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1 Introduction

Economists who use survey or administrative data for inferences regarding a

population may want to combine information obtained from two or more samples

drawn from the population. This is the case if there is no single sample that

contains all relevant variables. A special case occurs if longitudinal or panel

data are needed, while only repeated cross-sections are available.

There are good reasons why data sets often do not have all relevant variables.

If the data are collected by interview, it is advisable to avoid long questionnaires.

If the data come from an administrative file, usually only variables that are rel-

evant for the eligibility for a program and for the determination of the benefits

or payments associated with that program are included. Hence, unless a sur-

vey was designed to include all the relevant variables for a particular research

project, there is no single data set that contains all variables of interest. How-

ever, often the variables are available in two or more separate surveys. In that

case it is natural to try to combine the information in the two surveys to answer

the research question.

In this chapter we survey sample combination. What can be learned by

combining two or more samples depends on the nature of the samples and the

assumptions that one is prepared to make. If two (or more) samples from the

same population are combined, there are variables that are unique to one of the

samples and variables that are observed in each sample. To be specific, consider

a population and assume that for each member of the population we can define

the variables Y, Z,X. Sample A contains the variables Y,Z and sample B the
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variables X,Z. The variables in Y are unique to sample A and those in X

are unique to sample B. Hence, we have random samples from overlapping (in

variables) marginal distributions.

How one uses this information depends on the goal of the study. We distin-

guish between

(i) Identification and estimation of the joint distribution of X,Y, Z. This was

the original motivation for the type of sample merging that is discussed in

section 3.2. The hope was that with the merged sample the distributional

impact of taxes and social programs could be studied. An example is

a study of the effect of a change in the tax code on the distribution of

tax payments. In principle, tax returns contain all the relevant variables.

However, if the change depends on variables that did not enter the tax

code before, or if it is desired to estimate the effect for specific subgroups

that are not identifiable from the tax returns, the need arises to obtain

the missing information from other sources. The joint distribution is also

the object of interest in nonparametric (conditional) inference. This is

obviously the most ambitious goal.

(ii) Estimation of economic models that involve X,Y, Z (or a subset of these

variables). Such models are indexed by a vector of parameters θ that is

of primary interest, and, as will become clear in section 4.3, parametric

restrictions are helpful (but not necessary) in securing identification by

sample combination. An example is the estimation of the effect of age

at school entry on the years of schooling by combining data from the US
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censuses in 1960 and 1980 (Angrist and Krueger, 1992).

(iii) Estimation of an economic model with mismeasured variables. In this

case sample A contains Y,X,Z and sample B X∗, Z with X∗ the correct

value and X the mismeasured value of the same variable, e.g. income. If

X is self-reported income, this variable may be an imperfect indicator of

true income X∗. A better indicator is available in administrative data,

e.g. tax records. Hence, it is desirable to combine these samples to obtain

a dataset that has both the correctly measured variable and Y . Again

this was a motivation for the type of sample merger discussed in section

3.2. In section 4.5 we show that sample merger is not necessary to avoid

measurement error bias.

For problems of type (i) there are a number of methods that merge the

samples A and B into one sample that is treated as a random sample from the

joint distribution of X,Y, Z. Because the common variables Z1 are often not of

independent interest, we assume for the moment that the researcher is satisfied

with a random sample from the joint distribution of X,Y . Sample merging is

discussed in sections 2 and 3. Its success depends on two factors: (i) the number

of members of the population that are in both samples, and (ii) the degree to

which these common members can be identified from the common variables

Z. In the simplest case Z identifies members of the population uniquely, for

instance if Z is an individual’s Social Security Number or some other unique
1Sometimes variables have to be transformed to make them equal in both samples. For

instance, A may contain the age and B the year of birth.
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identifier (measured without error). If the common members are a random

sample from the population, then the merged sample is indeed a random sample

from the population distribution of X,Y . Complications arise if the number of

population members that are in both samples is substantial, but they cannot

be identified without error. We discuss estimation in samples that have been

merged. Because the matching process is not perfect the merging introduces

a form of measurement or matching error. The analogy is almost complete

because the bias is similar to the attenuation bias in models with mismeasured

independent variables

The merger of samples has also been attempted in the case that the fraction

of units that are in both samples is negligible. Indeed the techniques that have

been used to merge such samples are the same as for samples with common

units that cannot be identified with absolute certainty. Only under the strong

assumption of conditional independence of Y and X given Z, we can treat the

merged or matched sample as a random sample from the joint distribution of

Y, Z,X (section 4). As shown in section 4 it is preferable not to merge the two

samples, even if the assumption of conditional independence is correct. Under

conditional independence we can estimate the joint distribution of Y, Z,X and

any identified conditional model without merging the samples. If the assumption

of conditional independence does not hold and our goal is to recover the joint

distribution of Y, Z0, X with Z0 a subvector of Z, then the two samples give

bounds on this joint distribution. Point identification is possible if we specify a

parametric model for the conditional distribution of Y givenX,Z0, f(y | x, z0; θ)
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or moments of that distribution, e.g. the conditional mean. In both cases, it

is essential that some of the common variables in Z are not in Z0, i.e. that

there are exclusion restrictions. In section 4.5 we also consider the case that

one or more of the variables of a survey is subject to measurement error, while

there is a second survey that has error free data on these variables, but does not

contain data on the other relevant variables in the first survey. We show that

the merger of the two samples is again not the solution, but that such data are

helpful in reducing or even eliminating the errors-in-variables bias.

A special case of sample combination with some distinct variables are syn-

thetic cohorts obtained from repeated cross-sections. In that case Y and X are

the same variables in two time periods and Z is the variable that identifies the

cohort. This special case deserves separate consideration and is discussed in

section 5.

This chapter provides a common framework for research in different fields of

economics and statistics. It is mostly a survey, but we also point at some ar-

eas, for instance nonparametric identification of joint distributions by exclusion

restrictions, that have not been explored yet. Although we survey empirical

applications we have not attempted to include all studies that use some form

of data combination. By bringing together research that until now was rather

disjoint we hope to stimulate further research on data combination.
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2 Merging samples with common units

An obvious way to combine information in two samples is to merge the samples.

If the two samples have a substantial number of common units, the natural

action is to link the records relating to the same unit. The linkage of records for

the same unit is usually called exact matching. This term is misleading, because

it suggests that the linkage is without errors. Record linkage is easy if both

records contain a unique identifier, e.g. an individual’s social security number,

that is observed without error. Card, Hildreth, and Shore-Sheppard (2001)

match survey to administrative data, and find that even in the administrative

data the social security numbers are often misreported. If the two surveys

are independently drawn samples from two overlapping populations, the linked

records are a sample from the intersection of the two populations.

2.1 Broken random samples

DeGroot, Feder, and Goel (1971), DeGroot and Goel (1976) and DeGroot and

Goel (1980)) consider the reconstruction of a broken random sample, i.e. a

random sample in which the identity of the members is observed with error.

Besides its intrinsic interest, we discuss their method because of its similarity

to methods used to merge samples that have no common units.

Consider a random sample of size N from a population and assume that the

identity of the units in the random sample is observed with error, i.e. a record

consist of (Yi, Z1i, Z2j , Xj) with
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Zki = Zi + εki, k = 1, 2 (1)

The identifier Z is observed with error and unit i is erroneously linked to unit j.

We ignore for the moment Y,X2. We also assume that Z, ε1, ε2 are jointly nor-

mally distributed3, and as a consequence the observed Z1, Z2 have a bivariate

normal distribution with means µ1, µ2, standard deviations σ1, σ2, and correla-

tion coefficient ρ. Let φ denote a permutation of 1, . . . , N so that Z1i is linked

with Z2φ(i). The loglikelihood of the sample Z1i, Z2φ(i), i = 1, . . . , N is

lnL(µ1, µ2, σ
2
1 , σ

2
2 , ρ, φ) = C − N

2
log(1− ρ2)− N

2
log σ2

1 −
N

2
log σ2

2 − (2)

− 1
2(1− ρ)2

N∑
i=1

{
(z1i − µ1)2

σ2
1

+
(z2φ(i) − µ2)2

σ2
2

− 2ρ
(z1i − µ1)(z2φ(i) − µ2)

σ1σ2

}

Note that the vector φ is treated as a vector of parameters, i.e. the likelihood

is the joint distribution if φ is the correct linkage. Maximizing the loglikelihood

with respect to the means and variances yields the usual MLE for these param-

eters. If we substitute these MLE and maximize with respect to ρ we obtain

the concentrated loglikelihood that only depends on φ

L(φ) = C − N

2
log(1− ρ2

φ) (3)

with ρφ the sample correlation coefficient between Z1i, Z2φ(i), i = 1, . . . , N . This

sample correlation coefficient depends on the permutation φ. It is easily verified
2If Y, X are correlated (given Z1, Z2) they could be helpful in reconstructing the correctly

linked sample.
3This assumption can be relaxed, see DeGroot, Feder, and Goel (1976)
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for N = 2 and it can be shown for all N (Hájek and Šidak, 1967) that the

average of the sample correlation coefficient over all permutations is equal to 0.

Hence the smallest value for ρφ is ρmin < 0 and the largest ρmax > 0. If the

order statistics of Z1, Z2 are denoted by Z1(i), Z2(i), then it is intuitively clear

that the sample correlation coefficient is maximal if Z1(i) is linked with Z2(i),

and minimal if Z1(i) is linked with Z2(N−i+1). The first permutation is denoted

by φmax, the second by φmin. Because the concentrated loglikelihood increases

with ρ2
φ, the MLE of ρ is ρmax if ρ2

max > ρ2
min and ρmin if the reverse inequality

holds. In the first case the likelihood is maximized if we link according to the

order statistics, and in the second case if we link in the reverse order. As is

obvious from the loglikelihood in (2) the nature of the linkage, i.e. the choice

of φ, depends only on the sign of ρ. The MLE for ρ suggests the following rule

to decide on this sign: if ρ2
max > ρ2

min then we estimate the sign of ρ as +1,

while we use the opposite sign if the reverse inequality holds. DeGroot and Goel

(1980) conduct some sampling experiments that show that for values of ρ of .9,

i.e. a relatively small measurement error in the identifier , this procedure yields

the correct sign in more than 75% of the replications (for sample sizes ranging

from 5 to 500).

Obviously, if the Z1, Z2 are observations on a common identifier, we do not

have to estimate the sign of ρ, because the correlation is positive, unless we

make extreme assumptions on the correlation between the two measurement

errors. The optimal linkage is then on the order statistic of Z1 and Z2. Maxi-

mization of the loglikelihood (2) with respect to the permutation φ is equivalent
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to maximization of

N∑
i=1

z1iz2φ(i) (4)

and this is in turn equivalent to minimization of

N∑
i=1

z2
1i +

N∑
i=1

z2
2i − 2

N∑
i=1

z1iz2φ(i) =
N∑

i=1

(z1i − z2φ(i))2 (5)

Hence the Euclidean or L2 distance between the vectors of observed identifiers

is minimized. As we shall see, this rule that is derived for the case of exact

matching with mismeasured identifiers, is also used in the case that there are

no common units in the samples.

If there are multiple identifiers, i.e. if Z is a K vector and Z1, Z2 have a

multivariate normal distributions with means µ1, µ2, variance matrices Σ11,Σ22,

and covariance matrix Σ12, the factor of the likelihood function that depends

on the permutation φ is

lnL(µ,Σ12) = exp

{
−1

2

N∑
i=1

z′1iΣ
12z2φ(i)

}
(6)

In this expression

Σ12 = −Σ−1
11 Σ12(Σ22 − Σ21Σ−1

11 Σ12)−1 (7)

This likelihood factor is the probability that the permutation φ is the correct

match and hence maximization of the likelihood function is equivalent to max-

imization of the probability of a correct match.
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The maximization of the likelihood factor in (6) is equivalent to the maxi-

mization of

N∑
i=1

z1iC12z2φ(i) (8)

with C12 = −Σ12. This is equivalent to the minimization of

N∑
i=1

(z1i − z2φ(i))′C12(z1i − z2φ(i)) (9)

i.e. the quadratic distance with matrix C12 between the vectors of identifiers.

The same distance measure is sometimes used if the samples have no common

units and Z is a vector of common characteristics (see section 3.2).

Because all units must be matched the maximization of (8) is equivalent to

the minimization of

N∑
i=1

N∑
j=1

dijz1iC12z2j (10)

subject to for i = 1, . . . , N , j = 1, . . . , N

N∑
i=1

dij =
N∑

j=1

dij = 1 (11)

and dij = 0, 1. This is a linear assignment problem, an integer programming

problem for which efficient algorithms are available.

This procedure requires an estimate of Σ12, the covariance matrix of Z1 and

Z2. Note that in the case of a single identifier only the sign of this covariance

was needed. If the errors in the identifiers are independent in the two samples,

13



an estimate of the variance matrix of the true identifier vector Z suffices. The

extension of DeGroot and Goel’s MLE to the multivariate case has not been

studied.

2.2 Probabilistic record linkage

2.2.1 Matching with imperfect identifiers

The ML solution to the reconstruction of complete records assumes that the mis-

measured identifiers are ordered variables. The method of probabilistic record

linkage can be used if the matching is based on (mismeasured) nominal identi-

fiers, such as names, addresses or social security numbers. Probabilistic record

linkage has many applications. It is used by statistical agencies to study the cov-

erage of a census, by firms that have a client list that is updated regularly, and

by epidemiologists who study the effect of a potentially harmful exposure (see

Newcombe, 1988) for a comprehensive survey of the applications). In epidemio-

logical studies a sample of individuals who have been exposed to an intervention

is linked with a population register to determine the effects on fertility and/or

mortality, the latter possibly distinguished by cause (Newcombe, Kennedy, Ax-

ford and James, 1959 ; Buehler et al., 2000; Fair et al., 2000). Probabilistic

record linkage is also used in queries from a large file, e.g. finding matching fin-

gerprints or DNA samples. The implementation of probabilistic record linkage

depends on the specific features of the data. In this survey we only describe

some general ideas. We use the setup of Fellegi and Sunter (1969), although

we change it to stress the similarity with the reconstruction of broken random
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samples (section 2.1) and statistical matching (section 3.2).

Initially we assume that there is a single identifier Z that identifies each

member of the population uniquely. We have two samples of sizes N1 and N2

from the population. These samples need not be of equal size and, although

it is assumed that a substantial fraction of the units in both samples are com-

mon, the remaining units are unique to one of the samples. This is a second

departure from the assumptions made in the case of a broken random sample.

A key ingredient of probabilistic matching is the record generating model that

describes how the observed identifiers in the records are related to the unique

true identifier. It is obvious that errors in names and reported social security

numbers cannot be described by a simple model with additive measurement

error (Fellegi and Sunter , 1969; Copas and Hilton, 1990; and Newcombe, Fair

and Lalonde, 1992) develop alternative record generating models). To keep the

exposition simple, we will stick with the additive model of equation (1). The

main ideas can be explained with this model and are independent of a specific

model of the record generating process.

The first step is to define a comparison vector Wij for each pair i, j, with i

with identifier Z1i in the first and j with identifier Z2j in the second random

sample. An obvious choice is Wij = Z2j − Z1i, but we can also include Z1 and

use the comparison vector Wij = (Z2j − Z1i, Z1i)′. Define Mij as the indicator

of the event that i and j are matched, i.e. are the same unit. If we assume that

the measurement errors in the two samples are independent of each other and of

the true identifier Z, and that the identifiers of distinct units are independently
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distributed in the two samples, we have, for Wij = Z2j−Z1i, with f the density

of ε2 − ε1 and Gk the cdf of Z in sample k,

h(wij |Mij = 1) = f(wij)

(12)

h(wij |Mij = 0) =
∫ ∫

f(wij − z′ + z)dG1(z)dG2(z′)

For every pair i, j we consider the density ratio, provided that the denomi-

nator is greater than 0 (if the denominator is 0, the match can be made without

error),

h(wij |Mij = 1)
h(wij |Mij = 0)

(13)

This ratio gives the relative likelihood that the comparison vector is from a

matched pair. Just as in a statistical test of the null hypothesis that i, j refer to

the same unit, we decide that the pair is matched if the density ratio exceeds a

threshold. Note that with this matching rule unit i may be matched with more

than one unit in sample 2 and unit j may be matched with more than one unit

in sample 1.

To illustrate the procedure we consider a simple case. The distribution of

the identifier is usually discrete. Here we assume that there is a superpopulation

of identifiers from which the identifiers in the (finite) population are drawn. In

particular, we assume that the Z’s in both samples are independent draws from

a normal distribution with mean µ and variance σ2. A uniform distribution
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may be a more appropriate choice in many instances. The measurement errors

are also assumed to be normally distributed with mean 0 and variances σ2
1 , σ

2
2 .

Under these assumptions, the density ratio is

φ(z2j − z1i;σ2
1 + σ2

2)
φ(z2j − z1i; 2σ2 + σ2

1 + σ2
2

= (14)

=

√
2σ2 + σ2

1 + σ2
2

σ2
1 + σ2

2

exp
{
− σ2

(2σ2 + σ2
1 + σ2

2)(σ2
1 + σ2

2)
(z2j − z1i)2

}
The cutoff value for the density ratio can also be expressed as

(z2j − z1i)2 < C (15)

and we match if this inequality holds. C is a constant that is chosen to control

either the probability of a false or a missed match. If we take the first option

we choose C such that

2Φ

( √
C√

2σ2 + σ2
1 + σ2

2

)
− 1 = α (16)

The advantage of this choice is that the cutoff value can be computed with the

(estimated) variances of the observed identifiers Z1i and Z2j which are σ2 + σ2
1

and σ2 +σ2
2 respectively. Estimation of the variances of the measurement errors

is not necessary. If there are multiple identifiers, the criterion for matching i

and j is

(z2j − z1i)′
(
(Σ1 + Σ2)−1 − (2Σ + Σ1 + Σ2)−1

)
(z2j − z1i) < C (17)
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i.e. the quadratic distance with the specified matrix between the observed iden-

tifiers is less than a threshold. To use this criterion we need estimates of Σ and

Σ1 +Σ2. If Σ � Σ1 +Σ2 the criterion can be approximated by a quadratic form

with matrix (Σ1+Σ2)−1, and the distance is chi-squared distributed for matches.

In that case it is more convenient to choose C to control the probability of a

missed match.

In general, the estimation of the parameters that enter the density ratio is

the most problematic part of probabilistic linkage. Tepping (1968), Copas and

Hilton (1990) and Belin and Rubin (1995) propose estimation methods that use

a training sample in which it is known which pairs are matched to estimate the

parameters of the distribution of the comparison vector among matched and

unmatched pairs.

It is interesting to compare probabilistic record linkage to the method that

was proposed for the reconstruction of a broken random sample. Instead of

minimizing the (average) distance between the identifiers as in (5), we choose

a cutoff value for the distance and match those pairs with a distance less than

the cutoff value. In probabilistic record linkage a record may be linked with

two or more other records. If the true identifiers are sufficiently distinct and/or

if the measurement errors are relatively small the probability of this event is

negligible. Alternatively, we can choose the record that has the largest match

probability.
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2.2.2 Matching errors and estimation

The term exact matching is a misnomer when dealing with samples that have

been matched using identifiers that are subject to error. Matching error biases

estimates of parameters. In this section we consider the case that a random

sample from a population is matched (with error) to a register that contains each

unit in the sample. There has been very little work on biases due to matching

errors. Usually, matched samples are analyzed as if there are no mismatches.

This section provides a framework that can be used to assess potential biases

and to obtain unbiased estimates if some knowledge of the matching process is

available.

We assume that a random sample of size N1 is matched with a register of

size N2 that is a random sample from the target population or the complete

target population (N2 > N1). For example, we have a sample of taxpayers that

is matched with the register of tax returns. The sample contains a variable

X and an identifier Z1 that is measured with error and the register contains

a variable Y and an identifier Z2 that is also measured with error. The true

identifier is denoted by Z. We want to study the relation between X and Y

or in general statistics defined for the joint distribution of X,Y . In fact, we

show that the joint distribution of X,Y is (nonparametrically) identified, if the

matching probabilities are available.

The data are generated as follows. First, a sample of size N2 is drawn from

the joint distribution of X,Y, Z. This sample is the register. Next, we generate

the mismeasured identifiers Z1, Z2, e.g. according to (1) or some other record
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generating model discussed in the previous section. We observe Yj , Z2j , j =

1, . . . , N2. The next step is to draw N1 < N2 observations from the register

without replacement. This is the sample, for which we observe Xi, Z1i, i =

1, . . . , N1. Note that in this case all members in the sample are represented in

the register.

The bias induced by the matching errors depends on the relation between

the mismeasured identifier and the variables of interest. For instance, if the

identifier is a (misreported) social security number, then it is reasonable to as-

sume that both the identifier Z and the observed values Z1, Z2 are independent

of the variables of interest. If, in addition, there is a subsample with correctly

reported identifiers Z1 = Z2 = Z, e.g. the subsample with Z1 = Z2 (this is an

assumption), then this subsample is a random sample from the joint distribu-

tion of the variables of interest. However, often common variables beside the

identifier are used to match units i and j with z1i 6= z2j , e.g. we match i and j

if z1i and z2j are close and i and j have the same gender, age, and location etc.

Note that the additional common variables need not be observed with error in

the two samples. However, the probability that the match is correct depends on

these additional common variables that in general are correlated with variables

of interest. In this case, even if we can identify a subsample in which all matches

are correct, this subsample is not a random sample from the joint distribution

of the variables of interest.

Here we only consider the case that Z,Z1, Z2 are independent of X,Y . The

general case can be analyzed in much the same way. Note that this the simplest
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case for probabilistic record linkage. There is an interesting contrast with sta-

tistical matching, as discussed in the next section, because there the quality of

the approximation relies heavily on the correlation between the identifiers and

the variables of interest.

The quality of the matches depends on the matching method that in turn

depends on the record generating model. We use the same example that was

considered in section 2.2.1. The record generating model is as in (1) and Z, ε1

and ε2 are all independently normally distributed. Under these assumptions i

in the sample is matched with φ(i) in the register if and only if |z2φ(i)−z1i| < C

with C determined e.g. as in (16) or by some other rule. We can derive an

expression for the probability that the match is correct given that we use this

matching rule, i.e. the probability of the event that Zi = Zφ(i) given that

|Z2φ(i) − Z1i| ≤ C. Substitution of (1) and using the independence of the

reporting errors and the true value gives by Bayes’ theorem

Pr(Miφ(i) = 1) = Pr(Zi = Zφ(i) | |Z2φ(i) − Z1i| ≤ C) = (18)

=
Pr(Zi = Zφ(i)) Pr(|ε2φ(i) − ε1i| < C)

Pr(Zi = Zφ(i)) Pr(|ε2φ(i) − ε1i| < C) + Pr(Zi 6= Zφ(i)) Pr(|Zφ(i) + ε2φ(i) − Zi − ε1i| < C)
=

=

1
N2

Φ
(

C√
σ2
1+σ2

2

)
1

N2
Φ
(

C√
σ2
1+σ2

2

)
+ N2−1

N2
Φ
(

C√
σ2
1+σ2

2+2σ2

)
This expression for the probability of a correct match under the given match-

ing rule has a Bayesian flavor. The probability of a correct match, if a unit in

the sample is matched at random with a unit in the register is 1
N2

. This is

also the limit of the probability of a correct match if C → ∞. The probability
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decreases in C. If C ↓ 0 we obtain the limit

1
N2

1
N2

+ N2−1
N2

√
σ2
1+σ2

2
σ2
1+σ2

2+2σ2

(19)

and this probability approaches 1 if the reporting error in the identifier is small.

Hence, we improve on random matching by using the noisy identifiers. Of

course, if we choose C too small, there will be few matches. As will be seen

below, the variance of estimators is inversely proportional to the probability of a

correct match, so that if our goal is to estimate parameters accurately we face a

trade-off between the number of matched observations and the probability that

the match is correct. Although this analysis is for a specific record generating

model, the trade-off is present in all matched samples.

If we match i in the sample to φ(i) in the register, if |Z2φ(i)−Z1i| ≤ C, then

the conditional probability of a correct match given the identifiers Z1, Z2 is

Pr(Miφ(i) = 1 | Z1i, Z2φ(i)) = Pr(Zi = Zφ(i)||Z2φ(i) − Z1i| ≤ C,Z1i, Z2φ(i)) =

(20)

=
Pr(Miφ(i) = 1)φ1(Z2φ(i) − Z1i)

Pr(Miφ(i) = 1)φ1(Z2φ(i) − Z1i) + Pr(Miφ(i) = 0)φ2(Z2φ(i) − Z1i)

with

φ1(Z2φ(i) − Z1i) = φ(Z2φ(i) − Z1i | |Z2φ(i) − Z1i| ≤ C;σ2
1 + σ2

2)

φ2(Z2φ(i) − Z1i) = φ(Z2φ(i) − Z1i | |Z2φ(i) − Z1i| ≤ C; 2σ2 + σ2
1 + σ2

2)

Now we are in a position to discuss estimation. Consider a pair i, φ(i) matched

according to a matching rule, e.g. the rule above, from the N1 × N2 possible
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pairs. The joint distribution ofXi, Z1i, Yφ(i), Z2φ(i) has density g(xi, z1i, yφ(i), z2φ(i))

with

g(xi, z1i, yφ(i), z2φ(i)) = g(xi, z1i, yφ(i), z2φ(i),Miφ(i) = 1)+ (21)

+g(xi, z1i, yφ(i), z2φ(i),Miφ(i) = 0)

If the joint density of X,Y is f(x, y), then because we assume that X,Y and

Z,Z1, Z2 are independent,

g(xi, z1i, yφ(i), z2φ(i),Miφ(i) = 1) = (22)

= f(xi, yφ(i)) Pr(Miφ(i) = 1 | z1i, z2φ(i))g(z1i, z2φ(i))

and

g(xi, z1i, yφ(i), z2φ(i),Miφ(i) = 0) = (23)

= f1(xi)f2(yφ(i)) Pr(Miφ(i) = 0 | z1i, z2φ(i))g(z1i, z2φ(i))

Substituting (22) and (23) in (21), and using g(xi, z1i, yφ(i), z2φ(i) = f(xi, yφ(i))g(z1i, z2φ(i)),

we can solve for f(xi, yφ(i))

f(xi, yφ(i)) =
g(xi, yφ(i))− Pr(Miφ(i) = 0 | z1i, z2φ(i))f1(xi)f2(yφ(i))

Pr(Miφ(i) = 1 | z1i, z2φ(i))
= (24)

= f1(xi)f2(yφ(i)) +
g(xi, yφ(i))− f1(xi)f2(yφ(i))
Pr(Miφ(i) = 1 | z1i, z2φ(i))

if the denominator is greater than 0, which is the case for any sensible matching

rule.
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The distributions on the right-hand side of this expression are all observed.

Hence this identification result is nonparametric, although it requires that the

matching probabilities are known or that they can be estimated.

Often we are not interested in the joint distribution of Y,X, but in a popula-

tion parameter θ0 that is the unique solution to a vector of population moment

conditions

E [m(Xi, Yi; θ)] = 0 (25)

These population moment conditions refer to the correctly matched observa-

tions. If two observations are incorrectly matched, they are stochastically inde-

pendent. In general for i 6= j

E [m(Xi, Yj ; θ)] = 0 (26)

is solved by θ1 6= θ0. In other words, the parameter cannot be identified from

the two marginal distributions.

The solution for the joint population distribution in (24) suggests the sample

moment conditions that combine information from the sample and the register

1
N1

N1∑
i=1

m(xi, yφ(i); θ)
Pr(Miφ(i) = 1 | z1i, z2φ(i))

− (27)

− 1
N2

1

N1∑
j=1

N1∑
k=1

1− Pr(Mjφ(k) = 1 | z1j , z2φ(k))
Pr(Mjφ(k) = 1 | z1j , z2φ(k))

m(xj , yφ(k); θ)

and the weighted GMM estimator of θ either makes (27) equal to 0 or is the

minimizer of a quadratic form in these sample moment conditions. In this
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expression (but not in (24)) it is implicitly assumed that the probability that a

unit in the sample is matched with two or more units in the register is negligible.

This simplifies the notation.

We obtain a particularly simple result if we use the identifiers to match the

sample to the register, but ignore them in the inference, i.e. in (21) we start

with the joint distribution of Xi, Yφ(i), so that

f(xi, yφ(i)) = f1(xi)f2(yφ(i)) +
g(xi, yφ(i))− f1(xi)f2(yφ(i))

Pr(Miφ(i) = 1)

This will give consistent, but less efficient, estimates. Let the probability of a

correct match Pr(Miφ(i) = 1) = λ. If X and Y have mean 0, then

cov(Xi, Yi) =
cov(Xi, Yφ(i))

λ
(28)

With the same assumption we find for the moment conditions of a simple linear

regression with an intercept

E [(Yi − α− βXi)Xi] = (29)

=
E
[
(Yφ(i) − α− βXi)Xi

]
− (1− λ)

[
E(Yφ(i))E(Xi)− αE(Xi)− βE(X2

i )
]

λ

E [Yi − α− βXi] = (30)

=
E
[
Yφ(i) − α− βXi

]
− (1− λ)

[
E(Yφ(i))− α− βE(Xi)

]
λ

=

= E
[
Yφ(i) − α− βXi

]
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Setting these conditions equal to 0 and solving for the parameters we find that

β =
cov(Xi, Yφ(i))
λvar(Xi)

(31)

α = E(Yφ(i))− βE(Xi)

and, if we substitute the sample statistics for the population statistics,we ob-

tain the estimator suggested by Neter, Maynes and Ramanathan (1965) and

Scheuren and Winkler (1993). The results in this section generalize their re-

sults to arbitrary moment conditions and less restrictive assumptions on the

sampling process. In particular, we show that the matching probabilities that

are computed for probabilistic linkage can be used to compute the moment con-

ditions for the matched population. This is important because the simulation

results in Scheuren and Winkler (1993) show that the bias induced by false

matches can be large.

The asymptotic variance of the estimator for β is

var(β̂) =
σ2

N1λ2var(X)
(32)

The variance decreases with the matching probability. The GMM estimator is

consistent if the matching probability is positive.
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3 Independent samples with common variables

3.1 Fréchet bounds and conditional Fréchet bounds on the

joint distribution

Exact or probabilistic matching is not advisable if the fraction of units that

are in both samples is small. If the fraction is negligible, we may treat the

two random samples as independent samples that have no units in common.

Although exact or probabilistic matching produces more informative data, the

fear that linked files pose a threat to the privacy of individuals who, with some

effort, may be identifiable from the linked records, has prevented the large scale

matching of administrative and survey data4. As a consequence, often the only

available samples that contain all relevant variables are relatively small random

samples from a large population. It is safe to assume that these random samples

have no common units.

The two independent random samples identify the marginal distributions of

X,Z (sample A) and Y, Z (sample B). If there are no common variables Z, the

marginal distributions put some restrictions on the joint distribution of X,Y .

These Fréchet (1951) bounds on the joint distribution are not very informative.

For example, if the marginal and joint distributions are all normal, there is no

restriction on the correlation coefficient of X and Y , i.e. it can take any value
4Fellegi (1999) notes that public concern with file linkage varies over place and time and

that, ironically, the concern is larger if the linkage is performed by government agencies than

if private firms are involved. Modern data acquisition methods like barcode scanners and the

internet result in large files that are suitable for linkage.
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between -1 and 1.

With common variables Z the Fréchet bounds can be improved. The bounds

for the joint conditional cdf of X,Y given Z = z are

max {F (x | z) + F (y | z)− 1, 0} ≤ F (x, y | z) ≤ min {F (x | z), F (y | z)} (33)

Taking the expectation over the distribution of the common variables Z we

obtain

E [max {F (x | Z) + F (y | Z)− 1, 0}] ≤ F (x, y) ≤ E [min {F (x | Z), F (y | Z)}]

(34)

The bounds are sharp, because the lower and upper bounds, E [max {F (x | Z) + F (y | Z)− 1, 0}]

and E [min {F (x | Z), F (y | Z)}] are joint cdf’s ofX,Y with marginal cdf’s equal

to F (x) and F (y). Note that because the expectation of the maximum is greater

than the maximum of the expectations (the reverse relation holds for the ex-

pectation of the minimum), the Fréchet bounds with common variables are

narrower than those without. If either X or Y are fully determined by Z, then

the joint cdf is identified. To see this let the conditional distribution of X given

Z = z be degenerate in x(z). Define A(x) = {z | x(z) ≤ x}. Then F (x | z) = 1

if z ∈ A(x) and F (x | z) = 0 if z ∈ A(x)c. Substitution in (34) gives that the

lower and upper bound coincide and that

F (x, y) = E [F (y | Z) | Z ∈ A(x)) Pr(Z ∈ A(x))] (35)

In the special case that the population distribution of X,Y, Z is trivariate

normal, the only parameter that can not be identified is the correlation between
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X and Y . We have

ρXY = ρXY |Z

√
1− ρ2

XZ

√
1− ρ2

Y Z + ρXZρY Z (36)

This gives the bounds

ρXZρY Z −
√

1− ρ2
XZ

√
1− ρ2

Y Z ≤ ρXY ≤ ρXZρY Z +
√

1− ρ2
XZ

√
1− ρ2

Y Z

(37)

The lower bound reaches its minimum -1 if ρXZ = −ρY Z (the upper bound

is 1 − 2ρ2
XZ) and the upper bound reaches its maximum 1 if ρXZ = ρY Z (the

lower bound is −1 + 2ρ2
XZ . Also if either ρXZ or ρY Z is equal to 1, then

ρXY = ρXZρY Z . The length of the interval is 2
√

1− ρ2
XZ

√
1− ρ2

Y Z and hence

the the bound is narrower if the correlation between either Z and X or Z and

Y is high.

An example illustrates how much correlation between X,Y and Z is required

to obtain sufficiently narrow bounds. Consider a linear regression model

Y = α+ βX + U (38)

where X and U are independent and normally distributed. If σX , σY denote

the standard deviation of X and Y , respectively, we have

σY

σX
=

|β|√
R2

(39)

with R2 the coefficient of determination of the regression. If we multiply the

bounds in (38) by σY

σX
we obtain an interval for the slope β. If p denotes the
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relative (with respect to β) length of the interval and we consider the case that

the correlation between X and Z and Y and Z are equal, we obtain the following

expression for the required correlation

ρXZ =

√
1− p

√
R2

2
(40)

The correlation decreases with R2 and the (relative) length of the interval for β.

For instance, if we want a .20 relative length for a regression with an R2 of .9, we

need that ρXZ = ρY Z = .95. In general, the correlation that is needed to obtain

informative bounds is rather high, and this illustrates the limited information

about the relation between X and Y in the combined sample.

The Fréchet bounds on the joint cdf in (34) treat the variables X and Y

symmetrically. As the notation suggests, often Y is the dependent and X the

independent variable in a relation between these variables, and we focus on the

conditional distribution of Y given X. An important reason to do this, is that

we may assume that this conditional distribution is invariant under a change in

the marginal distribution of X. For example, Cross and Manski (2002) consider

the case that Y is the fraction of votes for a party and X is the indicator of

an ethnic group. It is assumed that the ethnic groups vote in the same way in

elections,but that the ethnic composition of the voters changes over time. If we

have the marginal distributions of Y (election results by precinct) and X (ethnic

composition by precinct), what can we say about future election results, if we

have a prediction of the future composition of the population, i.e. the future

marginal distribution of X?

Horowitz and Manski (1995) and Cross and Manski (2002) have derived
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bounds for the case that X is a discrete variable with distribution

Pr(X = xk) = pk k = 1, . . . ,K (41)

We first derive their bounds for the case that there are no common variables Z.

They consider bounds on the conditional expectation

E [g(h(Y ), X)|X = x]

with g bounded and monotone in h for almost all x. A special case is g(h(Y ), X) =

I(Y ≤ y) which gives the conditional cdf. Because the conditional expectation

above is continuous and increasing in F (y|x), in the sense that the expectation

with respect to F1(y|x) is not smaller than that with respect to F2(Y |x), if

F1(y|x) first-order stochastically dominates F2(y|x), we can derive bounds on

this expectation from bounds on the conditional cdf.

In the sequel we derive bounds both on the conditional cdf F (y|x) and on

F (y;xk) = Pr(Y ≤ y,X = xk). We first derive bounds on these cdf’s for a given

k. Next we consider the K-vector of these cdf’s. Note that by the law of total

probability
K∑

k=1

F (y;xk) = F (y)

which imposes an additional restriction on the vector F (y;xk), k = 1, . . . ,K.

The Fréchet bounds on F (y;xk) are

max{F (y)− (1− pk), 0} ≤ F (y;xk) ≤ min{F (y), pk} (42)

For each k these bounds are sharp, because both the lower and upper bound

are increasing in y, and they both increase from 0 to pk, i.e. they are F̃ (y;xk)

for some random variables Ỹ and X̃.
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The bounds in (42) imply that if pk ≤ 1
2

0 ≤ F (y;xk) ≤ F (y), y < F−1(pk)

0 ≤ F (y;xk) ≤ pk, F−1(pk) ≤ y < F−1(1− pk)

F (y)− (1− pk) ≤ F (y;xk) ≤ pk, y ≥ F−1(1− pk) (43)

with an obvious change if pk >
1
2 . Upon division by pk we obtain bounds on

the conditional cdf of Y given X = xk

0 ≤ F (y | xk) ≤ F (y)
pk

, y < F−1(pk)

0 ≤ F (y | xk) ≤ 1, F−1(pk) ≤ y < F−1(1− pk)

F (y)− (1− pk)
pk

≤ F (y | xk) ≤ 1, y ≥ F−1(1− pk) (44)

The bounds have an appealing form. The lower bound is the left truncated

cdf of Y where the truncation point is the (1−pk)-th quantile of the distribution

of Y and the upper bound is the right truncated cdf with truncation point equal

to the pk-th quantile. These bounds on the conditional cdf of Y were derived by

Horowitz and Manski (1995) and Cross and Manski (2002). They are essentially

Fréchet bounds on the joint distribution.

Next, we consider bounds on the vector F (y; .) = (F (y;x1) . . . F (y;xK))′.

For K = 2 the bounds in (42) are (without loss of generality we assume p1 <
1
2 ,

i.e. p2 = 1− p1 > p1)

0 ≤ F (y;x1) ≤ F (y), y < F−1(p1)

0 ≤ F (y;x1) ≤ p1, F−1(p1) ≤ y < F−1(p2)
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Figure 1: Bounds on (F (y;x1), F (y;x2)) for three values of y.

F (y)− p2 ≤ F (y;x1) ≤ p1, y ≥ F−1(p2)

0 ≤ F (y;x2) ≤ F (y), y < F−1(p1)

F (y)− p1 ≤ F (y;x2) ≤ F (y), F−1(p1) ≤ y < F−1(p2)

F (y)− p1 ≤ F (y;x2) ≤ p2, y ≥ F−1(p2) (45)

By the law of total probability F (y; .) satisfies for all y

K∑
k=1

F (y;xk) = F (y) (46)

Hence, the vector of conditional cdf’s is in a set that is the intersection of

the Fréchet bounds in (45) and the hyperplane in (46). The resulting bounds
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on (F (y;x1), F (y;x2)) are given in figure 1 for three values of y with y1 <

F−1(p1), F−1(p1) ≤ y2 < F−1(p2), and y3 ≥ F−1(p2). The Fréchet bounds

on (F (y;x1), F (y;x2)) are the squares. The law of total probability selects two

vertices of these squares as the extreme points of the set of (F (y;x1), F (y;x2))

that satisfy both the Fréchet bounds and the law of total probability. Bounds

on the conditional cdf’s F (y | x1) and F (y | x2) are obtained upon division by

p1 and p2 respectively. This amounts to a change in the units in figure 1 and

except for that the figure is unchanged.

From (45) the lower bound on F (y;x1) is

FL(y;x1) = 0 y < F−1(p2)

= F (y)− p2 y ≥ F−1(p2)

and the upper bound is

FU (y;x1) = F (y) y < F−1(p1)

= p1 y ≥ F−1(p1)

Note that both the lower and upper bound increase from 0 to p1 with y, and

hence are equal to F̃ (y;x1) for some random variables Ỹ and X̃. The corre-

sponding upper and lower bounds on F (y;x2) are FU (y;x2) = F (y)−FL(y;x1)

and FL(y;x2) = F (y) − FU (y;x1), and these bounds are equal to F̃ (y;x2) for

some random variables Ỹ and X̃.This establishes that the bounds are sharp. A

general proof of this statement can be found in Cross and Manski.

The bounds on the conditional cdf’s F (y|x1) and F (y|x2) are also given in

figure 2. By the law of total probability, the lower bound of F (y|x1) corresponds
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with upper bound of F (y|x2) and the other way around. Note that the bounds

are narrower for F (y|x2) because x2 has a higher probability than x1. From

this figure we can obtain bounds on the conditional median of Y given X. We

find that the change in this conditional median has bounds

F−1(
1
2
−1

2
p1)−F−1(1−1

2
p1) ≤ med(Y |x2)−med(Y |x1) ≤ F−1(

1
2
+

1
2
p1)−F−1(

1
2
p1)

(47)

Note that the lower bound is negative and the upper bound positive for all

p1, so that it is impossible to sign the change of the conditional median with

this information. This suggests that the relation between Y and X cannot be

inferred from two marginal distributions without common variables.

If K ≥ 3 the bounds can be derived in the same way. First, we order the pk

by increasing size. Next, we find the hypercubes that correspond to the Fréchet

bounds on F (y; .). As in figure 1 the vertices depend on the value of y, i.e.

for which k we have F−1(pk) ≤ y < F−1(pk+1). Finally, we select the vertices

that satisfy the law of total probability. These are the extreme points of the

set of admissible F (y;xk), k = 1, . . . ,K. To be precise, the set is the convex

hull of these extreme points. As we shall see below, for prediction purposes it

is sufficient to find the vertices.

The main reason for bounds on the conditional cdf of Y given X, instead of

on the joint cdf of Y,X, is that it is usually assumed that the conditional cdf is

invariant with respect to changes in the distribution of X. Of course, this is a

common assumption in conditional econometric models with fixed parameters.

An obvious application is to conditional prediction. Cross and Manski consider
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the prediction of the outcome of a future election assuming that the voting

behavior of demographic groups remains the same, but that the composition

of the population changes and the future composition of the population can be

predicted accurately.

The predicted distribution of the future outcome F̃ (y) satisfies

F̃ (y) = F (y;x1)
p̃1

p1
+ F (y;x2)

p̃2

p2
(48)

with p̃1 the future fraction with X = x1. Again, without loss of generality we

assume p1 <
1
2 . We can further distinguish between p̃1 ≤ p1 and p̃1 > p1. In

the former case the bounds on the predicted cdf can be found as in figure 1. In

that figure we indicate the bounds for F−1(p1) ≤ y < F−1(p2). The bounds are

obtained by intersecting the set of feasible (F (y;x1), F (y;x2)) with (48). We

find

p̃1

p1
F (y) ≤ F̃ (y) ≤ min

{
p̃2

p2
F (y), 1

}
, y < F−1(p1)

1− p̃2

p2
(1− F (y)) ≤ F̃ (y) ≤ min

{
p̃2

p2
F (y), 1

}
, F−1(p1) ≤ y < F−1(p2)

1− p̃2

p2
(1− F (y)) ≤ F̃ (y) ≤ 1− p̃1

p1
(1− F (y)), y ≥ F−1(p2)

(49)

As is obvious from figure 1, the bounds increase with the difference between p1

and p̃1. For K ≥ 3 the bounds on the predicted cdf are found by evaluating

K∑
k=1

p̃k

pk
F (y;xk) (50)
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at the extreme points of the set of feasible F (y; .).

As noted, a key assumption in the derivation of the bounds is that X is a

discrete variable. From (44) it is obvious that the bounds on the conditional cdf

become uninformative if pk goes to 0, i.e the bounds become 0 ≤ F (y | xk) ≤ 1

for all y. Hence, if X is close to continuous the bounds on the conditional

cdf’s are not useful. If the support of Y is bounded, e.g. if it is a dichotomous

variable, then the bounds on the support can be used to obtain bounds on

conditional expectations. Such bounds are of a different nature and beyond the

scope of this chapter.

3.2 Statistical matching of independent samples

The Fréchet bounds exhaust the information on the joint distribution of X,Y .

If we merge the samples A and B no information is added, and our knowledge

of the joint distribution of X and Y does not increase. How much we can learn

about the joint distribution of X,Y is completely determined by the relation

between X and Z in sample A and that between Y and Z in sample B.

In spite of this, the temptation to match two samples that do not have

common units as if they were two samples with a substantial degree of overlap

has been irresistible. A number of authors have proposed methods for this

type of file matching (Okner, 1972; Ruggles and Ruggles, 1974 ; Radner, 1974;

Ruggles, Ruggles, and Wolff, 1977; Barr and Turner, 1978; Kadane, 1978; see

also the survey in Radner et al. ,1980). These methods are direct applications

of those that are used in the reconstruction of broken random samples and
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probabilistic matching. Let the sample A be xi, z1i, i = 1, . . . , N1 and the sample

B be yi, z2i, i = 1, . . . , N2. The vectors z1 and z2 contain the same variables

and the subscript only indicates whether the observation is in sample A or B.

Because the samples A and B do not contain common units, the fact that z1i

and z2j are close does not imply that they refer to the same unit or even similar

(except for these variables) units. If we match unit i in A to unit j in B we

must decide which of the vectors z1i or z2j we include in the matched file. If we

use the observation for file A, then this file is referred as the base file, and file

B is called the supplemental file.

The two methods that have been used in the literature are constrained and

unconstrained matching. Both methods require the specification of a distance

function D(z1i, z2j). In (9) (for broken random sample) and (18) (for proba-

bilistic record linkage) we specify the distance function as a quadratic function

of the difference, but other choices are possible5. In practice, one must also

decide on which variables to include in the comparison, i.e. in the z vector. The

Fréchet bounds suggest that the joint distribution of X,Y is best approximated,

if the correlation between either X or Y and Z or the R2 in a regression of either

X or Y on Z is maximal. Often, the units that can be matched are restricted

to e.g. units that have the same gender. In that case gender is called a cohort

variable.

With constrained matching every unit in sample A is matched to exactly
5Rodgers (1984) finds no systematic differences in the performance of distance functions,

although he comments that the Mahalanobis distance using an estimated variance matrix does

not perform well.

38



one unit in sample B. Often A and B do not have an equal number of units.

However, both are random samples from a population and hence the sampling

fraction for both samples is known (assume for the moment that the sample is

obtained by simple random sampling) . The inverse of the sampling fraction

is the sample weight, wA for sample A and wB for sample B. Assume that the

weights are integers. Then we can replicate the units in sample A wA times

and those in sample B wB times to obtain two new samples that have the same

number of units M (equal to the population size). Now we match the units in

these samples as if they were a broken random sample, i.e. we minimize over

dij , i = 1, . . . ,M, j = 1, . . . ,M with dij = 1 if i and j are matched

M∑
i=1

M∑
j=1

dijD(z1i, z2j) (51)

subject to

M∑
k=1

dik = 1

(52)
M∑

k=1

dkj = 1

for all i = 1, . . . ,M , j = 1, . . . ,M . If we choose distance function (9) we obtain

the same solution as in a broken random sample. Of course, there is little

justification for this matching method if the samples A and B have no common

units.

The method of constrained matching was first proposed by Barr and Turner
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(1980). An advantage of this method is that the marginal distributions of X

and Y in the merged file are the same as those in the samples A and B. A

disadvantage is that the optimization problem in (51) is computationally bur-

densome.

In unconstrained matching the base file A and the supplemental file B are

treated asymmetrically. To every unit i in file A we match the unit j in file B,

possibly restricted to some subset defined by cohort variables, that minimizes

D(z1i, z2j). It is possible that some unit in B is matched to more than one

unit in A, and that some units in B are not matched to any unit in A. As

a consequence, the distribution of Z2, Y in the matched file may differ from

that in the original sample B. Note that if we use the distance function (18),

unconstrained matching is formally identical to probabilistic record linkage. Of

course, there is no justification for this method, if the samples A and B have no

common units. The first application of unconstrained matching was by Okner

(1972) who used the 1967 Survey of Economic Opportunity as the base file and

the 1966 Tax File as the supplemental file to create a merged file that contained

detailed data on the components of household income.

The merger of two files using either unconstrained or constrained matching

has been criticized since its first use. In his comment on Okner’s (1972) method,

Sims (1972) noted that an implicit assumption on the conditional dependence

of X,Y given Z is made, usually the assumption that X,Y are independent

conditional on Z. A second problem is best explained if we consider matching

as an imputation method for missing data. File A contains X,Z1 and Y is
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missing. If we assume conditional independence, an imputed value of Y is a

draw from the conditional distribution of Y given Z1 = z1. Such a draw can be

obtained from file B, if for one of the units in file B Z2 = z1. If such a unit is

not present in file B, we choose a unit with a value of Z2 close to z1. This is an

imperfect imputation, and we can expect that the relation between Z1 and Y

in the merged file is biased. Indeed, Rodgers (1984) reports that the covariance

between Z1 and Y is underestimated, as one would expect. An alternative

would be to estimate the relation between Y and Z2 in sample B, e.g. by a

linear regression, and use the predicted value for Z1 = z1, or preferably a draw

from the estimated conditional distribution of Y given Z1 = z1, i.e. include the

regression disturbance variability in the imputation6. The imputation becomes

completely dependent on model assumptions, if the support of Z1 is larger than

that of Z2. In general the distribution of X,Y, Z can only be recovered on the

intersection of the supports of Z1 and Z2. If both samples are random samples

from the same population, as we assume here, then the supports coincide.

It is possible to evaluate the quality of the data produced by a statistical

match, by matching two independent subsamples from a larger dataset. The

joint distribution in the matched sample can be compared to the joint distribu-

tion in the original dataset. Evaluation studies have been performed by, among

others, Ruggles, Ruggles, and Wolff (1977), and Rodgers and DeVol (1982). It

comes as no surprise that the conclusion from these evaluations is that the joint

distribution of X,Y cannot be estimated from the joint marginal distributions
6Even better: also include the variability due to parameter uncertainty.
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of X,Z and Y,Z.

As noted, matching can be considered as an imputation method for missing

data. Rubin (1986) has suggested that instead of merging the files A and B, it

is preferable to concatenate them, and to impute the missing Y in file A and

missing X in file B using the estimated relations between X and Z1 (file A) and

Y and Z2 (file B). In particular, he suggests not to use a single draw from the

(estimated) conditional distribution of X given Z1 = z2 and of Y given Z2 =

z1, effectively assuming conditional independence, but to add draws from the

distributions of X given Z1 = z2, Y = y and Y given Z2 = z1, X = x assuming

a range of values for the conditional correlation. The resulting datasets reflects

the uncertainty on the conditional correlation and the variability of parameter

estimates over the imputations indicates the sensitivity of these estimates to

assumptions on the conditional correlation. Further developments along these

lines can be found in Raessler (2002).

4 Estimation from independent samples with com-

mon variables

4.1 Types of inference

Without further assumptions the (conditional) Fréchet bound on the joint cdf

is all that can be learned from the two samples. These bound is usually not

sufficiently narrow, unless the common variables are highly correlated with Y

and X. In this section we explore what additional assumptions are needed to
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improve the inference.

We consider (i) conditional independence, and (ii) exclusion restrictions.

Exclusion restrictions refer to the situation that the distribution of Y given

X,Z is independent of a subvector Zc
0 of Z, and hence depends only on the other

variables Z0 in Z. We also consider both nonparametric inference, i.e. the goal

is to estimate the joint distribution of Y,X,Z0 or the conditional distribution

of Y given X,Z0 or moments of these distributions, and parametric inference,

i.e. the joint distribution of Y,X,Z0 or the conditional distribution of Y given

X,Z0 is in a parametric class. Parametric assumptions play an important role

in inference from independent samples, a theme that is repeated in section 5 on

inference in repeated cross-sections.

None of the methods discussed below requires that the two samples are

merged. All computations can be done on the two samples separately.

4.2 Semi- and non-parametric inference

4.2.1 Conditional independence

If Y,X are stochastically independent given the common variables Z, then the

joint density of X,Y is

f(x, y) = E(f(x|Z)f(y|Z)) (53)

Although the joint distribution is identified, often we just want to compute an

expectation E(g(X,Y ). We have
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E(g(X,Y )) = EY Z(E(g(X,Y ) | Y, Z)) = EY Z(E(g(X,Y ) | Z)) (54)

where the last equality holds by conditional independence. Note that the inner

conditional expectation is with respect to the distribution of X given Z that is

identified from sample A, and that the outer expectation is with respect to the

joint distribution of Y, Z that is identified from sample B. We implicitly assume

that the distributions of Z1 and Z2 in the samples A and B are identical. This

is true if both samples are from the same population

For a fixed value of Y , we can estimate the inner conditional expectation

by a nonparametric regression (e.g. kernel or series) estimator of g(X, y) on

Z using sample A. The estimator of E(g(X,Y ) is then obtained by averaging

this regression estimator over Y, Z in sample B. The analysis of this estimator is

beyond the scope of this chapter. It is similar to the semi-parametric imputation

estimator proposed by Imbens, Newey, and Ridder (2004) and Chen, Hong,

and Tarrozi (2004) who establish semi-parametric efficiency for their estimator.

Their results can be directly applied to this estimator. In the literature it has

been suggested that for the estimation of E(g(X,Y ) we must first estimate the

joint distribution of X,Y (see Sims ,1972 and Rubin ,1986), but this is not

necessary. Note that a similar method can be used to estimate E(g(X,Y, Z0))

with Z0 a subvector of Z.
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4.2.2 Exclusion restrictions

If we are not prepared to assume that X,Y are conditionally independent given

Z, we can only hope for bounds on the expected value E(g(X,Y, Z0)). Such

bounds are given by Horowitz and Manski (1995) and Cross and Manski (2002)

and can be derived in the same way as the bounds in section 3.1. In particular,

they derive bounds on E [g(h(Y, Z0), X, Z0) | X = x,Z0 = z0] with g bounded

and monotone in h for (almost all) x, z0.

We consider two possibilities: (i) the conditional distribution of Y givenX,Z

depends on all variables in Z, (ii) this conditional distribution only depends on

a subvector Z0 of Z and is independent of the other variables Zc
0 in Z. Note

that the possibilities are expressed in terms of the conditional distribution of Y

given X (and Z or Z0). This suggests that Y is considered as the dependent

variable and that X,Z are explanatory variables.

If assumption (i) applies, the bounds derived above are bounds on F (y; . |

Z = z) or F (y | ., Z = z)). If we are interested in F (y; .) or F (y | .), we have

to average over the marginal distribution of Z or the conditional distribution of

Z given X = xk (F (y | X = xk, Z) has to be averaged over this distribution).

As noted in section 3.1 this averaging results in narrower bounds, but as noted

in that section the correlation between Y and Z and X and Z must be high to

obtain informative bounds.

Assumption (ii) that states that the vector of common variables Zc
0 can

be omitted from the relation between Y and X,Z is more promising. As

stated, assumption (ii) focuses on conditional (in)dependence of Y and Zc
0 given
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X,Z0. Alternatively, the assumption can be expressed as conditional mean

(in)dependence or conditional quantile (in)dependence. In that case, we iden-

tify or obtain bounds on the conditional mean or quantile. We only discuss

conditional (in)dependence. The derivation of bounds on the conditional mean

from bounds on the conditional cdf is complicated by the fact that the condi-

tional mean is not a continuous function of the conditional cdf. However, if the

assumptions are expressed as restrictions on the conditional mean, this does not

matter.

Assumption (ii) is an exclusion restriction. If we decompose Z = (Z ′0Z
c′

0 )′,

then Zc
0 is excluded from the conditional distribution of Y given X,Z. Exclu-

sion restrictions are powerful and often are sufficient to identify F (y | x, z0). We

maintain the assumption that X is discrete. This simplifies the analysis sub-

stantially. This is not surprising, because nonparametric identification under

exclusion restrictions is an inverse problem, and it is well-known that inverse

problems are much harder for continuous distributions (see e.g. Newey and

Powell (2003)). First, we consider conditions under which F (y | x, z0) is non-

parametrically identified. Next, we consider the underidentified case, and we

show that we can find bounds that improve on the bounds that hold without

an exclusion restriction.

Without loss of generality we omit Z0. The common variable Z is excluded

from the conditional cdf of Y given X,Z. We denote

Pr(X = xk | Z = z) = pk(z) (55)
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With the exclusion restriction we have that for all z

F (y | z) =
K∑

k=1

F (y | xk)pk(z) (56)

If Z is also discrete, (56) is a linear system of equations with unknowns F (y | xk),

i.e. K unknowns. Hence, this system has a unique solution if Z takes at least

L ≥ K values and the L×K matrix, with (l, k)-th component pk(zl) has rank

equal to K. In that case F (y | .) is exactly identified. If the rank of this matrix

is strictly greater than K (this requires that L > K), then the equation has no

solution. Hence, if L > K a test of the rank of the matrix, and in particular a

test whether the rank is equal to K is a test of the overidentifying restrictions,

or in other words, a test of the exclusion restriction. If the exclusion restriction

is rejected, we can allow the conditional cdf of Y given X,Z to depend on Z.

For instance, if X takes two values and Z contains two variables, of which the

first takes two values and the second four, then we obtain an exactly identified

model by allowing the conditional cdf to depend on the first variable in Z.

If X and Z take two values, i.e. K = L = 2, the solutions to (56) is

F (y | x1) =
p2(z1)F (y | z2)− p2(z2)F (y | z1)

p1(z2)− p1(z1)

(57)

F (y | x2) =
p1(z2)F (y | z1)− p1(z1)F (y | z2)

p1(z2)− p1(z1)

Note that this implies that
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F (y | x2)− F (y | x1) =
F (y | z2)− F (y | z1)
p1(z2)− p1(z1)

(58)

If conditional cdf’s are replaced by conditional expectations, this is the Wald

estimator (Wald, 1940), which is the Instrumental Variable (IV) estimator for

a dichotomous endogenous variable with a dichotomous instrument.

Solving (56) for the case that X is continuous is much harder. In effect, we

have to find the components of a mixture in the case that the mixing distribution

is known. The problem is that the solution is not continuous in F (y | .) unless

restrictions are imposed on these conditional distributions. For instance, if Z is

independent of Y,X (exclusion restriction) and the joint distribution of Y,X is

normal, then the covariance of Y,X can be recovered from

E(Y | Z = z) = µY + ΣY XΣ−1
XX(E(X | Z = z)− µX) (59)

with µ the mean and Σ the covariance matrix of the joint normal distribution.

Further details on weaker restrictions can be found in Newey and Powell (2000).

The similarity of the nonparametric two-sample estimator and the corre-

sponding IV estimator with endogenous X and Z as instrumental variable, can

lead (and as will be noted in section 4.4 has led) to much confusion. In partic-

ular, it does not mean that we should consider X as an endogenous variable.

If L < K the conditional cdf F (y|.) is not identified. In that case we can

use the results in Horowitz and Manski (1995) and Cross and Manski (2002)

to obtain bounds (see the discussion in section 3.1). The exclusion restriction

imposes additional restrictions on the conditional cdf. Figure 3 illustrates these
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bounds for the case K = 3, L = 2. In this figure the two triangles give the

sets of F (y|x1), F (y|x2), F (y|x3) that are consistent with sample information

if Z = z1 or Z = z2. Because Z takes both values and is excluded from

the conditional distribution of Y given X = x, F (y|x1), F (y|x2), F (y|x3) has

to be in the intersection of these triangles. Note that the extreme points are

the Wald estimators of F (y|x1), F (y | x3) and F (y|x2), F (y|x3) for the case

that F (y|x2) and F (y|x1) are set to 0, respectively. In general the extreme

points are Wald estimators for conditional cdf’s that are obtained by imposing

identifying restrictions. Figure 3 is drawn for pk(zl) ≤ 1
2 , k = 1, 2, 3, l = 1, 2

and y < min{F−1(pk(zl)), k = 1, 2, 3, l = 1, 2}. The other bounds can be

obtained in the same way. Note that the exclusion restriction gives a narrower

bound. To see this, compare the bound on F (y|x1) in the figure to those for

Z = z1 or Z = z2, which are 0 (lower bound) and F (y|z1))
p1(z1)

and F (y|z2))
p1(z2)

(upper

bound), respectively.

4.3 Parametric inference

4.3.1 Conditional independence

Often two samples are merged to estimate a parametric relation between a de-

pendent variable Y , present in one sample, and a vector of independent variables

X some of which may be only present in an independent sample. We assume

that sample A contains X,Z, sample B contains Y, Z and that we estimate a

relation between Y and X,Z0 with Z0 a subvector of Z. This relation has a

vector of parameters θ and we assume that the population parameter vector θ0
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is the unique solution to the population moment conditions

E(m(Y,X,Z0; θ)) = 0 (60)

This framework covers Maximum Likelihood (ML) and Generalized Method of

Moments (GMM). Initially, we assume that X and Y are conditionally inde-

pendent given Z.

Under conditional independence we have

E(m(Y,X,Z0; θ)) = EY Z(EX(m(Y,X,Z0; θ) | Y, Z)) = EY Z(EX(m(Y,X,Z0; θ) | Z))

(61)

If we we have an estimate of the conditional distribution of X given Z, identified

in sample A, we can estimate E(m(y,X, z0; θ) | Z = z) for fixed values Y = y

and Z = z using the data from sample A. The sample moment conditions

corresponding to (61) are

1
N2

N2∑
j=1

ÊX|Z(m(Yj , X, Z02j ; θ) | Z2j) = 0 (62)

where the hat indicates that the conditional expectation is estimated using the

data from sample A.

As an example consider the regression model

Y = β1X + β2Z0 + ε (63)

The scalar dependent variable Y and a vector of common variables Z1 are ob-
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served in sample A. The (scalar) independent variable X and a vector of the

common variables Z2 are observed in sample B (the subscript on Z indicates

the sample). We assume that Z1 and Z2 are independently and identically dis-

tributed. The scalar variable Z0 is a component of Z. The parameters β1, β2

are identified by

E(ε | X,Z) = 0 (64)

In general this assumption is too strong, because it generates more moment con-

ditions than are needed to identify the regression parameters. These parameters

are identified, even if (scalar) X is correlated with ε, provided that Z has two

variables that are not correlated with ε. In general, Z is chosen to ensure that

the variables in the relation that are in sample A and those that are in sample

B are conditionally independent given Z, and Z may contain many variables.

It is not even necessary to assume that all the variables in Z are exogenous, as

suggested by (64). If X is exogenous, only Z0 (or one other variable in Z) has

to be exogenous.

We first consider the case that bothX and Z0 are exogenous. The population

moment conditions are

E[(Y − β1X − β2Z0)X] = 0

(65)

E[(Y − β1X − β2Z0)Z0] = 0
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Under conditional independence these can be written as

EY Z2 [Y EX|Z1(X | Z2)− β1EX|Z1(X
2 | Z2)− β2Z02EX|Z1(X | Z2)] = 0 (66)

EY Z2 [(Y − β1EX|Z1(X | Z2)− β2Z02)Z02] = 0 (67)

In these expressions EX|Z1(X | Z2) is the conditional expectation of X given

Z1 that can be estimated from sample A and that is a function of Z1, with Z2

substituted for Z1. In other words, it is the imputed X in sample B based on

Z2 observed in sample B and using the conditional expectation of X given Z1

in sample A.

If we substitute the sample moments for EY Z2 [Y EX|Z1(X | Z2)], EY Z2 [EX|Z1(X |

Z2)], EY Z2 [EX|Z1(X
2 | Z2)], and EY Z2 [Z02EX|Z1(X | Z2)], we obtain the sample

moment conditions that can be solved to obtain the estimator of the regression

coefficients. From GMM theory (Hansen, 1982) it follows that this estimator

is consistent and asymptotically normal . If the number of moment conditions

exceeds the number of parameters, we obtain an efficient estimator by minimiz-

ing a quadratic form in the sample moment conditions with the inverse of the

variance matrix of these conditions as weighting matrix.

It is interesting to note that the GMM estimator obtained from (66)-(67) is

not the imputation estimator obtained by replacing the unobserved X in sample

B by its imputed value. The imputation estimator is not even available, if X

and Z0 are both exogenous and Z = Z0.
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If Z contains at least one additional exogenous variable, Zc
0, we can choose to

use the moment condition corresponding to Zc
0, instead of the moment condition

corresponding to X, even if X is exogenous. In that case we can replace the

moment conditions (65) by

E[(Y − β1X − β2Z0)Zc
0] = 0

(68)

E[(Y − β1X − β2Z0)Z0] = 0

Because the Z’s are in both samples, all expected values in these population

moment conditions can be obtained from sample A (E(XZ0),E(XZc
0)), sample

B (E(Y Z0),E(Y Zc
0)) or both (E(Z2

0 ),E(Z0Z
c
0)). Hence, in this case we need not

make the assumption of conditional independence of X and Y given Z. Note

that this is true, irrespective of whether X is endogenous or not. Key are the

availability of additional common variables that can replace X in the moment

conditions and the additive separability of variables that are in different samples

in the residual Y − β1X − β2Z0. We shall explore this below.

In the example the distribution of X given Z was not needed to obtain the

GMM estimator, because the moment conditions were quadratic in X and only

E(X | Z) and E(X2 | Z) had to be estimated. In general, this will not be

the case, and an assumption on this conditional distribution is needed. Econo-

metricians are usually reluctant to specify the distribution of exogenous vari-

ables, and for that reason we may consider a semi-parametric alternative in
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which EX|Z1(m(y,X, z0; θ) | Z = z) is estimated by a nonparametric regression

(series or kernel estimator) of m(y,Xi, z0; θ) on Z1i in sample A. This gives

ÊX|Z(m(y,X, z0; θ)) which is substituted to obtain the sample moment con-

ditions as an average in sample B. This estimator is similar to the estimator

considered in Chen, Hong and Tarrozi (2004) and Imbens, Newey, and Ridder

(2004), and their results can be used to analyze this estimator.

4.3.2 Exclusion restrictions

In section 4.2.2 we discussed conditions under which exclusion restrictions are

sufficient for the nonparametric identification of the conditional distribution of

Y given X,Z0. In this section we consider parametric inference. The assump-

tions we impose are convenient, but stronger than needed. In particular, we

restrict the discussion to additively separable moment conditions. The existing

literature only considers this case. If the exclusion restrictions identify the joint

distribution as explained in section 4.2.2, the separability assumption can be

relaxed. This has not been studied, and developing procedures for this case is

beyond the scope of this chapter.

The setup and notation is as in section 4.2.2 with Zc
0 the components of Z

that are not in the relation and satisfy (69), i.e. that are exogenous for the

relation between Y and X,Z0. We consider moment conditions that can be

written as

E((f(Y ; θ)− g(X,Z0; θ))h(Z0, Z
c
0)) = 0 (69)
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with f, g, h known functions and θ a vector of parameters. If Y is scalar, then

so is g. The dimension of h is not smaller than that of θ. In general, this implies

that the dimension of Zc
0 has to exceed that of X7, i.e. the number of common

exogenous variables that is excluded from the relation can not be smaller than

the number of variables in X. If we assume that some variables in either X

or Z0 are endogenous we need as many additional variables in Zc
0 as there are

endogenous variables among X,Z0.

The estimator based on the population moment conditions (69) is called

the Two-sample Instrumental Variable (2SIV) estimator. In the case that all

variables are observed in a single sample, the estimator based on the moment

conditions in (69) is related to Amemiya’s nonlinear simultaneous equations

estimator (see e.g. Amemiya, 1985, Chapter 8).

We discuss three examples of models that give moment conditions as in

(69): the linear regression model, the probability model for discrete dependent

variables, and the mixed proportional hazard model for duration data. In all

models we take h(Z0, Z
c
0) = (Z ′0 Zc′

0 )′. For the linear regression model the

moment conditions are

E(Y − β0 − β′1X − β′2Z0) = 0 (70)

E((Y − β0 − β′1X − β′2Z0)Z0) = 0 (71)

7If Z0 is exogenous, then functions, e.g. powers, of Z0 are also exogenous. To avoid

identification by functional form, we need the additional exogenous variables in Zc
0 .
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E((Y − β0 − β′1X − β′2Z0)Zc
0) = 0 (72)

Note that we can replace X by E(X | Z0, Z
c
0)

8. We can even replace X by the

linear approximation to this conditional expectation, i.e. by π0 + π′1Z0 + π′2Z
c
0

where the vector π minimizes E[(X − π0 − π′1Z0 − π′2Z
c
0)

2]. This gives the

estimating equations of the two-stage linear imputation estimator first suggested

by Klevmarken (1982). In the first stage, the vector of independent variables X

is regressed on the common exogenous variables Z0, Z
c
0 using data from sample

A. This estimated relation is used to compute the predicted value of X in sample

B, using the common variables as observed in sample B. These predicted values

are substituted in the estimating equations that now only contain variables

observed in sample B.

The second example is the probability model for discrete dependent vari-

ables. If we consider a dummy dependent variable then we specify

Pr(Y = 1 | X,Z0) = G(β0 + β′1X + β′2Z0) (73)

with G a cdf of some continuous distribution, eg. the standard normal (Probit)

or logistic cdf (Logit). The moment conditions are

E(Y −G(β0 + β′1X + β′2Z0)) = 0 (74)

E((Y −G(β0 + β′1X + β′2Z0)Z0) = 0 (75)
8This is a consequence of the equivalence of 2SLS and IV in this type of models
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E((Y −G(β0 + β′1X + β′2Z0)Zc
0) = 0 (76)

Except for the logit model, these moment conditions do not give the efficient

estimator of β. To obtain the efficient estimator we must multiply the residual

by

g(β0 + β′1X + β′2Z0)
G(β0 + β′1X + β′2Z0)(1−G(β0 + β′1X + β′2Z0))

(77)

The resulting moment equation can not be computed from the separate samples.

Ichimura and Martinez-Sanchis (2005) discuss this case and also derive bounds

on the parameters if there is no point identification.

The last example is the Mixed Proportional Hazard (MPH) model for du-

ration data. In that model the hazard rate h of the duration Y is specified

as

h(y | x, V ; θ) = λ(y; θ1) exp{θ′2X + θ′3Z0}V (78)

with λ the baseline hazard and V a random variable that is independent of

Z0, Z1 and that captures the effect of omitted variables. By (78) we have that

lnΛ(Y ; θ1) + θ′2X + θ′3Z0 = U (79)

with U independent of Z0, Z1 and Λ the integral of λ. This gives the moment

conditions

E((lnΛ(Y ; θ1) + θ′2X + θ′3Z0)Z0) = 0 (80)
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E((lnΛ(Y ; θ1) + θ′2X + θ′3Z0)Zc
0) = 0 (81)

The number of variables in Zc
0 must at least be equal to the number of parame-

ters in (θ′1 θ
′
2)
′9. Alternatively, we can identify θ1 by making assumptions on the

functional form of the regression function. For instance, if we maintain the hy-

pothesis that the regression function is linear, we can use powers of the variables

in Zc
0 in the moment conditions. In that case no additional common variables

are needed10. Besides the MPH model, we can estimate other transformation

models from two independent samples. Examples are the Box-Cox transform

(Box and Cox, 1964) and the transform suggested by Burbidge, Magee, and

Robb (1988)11.

These three examples correspond to linear regression, nonlinear regression

and transformation models. Other models, as the Tobit model, can also be

estimated with this type of data. For the Tobit model we can employ the two-

part estimation method that yields moment conditions as in (69). Only in the

linear regression model is the GMM estimator equivalent to a (linear) imputation

estimator. In the other examples, imputation yields biased estimates.

The additional common variables Zc
0 must be exogenous. They also have

9If we the baseline hazard is Weibull we can identify the regression parameters up to scale.

These parameters can be identified, if we choose a functional form for the baseline hazard

that is not closed under a power transformation.
10Provided that the identification condition (A3) below is satisfied.
11The latter transform is used by Carroll, Dynan, and Krane (1999) who use two inde-

pendent samples to estimate their regression model. Because their model has a ’missing

parameter’ and not a missing regressor, they do not use 2SIV.
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to be correlated with the variables in X. In other words, they must satisfy

the requirements for valid instruments for X, irrespective whether the variables

in X are exogenous or endogenous. As noted before, the separability of the

moment conditions is a sufficient, but not necessary condition for identification.

The asymptotic distribution theory of the 2SIV estimator based on (69)

raises some new issues. First, we introduce some notation. Let

m(θ) = (f(Y ; θ)− g(X,Z0; θ))h(Z0, Z
c
0) (82)

and for i = 1, . . . N1, j = 1, . . . N2

m2j(θ) = f(Yj ; θ)h(Z02j , Z
c
02j)

(83)

m1i(θ) = g(Xi, Z01i; θ)h(Z01i, Z
c
01i)

with the second subscript in e.g. Z01i indicating that the common included

exogenous variable Z0 is observed in sample A etc. Using this notation, the

sample moment conditions are

mN (θ) =
1
N2

N2∑
j=1

m2j(θ)−
1
N1

N1∑
i=1

m1i(θ) (84)

We make the following assumptions (the derivatives in the assumptions are

assumed to exist and to be continuous in θ)

(A1) The common variables in samples A and B, the random vectors Z01, Z
c
01

and Z02, Z
c
02 are independently but identically distributed.
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(A2) If N1, N2 →∞

∂mN

∂θ′
(θ)

p→ E
(
∂m

∂θ′
(θ)
)

uniformly for θ ∈ Θ with Θ the parameter space.

(A3) The rank of the matrix E
(

∂m
∂θ′ (θ0)

)
is equal to the dimension of θ.

Assumption (A1) ensures that the limit in (A2) holds pointwise for every θ ∈ Θ.

Assumption (A3) is the identification condition. The probability limit of the

derivative of the moment conditions is

E
(
∂m

∂θ′
(θ)
)

= E
(
∂f(Y ; θ)
∂θ′

h(Z02, Z
c
02)
)
−E

(
∂g(X,Z01; θ)

∂θ′
h(Z01, Z

c
01)
)

(85)

This matrix can be estimated consistently from the samples A and B, because

the expectations only involve variables that are observed in the same sample.

The 2SIV is formally defined by

θ̂N = arg min
θ∈Θ

mN (θ)′WNmN (θ) (86)

with WN a weighting matrix that satisfies

WN
p→W (87)

with W a positive definite matrix and N →∞ if N1, N2 →∞. In the appendix

we show that assumptions (A1)-(A3) are sufficient for weak consistency of the

2SIV.
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If (A1) does not hold, the 2SIV is biased. The probability limit is the

minimizer of

(θ − θ0)′E
[
∂m′

∂θ
(θ∗)

]
WE

[
∂m

∂θ′
(θ∗)

]
(θ − θ0)+ (88)

2E[m(θ0)]′WE
[
∂m

∂θ′
(θ∗)

]
(θ − θ0) + E[m(θ0)]′WE[m(θ0)]

but the last two terms do not vanish. We can use this expression to find the

asymptotic bias of the 2SIV estimator.

The optimal weight matrixW is the inverse of the variance matrix ofmN (θ0).

To derive the asymptotic variance matrix we have to make an assumption on

the rate at which the sample sizes increase. Such an assumption was not needed

to establish weak consistency of the 2SIV estimator. We assume

(A4) limN1→∞,N2→∞
N2
N1

= λ with 0 < λ <∞.

Consider, using the fact that E(m(θ0)) = 0 if (A1) is true,

√
N2mN (θ0) = (89)

=
1√
N2

N2∑
j=1

(m2j(θ0)− E(m2j(θ0))−
√
N2

N1

1√
N1

N1∑
i=1

(m1i(θ0)− E(m1i(θ0))

Hence, the asymptotic variance matrix of the moment conditions is

M(θ0) = lim
N2→∞

E[N2mN (θ0)mN (θ0)′] = λVar(m2j(θ0)) + Var(m1i(θ0)) (90)

and the inverse of this matrix is the optimal choice for W (θ0). This matrix can

be easily estimated if we have an initial consistent estimator. Note that by the
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central limit theorem for i.i.d. random variables (if the asymptotic variance is

finite)
√
N2mN (θ0) converges to a normal distribution with mean 0. However,

if (A1) does not hold and as a consequence E(m(θ0)) 6= 0, the mean diverges.

This will affect the interpretation of the test of overidentifying restrictions that

will be discussed below.

Under (A1)-(A4)

√
N2(θ̂N − θ0)

d→ N(0, V (θ0)) (91)

with

V (θ0) =
[
E
(
∂m′

∂θ
(θ0)

)
W (θ0)E

(
∂m

∂θ′
(θ0)

)]−1

. (92)

.E
(
∂m′

∂θ
(θ0)

)
W (θ0)(λVar(m2j(θ0)) + Var(m1i(θ0)))W (θ0)E

(
∂m

∂θ′
(θ0)

)
.

.

[
E
(
∂m′

∂θ
(θ0)

)
W (θ0)E

(
∂m

∂θ′
(θ0)

)]−1

See the appendix for a proof.

The preceding discussion suggest a two-step procedure. In the first step we

use a known weight matrix, e.g. WN = I. The resulting 2SIV estimator is

consistent, but not efficient. In the second step, we first estimate the optimal

weight matrix, the inverse of (90). This matrix only depends on the first-

step consistent estimator and moments that can be computed from the two

independent samples A and B (for λ we substitute N2
N1

). Next, we compute

the efficient 2SIV estimator (86) with this weight matrix. This estimator has

asymptotic variance
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[
E
(
∂m′

∂θ
(θ0)

)
(λVar(m2j(θ0)) + Var(m1i(θ0))) E

(
∂m

∂θ′
(θ0)

)]−1

(93)

which can be estimated from the independent samples.

In general, the efficient 2SIV estimator is less efficient than efficient esti-

mators based on a sample that contains all the variables. In the case that the

information matrix only depends on variables in sample A, we can estimate the

variance of the efficient estimator, even if the estimator itself can not be com-

puted from the independent samples. The inverse of the information matrix

gives an indication of the efficiency loss, due to the fact that we do not have a

sample that has all variables.

If the number of moment conditions is larger than the number of parameters,

we can test the overidentifying restrictions. The test statistic is

TN = N2mN (θ̂N )′
[
N2

N1
V̂ar(m2j(θ̂N )) + V̂ar(m1i(θ̂N ))

]−1

mN (θ̂N ) (94)

where V̂ar denotes the sample variance. If (A1)-(A4) hold, then TN
d→ χ2(dim(m)−

dim(θ)). The appendix contains a proof.

As noted before, rejection of the overidentifying restrictions indicates that

either some of the common variables that are used as instruments are not ex-

ogenous or that they are not identically distributed in the samples A and B.

Although the technique of choice for estimating relations from combined

samples has been GMM, Maximum Likelihood can be used as well. A reason

for the preference for GMM (or IV) may be that in that framework it is easier
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to obtain consistent estimates of structural parameters if some of the regressors

are endogenous. Orthogonality conditions for equation errors and instrumental

variables are more natural in GMM. To define the Two-Sample Maximum Like-

lihood (2SML) estimator we start with a parametric model for the conditional

distribution of Y given X,Z0, f(y | x, z0; θ). Because X is not observed in sam-

ple A, we use sample B to estimate the conditional density of X given Z0, Z1.

We can use a parametric or a non-parametric estimator for the latter conditional

density. The likelihood contributions are obtained from the conditional density

of Y given Z0, Z1

f(y | z0, z1; θ) =
∫
f(y | x, z0; θ)g(x | z0, z1)dx (95)

With a parametric estimator for g(x | z0, z1) the 2SML estimators is a conven-

tional MLE with all the usual properties. The properties of the 2SML with a

non-parametric estimator of this conditional density have not been studied. In

section 4.2.2 we considered nonparametric identification of f(y|x1, z0), and non-

parametric identification is sufficient for parametric identification. Again Chen,

Hong, and Tarrozi (2004) and Imbens, Newey, and Ridder )(2004) provide the

framework in which the 2sML can be analyzed.

2SIV or 2SML are used if some of the explanatory variables in a relation are

not measured in the same sample as the dependent variable. Another situation

occurs in models with generated regressors, in which the parameters of the

generated regressor cannot be estimated from the same sample. An important

example of a generated regressor is the sample selection correction function. An
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example is the estimation of a wage equation on a sample of working individuals.

This yields biased estimates of the regression coefficients if a positive fraction

of the population under consideration does not work. A method to reduce this

bias is to include a sample selection correction function (Heckman, 1979). The

parameters of this function cannot be estimated from the sample of working

individuals. However, if an independent sample is available that contains both

working and non-working individuals but no information on wages, then the

parameters can be estimated from this sample. This allows us to compute the

sample selection correction for the working individuals.

Another example of a generated regressor is Carroll, Dynan, and Krane

(1999) who estimate the effect of the probability of becoming unemployed on

the wealth to income ratio. They estimate the wealth equation with data from

the Survey of Consumer Finances (SCF). However, the SCF has no information

on unemployment. The probability of becoming unemployed is estimated from

the Current Population Survey (CPS) and because the variables that enter this

probability are also observed in the SCF, this probability can be imputed in

the SCF. Note that in these examples there are no missing variables. Only the

parameters that enter the generated regressor are estimated from an indepen-

dent sample. This type of data combination can be treated as any estimation

problem with a generated regressor (Pagan, 1984). The fact that the parameter

is estimated from an independent sample even simplifies the distribution theory.
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4.4 The origin of two-sample estimation and applications

Of the methods discussed in this section only the 2SIV estimator is prominent

in econometrics. The first author who suggested this estimator was Klevmarken

(1982). Since then it was rediscovered independently by Angrist and Krueger

(1992) and Arellano and Meghir (1992)12. Klevmarken derives the 2SIV es-

timator for a single equation that is part of a system of linear simultaneous

equations. In our notation he considers

Y = β0 + β′1X + β′2Z0 + ε (96)

with X observed in sample A and Y in sample B, while Z0 is a subvector of

the common variables Z. He also assumes that all the variables in X are en-

dogenous13, that all the common variables Z are exogenous and that Z contains

all exogenous variables14. If we compare these assumptions with ours, we see

that Klevmarken’s assumptions are far too strong and limit the application of

2SIV to rather special cases. In particular, the assumption that Z contains all

exogenous variables seems to be inspired by a desire to give a structural inter-

pretation to the first-stage imputation regression, in which X is regressed on

the exogenous variables in Z. Such an interpretation is not needed, and hence

the only requirement is the order condition discussed in the previous subsection.

Moreover, not all common variables need to be exogenous, as long as this order

condition is satisfied. Finally, some of the variables in X may be exogenous.
12These authors do not cite Klevmarken’s contribution
13Klevmarken (1982), p. 160
14Klevmarken (1982), p. 159

66



Klevmarken states that we can only allow for exogenous variables if the joint

distribution of X and Z is multivariate normal, which ensures that the con-

ditional mean of X given Z is linear in Z. As the derivation in the previous

subsection shows, a linear conditional mean is not essential for the 2SIV esti-

mator. In the linear regression model replacing the conditional expectation by

the linear population projection on Z will not affect the moment conditions15

and hence the assumption of multivariate normality is not needed. Carroll and

Weil (1994) start from the same model as Klevmarken. They claim16 that to

compute the variance matrix of the 2SIV estimator it is required that in one

of the datasets we observe Y,X,Z. The discussion in the previous subsection

shows that this is not necessary. The problem with their approach is that their

estimator of the variance matrix requires the residuals of the regression and

these cannot be recovered from the independent samples.

At this point, we should clarify the role of endogenous and exogenous regres-

sors in 2SIV estimation. The natural solution to missing variables in a statistical

relation is imputation of these variables. Indeed, the 2SIV estimator in the lin-

ear regression model can be seen as an imputation estimator. Econometricians

are used to imputation if the regression contains some endogenous variables.

In the Two-stage Least Squares (2SLS) estimator the endogenous variables are

replaced by a predicted or imputed value. Hence, it is not surprising that 2SIV

was originally developed for linear regression models with endogenous regressors.

Our derivation shows that such a restriction is not necessary, and in particular,
15Provided that the distribution of the common variables in the two samples is the same.
16See the Technical Appendix t their paper.
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that the 2SIV only imputes missing variables, if the model is a linear regression.

In the general case specified in (69), there is no imputation of missing variables.

After Klevmarken (1982) the 2SIV estimator was reinvented independently

by Arellano and Meghir (1992) and Angrist and Krueger (1992). Arellano and

Meghir consider moment restrictions of the form (we use our earlier notation

with Z1, Z2 the common variables Z as observed in sample A and B, respec-

tively)

E(m((X,Z1; θ)) = 0

(97)

E(m((Y, Z2; θ)) = 0

i.e. the moment restrictions are defined for the samples A and B separately.

These separate moment restrictions are obtained if we consider the linear re-

gression model (96). If we relate the X to the exogenous common variables

Z

X = ΠZ + η (98)

we can substitute this in (96) to obtain

Y = β0 + β′1ΠZ + β′2Z0 + ε+ β′1η (99)

If the order condition is satisfied, we can estimate β from the linear regression in

(99). In particular, (98) can be estimated from sample A and (99) from sample
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B. The corresponding moment conditions are

E((X1 −ΠZ1)′Z1) = 0

(100)

E((Y − β0 − β′1ΠZ2 − β′2Z02)Z2) = 0

and this has the form (97). Note again that the linear first step can be seen as

a linear population projection and is valid even if the conditional expectation

of X1 given Z is not linear (provided that Z1 and Z2 have the same distribu-

tion). Also the moment restrictions are nonlinear in the structural parameters

β. Arellano and Meghir (1992) propose to estimate β0, π = Π′β1 and β2, and

to use Chamberlain’s (1982) minimum distance estimator in a second stage to

obtain an estimate of the structural parameters. Their estimator is equivalent

to the imputation estimator. In particular, it can only be used if the X enters

linearly in the moment conditions, and it can not be used if we estimate a model

with a nonlinear (in X) moment condition.

Arellano and Meghir apply their estimator to a female labor supply equation.

In this equation the dependent variable, hours, is observed in the UK Labor

Force Survey (LFS), the European counterpart of the US Current Population

Survey. Two of the independent variables, the wage rate and other income,

are obtained from a budget survey, the Family Expenditure Survey (FES). This

situation is common: budget surveys contain detailed information on the sources

of income, while labor market surveys contain information on labor supply and
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job search. An indicator whether the woman is searching for (another) job is

one of the explanatory variables. Arellano and Meghir estimate the labor supply

equation using the LFS data after imputing the wage rate and other income,

using a relation that is estimated with the FES data. The common variables

(or instruments) that are used in the imputation, but are excluded in the labor

supply equation are education and age of husband and regional labor market

conditions.

Angrist and Krueger (1992) consider the linear regression model

Y = β0 + β′1X + ε (101)

with X,Z1 observed in sample A and Y, Z2 in sample B with A and B inde-

pendent samples from a common population. They assume that all common

variables are exogenous, and they implicitly assume that the number of (exoge-

nous) common variables exceeds the number of variables in X, i.e. that the

order condition is satisfied. Under these conditions the 2SIV estimator is based

on a special case of the moment conditions in (70)-(72).

Angrist and Krueger apply the 2SIV estimator to study the effect of the age

at school entry on completed years of schooling. Children usually go to school

in the year in which they turn 6. If this rule were followed without exceptions,

then the age at school entry would be determined by the birthdate. However,

exceptions occur and there is some parental control over the age at school entry

which makes this variable potentially endogenous. Angrist and Krueger assume

that the the date of birth is not correlated with any characteristic of the child
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and hence has no direct effect on completed years of schooling. Because there

is no dataset that contains both age at school entry and completed years of

schooling, Angrist and Krueger combine information in two US censuses, the

1960 and the 1980 census. Because they use 1% (1960) and 5% (1980) samples

they assume that the number of children who are in both samples is negligible.

They compute the age at school entry from the 1960 census and the completed

years of schooling from the 1980 census. The common variable (and instrument)

is the quarter in which the child is born.

Other applications of 2SIV are Carroll and Weil (1994), Lusardi (1996), Dee

and Evans (2003), and Currie and Yelowitz (2000). Carroll and Weil (1994)

combine data from the 1983 Survey of Consumer Finances (SCF) that con-

tains data on savings and wealth and the Panel Study of Income Dynamics

(PSID) that contains data on income growth to study the relation between the

wealth income ratio and income growth. The common variables are education,

occupation, and age of the head of the household. Lusardi (1996) estimates

an Euler equation that relates the relative change in consumption to the pre-

dictable component of income growth. Because the consumption data in the

PSID are unreliable, she uses the Consumer Expenditure Survey (CEX) to ob-

tain the dependent variable. She also shows that the income data in the CEX

are measured with error (and that number of observations with missing income

is substantial) and for that reason she uses the PSID to measure income growth.

She experiments with different sets of common exogenous variables that contain

household characteristics (marital status, gender, ethnicity, presence of children,
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number of earners), education and occupation (interacted with age), education

(interacted with age). Dee and Evans (2003) study the effect of teen drinking

on educational attainment. The problem they face is that there is no dataset

that has both information on teen drinking and on later educational outcomes.

Moreover, drinking may be an endogenous variable, because teenagers who do

poorly in school may be more likely to drink. Data on teen drinking are ob-

tained from the 1977-1992 Monitoring the Future (MTF) surveys, while data on

educational outcomes are obtained from the 5% public use sample from the 1990

US census. The common exogenous variables are the minimum legal drinking

age that differs between states, but more importantly increased over the ob-

servation period, state beer taxes, ethnicity, age and gender. The indicator of

teen age drinking is considered to be endogenous. Currie and Yelowitz (2000)

consider the effect of living in public housing on outcomes for children. The

outcome variables, living in high density housing, overcrowding in the house,

being held back at school, are from the 1990 census. The indicator of living in

public housing is from the pooled 1990-1995 March supplements to the Current

Population Survey (CPS). This indicator is assumed to be endogenous in the

relation with the outcome variables. The common exogenous variable is the sex

composition of the household where households with two children of different

gender are more likely to live in public housing because they qualify for larger

units.
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4.5 Combining samples to correct for measurement error

One of the reasons to merge datasets is that the variables in one of the sets

is measured more accurately. An example is the study by Okner (1972) who

merged the 1967 Survey of Economic Opportunity with the 1966 Tax File using

file matching, because the income measures reported in the SEO were thought

to be inaccurate. In this section we show that even for this purpose the datafiles

need not be merged, and that we can correct for measurement error in one (or

more) of the explanatory variables with only marginal error free information.

The procedure that we describe works even if there are no common variables

in the two datasets. If there are common variables and if these are exogenous

and not correlated with the measurement error, we can use the 2SIV estimator

to obtain consistent estimates of the coefficients in a linear relation where some

independent variables are measured with error.

There is a larger literature on the use of validation samples to correct for

measurement error. In a validation sample both X1 and the true value X∗
1 (and

X2) are observed. This allows for weaker assumptions on the measurement error

process. In particular, the measurement error can be correlated with X∗
1 and

with X2. This type of sample combination is beyond the scope of the present

chapter. Validation samples are rare, because they require the matching of

survey and administrative data. Chen, Hong, and Tamer (2003) propose a

method for the use of validation samples if variables are measured with error.

We consider a simple example of a conditional distribution with pdf f(y |

x∗1, x2; θ). There are two explanatory variables X∗
1 , X2 where X2 is observed
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without error and the error-free X∗
1 is not observed. Instead, we observe X1

that is related to X∗
1 as specified below. The observed conditional distribution

of Y given X1, X2 is

f(y | x1, x2; θ) =
∫
f(y | x∗1, x2; θ)g(x∗1 | x1, x2)dx∗1 (102)

if X∗
1 is continuous and the integral is replaced by a sum if X∗

1 is discrete. To

determine the observed conditional distribution we need to specify or identify

g(x∗1 | x1, x2). We show that this conditional density can be identified from a

separate dataset that only contains observations from the distribution of X∗
1 ,

i.e. observations from the marginal distribution of the error-free explanatory

variable. Hence we have a sample A that contains Y,X1, X2 and an independent

sample B that contains only X∗
1 .

We consider a special case that allows for a closed-form solution. In par-

ticular, we assume that both X∗
1 and X1 are 0-1 dichotomous variables. The

relation between these variables, the measurement error model, can be specified

in a number of ways. We only allow for measurement error models that are iden-

tified from observations from the marginal distribution of X1 observed in sample

A and the marginal distribution of X∗
1 , observed in the independent sample B.

An example of such a measurement error model is classical measurement error

which assumes

Pr(X1 = 1 | X∗
1 = 1, X2) = Pr(X1 = 0 | X∗

1 = 0, X2) = λ (103)

i.e. the probability of misclassification is independent of X∗
1 . Moreover, (103)
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implies that X1 is independent of X2 given X∗
1 . Solving for λ we find

λ =
Pr(X1 = 1) + Pr(X∗

1 = 1)− 1
2 Pr(X∗

1 = 1)− 1
(104)

Hence, λ is indeed identified from the marginal distributions of X1 and X∗
1 .

Note that (104) only gives solutions between 0 and 1 if

Pr(X1 = 1) < Pr(X∗
1 = 1) (105)

if Pr(X∗
1 = 1) > 1/2, or if

Pr(X1 = 1) > Pr(X∗
1 = 1) (106)

if Pr(X∗
1 = 1) > 1/2. This is equivalent to

Pr(X1 = 1)(1−Pr(X1 = 1)) = Var(X1) > Var(X∗
1 ) = Pr(X∗

1 = 1)(1−Pr(X∗
1 = 1))

(107)

In other words, the observed X has a larger variance than the true X∗
1 , as is

generally true for classical measurement error models. This restriction on the

observable marginal distributions must be satisfied, if we want to consider the

classical measurement error model.

The second measurement error model assumes that misclassification only

occurs if X∗
1 is equal to 117, maintaining the assumption that X1 is independent

of X2 given X∗
1 . Hence

17The misclassification can also only occur if X∗
1 is 0.
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Pr(X1 = 0 | X∗
1 = 0, X2) = 1

(108)

Pr(X1 = 1 | X∗
1 = 1, X2) = λ

With this assumption we find

λ =
Pr(X1 = 1)
Pr(X∗

1 = 1)
(109)

As in the case of classical measurement error, this measurement error model

implies an observable restriction on the two observed marginal distributions, in

the case Pr(X1 = 1) ≤ Pr(X∗
1 = 1).

Both measurement error models are special cases of the general misclassifi-

cation error model

Pr(X1 = 0 | X∗
1 = 0, X2) = λ0

(110)

Pr(X1 = 1 | X∗
1 = 1, X2) = λ1

Again we assume that X1 is independent of X2 given X∗
1 . In this general model

the parameters λ0, λ1 are not identified from the marginal distributions of X1

and X∗
1 . Hence we must fix one of these parameters or their ratio, as is done

in the measurement error models that we introduced in this section. We also

assume that the misclassification is independent of X2.
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Of course, it is not sufficient to identify the measurement error distribution.

The conditional density of Y given X1, X2, which is the basis for likelihood

inference, is obtained from the density of Y given X∗
1 , X2, which contains the

parameters of interest, if we integrate the unobserved X∗
1 with respect to the

density of X∗
1 given the observed X1, X2 ( see (102)). Hence, the key is the

identification of the distribution of X∗
1 given X1, X2.

This conditional distribution is identified from the measurement error model

that in turn is identified from the marginal distributions of X1 and X∗
1 and the

joint distribution of X1, X2. The solution depends on the measurement error

model. Here we give the solution, if we assume that the measurement error

is classical, but the solution for other (identified) measurement error models

is analogous. In the sequel we use subscripts to indicate the variables in the

distribution.

Consider

gx1,x∗
1 ,x2(x1, x

∗
1, x2) = gx1(x1 | x∗1, x2)gx∗

1 ,x2(x
∗
1, x2) = (111)

= gx1(x1 | x∗1)gx∗
1 ,x2(x

∗
1, x2)

becauseX1 is independent ofX2 givenX∗
1 . After substitution of (103) we obtain

gx1,x∗
1 ,x2(x1, x

∗
1, x2) = λgx∗

1 ,x2(x
∗
1, x2), x1 = x∗1

(112)

= (1− λ)gx∗
1 ,x2(x

∗
1, x2) x1 6= x∗1
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The marginal distribution of X1, X2, which can be observed, is

gx1,x2(x1, x2) = λgx∗
1 ,x2(x1, x2) + (1− λ)gx∗

1 ,x2(1− x1, x2) (113)

Solving for gx∗
1 ,x2(x

∗
1, x2) we find

gx∗
1 ,x2(x

∗
1, x2) =

(1− λ)gx1,x2(1− x∗1, x2)− λgx1,x2(x
∗
1, x2)

1− 2λ
(114)

Substitution in (112) gives the joint density of X1, X
∗
1 , X2. The conditional

density of X∗
1 given X1, X2 is obtained if we divide the result by gx1,x2(x1, x2).

With a dichotomous X1 we obtain a simple closed form solution. If X1 is

continuous, we can still identify the distribution of X∗
1 given X1, X2 if the mea-

surement error model is identified from the marginal distributions of X1 and

X∗
1 , as is the case if we assume classical measurement error. Hu and Ridder

(2003) show that the identification involves two sequential deconvolution prob-

lems. They also develop the distribution theory of the resulting estimator.

5 Repeated cross sections

5.1 General principles

Repeated cross sections consist of independent samples drawn from a population

at multiple points in time t = 1, . . . , T . There are many such data sets in the U.S.

and other countries, and more than true panel data sets in some. In the U.S., the
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Current Population Survey (CPS) is a leading example, as is the General Social

Survey, and even the Survey of Income and Program Participation, if data from

different cohorts are employed. There are also examples of firm-level data sets

of this kind. In the U.K., the Family Expenditure Survey (FES) is a prominent

example. In continental Europe, CPS-like cross sections are often used, as are

repeated cross sectional labor force surveys. In developing countries, such labor

force surveys are often available as well as several of the World Bank LSMS

surveys which have multiple waves.

Although repeated cross section (RCS) data have the obvious disadvantage

relative to panel data of not following the same individuals over time, they

have certain advantages over panel data. Attrition and nonresponse problems

are generally much less severe, for example, and often RCS data have much

larger sample sizes than available panels. In many cases RCS data are available

farther back in calendar time than longitudinal data because governments began

collecting repeated cross sections prior to collecting panel data. In some cases,

RCS data are available for a broader and more representative sample of the

population than true panel data, at least in cases where the latter only sample

certain groups (e.g., certain cohorts as in the U.S. NLS panels).

Although the cross sections can be pooled and cross-sectional models can be

estimated on them, the more interesting question is whether they can be used

to estimate models of the type estimable with true panel data. To consider

this question, assume that in each cross section t we observe a sample from the

distribution Wt, Zt where Wt is a vector of variables that are only measured in
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each cross section and Zt is a vector of variables which are measured in all cross

sections, and hence can be used to match the individuals across the different

waves (individual subscripts i = 1, . . . , N are omitted for now). Both Wt and Zt

may contain variables which are identical at all t (i.e., time invariant variables)

although in most applications all time invariant variables will be measured at

all t and hence will be in Zt. We assume that the population is sufficiently large

and the sample sufficiently small that there are no common individuals in the

cross sections. Further, we assume that the population from which the samples

are drawn is closed18, and thus we ignore out in- and out-migration, births, and

mortality.

At issue is what distributions and what types of models can be identified from

the set of cross sections. The unconditional joint distribution of W1, . . . ,WT is

not identified except in the trivial case in which the elements are independent.

Models which require for identification only moments from each cross-section,

and which therefore do not require knowledge of the joint distribution, are iden-

tified but do not make particular use of the repeated cross section (RCS) nature

of the data except perhaps for investigations of time-varying parameters. The

models of interest and under discussion here are those which require identifica-

tion of the joint distribution or of some aspect of it.

Identification necessarily requires restrictions. Nonparametric identification

of conditional distributions f(Wt|Wτ ), t 6= τ follows from the general principles

18This ensures that the relation between a dependent and independent variables does not

change over time due to in- and outflow from the population, and we can make this assumption,

instead of that of a closed population.
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and restrictions elucidated in section 4.2.2 above, with the change of notation

from Y toWt and fromX toWτ . With the common variable Zt available in each

cross section and used for matching, bounds on those conditional distributions

can be established. If Zt or some elements of it are excluded from the relation

between Wt and Wτ , and Zt is discrete, the conditional distributions are exactly

identified provided a rank condition is met which relates the number of points

in the support of Zt to the number of conditional distributions to be estimated.

We shall focus in this section primarily on parametric models for which inde-

pendence ofW1, . . . ,WT is not assumed but which contain exclusion restrictions.

While there are in general many models which can be identified under different

restrictions, we will work with a model similar to that in section 4.3.2 above:

f(Yt; θ) = g1(Xt, Z0; θ) + g2(Yt−1, Z0; θ) + εt (115)

and with associated GMM moment condition, following on (69), of:

E[(f(Yt; θ)− g1(Xt, Z0; θ)− g2(Yt−1, Z0; θ))h(Z0, Z1t)] = 0 (116)

where f, g1, g2, and h are known (possibly up to parameters) functions and θ

a vector of parameters. The vector Z0 is a vector of common time-invariant

variables in the cross sections which are included in the g1 and g2 relations19.

In most applications, f(Yt; θ) = Yt. The function g1 contains only Xt and Z0

and hence appears to be estimable from a single cross-section, but, as will be
19These variables can be time-varying but this is rare in applications so we consider only

the case where they are time-constant. None of the results we discuss below are substantially

changed by this restriction.
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shown below, this is problematic in fixed effects models because Xt is correlated

with the error in that case. The functions g1 and g2 must be separable because

Xt and Yt−1 do not appear in the same cross-section.

Individuals across cross sections are identified by variables Z0 and Z1t, with

the latter excluded from the relation between Yt and Xt, Yt−1, Z0. In most

applications to date, Z1t = t or a set of time dummies 20. The critical exclusion

restriction in all RCS models is that Z1t and its interactions with Z0 do not enter

in g1 and g2, and yet these variables are correlated with those functions. For

the Z1t = t case, this implies that variables that change predictably with time,

as individual age, year, unemployment duration, or firm lifetimes (depending

on the application) cannot enter g1 and g2. Thus the essential restriction in

RCS estimation is that intertemporal stability exist in the true relationship.

Such a restriction is not needed when true panel data are available. Note as

well that the number of independent components in h must not be smaller than

the dimension of θ and, in most models, must be larger than the dimension of

Xt, Yt−1, and Z0. This also can be a fairly limiting condition in practice if the

number of cross-sections available is small relative to the number of parameters

whose identification requires instrumenting with functions of t.

In linear models the GMM estimator can be implemented as a two-step

estimator. First, project Xt and Yt−1 on h(Z0, Z1t), i.e obtain E(Xt|h(Z0, Z1t))

20However, it is possible that some history information is available in each cross-section

which means that these time-varying variables (e.g., employment or marital status histories

in the case of household survey data; ages of children are another) are potential additional

instruments.

82



and E(Yt−1|h(Z0, Z1t))21. Second, regress Yt on these projections and on Z0.

If there are no Z0 in the data and h(Z1t) is a set of time dummies, this is

equivalent to an aggregate time-series regression where the time means of Yt

are regressed upon the time means of Xt and Yt−1. In this case the number of

cross-sections has to be at least 3. Most interesting cases arise however when

Z0 variables are available; in household survey data, these may be birth year

(=cohort), education, race, sex, and so on. If these variables are all discrete

and h(Z1t, Z0) is assumed to be a vector of indicators for a complete cross-

classification Z0 and time, estimation using (116) is equivalent to a regression of

the cell means of Yt on the cell means of Xt, Yt−1, and the dummy variables Z0.

Note that in that case we need fewer cross-sections. However, if a parametric

form of h is assumed, this aggregation approach is not necessary, and if the

model is nonlinear (including the binary choice and related models), the two-

step aggregation approach is not possible in the first place. In that case the

estimator is the possibly overidentified GMM estimator defined by the moment

conditions in (116).

Two leading examples fit into this framework. One is the linear first-order

autoregression (with individual i subscripts now added)

Yit = α+ βYi,t−1 + γXit + δZ0i + εit (117)

With time dummies as excluded variables the number of observations is equal to

the number of cross-sections and this imposes restrictions on the time-variation

of the parameters of (117). The restriction that the instrument must be relevant
21Projections onto Z0 and Z1t directly are an alternative.
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implies that the mean of E(Yt−1|Z0, t) must vary with t. If Yt−1 is correlated

with εt, an instrument Z1t must be found which is orthogonal to εt.

A second example is the linear individual effects model

Yit = γXit + δZ0i + fi + εit (118)

where f is an individual effect which is potentially correlated with Xt and Z0.

The within-estimator commonly used with true panel data cannot be imple-

mented with RCS data because it requires knowledge of Yt at multiple t. RCS

IV estimation using (116) proceeds by using the elements of h as instruments

for Xt, which again requires some minimal time-invariance of the parameters of

(118). Consistency (see below) is based on the presumption that time-varying

variables like those in Z1t must be orthogonal to time-invariant variables like f .

For instrument relevance, E(Xt|Z0, t) must vary with t.

Estimation of the model in (118) by the aggregation method mentioned pre-

viously was proposed by Deaton (1985). He considers cohort data, so that time

in his case is age. Deaton considered Z0 to contain only birth year (=cohort)

indicators and h to be a set of all cohort-age indicators. He then proposed con-

structing a data set of cohort profiles of mean Y and X (a ’pseudo’ panel data

set) and estimating (118) by regressing the age-cohort means of Y on those of

X and on cohort dummies (or by the within-estimator for fixed effects models

applied to these aggregate observations).
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5.2 Consistency and Related Issues

The conditions for consistency of moment estimators in the form (116) are

well-known in general (Hansen, 1982). The special form they take in the two

sample case were considered in section 4.3.2 above, where weak consistency was

proven. For the RCS case, aside from the usual rank conditions and conditions

on convergence of matrices to positive definite forms, we have the condition that

the instruments are not correlated with the random error

E [ηith(Zoi, Zit)] = 0

where ηit = f(Yit; θ)−g1(Xit, Z0i; θ)−g2(Yi,t−1, Z0i; θ). If there is an individual

effect, we have that ηit = fi+εit and hence we require that E [εith(Zoi, Zit)] = 0,

and E [fih(Zoi, Zit)] = 0. The first assumption must hold even with the presence

of Yt−1 in the equation and represents an IV solution familiar to panel data

models with dynamics and lagged endogenous variables. However, with a lagged

dependent variable in the equation the errors in successive periods have a MA(1)

structure because the errors in not observing the same individuals in each cross

section are correlated (McKenzie, 2004).

The assumption on the individual effect fi that may be correlated with Xit

is the more problematic assumption. If h is a set of time dummies, then a

sufficient condition is that the (population) mean of fi does not change over

time. If we have repeated cross sections of size Nt in period t = 1, . . . , T , then
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this implies that22

f t =
1
Nt

Nt∑
i=1

fi
p→ 0

Hence, if min{N1, . . . , NT } → ∞, then the limit of the time averaged regression

without a lagged dependent variable is

Y ∗t = α+ γX∗
t + ε∗t

with ε∗t a common time shock in the εit and * indicating population averages of

the variables. OLS applied to this equation gives consistent estimators of the

regression parameters, and this establishes that the GMM estimator that uses

moment condition (116) is consistent if min{N1, . . . , NT } → ∞, i.e. for large N

asymptotics.

For the same model and assumptions on the random error, time dummies

are not valid instruments if Nt is fixed and T becomes large. Note that in this

case the number of instruments is equal to T and hence goes to infinity. The

problem is obvious if we consider the second stage regression that involves the

projections on the instruments, i.e. the averages in the repeated cross sections

Y t = α+ γXt + f t + εt

Hence

E
[
Xtf t

]
=

1
Nt

E [Xitfi] 6= 0

for finite Nt.

There is another asymptotic that can be considered as well, which is an

asymptotic in the number of cohorts (Deaton, 1985; Verbeek, 1993). Up to this
22Without loss of generality we can take the common time constant limit equal to 0.
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point we have assumed that a single population of N individuals is followed over

time for T periods, which is equivalent to a single cohort (or a fixed set of birth

years). Now let us consider increasing the number of such cohort groups (c)

by moving over calendar time, or possibly space, and increasing the number of

pseudo-panels in the data. Each new panel has N individuals and is observed

for T periods. Once again, with fixed N , the average individual effect will be

correlated with the average covariate, so that the GMM estimator is biased.

Deaton (1985) has proposed a modification of the estimator for the linear

fixed effects model which contains a bias adjustment for the finite, fixed N case

and which is consistent for the large T case, an estimator that has been much

discussed in the literature. Deaton notes that estimation of the aggregated

estimation equation

Y ct = γXct + δc + εct (119)

where means are taking over observations within each cohort (c) and year (t) cell

yields biased estimates for finite N because fct is correlated with Xct. Deaton

instead considers the ”population” equation

Y ∗ct = γX∗
ct + δc + ε∗ct (120)

where variables with asterisks represent population values, i.e. values that would

obtain if the cohort would be infinitely large. Note that δc absorbs a non-zero

mean of the fi in cohort c.

For the estimation of (120) Xct and Y ct must be inserted to proxy their

population counterparts but they do so with error. Deaton suggests that the
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measurement error for each be estimated by the within-cell variances of X and

Y using the individual data and that a finite-sample adjustment be made when

estimating the coefficient vector.

Deaton does not set up his model in the GMM framework but it can be done

so. Although he discusses his estimator as an errors-in-variables estimator, it

is more in line with our discussion to consider it as a finite N bias-corrected

version of the GMM estimator. To focus on the key issues, assume that only

one cohort of N individuals is observed for T periods. The individual model is

yit = δ + βxit + fit + εit (121)

The second stage equation when using time dummies as instruments is

yt = βxt + f t + εt (122)

Consequently,

Cov(yt, xt) = βVar(xt) + Cov(f t, xt) (123)

The bias term in (123) is

Cov(f t, xt) =
Cov(fi, xit)

N
(124)

This bias term is small if N is large or if the correlation between the regressor

and the individual effect is small. The Deaton finite sample adjustment can be

derived by noting that fit = yit − βxit − εit and that, therefore, Cov(fit, xit) =

Cov(yit, xit) − βVar(xit). Hence Cov(f t, xt) = σyx−βσ2
x

N where σyx and σ2
x are

the covariance of x and y and the variance of x for the individual observations in

a time period. Inserting this into (123) and solving for β, we obtain the Deaton
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estimator if we replace the population variances and covariances with sample

variances and covariances.

β̂ =
Cov(yt, xt)− σyx

N

Var(xt)− σ2
x

N

(125)

As N →∞ the bias and the bias correction terms go to 0 and the least squares

estimate of the aggregate model is consistent. Deaton noted that the estimator

is also consistent as T → ∞ and Verbeek and Nijman (1992, 1993) show that

this estimator is consistent as C → ∞ provided a minor change is made in

the bias correction. Verbeek and Nijman also note that the Deaton estimator

increases variance at the same time that it reduces bias, giving rise to a mean-

squared error tradeoff that can be addressed by not subtracting off the ”full” bias

correction in (125). Devereux (2003) shows that the Deaton estimator is closely

related to estimators which adjust for finite sample bias in IV estimation and

that, in fact, the estimator is equivalent to the Jacknife Instrumental Variables

estimator and is closely related to k-class estimators. Devereux also proposes a

modification of the Deaton estimator which is approximately unbiased but has

a smaller finite sample variance.

There have been some explorations in the literature seeking to determine

how large N must be for the finite sample adjustments to be avoided by Monte

Carlo simulations. Verbeek and Nijman (1992) suggest that cell sizes of 100

to 200 are sufficient, while Devereux (2003) suggests that should be higher,

possibly 2000 or more. The necessary N is sensitive to the specification of the

model. Devereux also conducts an exercise which subsamples the available N

in a model to gauge the degree of bias.
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There has also been a discussion in the literature of how to divide the avail-

able data into cohort groups, given that most data sets do not have sufficient

samples to divide the data completely by discrete values of birth year (Verbeek

and Nijman, 1992, 1993). Dividing the sample into more birth cohorts increases

C while decreasing the sample size per cohort. In the applied literature, group-

ings of birth cohorts and formation of cells for the aggregated estimation has

been, by and large, ad hoc. Moffitt (1993) suggests that aggregation not be

conducted at all but rather that the individual data be employed and a para-

metric function of birth year and t be estimated to smooth the instrument to

achieve efficiency, but he does not present any formal criteria for how to do so.

A better framework for analyzing these issues is that which considers alternative

specifications of the instrument which trade off bias and variance. Donald and

Newey (2001) present one such analysis.

The literature has also addressed dynamic fixed effects models. In this case

we are interested in the individual model

Yit = α+ βYi,t−1 + δZ0i + fi + εit (126)

which is a combination of (117) and (118). The desirability of different in-

strument sets Z1i depends once again on the asymptotics involved. But when

asymptotics are taken in N (the number of observations per cohort), the con-

sistency properties of different instrument sets are almost identical to those for

true panel data (Sevestre and Trognon, 1996; Arellano and Honoré, 2001). Us-

ing simple functions of t as instruments, for example, will yield inconsistent

estimates for the same reasons that conventional fixed effects methods in true
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panel data yield inconsistent estimates in the presence of both fixed effects and

lagged regressors. As in the case of true panel data, additional instruments

which generate first-differenced estimators and which use lagged values of the

dependent variable can yield consistent estimates.

Collado (1997) and McKenzie (2004) consider this model and discuss various

applications of IV to the model, using the same principles in the literature on

true panel data, using lagged values of the dependent variable as instruments

and possibly using the larger instrument set implied by the Arellano-Bond esti-

mator. Collado and McKenzie also propose Deaton-style bias-correction terms

to correct for the finite N problem discussed above. Collado shows that her

estimator is consistent in C and, for a different bias-correction, consistent in T .

McKenzie considers a sequential asymptotic in which N is first allowed to go to

infinity conditional on fixed T and then limits are taken w.r.t. T .

5.3 Binary Choice Models

In the binary choice model we return to (115) and let f(Yt; θ) = Y ∗t , Yt =

I(Y ∗t ≥ 0), and F be the c.d.f. of −εt. Then Pr(Yt = 1|Xt, Z0, Yt−1; θ) =

F (g1(Xt, Z0; θ) + g2(Yt−1, Z0; θ)) so that

Yit = F (g1(Xit, Z0i; θ) + g2(Yi,t−1, Z0i; θ)) + νit (127)

which does not fit into the framework of the moment condition in (117) because

Xt and Yt−1 are not separable. Let us therefore initially assume g2 = 0 and

consider lagged indicators below. Now (117) applies directly assuming the avail-

ability of a suitable exclusion restriction, as before. The moment conditions are
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a simple extension of those shown in equations (74)-(76). The method is appli-

cable to the individual effects binary choice model or to a binary choice model

with endogenous Xt with the restrictions that hold in the cross-section case. For

instance, in parametric estimation where the F distribution is assumed to be

known, a distributional assumption is needed for the individual effect in order

to derive F , e.g., if f is the individual effect component of εt,

fi = v(Z0i;φ) + ηi (128)

where v is assumed to be of known form and where ηi has a known parametric

distribution from which the c.d.f. of the composite error ηi− εit can be derived.

If Xt is endogenous and if the instrument is a set of time dummies, possi-

bly interacted with Z0, the nonlinearity of the conditional expectation function

means that GMM is not equivalent to any type of aggregate regression of cell

means of Y on cell means of X and Z. However, with a stronger assump-

tion, a version of such an approach is possible (Moffitt, 1993). The necessary

assumption, in addition to (128), is

Xit = w(Z0i, Z1it;ψ) + ωit (129)

where w is a function of known parametric form and ωit is an error term with a

parametric distributional form that may be correlated with εit. The assumption

that the exact form of dependence of the endogenous variable on the instruments

is known and that the conditional distribution of the regressor follows a specific

parametric form are very strong. In the simplest case, g1 is linear in Xt and Z0

and w is linear in Z0 and Z1t, and εt and ωt are assumed to be bivariate normal.
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Then a variety of estimating techniques are possible, drawing on the literature

on endogenous regressors in limited dependent variable models (Amemiya, 1978;

Heckman, 1978; Nelson and Olsen, 1978; Rivers and Vuong, 1988; Smith and

Blundell, 1986; see Blundell and Smith, 1993 for a review). Options include

replacing Xt in g1 with its predicted value from (129); inserting an estimated

residual from (129) into (127); and estimating (153) and (155) in reduced from

by inserting (129) into (127). In this approach, the parameters of (127) are

estimated by maximum likelihood, which implies that the instrument vector h

in (116) is the binary choice instrument vector that is equal to F ′

(1−F )F times

the derivative of the argument of F w.r.t. θ.

To consider the model with Yt−1 let us first consider the case in which

Xt = X is time invariant, in which case it can be folded into Z0 and we can let

g1 = 0 without loss of generality. Then we have

E(Yit|Z0i, Yi,t−1) = F (g2(Yi,t−1, Z0i; θ)) (130)

where we have assumed that εit is distributed independently of Yi,t−1 i.e., there

is no serial correlation. Instrumental variable estimation of (130) conducted by

replacing Yt−1 by a predicted value and applying maximum likelihood to the

resulting model is known to be inconsistent because Yt−1 is binary and hence

its prediction error follows a non-normal, two-point discrete distribution. An

alternative procedure is to integrate Yt−1 out of the equation. Letting pt(Z0)

be the marginal probability Pr(Yt = 1|Z0), we have

E(Yt|Z0) = pt(Z0) = (131)
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= pt−1(Z0) Pr(Yt = 1|Z0, Yt−1 = 1) + (1− pt−1(Z0)) Pr(Yt = 1|Z0, Yt−1 = 0) =

= pt−1(Z0)F (g2(1, Z0; θ) + (1− pt−1(Z0))F (g2(0, Z0; θ) =

= pt−1(Z0)(1− λ(Z0; θ)) + (1− pt−1(Z0))µ(Z0; θ) =

= µ(Z0; θ) + η(Z0; θ)pt−1(Z0)

where λ(Z0; θ) = Pr(Yt = 0|Z0, Yt−1 = 1) = F (g2(1, Z0; θ) is the exit rate from

Yt−1 = 1 to Yt = 0, µ(Z0; θ) = Pr(Yt = 1|Z0, Yt−1 = 0) = F (g2(0, Z0; θ) is

the exit rate from Yt−1 = 0 to Yt = 1, and η(Z0; θ) = 1 − λ(Z0; θ)µ(Z0; θ).

Equation (131) is a familiar flow identity from renewal theory showing how the

marginal probability at t− 1 is transformed by the two transition probabilities

into the marginal probability at t. It suggests a procedure by which the reduced

form model Yt = µ(Z0; θ)+η(Z0; θ)pt−1(Z0)+νt is estimated by nonlinear least

squares (given the nonlinearity of the two transition probabilities in θ) or GMM

using a first-stage estimate of pt−1(Z0) similar to the case of a generated regres-

sor. Because the marginals at every t are estimable from the RCS data, such

a first-stage estimate is obtainable. Identification of the transition probabilities

is achieved by restricting their temporal dependence (indeed, in (131) they are

assumed to be time invariant); identification is lost if the two transition prob-

abilities vary arbitrarily with t (Moffitt, 1993). The model is equivalent to a

two-way contingency table where the marginals are known; the data furnish a

sample of tables and the restrictions on how the joint distribution varies across

the sample yields identification.

The first-stage estimation of pt−1(Z0) can be obtained from an approxima-

tion of the function or the structure of the model can be used to recursively
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solve for pt−1(Z0) back to the start of the process. Assuming that p0 = 0 and

that the process begins with t = 1, and continuing to assume time-invariant

hazards,

pt−1(Z0) = µ(Z0; θ)

[
1 +

t−2∑
τ=1

η(Z0; θ)t−1−τ

]
= (132)

= µ(Z0; θ)
1− η(Z0; θ)t−1

1− η(Z0; θ)

which can be jointly estimated with (131) imposing the commonality of the

functions23. Alternatively, (131) can be expressed in fully solved back form and

estimated as well.

Equation (131) has been used as the basis of RCS estimation at the aggregate

level. Miller (1952) considered estimation of (131) with time-series data on the

proportions of a variable, pt which is special case of RCS data. Without data

on individual regressors Z0, he suggested simple least squares estimation of

pt = µ+ ηpt−1 + νt (133)

Madansky (1959) proved that the least squares estimators of the two hazards

are consistent for fixed N as T → ∞ and for fixed T as N → ∞. Lee, Judge,

and Zellner (1970) and MacRae (1977) proposed various types of restricted least

squares estimators to ensure that the estimated hazards do not fall outside the

unit interval. This problem would not arise in the approach here, which specifies

the hazards in proper probability form.

Estimation of the Markov model with RCS data is considerably complicated

if there is serial correlation in the errors or if time-varying Xt are allowed. With
23Alternatively an initial conditions can be specified as a marginal p in the first period.
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serial correlation of the errors, the two transition probabilities require knowledge

of the functional dependence of εt on Yt−1. The most straightforward approach

would require replacing the simple transition probabilities we have shown here

with joint probabilities of the entire sequences of states Yt−1, Yt−2, . . . , Y1 which

in turn would be a nonlinear function of Z0 and the parameters of the assumed

joint distribution of εt−1, εt−2, . . . , ε1. This treatment would be parallel to max-

imum likelihood estimation with true panel data in random effects and similar

models where the joint distribution is likewise integrated out. With time-varying

Xt, the approach in (131) is problematic because

E(Yt|Xt, Z0) = µ(Xt, Z0; θ) + η(Xt, Z0; θ)pt−1(Xt, Z0) (134)

where µ(Xt, Z0; θ) = F (g1(Xt, Z0; θ) + g2(0, Z0; θ)) and λ(Xt, Z0; θ) = 1 −

F (g1(Xt, Z0; θ) + g2(1, Z0; θ)). The difficulty is that pt−1(Xt, Z0) is not identi-

fied from the data. Estimation would require the assumption of a Markov or

other process for Xt which could be used to formulate a function pt−1(Xt, Z0)

which could be identified from the data.

5.4 Applications

Despite the large number of RCS data sets in the U.S. and abroad, the methods

described in this section have been applied relatively infrequently. The vast

majority of uses of RCS data simply estimate pooled cross-sectional parame-

ters without matching individuals across waves by birth cohort, education, or

other individual time-invariant covariates. A rather large literature on program

evaluation in the U.S. uses RCS data with area fixed effects in a period where
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policies differ across areas and over time and policy effects are estimated from

the cross-area covariation in the change in policies and in the outcome (migra-

tion is ignored). This literature likewise does not make use of the techniques

discussed here.

Of the applications that have been conducted, virtually all have used the

Deaton linear fixed effects aggregation approach rather than the more general

GMM-IV approach described here. Most of the applications have been to life

cycle models, which is a natural area of application because age profiles are

central to the theory and the Deaton approach is explicit in formulating ag-

gregate cohort profiles of that type. Browning, Deaton, and Irish (1985) esti-

mated a life cycle model of labor supply and consumption using seven waves

of the FES and were the first to demonstrate the estimation of the fixed ef-

fects model, which arises naturally from the first order conditions of separable

lifetime utility functions, by aggregation into cohort profiles. Subsequent FES

analyses include Blundell, Browning, and Meghir (1994), who estimated Euler

equations under uncertainty for aggregate cohort profiles of consumption, using

instrumental variables with lags to control for the endogeneity of lagged con-

sumption; Attanasio and Weber (1994), who estimated life cycle consumption

profiles with aggregate cohort means but allowed calendar-time varying effects

in an attempt to explain macro trends in UK consumption; and Alessie et al.

(1997), who added borrowing constraints to the model. Analyses using RCS

methods to other data sets are small in number. Attanasio (1998) used the

U.S. Consumer Expenditure Survey to construct aggregate cohort profiles of
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saving rates in an attempt to explain the decline in saving rates in the U.S.

Blow and Preston (2002) used a UK tax data set that did not contain infor-

mation on age to estimate the effect of taxes on earnings of the self-employed,

and followed the aggregation approach grouping on region of residence and oc-

cupation. Paxson and Waldfogel (2002) used the Deaton method but applied to

state-specific means over time in the U.S., regressing state-specific measures of

measures of child mistreatment on a number of state-level variables and mean

socioeconomic characteristics obtained from the CPS as well as state and year

fixed effects. The authors applied the Deaton finite-sample correction to the

regressor matrix containing the moments for the aggregate CPS regressors and

reported large increases in estimated coefficients as a result. Finally, Heckman

and Robb (1985) showed that treatment effects models can be estimated with

RCS data even if information on who has been trained and who has not is not

available in post-training cross-sections if the fraction who are trained is known.

There have been a few applications of the Markov model described above.

Pelzer, Eisinga and Franses (2002, 2004) have implemented the maximum like-

lihood estimator suggested in Moffitt (1993) and discussed above, adding unob-

served heterogeneity, for two applications. The papers also discuss alternative

computational methods and algorithms. In the first application, the authors

used a true panel data set with five waves to estimate a Markov model for

changes in voter intentions (Democrat vs Republican), treating the panel as a set

of repeated cross sections. They then validated the model by estimating model

on the true panel, and found that the coefficients on the regressor variables were
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quite similar in both methods but that the intercept was quite different. In the

second application, the authors examined transition rates in personal computer

ownership in the Netherlands over a 16-year period, but again using a true panel

data set which was initially treated as a set of repeated cross sections. The au-

thors again found the regressor coefficients to be quite close in both cases. The

authors also note that the RCS Markov model is formally identical to problem

of ecological inference, or the problem of how to infer individual relationships

from grouped data (Goodman, 1953; King, 1997). In the ecological inference

problem, a set of grouped observations furnishes data on the marginals of binary

dependent and independent variables (the ”aggregate” data) and restrictions on

how the joint distribution (the ”individual data”) varies across groups is used

for identification.

Güell and Hu (2003) studied the estimation of hazard functions for leav-

ing unemployment using RCS data containing information on the duration of

the spell, allowing matching across cross-sections on that variable. The authors

used a GMM procedure very similar to that proposed here. The similarity to the

RCS Markov model discussed here is superficial, however, for the matching on

duration permits direct identification of transition rates. The authors apply the

method to quarterly Spanish labor force survey data, which recorded spell du-

rations, over a 16 year period, and estimate how exit rates from unemployment

have changed with calendar time and what that implies for the distribution of

unemployment. A simpler but similar exercise by Peracchi and Welch (1994)

used matched CPS files in adjacent years over the period 1968-1990 to measure
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labor force transitions between full-time, part-time, and no work, and then as-

semble the transition rates into an RCS data set which they use to estimate

transition rates by cohort as a function of age, year, and other variables.
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Appendix

Theorem 1

If assumptions (A1)-(A3) hold, then the 2SIV estimator is weakly consistent.

Proof

We have by adding and subtracting mN (θ0)

mN (θ)′WNmN (θ) = (mN (θ)−mN (θ0))′WN (mN (θ)−mN (θ0))+ (135)

+2mN (θ0)′WN (mN (θ)−mN (θ0)) +mN (θ0)′WNmN (θ0)

By the mean value theorem

mN (θ) = mN (θ0) +
∂mN

∂θ′
(θ∗)(θ − θ0) (136)

with θ∗ between θ and θ0. Substitution in (135) and taking the limit N1, N2 →

∞ gives

(θ − θ0)′E
[
∂m′

∂θ
(θ∗)

]
WE

[
∂m

∂θ′
(θ∗)

]
(θ − θ0)+ (137)

2E[m(θ0)]′WE
[
∂m

∂θ′
(θ∗)

]
(θ − θ0) + E[m(θ0)]′WE[m(θ0)]

and this limit is attained uniformly in θ. If (A1) holds, then E(m(θ0)) = 0, so

that the last two terms on the right-hand side are equal to 0. Because E
[

∂m′

∂θ (θ)
]

is continuous in θ this matrix has full rank in a neighborhood of θ0. In that

neighborhood θ0 is the unique minimizer. By Van der Vaart (1998), Theorem
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5.7, this implies that the 2SIV estimator converges in probability to θ0.

Theorem 2

If assumptions (A1)-(A4) hold, then

√
N2(θ̂N − θ0)

d→ N(0, V (θ0)) (138)

with

V (θ0) =
[
E
(
∂m′

∂θ
(θ0)

)
W (θ0)E

(
∂m

∂θ′
(θ0)

)]−1

. (139)

.E
(
∂m′

∂θ
(θ0)

)
W (θ0)(λVar(m1j(θ0)) + Var(m2i(θ0)))W (θ0)E

(
∂m

∂θ′
(θ0)

)
.

.

[
E
(
∂m′

∂θ
(θ0)

)
W (θ0)E

(
∂m

∂θ′
(θ0)

)]−1

Proof

The first order conditions give

0 =
∂m′

N

∂θ
(θ̂N )WN

√
N2mN (θ̂N ) (140)

By the mean value theorem we have for some θN between θ0 and θ̂N

√
N2mN (θ̂N ) =

√
N2mN (θ0) +

∂mN

∂θ′
(θN )

√
N2(θ̂N − θ0) (141)

Substitution in (140) and solving for
√
N2(θ̂N − θ0) gives

√
N2(θ̂N − θ0) = −

[
∂m′

N

∂θ
(θ̂N )WN

∂mN

∂θ′
(θN )

]−1
∂m′

N

∂θ
(θ̂N )WN

√
N2mN (θ0)

(142)
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The proof is completed by noting that ∂mN

∂θ (θ) is continuous in θ, and by using

the central limit theorem for i.i.d. random variables to obtain the asymptotic

distribution of
√
N2mN (θ0).

Theorem 3

If (A1)-(A4) hold, then TN
d→ χ2(dim(m)− dim(θ)).

Proof

Substitution of (142) in (141) gives

√
N2mN (θ̂N ) = (143)

=

[
I − ∂mN

∂θ′
(θN )

[
∂m′

N

∂θ
(θ̂N )WN

∂mN

∂θ′
(θN )

]−1
∂m′

N

∂θ
(θ̂N )WN

]√
N2mN (θ0)

Using the notation A(θ) = ∂m′
N

∂θ (θ) and the assumption that this matrix is

continuous in θ, we have

√
N2mN (θ̂N ) =

[
I −A(θ0)′(A(θ0)WA(θ0)′)−1A(θ0)W

]√
N2mN (θ0) + op(1)

(144)

Upon substitution of (144) in (94)

TN =
√
N2mN (θ0)′

[
I −W ′A(θ0)′(A(θ0)WA(θ0)′)−1A(θ0)

]
W. (145)
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.
[
I −A(θ0)′(A(θ0)WA(θ0)′)−1A(θ0)W

]√
N2mN (θ0) + op(1) =

=
√
N2mN (θ0)′

[
W −W ′A(θ0)′(A(θ0)WA(θ0)′)−1A(θ0)W

]√
N2mN (θ0)+

+op(1)

IfW = M(θ0)−1, we can find a matrixM(θ0)−
1
2 withM(θ0)−1 = M(θ0)−

1
2M(θ0)−

1
2 .

Then

TN =
√
N2mN (θ0)′M(θ0)−

1
2 . (146)

.
[
I −M(θ0)−

1
2A(θ0)′(A(θ0)M(θ0)−1A(θ0)′)−1A(θ0)M(θ0)−

1
2

]
.

.M(θ0)−
1
2
√
N2mN (θ0) + op(1)

Because
√
N2mN (θ0)′M(θ0)−

1
2

d→ N(0, I) and the matrix between [.] is idem-

potent with rank equal to dim(mN )− dim(θ), the result follows.
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Figure 2: Bounds on F (y|x1) and F (y|x2)).
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Figure 3: Bounds on (F (y | x1), F (y | x2), F (y | x3) in underidentified case;

pk(zl) ≤ 1
2 , k = 1, 2, 3, l = 1, 2 and y < min{F−1(pk(zl)), k = 1, 2, 3, l = 1, 2}.
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