MPC Heterogeneity and Household Balance Sheets

Discussion by Christopher Carroll1 and Matthew White2

1Johns Hopkins University
ccarroll@jhu.edu
2University of Delaware
mnwhite@gmail.com

CESifo Venice, June 13, 2017
How to Assess their Results? Vs Buffer Stock Model!

... ignoring illiquid assets, home equity altogether

Qualitatively, fits all their key facts:

▶ MPX smaller for people with more liquid wealth
How to Assess their Results? Vs Buffer Stock Model!

... ignoring illiquid assets, home equity altogether

Qualitatively, fits all their key facts:

▶ MPX smaller for people with more liquid wealth
▶ MPX smaller for larger shocks
MPX in first 6 months is extremely large
Quantitative Fit?

- MPX in first 6 months is *extremely* large
- But X is not C: Recent papers (Parker, others) find
Quantitative Fit?

- MPX in first 6 months is *extremely* large
- But X is not C: Recent papers (Parker, others) find
 - Windfalls are spent to buy durable goods, on credit
Quantitative Fit?

- MPX in first 6 months is *extremely* large
- But X is not C: Recent papers (Parker, others) find
 - Windfalls are spent to buy durable goods, on credit
 - \rightarrow MPX can be much greater than 1
Quantitative Fit?

- MPX in first 6 months is *extremely* large
- But X is not C: Recent papers (Parker, others) find
 - Windfalls are spent to buy durable goods, on credit
 - \implies MPX can be much greater than 1
- “Memories of the party I threw when I won the lottery” are a durable good!
Structural Estimation Targeting Table 9

Quick and dirty structural estimation targeting Table 9 results:
- Buffer Stock model w/ permanent and transitory shocks
Quick and dirty structural estimation targeting Table 9 results:

- Buffer Stock model w/ permanent and transitory shocks
- Calibrated to U.S. income shock processes (and Table 1)
- Four prizes: $1625, $3740, $7130, $40,000
Quick and dirty structural estimation targeting Table 9 results:

- Buffer Stock model w/ permanent and transitory shocks
- Calibrated to U.S. income shock processes (and Table 1)
- Four prizes: $1625, $3740, $7130, $40,000
- Parameters to estimate are \(\beta \sim U[\beta - \nabla, \beta + \nabla] \)
- Obj func: Euclidean distance b/w Table 9 and simulated MPX
Quick and dirty structural estimation targeting Table 9 results:

- Buffer Stock model w/ permanent and transitory shocks
- Calibrated to U.S. income shock processes (and Table 1)
- Four prizes: $1625, $3740, $7130, $40,000
- Parameters to estimate are \((\hat{\beta}, \nabla)\): \(\beta \sim U[\hat{\beta} - \nabla, \hat{\beta} + \nabla]\)
- Obj func: Euclidean distance b/w Table 9 and simulated MPX
- Calculate "secant MPX": average MPX over quantity of prize
Results

<table>
<thead>
<tr>
<th>Lottery size quartile</th>
<th>Deposit quartile</th>
<th>Bottom</th>
<th>Second</th>
<th>Third</th>
<th>Top</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bottom</td>
<td></td>
<td>1.047</td>
<td>0.745</td>
<td>0.720</td>
<td>0.490</td>
</tr>
<tr>
<td>Second</td>
<td></td>
<td>0.762</td>
<td>0.640</td>
<td>0.559</td>
<td>0.437</td>
</tr>
<tr>
<td>Third</td>
<td></td>
<td>0.663</td>
<td>0.546</td>
<td>0.390</td>
<td>0.386</td>
</tr>
<tr>
<td>Top</td>
<td></td>
<td>0.354</td>
<td>0.325</td>
<td>0.242</td>
<td>0.216</td>
</tr>
</tbody>
</table>
Results

<table>
<thead>
<tr>
<th>Lottery size quartile</th>
<th>Deposit quartile</th>
<th>Bottom</th>
<th>Second</th>
<th>Third</th>
<th>Top</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bottom</td>
<td>Bottom</td>
<td>1.047</td>
<td>0.745</td>
<td>0.720</td>
<td>0.490</td>
</tr>
<tr>
<td></td>
<td>Second</td>
<td>0.762</td>
<td>0.640</td>
<td>0.559</td>
<td>0.437</td>
</tr>
<tr>
<td></td>
<td>Third</td>
<td>0.663</td>
<td>0.546</td>
<td>0.390</td>
<td>0.386</td>
</tr>
<tr>
<td></td>
<td>Top</td>
<td>0.354</td>
<td>0.325</td>
<td>0.242</td>
<td>0.216</td>
</tr>
</tbody>
</table>
Results

8 discrete β-types? Progress, but still fairly far ...

<table>
<thead>
<tr>
<th>Lottery size quartile</th>
<th>Deposit quartile</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bottom</td>
</tr>
<tr>
<td>Bottom</td>
<td>1.047 (0.679)</td>
</tr>
<tr>
<td>Second</td>
<td>0.762 (0.658)</td>
</tr>
<tr>
<td>Third</td>
<td>0.663 (0.627)</td>
</tr>
<tr>
<td>Top</td>
<td>0.354 (0.490)</td>
</tr>
</tbody>
</table>

$\hat{\beta} = 0.8148$, $\nabla = 0.1244$
Results

- Highly concave region of consumption function usually small
- Table 9 says all deposit quartiles on highly concave region
Results

- Highly concave region of consumption function usually small
- Table 9 says all deposit quartiles on highly concave region
- If point MPX of top wealth quartile was really 0.5, consumers wouldn’t be able to hold that much in deposits
- Does the MPX from deposits ≠ MPX from prizes?
Results

- Highly concave region of consumption function usually small
- Table 9 says all deposit quartiles on highly concave region
- If point MPX of top wealth quartile was really 0.5, consumers wouldn’t be able to hold that much in deposits
- Does the MPX from deposits \neq MPX from prizes?
- How can we explain these results? “Splurge”?
- Consumer automatically spends first X of any lottery prize, behaves according to consumption function thereafter
Results

- Highly concave region of consumption function usually small
- Table 9 says all deposit quartiles on highly concave region
- If point MPX of top wealth quartile was really 0.5, consumers wouldn’t be able to hold that much in deposits
- Does the MPX from deposits \neq MPX from prizes?
- How can we explain these results? “Splurge”?
- Consumer automatically spends first X of any lottery prize, behaves according to consumption function thereafter
- Maybe a literal splurge, maybe a mid-sized discrete good?
“Splurge” of $700? Pretty good fit.

<table>
<thead>
<tr>
<th>Lottery size quartile</th>
<th>Deposit quartile</th>
<th>Bottom</th>
<th>Second</th>
<th>Third</th>
<th>Top</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bottom</td>
<td>1.047</td>
<td>0.745</td>
<td>0.720</td>
<td>0.490</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.759)</td>
<td>(0.733)</td>
<td>(0.687)</td>
<td>(0.583)</td>
<td></td>
</tr>
<tr>
<td>Second</td>
<td>0.762</td>
<td>0.640</td>
<td>0.559</td>
<td>0.437</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.651)</td>
<td>(0.619)</td>
<td>(0.555)</td>
<td>(0.416)</td>
<td></td>
</tr>
<tr>
<td>Third</td>
<td>0.663</td>
<td>0.546</td>
<td>0.390</td>
<td>0.386</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.576)</td>
<td>(0.547)</td>
<td>(0.477)</td>
<td>(0.325)</td>
<td></td>
</tr>
<tr>
<td>Top</td>
<td>0.354</td>
<td>0.325</td>
<td>0.242</td>
<td>0.216</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.400)</td>
<td>(0.384)</td>
<td>(0.329)</td>
<td>(0.211)</td>
<td></td>
</tr>
</tbody>
</table>

$\hat{\beta} = 0.8694$, $\nabla = 0.0957$