Stock Market Valuation

1 The Level of the Price

The traditional theory of the stock market states that the ‘rational’ price of a share of stock is the present discounted value of the stream of dividends that will be paid to the person owning the share:

\[P_t = D_t + \frac{D_{t+1}}{R_{t+1}} + \frac{D_{t+2}}{R_{t+1}R_{t+2}} \ldots \]
\[= D_t + \frac{G_{t+1}D_t}{R_{t+1}} + \frac{G_{t+1}G_{t+2}D_t}{R_{t+1}R_{t+2}} \ldots \]
\[= D_t[1 + (G_{t+1}/R_{t+1}) + (G_{t+1}G_{t+2}/R_{t+1}R_{t+2}) \ldots \]

If the growth rate of dividends from period to period is constant at \(G \) and the interest rate is constant at \(R \) this becomes

\[P_t = D_t[1 + (G/R) + (G/R)^2 + (G/R)^3 + \ldots \]
\[= D_t \sum_{i=0}^{\infty} (G/R)^i \]
\[= D_t \frac{1}{1 - (G/R)}. \]

But if we assume that \(g = G - 1 \) and \(r = R - 1 \) are ‘small’ we know that \(G/R \approx 1 + g - r \) and this expression becomes

\[\frac{P_t}{D_t} \approx \frac{1}{r - g}. \]

This is known as the “Gordon formula.” The tricky thing in applying the formula is to know what to assume for \(R \) and \(G \). The interest rate \(R \) should be the interest rate ‘appropriate’ for discounting risky quantities. The usual assumption is that \(R = R_f + r_p \) where \(R_f \) is the rate of return on perfectly safe (riskfree) assets and \(r_p \) is the rate-of-return premium that people demand as compensation for the risk inherent in future dividends.

2 The Random Walk

2.1 The Law of Iterated Expectations

Suppose that a security price at time \(t \), \(P_t \), can be written as the rational expectation of some ‘fundamental value’ \(V^* \) conditional on information available at time \(t \) (the usual example of the ‘fundamental value’ in question is the present discounted value of
dividends). Then we have

\[P_t = \mathbb{E}_t[V^*]. \]
(8)

(9)

The same formula holds in period \(t + 1 \):

\[P_{t+1} = \mathbb{E}_{t+1}[V^*]. \]
(10)

(11)

Then the expectation of the change in the price over the next period is

\[\mathbb{E}_t[P_{t+1} - P_t] = \mathbb{E}_t[\mathbb{E}_{t+1}[V^*] - \mathbb{E}_t[V^*]] \]
(12)

\[= \mathbb{E}_t[V^*] - \mathbb{E}_t[V^*] \]
(13)

\[= 0 \]
(14)

because any information known at time \(t \) must be known at time \(t + 1 \) and so the only thing that should cause a change in prices should be the arrival of new information that was not known at time \(t \).