only to smash against the Charybdis of a (rejectable) prediction that α1 = 1. 
Fortunately, there is an escape hatch. The theoretical arguments and simulation evidence 
presented thus far do not necessarily imply a coeÿcient of 1 on Et[� log Ỹ  

t+1] – they imply a 
coeÿcient of one on Et[� log P̃  

t+1]. That is, consumption should on average grow at the rate 
of permanent income growth. None of the theoretical or simulation work up to this point in 
the paper has indicated what the coeÿcient should be on predictable transitory movements 
in income. 

The last two panels of the table present the model’s predictions about the coeÿcient 
on the predictable transitory movements in income. (Transitory movements in income are 
predictable because the level of the transitory shock is white noise. Thus, if income’s level 
is temporarily low today, income growth between today and tomorrow is likely to be high, 
and vice versa. Hence the instrument used for Et[� log Ỹ  

t+1] is Vt.) Panels 5 and 6 reveal 
that the coeÿcient on predictable transitory movements in income is statistically significantly 
di erent from zero, but, at around 0.10, is much closer to zero than to one. As before, the 
coeÿcient on the interest rate term is insignificantly di erent from zero. 

These very di erent results for predictable transitory and for predictable permanent in-
come growth imply that there is little we can say about the model’s prediction for the coef-
ficient on predictable income growth, if we have not decomposed that growth into the part 
representing transitory growth and the part representing permanent growth.15 Essentially 
all we can say is that (under this range of parameter values), the coeÿcient on predictable 
income growth should be somewhere between 0.10 and 1.0. Of the roughly twenty studies 

15Note that the analysis here relies heavily on our assumption of an unchanging rate of growth for permanent 
labor income. If the growth process for Pt is more complicated than assumed here, it is not necessarily the 
case that the coeÿcient on predictable changes in Pt should be one. 
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cited by Browning and Lusardi (1996), none (to my knowledge) attempts to decompose pre-
dictable income growth into predictable transitory and predictable permanent components.16 

Since the confidence intervals for α1 in virtually all of these papers overlap the range between 
0.10 and 1.0, if ‘excess sensitivity’ is defined as a degree of sensitivity inconsistent with un-
constrained intertemporal optimization, none of the ‘excess sensitivity’ tests summarized by 
Browning and Lusardi (1996) provides any evidence on whether consumption actually exhibits 
excess sensitivity to predictable changes in income. 

These results also bear on the finding of Campbell and Mankiw (1989) that regressions 
of aggregate consumption growth on predictable aggregate income growth find a coeÿcient 
of roughly 0.5. Although Campbell and Mankiw interpreted their findings as suggesting that 
about half of consumers behave according to a ‘rule-of-thumb’ and set their consumption 
equal to their income, they did not decompose their predictable income growth term into a 
predictable permanent growth term and a predictable transitory term, so it is quite possible 
that their results are consistent with an optimizing model like the one considered here without 
the need for introducing ‘rule-of-thumb’ consumers. 

A final category of tests should be mentioned briefly: Empirical estimates of the rate of 
time preference. Lawrance (1991), for example, estimates an equation like (11) using data 
from the PSID, but including dummy variables for education in the estimating equation. 
She finds that consumers with more education have higher rates of consumption growth, and 
concludes that consumers with more education must be more patient. This conclusion would 
be warranted if the log-linearized consumption Euler equation were valid, because −ρ−1δj is 
omitted from the baseline empirical specification since δj is unobserved. However, given that 
a positive correlation between permanent income growth and education is a bedrock empirical 
result in labor economics, an obvious alternative explanation of Lawrance’s results is that 
the higher consumption growth for more educated consumers reflects their faster predictable 
permanent income growth, not a greater degree of patience. 

To summarize, when the log-linearized consumption Euler equation is estimated on house-
hold data generated by consumers behaving exactly according to the standard model, using 
the methods that have been used by most of the existing cross-section empirical studies, the 
results provide no information on either the coeÿcient of relative risk aversion or on whether 
consumption exhibits ‘excess sensitivity’ to predictable income growth. 

5.2 The Second Order Approximation 

A few empirical studies, of which Dynan (1993) is one of the earliest and best, have avoided 
the log-linearized Euler equation and instead used the second-order approximation to the 

16Most of these papers use instruments such as occupation or education group as instruments. It might seem 
that such variables should be more highly correlated with permanent than with transitory income growth. 
However, there are well-documented di ering patterns of cyclicality for di erent occupations and education 
groups. To the extent that the instruments capture such cyclical rather than secular movements, they will 
be predicting transitory as well as permanent growth. The ideal test would be to regress a long change in 
consumption on an instrumented lagged long di erence in income, log Ct+10/Ct = 0 + 1 log Yt+10/Yt. 
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Euler equation, equation (8), 

� � 

1 + ρ 
� log Ct+1 ˇ ρ−1(r − δ) + η2 (15) t+1,2 

as the basis of their empirical estimation, using an estimating equation of the form 

(� log Ct+1)j = α0 + α1rj + α2(ηt 
2
+1)j , (16) 

where the understanding has been that that the estimation should yield α0 = ρ−1δ, α1 = ρ−1 , 
1+ˆ 17 and α2 = 2 . There is a widespread impression that, if any instruments can be found that 

are correlated with (ηt 
2
+1), estimation of this equation gets around whatever problems there 

may be with the log-linearized Euler equation. 
Unfortunately, the situation is much subtler than it appears. Obtaining consistent esti-

mates for α1 and α2 requires instruments that can identify independent variation in rj and 
(η2 But recall that according to equation (14) t+1)j . 

� � 

(η2 2 
[gj − ρ−1(rj − δj)]. (17) t+1)j ˇ 

1 + ρj
j 

Assuming that ρj is constant across groups and that the second-order approximation is valid, 
this equation tells us that any instrument correlated with ηt 

2
+1 must be providing information 

about either rj, δj , or gj . Note, however, that an instrument correlated with rj is not useful 
in estimating α2, because the variation in ηt 

2
+1 due to variations in rj will obviously be 

perfectly correlated with the direct variation in rj , whose coeÿcient, remember, is already 
being estimated by α1. In other words, the independent variation in η2 caused by variation 
in r is perfectly correlated with the rj whose coeÿcient is already being estimated. 

One might hope that an instrument correlated with the impatience parameter δj could 
serve to identify α2. Certainly, an instrument correlated with impatience should generate 
variation in wealth and therefore in η2 and so may look like a good instrument in first-t+1 

stage instrument validity tests. And it is quite plausible to suppose that the time preference 
rate is correlated with observable variables such as, say, the consumer’s level of education 
(one of the instruments typically used for ηt 

2
+1). The first panel of table 3 therefore presents 

the results when equation (16) is estimated on simulated data using dummy variables for 
the time preference rate and interest rate as instruments for ηt 

2
+1. The coeÿcients on both 

the interest rate term and the η2 term are insignificantly di erent from zero - just as in t+1 

Dynan’s (1993) empirical work. Note that, if there were not econometric problems of some 
sort, a coeÿcient of zero on rj would imply ρ = 1, while a coeÿcient of zero on ηt 

2
+1 would 

imply ρ = −1, making nonsense of the model. 
The econometric problem with an ηt 

2
+1 instrument (like education) that is correlated with 

the time preference rate is that δj also enters the Euler equation in another place: In the 
ρ−1(rj − δj) term. Econometrically, this means that δj is correlated with an unobserved 
variable (ρ−1δj) that is correlated with the included (instrumented) variable ηt 

2
+1, a situation 

17Dynan’s regression actually includes lagged individual wealth as an independent variable, and therefore 
is not exactly equivalent to (16); see below for simulation results obtained when lagged wealth is included. 
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Panel 
Consumers 
in Sample† Instruments‡ 

Coe . on rj Coe . on (η2 
t+1)j 

Mean� [.05-.95] Mean� [.05-.95] 
1 All 

(10889) 
RDUM+ 
DELDUM 

−0.01 
(0.15) 

[−0.27,0.24] 
(0.14,0.17) 

−0.85 
(0.76) 

[−2.17,0.31] 
(0.58,1.04) 

2 BASE+R 
(4950) 

RDUM+ 
GDUM 

0.16 
(0.36) 

[−0.30,0.69] 
(0.19,0.66) 

10.29 
(5.28) 

[5.14,18.34] 
(1.57,12.30) 

3 All 
(7919) 

All But RHODUM 
and DELDUM 

−0.01 
(0.14) 

[−0.25,0.24] 
(0.13,0.14) 

−0.42 
(0.25) 

[−0.79, − 0.05] 
(0.23,0.27) 

Notes: The dependent variable in all regressions is the growth rate of consumption, � log Ci,t+1. 
†The column labelled ’Consumers In Sample’ indicates which simulated consumers are included the 
sample. For example ’Base + R’ in Panel 2 means that the sample includes consumers with baseline 
parameter values and those for whom R di ers from the baseline. 
‡The column labelled ’Instruments’ indicates which categories of dummy variables are used as instruments 
for r and �t 

2
+1 when the regression is estimated on the data generated by the simulations. For example 

RDUM indicates use of three dummy variables indicating which of the three possible interest rates the 
consumer faces. 
�The first row in each panel presents the average value and range of the coeÿcient estimates across the 
Monte Carlo simulations. The second row in each panel presents the average value and range of values 
for the regressions’ estimates of the standard error. 

Table 3: Second-Order Approximation Estimated on Simulated Data 

that implies that the coeÿcient estimate on η2 will be biased. This example illustates t+1 

the point that no instrument that is correlated with the time preference rate will be valid, 
even if it works well in the first-stage regressions. Furthermore, a test of overidentifying 
restrictions (such as the one Dynan performs) will not detect this problem because OID tests 
only find correlations of instruments with the dependent variable that are not captured by 
the variables that are included, but since (ηt 

2
+1)j is included the OID test should not reject 

the specification. 
A simple thought experiment may clarify the problem better than the foregoing abstract 

analysis. Consider attempting to estimate equation (8) using data from several groups of 
consumers who di er from each other in their (observable) interest rates and in their (unob-
servable) time preference rates, but who have identical g’s. The rj and (ηt 

2
+1)j terms will vary 

across groups; instrument validity test regressions of η2 on the instruments will find that t+1 

the instruments do have significant predictive power. Yet the analysis above showed that 
each of these groups should have consumption growth on average equal to their permanent 
income growth – that is, all the groups will have identical consumption growth. Hence the 
regression coeÿcient estimates on both rj and (ηt 

2
+1)j will be zero. 

The conclusion is that, because (ηt 
2
+1)j is a function only of r, g, δ, and ρ and because 

δ and ρ are unobservable, equation (8) can only be estimated consistently, even in principle, 
by using a set of instruments that 1) contain independent information on rj and gj , and 2) 
are completely uncorrelated with preferences. As a practical matter, it is likely to be hard 
to identify instruments for which a compelling case can be made that they are correlated 
with rj and gj but uncorrelated with preferences. However, there is of course no diÿculty in 
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simulated data. The next panel of table 3 therefore presents the results when equation (8) 
is estimated on a simulated dataset that should represent the ideal set of circumstances for 
estimating such an equation: The only di erences among the consumers included in this 
dataset are in rj and gj , where rj is directly observed and gj is indirectly observed via the 
set of dummy variables indicating which of three growth-rate groups the consumer belongs 
to. 

The results, in panel 2, are interesting. While the coeÿcient on the interest rate term 
is still insignificant, the mean coeÿcient on the ηt 

2
+1 term is 10.3; since equation (8) implies 

1+ˆthat this coeÿcient is equal to 2 , this would indicate a coeÿcient of relative risk aversion 
of almost 20. (The mean standard error of 5.28 indicates that the typical regression estimate 
would be able to reject the ‘correct’ coeÿcient (1 + ρ)/2 = 2, at around the 10 percent level 
of confidence). 

Why does estimation of this equation fail? Recall the two critical assumptions used in 
deriving the expression for ηt 

2
+1 upon which the entire foregoing analysis rests. The first was 

that consumers in each of the j groups were distributed according to an ergodic distribution 
which they are assumed eventually to reach. The earlier simulation results showing that 
average consumption growth is essentially equal to average permanent income growth, and 
the figure showing that the distribution of x after 10 periods is virtually identical to the 
steady-state distribution, suggest that this assumption is probably reasonable. The problem 
therefore must lie in the second assumption: that the second-order approximation to the 
Euler equation is suÿcient to capture the important nonlinearities in the problem. 

Another way of putting this is to say that the results indicate that the Et[η̃t 
2
+1] term is 

correlated with higher-order terms in the Taylor expansion of the true function, because if 
ηt 

2
+1 were not correlated with higher-order terms then the coeÿcient estimate on Et[η̃t 

2
+1] 

should be unbiased. 
The fact that there are missing higher-order terms in equation (8) also undermines the 

conclusion that (ηt 
2
+1)j is a function only of r, g, δ, and ρ. In particular, there is no longer 

any reason to exclude the possibility that (ηt 
2
+1)j could be correlated with, for example, the 

variances of the innovations to transitory and permanent income, (σ2 )j and (σ2)j . The last n v 

regression in table 3 therefore presents the results when the instrument set is expanded to 
include the dummy indicator variables for σ2 and σ2 . The e ect is dramatic: the coeÿcient n v 

on ηt 
2
+1 becomes -0.42, and is no longer significantly di erent from zero – again reproducing 

Dynan’s result, as in panel 1. 
In sum, IV estimation of the second-order approximation to the consumption Euler equa-

tion fares little better than IV estimation of the log-linearized equation.18 Neither approach 
appears capable of identifying structural parameters even in a dataset consisting exclusively 
of consumers behaving exactly according to the model. 

18Ludvigson and Paxson (2001) also find that IV estimation of the second-order equation like that employed 
here fails to identify the true parameter values in a population of simulated consumers. They typically find a 
downward bias in the coeÿcient on (�t 

2
+1)j , like the findings in panel 3, rather than an upward bias as found 

in panel 2. 
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6 What Is To Be Done? 

IV estimation of approximated Euler equations estimation has been a mainstay of economic 
analysis of consumption for a long time. If the argument of this paper is accepted, such 
estimation will be abandoned. What kinds of analysis can replace it? 

6.1 Bad Ideas 

6.1.1 GMM Estimation 

An obvious answer is to blame all of the foregoing pathologies on approximation error, im-
plying that the solution is to dispense with approximation by estimating the full nonlin-
ear Euler equation using the Generalized Method of Moments methodology introduced by 
Hansen (1982). The first panel of Table 4 presents the results of GMM estimation on the 
baseline set of simulated consumers.19 As expected, the Monte Carlo results imply that GMM 
estimation usually produces an estimate of the coeÿcient of relative risk aversion that is not 
significantly di erent from the true value ρ = 3. 

The problem with full-fledged GMM estimation is that consistent estimation requires 
perfect data on consumption, whereas the available consumption data for households are 
almost certainly very noisy. Shapiro (1984) estimates that 92 percent of the variation in 
the PSID food consumption variable is noise; Runkle (1991) estimates that 76 percent of 
the variation is noise. And although Dynan does not estimate the noise-to-signal ratio in 
her quarterly Consumer Expenditure Survey data, she reports that the standard deviation of 
quarterly changes in log consumption is 0.2, which seems far too large to reflect quarterly 
reevaluations of the sustainable level of consumption. 

The e ect of measurement error on the GMM estimates is illustrated in the second and 
third panels of table 4. Panel 2 reflects the results when the same data on Ct+1/Ct that are 
used for panel 1 are first multiplied by a mean-one white noise shock whose distribution is 
identical to that of the consumption shock. This distributional assumption is motivated by 
its implication that the signal-to-noise ratio in the resulting data is exactly 1/2, as indicated 
in the second column of the table. When GMM is performed on the mismeasured data, the 
mean estimate of ρ is about 2.2, with an estimated standard deviation of .36, so a hypothesis 
test that ρ = 3 would almost always reject. Panel 3 shows that when the signal/noise ratio is 
reduced to 1/3 (by multiplying by another white noise shock constructed along the same lines 
as the first one), the estimate of ρ drops to about 1.4, and the standard error falls further. 

Another problem with GMM estimation is that estimation of ρ requires an assumption 
about R and β (or, if R is observed, at least an assumption about β). The last two panels of 
the table present the results that emerge if the econometrician falsely assumes that β = 0.99 
(panel 4) or β = 1/(1.08) (panel 5).20 Assuming that consumers are more patient than the 
truth reduces the mean estimate of ρ by about 0.6, while assuming that they are less patient 

19The table presents the results from a Monte Carlo analysis of 1000 GMM estimations on 1000 di erent 
random collections of consumers from the group with baseline preferences. 

20All that matters for these equations is the product R , so separate experiments showing the results for 
incorrect assumptions about R would be redundant. 
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Panel Problems† 
GMM Estimate 

of ρ‡ [.05-.95] Range 

1 None 3.06 
(0.55) 

[2.21,4.32] 
(0.39,0.81) 

2 Signal/Noise = 1/2 1.77 
(0.29) 

[1.38,2.23] 
(0.24,0.36) 

3 Signal/Noise = 1/3 1.18 
(0.19) 

[0.94,1.47] 
(0.16,0.23) 

4 Assumed β = 0.99 
when true β = 1/1.04 

2.74 
(0.58) 

[1.84,4.03] 
(0.43,0.82) 

5 Assumed β = 1/1.08 
when true β = 1/1.04 

3.42 
(0.54) 

[2.60,4.71] 
(0.37,0.81) 

X 

ˆ 

−ˆ
˜ 

Notes: Direct estimation of ˆ from R (Ci,t+1/Ci,t) − 1 = 0. 
i 

†The column labelled ’Problems’ indicates for each panel the nature of the empirical 
problem being explored with the simulated data. For example, ’Signal/Noise = 1/2’ ex-
amines the e ects of white noise measurement error with the same stochastic properties 
as the ’true’ variation in consumption growth. 
‡The first row in each panel presents the average value and range of the coeÿcient 
estimates across the Monte Carlo simulations. The second row in each panel presents 
the average value and range of values for the regressions’ estimates of the standard 
deviation. 

Results summarize 1000 Monte Carlo simulations. 

Table 4: Euler Equation Estimated on Simulated Data Using GMM 
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Panel Sample 
rj gj Average 

NOBS Mean [.05-.95] Range Mean [.05-.95] Range 
1 BASE + RDUM −0.02 [−0.06,0.03] 0.07 [0.02,0.12] 4950 

+ GDUM (0.03) (0.03,0.04) (0.03) (0.02,0.05) 
Notes: The first column indicates that the sample consists only of the consumers with baseline 
parameter values or those for whom either the interest rate or the growth rate of income di ers 
from baseline. Notation is similar to previous tables. 

Table 5: Regression of (ηt 
2
+1)j On rj and gj 

boosts the estimated ρ by about 0.4. These results suggest that this problem is less serious 
than the problems caused by measurement error. 

Despite these results, GMM estimation is not completely useless: Because measurement 
error should bias the estimate of the coeÿcient of relative risk aversion downward, and 
because mistaken assumptions about Rβ do not distort the estimates of ρ too badly, the 
GMM estimate can serve as a rough lower bound on the coeÿcient of relative risk aversion. 
A finding of a relatively large lower bound (say, two) would provide moderately interesting 
information about preferences. 

6.1.2 Using ηt 
2
+1 As the Dependent Variable 

Equation (14), reproduced below for convenience, appears to o er hope of estimating the 
coeÿcient of relative risk aversion even without GMM estimation: 

2 
(ηt 

2
+1)j ˇ [gj − ρ− 

j 
1(rj − δj)]. (18) 

1 + ρ 

In principle, one could estimate this equation using data from groups of consumers with 
di erent values of g and r, so long as there were no di erences in δ or ρ across those groups. 
If the second order approximation were good, the coeÿcient on g should equal 2/(1 + ρ) and 
that on r should equal −(2/ρ(1 + ρ)). 

Table 5 presents the results when this equation is estimated using the best possible subset 
of consumers from the simulated dataset.21 The estimated coeÿcient on g is about 0.07 and 
is typically statistically significant; more than 95 percent of the time, the estimated coeÿcient 
on g is positive. But the point estimate implies value of of ρ = 2/.07−1 ˇ 28, compared with 
its true value of 3. The point estimate of the coeÿcient on the interest rate implies a value 
of about ρ = 9.5, but is statistically insignificant. Thus, equation (18) also fails to provide 
a consistent way to estimate ρ. Again, the problem is that higher-order terms in the Taylor 
expansion must be correlated with gj and rj , so that (18) is misspecified because there are 
omitted variables correlated with the included variables. 

21The only consumers included were those from the baseline group and those groups for whom r or g varied 
from the baseline. 
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6.1.3 Individual-Specific Euler Equation Estimation 

The arguments to this point in the paper have been directed at demonstrating that the 
Instrumental Variables approach to Euler equation estimation traditionally used in micro 
data does not succeed. Because all RHS variables were always instrumented with group 
identifiers, the second-stage regressions contained no individual-specific information in the 
independent variables.22 For example, each individual’s idiosyncratic expectation of η2 

i,t+1 

was e ectively replaced by the mean value of η2 for the group to which that consumer i,t+1 

belonged. 
The logic proposed as an explanation for the failure of the estimation relied on the propo-

sition (verified by simulations) that the group mean values of the η2 terms would take i,t+1 

particular values. That logic, therefore, does not necessarily prove that it is impossible to 
estimate structural consumption Euler equations using idiosyncratic, individual-specific data. 
If it were possible to observe, for each individual i, their idiosyncratic, contemporaneous value 
of Ei,t[η̃

2 ], then it might be possible to estimate equation (8) without using instrumental i,t+1 

variables. To be specific, one could estimate: 

η2� log Ci,t+1 = α0 + α1ri + α2Ei,t[ ĩ,t+1] + ǫi,t+1. (19) 

Table 6 presents the results when the corresponding experiment is performed in my model 
under the baseline set of parameter values, and under several alternative parametric configu-
rations. Under the baseline parameter values, the point estimate of α2 is 5.13, which implies 
an estimate of about ρ = 9– an upward bias, like that found in the instrumental variables 
regressions reported earlier in panel 2 of table 3. 

If it were possible to be confident about the exact magnitude of the bias in the estimate of 
ρ using this method, it might be at least remotely possible to obtain a reliable estimate of the 
value of ρ by estimating an equation like (19) and then correcting for bias. However, panels 
2-13 of table 6 show that when the same estimation exercise is performed on each of the other 
groups, the magnitude of the bias is somewhat a ected by the value of the other parameters 
in the model, both observable and unobservable. Without reliable independent information 
on these parameters (particularly the taste parameters) at the individual level, it is not 
possible to know the exact magnitude of the bias. Furthermore, as a final blow to the idea of 
determining the magnitude of the bias and adjusting for it, note that Laibson (1997) performs 
an experiment conceptually similar to the one examined here, and finds a downward bias to 
the estimate of ρ. I have been unable to determine why Laibson’s results di er from those 
reported here (his model, parameters, and techniques di er somewhat, but which di erences 
are crucial is unclear). But his di ering results cast doubt on the possibility that it might 
be possible to get a robust and precise idea of the magnitude of the bias, and adjust for 
it - especially since in subsequent work, Laibson, Repetto, and Tobacman (1998) perform a 
similar experiment again, and find an upward bias! 

As a way of investigating the source of the bias in my estimates, Figure 3 plots the 
true numerical expectation of Et[� log C̃  

t+1] as a function of the level of cash-on-hand under 

22Except for the regressions examining the correlation between predictable transitory income growth and 
consumption growth, where idiosyncratic information on the level of the transitory shock in period t was used 
to predict income growth between t and t + 1. 
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Panel 

Consumers 

in Sample† 
Estimation 

Method‡ 

Ei,t[η
2 ]i,t+1 Average 

NOBS Mean [.05-.95] Range 
1 BASE OLS 5.13 

(0.99) 
[3.56,6.80] 
(0.85,1.13) 

990 

2 R=1.00 OLS 4.49 
(0.91) 

[2.94,6.14] 
(0.76,1.04) 

990 

3 R=1.04 OLS 4.16 
(1.03) 

[2.52,5.78] 
(0.90,1.16) 

990 

4 β = 1.00 OLS 4.16 
(1.23) 

[2.23,6.07] 
(1.07,1.40) 

990 

5 β = 1/1.08 OLS 4.75 
(0.85) 

[3.40,6.15] 
(0.77,0.94) 

990 

6 g = .02 OLS 3.77 
(1.69) 

[0.88,6.54] 
(1.39,2.02) 

990 

7 g = .06 OLS 4.01 
(0.68) 

[2.92,5.15] 
(0.61,0.75) 

990 

8 ρ = 1 OLS 1.90 
(0.29) 

[1.42,2.36] 
(0.27,0.31) 

990 

9 ρ = 5 OLS 5.81 
(1.21) 

[3.78,8.10] 
(0.98,1.45) 

990 

10 σv = .05 OLS 2.64 
(1.09) 

[0.99,4.26] 
(0.91,1.31) 

990 

11 σv = .15 OLS 2.52 
(0.40) 

[1.77,3.26] 
(0.34,0.46) 

990 

12 σn = .05 OLS 3.12 
(0.34) 

[2.50,3.74] 
(0.29,0.38) 

990 

13 σn = .15 OLS 2.74 
(1.46) 

[0.45,5.08] 
(1.19,1.76) 

990 

14 BASE IV 8.45 
(4.03) 

[4.92,14.36] 
(1.18,8.73) 

990 

15 R=1.00 IV 6.78 
(2.53) 

[4.04,11.10] 
(0.93,5.48) 

990 

16 R=1.04 IV 7.92 
(6.36) 

[3.73,14.90] 
(1.30,13.09) 

990 

Notes: The dependent variable in all regressions is the growth rate of consumption, 
� log Ci,t+1. 
†The column labelled ’Consumers In Sample’ indicates which simulated 
consumers are included the sample. For example ’R=1.00’ in Panel 2 means 
that the sample includes only consumers for whom R=1.04 and all other 
parameter values are at their baseline values. 
‡Panels 1-13 regress consumption growth for an individual consumer on 
that consumer’s idiosyncratic expectation of �2 Since this is an un-i,t+1. 
observable variable in real datasets, panels 14-16 present results when the 
ex-post value of �i,t+1 is instrumented using xi,t and xi,t 

2 . 

Table 6: Second-Order Approximation Using Idiosyncratic Data 
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Figure 3: True and Approximated Et[� log C̃  
t+1] 

the baseline parameter values, along with the expected value of the second-order approx-
imation (8). The minimum and maximum values of xt for the plot are the first and 99th 
percentiles in the ergodic distribution of xt that arises from the simulations. The figure shows 
that the second order approximation does a remarkably poor job capturing the relationship 
between cash-on-hand and expected consumption growth over the range of values of xt that 
arise during the simulations. However, it is easy to see from this figure why the coeÿcient 
estimates on ηt 

2
+1 are biased upward: as wealth gets lower and lower (and therefore ηt 

2
+1 gets 

larger and larger), the second-order approximation falls further and further below the true 
value of expected consumption growth. Since, in the regressions, the coeÿcient on Et[η̃

2 
t+1] 

is not constrained to be ˆ+1 , the regression chooses a much larger value for that coeÿcient, 2 
with an o setting adjustment to the intercept to get the mean level of the function right. 

Of course, in principle a high-enough order approximation to the Euler equation could 
capture the expected consumption growth function arbitrarily well. However, figure 3 shows 
that even a fourth-order approximation does not do a very good job of capturing the relation-
ship between consumption growth and cash-on-hand. Given the limitations of actual data, it 
seems clear that it will not be possible to estimate the coeÿcient of relative risk aversion on a 
population of bu er-stock consumers with much precision using any plausible approximation 
to the consumption Euler equation.23 

23It may seem puzzling that even a fourth order approximation performs so poorly; the problem lies in 
the poor quality of even a high-order Taylor approximation when it attempts to deliver the function’s value 
at points very far from the point around which the approximation has been taken. Specifically, most of 

Fourth Order 

Second Order 

True 

1.2 1.3 1.4 1.5 1.6 1.7 1.8 
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6.2 Good Ideas 

6.2.1 Consumption Growth Regressions 

It is important to make a distinction between estimating Euler equations and estimating 
regressions of consumption growth on explanatory variables. Leonhard Euler’s name is im-
plicated in the standard terminology as shorthand for the idea that one is estimating a 
first-order condition from a maximization problem. While I believe that the arguments of 
this paper demonstrate the near-impossibility of recovering a direct estimate of structural 
parameters from consumption growth regressions (at least on a cross-section microdata pop-
ulation with a significant proportion of bu er-stock consumers), there are nevertheless several 
kinds of consumption growth regressions that could be used to test important implications of 
models of intertemporal optimization. Two such tests have already been implicitly suggested. 
Table 2 showed that, under configurations of parameter values that generate bu er-stock sav-
ing, a regression of consumption growth on the predictable component of permanent income 
growth should yield a coeÿcient near one, while the coeÿcient on the predictable component 
of transitory income growth should be much smaller (around 0.10 for baseline parameter 
values). These are eminently testable propositions.24 

Given the results of Table 6, it even seems worthwhile to attempt to estimate an equation 
of the form of the second-order approximation to the Euler equation (but only if idiosyncratic 
data are used). The point of the earlier discussion of Table 6 was that the coeÿcient on 
Ei,t[η̃

2 From a less structural point of view, i,t+1] did not yield an unbiased estimate of ρ. 
however, the lesson of the table is that for any tested set of parameter values the model implies 
a highly statistically significant relationship between consumption growth and Ei,t[η̃

2 
i,t+1]. 

Of course, as a practical matter, an econometrician never observes each household’s id-
iosyncratic expectations of a variable like η2 

i,t+1, so the research strategy just described can-

not be implemented directly. However, in the theoretical model, Ei,t[η̃
2 ] is a monotonic i,t+1 

function of cash-on-hand xi,t, which is observable. This suggests that it should be possible 
to estimate the equation using xi,t (and perhaps higher moments of x) as instruments for 
Et[ ĩ,t+1]. Panel 14 of table 6 presents the results when the equation is estimated using xi,t η2 

2and xi,t as instruments for η2 
i,t+1 term The coeÿcient estimate on the instrumented η2 

i,t+1. 
remains highly statistically significant, and is even larger than the value that it takes when 
the equation is estimated using the individual-specific values of Ei,t[η̃

2 ] taken from the i,t+1 

model.25 Panels 15 and 16 show that similar results obtain for two of the other groups of 

the error arises as a result of serious errors in approximating the value when the consumer is experienc-
ing one of the rare but extremely potent zero-income events. For proof of this assertion, run the program 
WhyIsTaylorExpnSoBad.m included in the set of Mathematica files that reproduce the paper’s results, available 
on my website. 

24A hint of the answer, at least for predictable permanent growth, is already available: the work by Carroll 
and Summers (1991) showing that consumption growth parallels income growth over most of the working 
lifetime strongly suggests that when the experiment is performed properly the coeÿcient on predictable low-
frequency growth in income will be close to one; the results in Carroll (1994) also support such an interpreta-
tion. 

25Ludvigson and Paxson (2001) also report that including the lagged level of wealth as an instrument 
increases the magnitude of the estimated coeÿcient on the (�2 

i,t+1)j term. 
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consumers; for brevity, results for the remaining groups are omitted. These last three regres-
sions are feasible in many if not most of the datasets that have been used to estimate the 
traditional consumption Euler equation in the past. Estimating such an equation would be a 
particularly easy task for any author who has estimated a traditional Euler equation in one 
of these datasets and still has the computer code and data available. 

6.2.2 Other Ideas 

Another particularly promising avenue is to test the model’s predictions about the determi-
nants of target or bu er-stock wealth. Table 7 presents the results when the level of wealth is 
regressed on the set of variables that are, in principle, observable at either the individual level 
or the group level. The e ects are all in the directions one would expect: higher interest rates 
encourage more wealth-holding; higher permanent income growth depresses wealth through 
standard human wealth channels; consumers facing higher interest rates hold more wealth; 
consumers facing greater income uncertainty also hold more wealth; and consumers who are 
more risk averse hold more wealth.26 Note that several of these variables have very high 
degrees of statistical significance in the typical regression. To my knowledge, the only empir-
ical tests thus far performed along these lines are in Carroll and Samwick (1997), who find, 
using the PSID, that the variance of both the transitory and permanent shocks to income 
are positively and significantly related to wealth; and Carroll and Weil (1994), who find a 
positive association between income growth and saving, which they note is inconsistent with 
a bu er-stock model of saving. 

In principle, it is even possible to estimate structural parameter values. A simple example 
of how this can be done can be found in Carroll and Samwick (1997). Using data from the 
PSID, they estimate a regression of household wealth on the variance of permanent income 
shocks. Then, using a bu er-stock model similar to the one used in this paper, they determine 
the value of the rate of time preference such that, if similar regressions were estimated in 
simulated data from the model, the coeÿcient estimates would be similar to those obtained 
from the empirical work. This is a very simple example of a literature on estimation by 
simulation; for a much more sophisticated example in a di erent context, see Michaelides 
and Ng (1997). 

Carroll and Samwick (1997) fixed all parameter values but one, and obtained only a 
point estimate for that parameter. An even more ambitious project is to estimate several 
parameters at once, in such a way that standard errors can also be obtained. Although the 
technical and computational challenges are formidable, several recent papers have scored im-
pressive success in doing this. The pioneering work was by Parker and Gourinchas (1999) and 
Palumbo (1999); more recent contributions include work by Cagetti (1999) and French (2000). 
In all of these papers, the authors develop routines to quickly solve and simulate a dynamic 

26It might seem surprising to list the coeÿcient of relative risk aversion among the observable variables. 
However, two large survey datasets (the HRS and the PSID) have recently added questions explicitly designed 
to elicit information about risk aversion. Kimball et al. (1997) report that these variables have some plausible 
correlations with other observable variables. For example, consumers who report a high degree of risk aversion 
are less likely to smoke. It would be very interesting to see if such households also hold more wealth, ceteris 
paribus. 
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Row 

Independent 

Variable 

Coeÿcient Estimate 

NOBS 
2 

RMean [.05-.95] Range 

1 R 2.33 
(0.20) 

[2.00,2.65] 
(0.20,0.21) 

2971 0.04 

2 G −8.58 
(0.24) 

[−8.98, − 8.18] 
(0.24,0.25) 

2970 0.29 

3 σ2 
n 16.70 

(0.64) 
[15.49,17.92] 
(0.60,0.67) 

2970 0.19 

4 σ2 
v 5.16 

(0.48) 
[4.33,6.00] 
(0.46,0.50) 

2971 0.04 

5 ρ 0.192 
(0.002) 

[0.188,0.195] 
(0.002,0.002) 

2970 0.71 

Notes: The dependent variable in all regressions is the level of cash-on-hand, xi,t. 

The assumption is that actual values of all variables are directly observed. 
IV estimation is also possible and should produce consistent estimates. 

For each parameter examined, the sample consists of the base group plus 
the set of consumers whose value of that parameter is di erent from the 
baseline value. 

Table 7: Regressions of Cash-On-Hand On Observable Variables 

life cycle model under arbitrary values of the coeÿcient of relative risk aversion and the time 
preference rate. They then use an econometric hill-climbing routine to search for the (ρ, δ) 
combination that causes their model to best match some empirical dataset. 

In sum, there are many possible avenues for testing models of intertemporal consumption 
choice even if structural Euler equation estimation must be abandoned. 

Time Series Estimation of Euler Equations 

Partly in response to the initial draft of this paper, Attanasio and Low (2000) have written 
a paper that argues that it is possible to use time series variation in interest rates estimate 
Euler equations successfully, either using panel data on individual households or using a time 
series of repeated cross sections. Their method is similar to that of this paper: Solve the 
model under certain assumptions about parameter values, simulate the behavior of a set of 
consumers behaving exactly according to the model, and estimate regressions on the resulting 
simulated data. They find that if the time series estimation covers a long enough span of 
time, they are able to obtain estimates of the IES that are fairly close to the ‘true’ IES used 
in solving the model. 

Perhaps the most problematic aspect of their analysis is that they do not present any 
information on the sensitivity of their results to variation in any of several crucial parameters 
that one would expect to determine success or failure of the method. 
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One such parametric assumption has to do with serial correlation of the real interest rate. 
The importance of the serial correlation assumption can be understood by realizing that if 
interest rates never varied and consumers were impatient, consumption growth would equal 
income growth for all the reasons detailed above. Similarly, if interest rates tended to remain 
at the same level for a very long time, and then to suddenly move to a new level where they 
would again remain for a long time, it is clear that consumption growth would equal income 
growth almost all the time (except during the brief intervals during which the new ergodic 
distribution would be established after one of the rare interest rate shocks). 

From the standpoint of maximizing the ability of the econometric method model estimate 
the IES, the ideal interest rate process is therefore one that has a lot of predictable variation. 
Thus, an AR(1) process in which the coeÿcient on lagged interest rates is somewhere well 
away from zero (because in that case there is no predictability to interest rates) and well 
away from one (because in that case there is no predictability to the change in interest rates) 
is what one would want. 

Attanasio and Low (2000) use an AR(1) parameter of 0.6 for the real interest rate, which 
they indicate matches empirical data for the UK.27 Even for this choice of serial correlation 
coeÿcient, Attanasio and Low find that it is necessary to have at least ten years worth of data 
(T = 40 in their notation) in order to obtain a reliable estimate of the intertemporal elasticity 
of substitution. For the US the serial correlation coeÿcient in real interest rates appears to 
be somewhat higher than the 0.6 figure reported by Attanasio and Low for the UK, and the 
US serial correlation coeÿcient also exhibits some evidence of varying over time. If their 
results are highly sensitive to the serial correlation coeÿcient, then the generality with which 
they can conclude that Euler equation estimation works using (enough) time-series data is 
compromised. 

Attanasio and Low also make nonstandard assumptions in several other dimensions, and 
present little sensitivity analysis with respect to those assumptions. Their coeÿcient of 
relative risk aversion is fixed at 1/0.67= 1.5 throughout the paper, while most of the pre-
cautionary saving literature has tended to present results for parameter values centered on 
3 and ranging up to 5. As demonstrated in several places above, the assumption about ρ 
can make a big di erence to results (see, e.g., Table 6). And assuming a small precautionary 
motive obviously reduces the magnitude of the precautionary e ects that interfere with Euler 
equation estimation. 

Furthermore, there are several other dimensions along which the model examined by 
Attanasio and Low di ers from the one presented here in ways that may make it easier to 
successfully estimate an IES. One of these is that Attanasio and Low assume that there 
is no income growth over the lifetime; empirical data show robust rates of income growth 
during most of the working life for most consumers. A rapidly growing level of income 
induces consumers to be ‘impatient’ in the sense required to generate bu er-stock saving 
behavior, so one might expect that the results that Attanasio and Low report for seemingly 
plausible values of the time preference rate might substantially understate the importance 
of the precautionary e ects that arise as an interaction between impatience and prudence. 

27Although their text is a bit unclear, I will assume that this is at an annual rate; the points made below 
should be even stronger if their 0.6 represents a quarterly rate. 
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Indeed, when Attanasio and Low make consumers very impatient by assuming a high time 
preference rate, they find that the performance of their Euler equation estimation deteriorates 
(though they must assume very high time preference rates to make their estimates badly 
biased). 

Also, Attanasio and Low do not allow for the possibility of transitory as well as permanent 
shocks to income. This may understate the short-term precautionary saving motive, and 
thereby reduce the magnitude of short-term deviations of the model with uncertainty from 
the certainty equivalent model. 

It seems clear, therefore, that there will be ranges of parameter values where time-series 
estimation of the Euler equation will work and ranges where such methods will fail. The com-
ing debate on time series estimation is therefore most fruitfully formulated as an argument 
about what the boundaries of those regions are, and whether plausible parametric configu-
rations lie within or outside of those regions. With Wendy Dunn, I am currently working to 
explore this question. 

Conclusions 

This paper argues that the estimation of consumption Euler equations using instrumental 
variables methods on cross-section household data should be abandoned because it does 
not yield any useful information, at least if the estimation is performed on a population of 
consumers many of whom are engaged in bu er-stock saving behavior. However, there are 
many other promising ways to test models of consumption under uncertainty, and even some 
ways to get estimates of structural parameters; presumably inventive researchers can come 
up with many more ways of testing the model. 
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for comments. 

All of the programs used to generate the results in this paper are available at the author’s 
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