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Abstract 
 

 

Empirically, ADF tests fail to reject the null hypothesis that sales are I(1). We build a model of 

inventory behavior that incorporates permanent sales shocks.   Analytically, the model with I(1) 

sales implies that the variance ratio (of log production to log sales) is one in the long run, 

regardless of the strength of production smoothing, stockout avoidance, or cost shocks, but that, 

at business cycle horizons, the conditional variance ratio (conditional on past production and 

sales) is greater than one. We explain – analytically, using our model, and intuitively – four 

traditional inventory puzzles and three puzzles about inventories and monetary policy. 
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I.  INTRODUCTION 

Inventory movements are important. In the 2007-09 recession, inventories accounted for 

one-third of the fall in US GDP, a huge amount for such a small component of output.1 This is 

typical: Inventory movements account for a wildly disproportionate share of macroeconomic 

fluctuations in most postwar US recessions – and in other countries, too.2 Despite the importance 

of inventory fluctuations, there are large gaps in our understanding of the basic economics of 

inventories. We refer to these gaps as the Traditional Inventory Puzzles. Equally seriously, there 

are sharp contradictions between the predictions of standard theory and the response of 

inventories to the main macroeconomic policy tool, monetary policy. We refer to these 

contradictions as the Monetary Policy Puzzles. 

It has long been thought that inventories act as a shock absorber for fluctuations in 

aggregate demand. Standard economic theories imply that, if production costs are convex, firms 

will use inventories to smooth production. A long-standing traditional inventory puzzle then is 

why does production vary more than sales in the data – a puzzle which we refer to as the 

Variance Ratio Puzzle. A variety of theoretical explanations have been proposed to explain the 

puzzle and many empirical investigations have been undertaken, but the puzzle remains 

unresolved.   

 The data fail to reject the null hypothesis that sales are I(1).  We develop a model of 

inventories in which permanent sales shocks play a central role. Our model implies three 

important new analytical results.  First, the variance ratio, specifically, the variance of the 

logarithm of production relative to the variance of the logarithm of sales is one in the long run.  

Second, this result holds regardless of the strength of production smoothing, stockout avoidance, 

or cost shocks.  Third, at business cycle horizons, the conditional variance of production is  

greater than sales.3 This implies that inventories amplify sales shocks during business cycles, 

rather than dampening shocks as production smoothing would imply.4 

                                                 
1 According to NIPA data, over the six quarters 2008:1-2009:2, the cumulative change in inventory investment was 

34.8% of the cumulative change in GDP. 
2 See Blinder and Maccini (1991) and Ramey and West (1999). 
3 When we refer to the conditional variance of output and sales, the conditioning variables are past values of output 
and sales. 
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 If the variance ratio ( [ ] [ ]log logt tVar Y Var X ) is one in the long run, why do empirical 

studies typically find that production varies more than sales?  To analytically address this issue, 

we introduce a new measure – the conditional variance ratio – which we define as the variance of 

output divided by the variance of sales, where output and sales are each conditional on their 

levels at a fixed time in the past. Using our analytical result for the conditional variance ratio, we 

show, first, that standard estimates of the variance ratio are biased, and, second, that the direction 

of the bias depends on the relative strength of the production smoothing and stockout avoidance 

motives. Again, these appear to be new results.  

In an important paper, Wen (2005) has refined the variance ratio puzzle.  He 

distinguishes between the movements of output and sales at short horizons (less than three 

quarters) and medium horizons (about 8-40 quarters). At medium horizons, he finds that 

production is more volatile than sales. More surprisingly, he finds that production is less volatile 

than sales at short horizons. We refer to these observations as the Wen Puzzle. Wen argues that 

these stylized facts constitute a "litmus test" for inventory theory and concludes that none of the 

existing accounts of the relative variability of output and sales – whether based on production 

smoothing, stockout avoidance, or increasing returns to scale – can account for the behavior of 

output and sales at both short and medium horizons. 

Our analytical result for the conditional variance ratio provides the foundation for a 

complete solution to the Wen puzzle. The intuition flows from the short-run buffering role of 

inventories. A standard – and highly realistic – assumption in the inventory literature is that firms 

must set production before they know the state of current demand. As a result, a positive sales 

shock is initially met by running down inventories. Output is initially unchanged, which tends to 

push down the estimated variance of output over a short horizon. Output soon begins to adjust, 

but the conditional variance of output is initially smaller than the conditional variance of 

sales, where both are conditional on their levels before the shock. This is why production is less 

volatile than sales at short horizons.  

Our analytical results show that, if stockout avoidance dominates production smoothing, 

the conditional variance ratio will be greater than one at medium horizons. Intuitively, the firm 
                                                                                                                                                             
4 On the theory side, a pioneering paper is West (1990), who, in the context of other issues, obtains a weak 
inequality on the relative variance of production and sales, allowing for both stationary and (1)I sales.  We build on 
West’s work and obtain more specific results for (1)I sales. 
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wants to raise output, first, to meet the new permanently higher level of demand, and, second, to 

replenish the inventories that are run down right after the shock. This leads output to respond 

more than one-for-one to the sales shock, so the conditional variance ratio rises above one over 

medium horizons. Over the sample size typically available for empirical work, this effect 

dominates the short-horizon conditional variance ratio and leads to the upward bias in the 

measured variance ratio.  

Our analysis of the conditional variance ratio provides an important insight: Whether 

stockout avoidance dominates production smoothing depends on the mean real interest rate. 

Intuitively, the cost of producing one more unit of output is a one-time cost. The benefit of an 

additional unit of inventory is the present value of the reduction in stockout avoidance costs. The 

higher the real interest rate, the smaller the weight the firm puts on stockout avoidance.   

 Since the data are consistent with I(1) sales, we use the cointegrating regression that 

links inventories to sales, input costs, and the interest rate to calibrate the structural parameters.  

Our paper is one of the few to use a cointegrating regression to calibrate the structural parameters 

of an economic model.  An earlier example is Ogaki and Park (1997).  This works extremely 

well. When we plug the calibrated structural parameters into the equations derived from the 

model, we obtain the stylized facts that constitute the puzzles.  

As an influential survey of the inventory literature puts it, "One major difficulty with 

stock-adjustment models is that adjustment speeds generally turn out to be extremely low; the 

estimated adjustment speed is often less than 10 percent per month. This is implausible when 

even the widest swings in inventory stocks amount to no more than a few days of production. 

[Blinder and Maccini (1991, page 81)]". This is the Slow Adjustment Puzzle. Our analytical 

results show that an increase in the convexity of production costs, relative to the convexity of 

stockout avoidance costs, decreases the speed of adjustment. Intuitively, an increase in the 

convexity of production costs increases the incentive to smooth production. This makes for 

slower adjustment.  The structural parameters calibrated from our cointegrating regression give a 

convexity of production costs that is high relative to the convexity of stockout avoidance costs, 

so our results are consistent with estimates of slow adjustment speeds. 
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We also provide solutions for three important monetary puzzles that involve the 

relationship between monetary policy and inventories.5 One such puzzle is the Mechanism 

Puzzle:  Monetary policy changes the interest rate and should affect inventories, since the interest 

rate represents the opportunity cost of holding inventories. In fact, VAR studies find that 

monetary policy affects inventories. But 40 years of empirical research on inventories based on 

( )0I  econometrics has generally failed to find any significant effect of the interest rate on 

inventories. In our model, the firm’s response to an interest rate movement depends on the extent 

to which the firm believes the movement is persistent. This makes the transitional dynamics of 

the inventory response to a change in the interest rate complex and nonlinear – and therefore 

difficult to detect using I (0) econometrics. In contrast, when we use I (1) econometrics – 

specifically, the cointegrating regression implied by our model – the data provide strong 

evidence of the role of the interest rate. The combination of model and empirical evidence 

provides the solution to the mechanism puzzle.  

The Sign and Timing Puzzles involve the dynamic response of inventories to a monetary 

policy shock. Over the past two decades, an important challenge for macroeconomic models has 

been to account for the hump-shaped response of many aggregate variables to a monetary policy 

shock. A series of papers have shown that inventories display a more complex “double-hump” 

response. In reaction to a stimulative monetary policy shock, inventories decline in the first few 

months, rise until they reach a peak about three years after the shock, and then decline again. The 

initial decline is the Sign puzzle:  Lower interest rates are associated with lower inventories, 

instead of the reverse. The subsequent rise is the Timing puzzle: Inventories begin to rise after 

the fall in interest rates has largely disappeared. 

We are successful in capturing the “double-hump” dynamic response of inventories to a 

monetary policy shock. The key to our model’s success in explaining the sign puzzle is the role 

of inventories in buffering demand shocks. A stimulative monetary policy shock lowers the 

interest rate and increases sales, but the firm does not immediately raise production due to strong 

                                                 
5 See Maccini, Moore and Schaller (2004) for a survey of the literature on the effects of monetary policy on 
inventories.  For recent contributions, see Benati and Lubik (2012) for an extensive examination of the correlation 
between interest rates and inventories over the interwar and post-WWII periods and see Jones and Tuzel (2013) for 
an analysis of the effects of risk premia on inventories. 
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production smoothing incentives, so inventories fall at the same time that monetary policy is 

pushing the interest rate down. 

Two elements of our model explain the timing puzzle. First, the firm takes time to learn 

whether a movement in the interest rate is persistent; i.e., represents a regime switch. This delays 

the firm’s response to the interest rate movement. Second, production smoothing plays a role. A 

stimulative monetary policy shock lowers the interest rate and increases the desired level of 

inventories. But, because of the convexity of the production cost function, the firm is reluctant to 

adjust production too sharply, so the change in inventories is gradual.  

We make a conscious decision to use a partial equilibrium inventory model, partly to 

connect with a long theoretical and empirical inventory literature, dating back at least to Holt, 

Modigliani, Muth, and Simon (1960). More importantly, a partial equilibrium framework allows 

us to derive analytical results that bring out a series of new insights about the forces driving 

inventories. These analytical results lead to a rich new intuitive understanding of inventories. A 

DSGE model would add complexities that make it difficult to obtain analytical results and would 

tend to muddy the intuition. Furthermore, a DSGE model would require the specification and 

estimation of relationships for the household sector, the services sector, monetary policy rules, 

etc. Any failure to correctly specify all those relationships could produce biased estimates of the 

parameters of the model, including potentially those that capture the degree of production 

smoothing and stockout avoidance, which are critical to our ability to understand the empirical 

puzzles.  Of course, there are disadvantages to a partial equilibrium approach. It does not account 

for feedback between different agents through equilibria in different markets. In general 

equilibrium, sales would be endogenous, a point that could be particularly important in a nominal 

model (e.g., a New Keynesian model) in which variations in the markup play a central role. We 

therefore view the current paper as a first step in better understanding inventory behavior, much 

like partial equilibrium models of non-convexities in adjustment costs (e.g., Bertola and 

Caballero (1994)) that have subsequently led to a rich vein of research in DSGE models 

(including, e.g., Khan and Thomas (2007)). If researchers involved in the DSGE literature are 

intrigued by the way in which I(1) sales shocks lead to an understanding of inventories that 

accounts for so many inventory puzzles, perhaps DSGE models based on I(1) sales shocks will 

become an active research area in the future. 
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The paper is organized as follows. Section II introduces a variation on the traditional 

linear-quadratic model that is better suited to the case of ( )1I  sales. Section III focuses on a 

presentation of unit root tests, the specification and estimation of the cointegrating regression, 

and the calibration of structural parameters and decision rule coefficients.  Section IV explains 

our solutions to four traditional inventory puzzles – Wen, variance ratio, slow adjustment, and 

input cost. In addition, Section IV also presents three important analytical results regarding the 

variance ratio, i.e., the variance of log output divided by the variance of log sales, that emerge 

from the model. Section V examines how the model accounts for the three monetary policy 

puzzles. Section VI provides a summary and conclusion. 

 

II. THE MODEL 

 The literature on inventory models has been dominated by the use of linear-quadratic 

approximations of an underlying cost function originally advanced in Holt, et al (1960)6.  In this 

paper, we use a constant elasticity approximation to ensure that the equilibrium conditions can be 

expressed in terms of stationary ratios. 

The representative firm is assumed to minimize the present value of its expected costs 

over an infinite horizon.7  Real costs per period consist of production costs and inventory holding 

costs. Production costs, tPC , are defined as  

  1 2
t t t tPC AY Wθ θ=         (1) 

                                                 
6 Studies in the literature that have used the linear-quadratic model in work on inventories include, for example, 

Blanchard (1983), Blinder (1986-b), West (1986), Miron and Zeldes (1988), Eichenbaum (1989), Durlauf and 

Maccini (1996), Hamilton (2002), Humphreys, et al (2001), Kashyap and Wilcox (1993), and Wen (2005). 
7 We assume that the firm minimizes discounted expected costs and thereby abstract from market structure issues, 

because our key innovation is to recognize that sales are ( )1I and to analyze the implications of this empirical fact 

for the long-run behavior of inventories.  See, e.g., Bils and Kahn (2000), Chang, Hornstein and Sarte (2009) and 

Jung and Yun (2011, 2012)  for models that deal with market structure issues.   Even though we abstract from 

market structure issues, our model is quite successful in capturing many aspects of the behavior of inventories. An 

interesting question for future research is whether our characterization of inventory behavior at business cycle 

horizons can be refined by incorporating market structure issues into the model. 
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with 1 21, 0θ θ> > , where tY  is real output and tW  is real input costs, which we will measure 

with real input prices of variable factors of production, and tA  is a shift variable that captures the 

state of technology, fixed factors of production, and the organizational structure of the firm.8  

Observe that average production costs, tJ , are  

1 21t
t t t t

t

PCJ AY W
Y

θ θ−= =        (2) 

and marginal production costs are 1 tJθ .  Because tA  is a catchall for a variety of factors, some of 

which do not lend themselves readily to measurement, our specification does not impose any 

assumptions on (or even lead to any clear implications for) the cyclicality of marginal cost. 

 If rising marginal cost were the only reason for holding inventories, the standard analysis 

suggests that output would vary less than sales. Beginning with Holt, Muth, Modigliani and 

Simon (1960), many models have included a quadratic cost of deviating from a target level of 

inventories as a way of capturing the stockout avoidance motive and inducing output to vary 

more than sales. An important study by Kahn (1987) shows that explicitly modeling the non-

negativity constraint on inventories is a way of introducing a stockout avoidance motive into the 

model and rationalizing a target level of inventories. An alternative way of incorporating a 

stockout avoidance motive is to make sales a function of inventories. Bils and Kahn (2000) 

illustrate the advantages of this approach when the objective is to analyze the cyclicality of 

marginal cost and the markup.9 Our primary objective, however, is to understand the relative 

variability of output and sales and how these can be reconciled with the slow adjustment of 

                                                 
8 In the empirical work, we allow 1θ  to be freely estimated without imposing the assumption that 1 1θ > , though

1 1θ >  is required for positive and rising marginal production costs.   A production cost function with rising marginal 

production costs, due to either the presence of fixed factors of production or diminishing returns to scale, has been 

widely used in the inventory literature to capture the production smoothing motive.  See, for example, the papers 

listed in footnote 4 as well as Kashyap and Wilcox (1993) and Hamilton (2002) who, as we do, use cointegration 

methods in their empirical work. 
9 Yet another way of introducing a stockout avoidance motive, which goes very far back in the inventory literature 

(e.g., Baumol (1952) and Tobin (1956)), is fixed costs. Khan and Thomas (2007) make an important contribution by 

incorporating fixed costs into a general equilibrium model of inventories. Unfortunately, if one wants to obtain 

analytical results that clarify how the interaction between production smoothing and stockout avoidance explains the 

major inventory puzzles, the assumption of fixed costs makes the analysis intractable. 
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inventories. A particular focus is the Wen puzzle, because Wen (2005) argues that his findings 

cannot be explained by production smoothing, stockout avoidance, cost shocks, or increasing 

returns to scale. It turns out that the economic mechanisms that explain inventory puzzles can be 

most clearly understood if we follow the more traditional literature and model stockout 

avoidance through the cost function. We therefore specify inventory holding costs as 

  
2

1
1 3 1

t
t t t

t

NHC X N
X

δ

δ δ−
−

 
= + 

 
       (3) 

with 1 2 30, 0,  and 0,ddd  > < >  where tN  is the stock of finished goods inventories at the end 

of period t, and tX  is the level of real sales, which is given exogenously.10 Inventory holding 

costs consist of two basic components. One, 
2

1
1

t
t

t

N X
X

δ

δ − 
 
 

, which we refer to as stockout 

avoidance costs, captures the idea that, given sales, higher inventories reduce costs in the form of 

lost sales because they reduce stockouts.  The other, 3 1tNδ − , which we refer to as storage costs, 

captures the idea that higher inventories raise holding costs in the form of storage costs, 

insurance costs, etc.11 
                                                 
10 The assumption that sales are exogenous is empirically consistent with the pioneering work on inventories and 

cointegration by Granger and Lee (1989), who conclude (page S151) that, "The sales series may be thought of as 

being largely exogenously determined." Theoretically, sales can be endogenized by specifying an inverse demand 

function. Industry equilibrium can be analyzed with such a demand curve, as in Eichenbaum (1989). Alternatively, 

Christiano and Eichenbaum (1989) and West (1990) derive such a linear inverse demand curve in general 

equilibrium. In linear-quadratic inventory models, this leads to a decision rule that is similar to the case with 

exogenous sales. See, e.g., Ramey and West (1999, Section 4). An alternative approach to endogenizing sales is to 

incorporate inventories into a general equilibrium model.  See Jung and Yun (2005), Khan and Thomas (2007), Wen 

(2008), Wang and Wen (2009), Iacoviello, Schiantarelli and Schuh (2007), among others.  A potentially interesting 

topic for future research is to take the model of firm behavior developed here and incorporate it into a general 

equilibrium model. 
11 See Maccini and Pagan (2013) for a similar specification of inventory holding costs for finished goods 

inventories.  Note that the two components of the above inventory holding cost function underlie as well the 

rationale for the quadratic inventory holding costs in the standard linear-quadratic model.  Observe that (3) implies a 

“target stock” of finished goods inventories that minimizes finished goods holding costs.  The target stock is

( ) 2

1

1
3 1 2/TS

t tN Xδδ δ δ −= − so that the implied stock is proportional to sales.  As emphasized by Bils and Kahn (2000), 

the target inventory/sales ratio in this class of model is a constant, instead of proportional to a variable markup as in 
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 Hamilton (2002) points out that there is an awkward feature of earlier models that have 

motivated a cointegrating regression for inventories: Marginal production and inventory holding 

costs are non-stationary. He argues that this is economically implausible and suggests a solution 

that is consistent with the spirit of Kashyap and Wilcox (1993), West (1995), and Ramey and 

West (1999). In our case, log marginal production cost is ln ln ln ln lnt t tJ J Aθ θ θ= + = + +   

1 21ln lnt tY Wθ θ− +  and log marginal inventory holding cost is ( )1 1 2ln ln lnt tHC N δ δ−∂ ∂ = +  

( )( )2 11 ln lnt tN Xδ −+ − −  (ignoring 3δ , which is non-stochastic). We assume that 

1 21ln ln ln lnt t t tJ A Y Wθ θ−= + +  and 1ln lnt tN X− −  are each stationary, which is sufficient to 

address Hamilton’s (2002) important point. Table 1 confirms this assumption by showing that 

the data strongly reject the null hypothesis that either ln N X  or ln J  contains a unit root. 

Let tβ  be a variable real discount factor, which is given by ( )1/ 1t trβ = + , where  tr  

denotes the real rate of interest. The firm’s optimization problem is to minimize the present 

discounted value of expected total costs, 

0
1 1

,
t

j t
t j

E Cβ
∞

= =

 
 
 

∑ ∏        

where { }0 0. |E E= Ω , and  

  
2

1 2 1
1 3 1

t
t t t t t t t t

t

NC PC HC AY W X N
X

δ
θ θ δ δ−

−

 
= + = + + 

 
,    

subject to the inventory accumulation equation,  

1 .t t t tN N Y X−− = −        (4)  

and to a non-negativity constraint on the stock of inventories, 

   0tN ≥  .        (5)  

 When the firm chooses tY , its information set is 1t−Ω , which includes the past values of 

all relevant variables. The first order condition for tY  is: 

                                                                                                                                                             
their model. A possibly interesting variation on our approach would be to incorporate this aspect of their framework. 

Note that the target stock is not the steady-state stock of finished goods inventories.  The steady-state stock 

minimizes total costs in steady state whereas the target stock merely minimizes inventory holding costs. 
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  { }1 21 1
1 1 0t t t t t tE AY Wθ θβ θ ξ−
−  − =        (6)  

where 1
tξ  is the Lagrange multiplier associated with the inventory accumulation equation, (4).  

Once the production level is determined, any realized sales shock in period t can only be 

met by inventories. Hence, the inventory stock must be able to respond to current-period sales 

shock tX  to clear the goods market (or to satisfy the accounting identity). This implies the 

information set when the firm chooses tN  is tΩ . The first-order condition for tN , based on tΩ  

is  

2 1
1 1 2

1 2 1 3 1
1

0t
t t t t t t

t

NE
X

δ

β β δ δ δ ξ ξ ξ
−

+ +
+

       + − + + =         
. 

Using the law of iterated expectations, this can be rewritten as  

          
2 1

1 1 2
1 1 2 1 3 1

1

0t
t t t t t t

t

NE
X

δ

β β δ δ δ ξ ξ ξ
−

− + +
+

       + − + + =         
,            (7)      

where 2
tξ  is the Lagrange multiplier on the non-negativity constraint on inventories, which is 

associated with the usual complementary slackness condition. In the simulations, inventories are 

always positive.   Intuitively, this is because of the stockout avoidance motive, which is captured 

in the first term on the right-hand side of equation (3). The data that we use, which is the total 

manufacturing sector of the US economy, are consistent with the simulations in that inventories 

are always positive in the data.  To simplify the analysis, we therefore focus on the case where  

0tN >  and thus 2 = 0tξ in what follows. Equation (7) can therefore be rewritten as  

2 1
1 1

1 1 2 1 3 1
1

0t
t t t t t

t

NE
X

δ

β β δ δ δ ξ ξ
−

− + +
+

       + − + =         
               ( 7′ )     

To interpret the optimality conditions, use (6) to eliminate the Lagrange multiplier in (7 )′  

to obtain  

2

1 2 1 2

1
1 1

1 1 1 1 2 1 3 1 1 1 1 1 1
1

(8)t
t t t t t t t t t t t t t t

t

NE AY W E E A Y W
X

δ
θ θ θ θβ θ β β δ δ δ β β θ

−

− −
− − + − + + + +

+

     + + =       
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Now, 1 21
1 1t t t t tE AY Wθ θβ θ −
−  is the marginal cost of producing a unit of output today,

1 21
1 1 1 1 1t t t t t tE AY Wθ θβ β θ −
− + + +  is the discounted marginal cost of producing a unit of output tomorrow, 

and ( )( ){ }2 1
1 1 2 1 1 3/t t t t tE N X δβ β δ δ δ−
− + + + is the discounted marginal holding cost. The Euler 

equation thus states that the firm should equate the marginal cost of producing a unit of output 

today and carrying it in inventories to the discounted marginal cost of producing the unit of 

output tomorrow.  

An additional first order condition is  

[ ]{ }1 1 1 0t t t t tE N N Y Xβ− −− − + = .               (9) 

We thus have two equations, (8) and (9), which determine output and 1t tE N− . To obtain the 

decision rule for ,tN we utilize the inventory accumulation equation, (4), evaluated after the 

realization of the sales shock. Before describing the details of the derivation of the decision rule 

for inventories (in the paragraph below that contains equation (17)), we introduce two distinctive 

aspects of our modeling approach.  

First, and most important, we take into account the fact that ADF tests fail to reject the 

null hypothesis that sales are I(1). The unit root tests of key variables are presented below in 

Table 1.  Imposing this fact as an assumption on the model yields several new analytical results 

and enables us to rationalize a number of empirical puzzles that have plagued the inventory 

literature.  Second, we model the real interest rate as a Markov switching process.  This enables 

us to reconcile empirical puzzles regarding the effects of monetary policy on inventories. 
 

Since the data are consistent with I(1) sales and inventories, we need to linearize the 

optimality conditions around stationary variables. We assume that the ratios, /Nt t tR N X= , 

Yt t tR Y X= , and tJ , are stationary.  We also assume that average stockout avoidance costs, 

which we denote by tψ , are stationary.  Empirical evidence in support of these assumptions is 

reported in Table 1 below.  Further, in Appendix B, we show that log linearizing the optimality 

conditions around steady-state values yields a linearized Euler equation of the following form:  

 
( ){

( ) [ ] }
1 1 1 1 2 1 1

2 2 1 1 1 1 1

1 ln ln ln ln

1 ln ln 0

t t t t t

A
t t t t

E J Y Y J W W

N X Jr Ju c

θ θ β θ θ β

β δ δ ψ θ θ

− + +

+ + +

   − − + −   

+ − − + + + =

          (10) 
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where J  is steady-state average production cost, 1Jθ  is steady-state marginal production cost12, 

ψ  is steady-state value of average stockout avoidance costs13, which can be written as 

( ) 2 1
1 11t Nt tR x

δ
ψ δ

−

+= −   , where 1tx +  is the growth rate of X  between t and t+1, 2δ ψ  is steady-

state marginal stockout avoidance costs, NR  is the steady-state inventory/sales ratio, 

( )1/ 1 rβ = + ,  r  is the unconditional mean real interest rate, x  is the steady-state growth rate 

of sales, 1
A
tu + is a stationary shock, c  is a constant, and a bar above a variable denotes a steady-

state value. 

We assume further that the real interest rate follows a three-state Markov switching 

process.14  Specifically, we assume that the real interest rate follows 

 tSSt tt
rr εσ ⋅+=                                                  (11) 

where tε ~ i.i.d. N(0,1) and where {1,2,3}tS ∈  follows a Markov switching process. Let 

1 2 3r r r< < , so that, when 1,2,3tS = , the real interest rate is in the low-interest-rate, moderate-

interest-rate, and  high-interest-rate regime, respectively. tS  and tε  are assumed to be  

independent. Denote the transition probabilities governing the evolution of tS by 

1Prob( | ).ij t tp S j S i−= = =  Collecting these probabilities into a matrix we have  

    
11 21 31

12 22 32

13 23 33

.
p p p

P p p p
p p p

 
 =  
  

             (12) 

  

                                                 
12 See Hamilton (2002) for a careful discussion of the stationarity properties of marginal productions costs that are 

implied by inventory models. In particular, Hamilton (2002) shows how stationarity of marginal production costs 

arises naturally when sales, costs, output, etc. are nonstationary. 
13 Note that ψ  is average steady state stockout avoidance costs, not average total inventory holding costs.  The latter 

is 3ψ δ+ , which includes both stockout avoidance costs and storage costs. 
14 This is consistent with empirical patterns in real interest rates; see Garcia and Perron (1996) and Maccini, Moore 

and Schaller (2004). The latter paper describes how the firm uses its observations of the real interest rate to develop 

its probability assessments. For a comprehensive discussion of Markov switching processes, see Hamilton (1994, 

Chapter 22). 
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The firm is assumed to know the structure and parameters of the Markov switching 

process but does not know the true real interest rate regime. The firm must therefore infer tS  

from observed interest rates. We denote the firm’s current probability assessment of the true state 

by πt. That is,    

1

2

3

Prob( 1| )
Prob( 2 | )
Prob( 3 | )

t t t

t t t t

t t t

S
S
S

π
π π

π

= Ω   
   = = = Ω   
   = Ω   

.                 (13) 

Given 1tπ − , the term 1 1t tE r− +  in equation (10) can be computed as  

2
1 1 1 1 1 1 2 2 1 3 3 1t t v t t t tE r r P π γ π γ π γ π− + − − − −

′= = + +                   (14) 

where v 1 2 3r [ , , ]r r r′ =  and  [ ] 2
1 2 3 vr Pγ γ γ γ ′′≡ ≡  . Since 1 1 2 1 3 1 1t t tπ π π− − −+ + =  by definition, we 

can eliminate 2 1tπ −  from the right hand side of (14) to obtain   

           ( ) ( )1 1 1 2 1 1 3 2 3 1 2t t t tE r γ γ π γ γ π γ− + − −= − + − + .                   (15) 

Then, substituting (15) into (10) yields 

( )
( ) [ ] ( ) ( )

1 1 1 1 2 1 1

2 2 1 1 1 1 1 2 1 1 3 2 3 1 2

{ 1 ln ln ln ln

1 ln lnX } 0
t t t t t

A
t t t t t

E J Y Y J W W

N Ju J c

θ θ β θ θ β

β δ δ ψ θ θ γ γ π γ γ π γ
− + +

+ + − −

   − − + −   
+ − − + + − + − + + =  

 (16) 

which is the log-linearized Euler equation incorporating the firm’s learning process. 

The log-linearized Euler equation implied by the model, equation (16), may be written as 

a second-order expectational difference equation.  In Appendix B, we provide the details of how 

we solve for the decision rule for inventories. The steps include solving the second-order 

expectational difference equation for 1 lnt tE N− , assuming I(1) processes for sales and real input 

costs, taking into account the Markov-switching process for the real interest rate, and using the 

inventory identity, (4).  The resulting decision rule for inventories is   

0 1 1 1 1 1 1 1 3 3 1ln ln ln lnt t X t W t t t tN N X W uπ πl π π− − − − −= Γ + +Γ +Γ +Γ +Γ +                        (17) 

where 

 ( )
( )

2 2 1

1 1 1

1
1 1

Y

N
X

Rr
J R r

δ δ ψ λ
θ θ λ

   −
= −   − + −    

Γ
             

(18)  

( )
2 1

1 11 1
Y

N
W

r R
R r

θ λ
θ λ

 
= −  − + − 

Γ                 (19) 
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( )1

1
1 1

1

1
1

1 1
0

Y

N

R
I P

R rπ
λλ

γ
θ

−  
−    ′Γ = − −   − +    

                 (20-a) 

( )3

1
1 1

1

0
1

1 1
1

Y

N

R
I P

R rπ
λλ

γ
θ

−  
−    ′Γ = − −   − +    

          (20-b)  

( )
1

2 2
1

11 4
2 2

r rζλ ζ ζ+  = + − + +  
                     (21-a) 

( )
( )

2 2

1 1

1
1

Y

N

R
J R

δ δ ψ
ζ

θ θ
−

=
−

              (21-b) 

 

( )( )1/ A Y X
t Y N t t tu R R u u u−= + −               (21-c) 

 

where 1λ  is the stable root of the relevant characteristic equation, tu
 
is a stationary shock that is 

a combination of the sales shock, X
tu , a production shock, Y

tu , and a technology shock, 1
A
tu − , 0Γ  

is a constant, and YR and NR are the steady state values of YtR  and NtR  respectively. The decision 

rule shock, tu , arises from unanticipated fluctuations in sales, output and the state of technology.  

In the short run, inventories act as a buffer, absorbing these unanticipated fluctuations. 

 Similarly, a decision rule for output, ln tY , may be derived utilizing the decision rule for 

inventories, equation (17), the inventory identity, (4), and the assumption of I(1) processes for 

sales and real input costs.  See Appendix B for the details. 
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III. UNIT ROOT TESTS, THE COINTEGRATING REGRESSION AND CALIBRATION 

A.  Unit Root Tests 

In Table 1, we present unit root tests of the key variables of the model.  As Table 1 

shows, ADF tests fail to reject the null hypothesis that  ln tN ,  ln tX ,  ln tW ,  1π , and  3π  are 

( )1I .15 

Table 1 
Unit Root Tests 

 
Panel A: Unit Root Tests – Variables in Cointegrating Regression 

N  X  W  1π  3π  

-2.808 
[0.194] 

-3.202 
[0.084] 

-2.236 
[0.469] 

-2.732 
[0.223] 

-3.101 
[0.106] 

Panel B: Unit Root Tests – Ratios Assumed to be Stationary  

/N X  /Y X                J  ψ  

-3.878 
[0.013] 

-8.727 
[0.000] 

 -6.491 
[0.000] 

-3.855 
[0.014] 

 
N is inventories, X is sales, Y is output, W is input costs, J is average production costs, ψ denotes average stockout 
avoidance costs, 1π is the probability of being in the low-interest-rate state, and 3π is the probability of being in the 

high-interest-rate state.  See Appendix A for details on the data. The probabilities 1π  and 3π are defined in equation 
(13) and calculated using the algorithm for the filter probabilities in Hamilton (1989). All variables except 1π and 3π  
are in logs and log-linearly detrended. The cell entries are ADF tests for unit roots, p-values in brackets. (The 
number of lags in the ADF tests was chosen using a standard criterion; i.e., the lag length that minimizes the AIC 
plus 2. All of the unit root tests include a constant and a deterministic trend.) 
 
On the other hand, as Table 1 indicates, the ratios, /Nt t tR N X= , Yt t tR Y X= , tJ , and tψ , are 

stationary. Standard ADF tests reject the null hypothesis of a unit root for each of the four ratios. 

 

B.  The Cointegrating Regression for Inventories 

Since Table 1 shows that key variables are I(1), we follow a number of papers in the 

literature by focusing on the cointegrating regression for inventories.16  In Appendix B, we show 
                                                 
15 Since ltπ  and 3tπ  have a restricted range, one might wonder whether it is better to model them as I(0) or I(1). We 

note two points.  First, in careful applied econometric research, variables with restricted ranges, such as the nominal 

interest rate, are modeled as I(1) variables when they are highly persistent.  (See, e.g., Stock and Watson (1993) and 

Caballero (1994).)  Second, ADF tests fail to reject the null hypothesis that ltπ  and 3tπ  are I(1). 
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that the model in Section II implies that inventories, sales, input costs, and the interest-rate-

regime probabilities are cointegrated, with cointegrating regression 

1 30 1, 1 3, 1ln ln lnt X t W t t t tN b b X b W b bπ ππ π n− −= + + + + + ,                      (22) 

where 

( )
( )

1 1

2 2

1
1

1Xb
r Jθ θ
δ δ ψ

=
−

−
−

 ,        (23-a)   
( )

2 1

2 21W
r Jb θ θ

δ δ ψ
= −

−
       (23-b) 

( )
( )
( )2 2

1
1 21 1

1 J
b

r
π

θ
γ γ

δ δ ψ
= − −

−

+
,   (23-c)  ( )

( )
( )2 2

1
3 23 1

1 J
b

r
π

θ
γ γ

δ δ ψ
= − −

−

+
     (23-d) 

0b  is a constant, and tv  is a stationary error term. As discussed in Appendix B, this equation can 

be derived from the Euler equation for inventories. An important motivation for our focus on the 

cointegrating regression is the Maccini, Moore, and Schaller (2004) finding that the decision rule 

does poorly if one wants to measure the effect of the interest rate on inventories, often yielding 

point estimates that imply that a higher interest rate increases inventories and never yielding a 

significantly negative effect of the interest rate on inventories.  

Equation (22) suggests an immediate test of the model, since it states that the variables in 

the equation will be cointegrated. The data are consistent with equation (22): The Johansen-

Juselius test rejects the null hypothesis of no cointegrating vector, with a test statistic of 97.9 (p-

value=0.001).17 

Stock and Watson (1993) explain the econometric problems associated with estimating a 

cointegrating regression using OLS and explain how Dynamic OLS (DOLS) addresses these 

problems. The DOLS specification of equation (22) is  

1 30 1, 1 3, 1

, , 1, 1, 1 3, 3, 1

ln ln ln

ln ln .

t T X t W t t t

p p p p

X s t s W s t s s t s s t s t
s p s p s p s p

N b b t b X b W b b

B X B W B B

pp

pp

pp

pp  η

− −

− − − − − −
=− =− =− =−

= + + + + +

+ ∆ + ∆ + ∆ + ∆ +∑ ∑ ∑ ∑
         (24) 

Caballero (1994, 1999) provides econometric theory and Monte Carlo simulations showing first, 

that  the bias associated with OLS estimation is particularly severe when adjustment frictions are 

                                                                                                                                                             
16 See, e.g., Kashyap and Wilcox (1993), Ramey and West (1999), Hamilton (2002), and Maccini, Moore, and 

Schaller (2004).  
17 For reasons of data availability, the sample is 1959:01 to 2004:08. The variables enter as shown in equation (22) 

without detrending. The number of lags used in the test is set to minimize the AIC. 
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important, and second that a large value of p may be needed in equation (24) to correct the 

bias.18 Although the model in Section II does not involve any explicit adjustment frictions, the 

curvature of the production cost function, relative to the curvature of stockout avoidance costs, 

leads to slow adjustment of inventories (as we discuss in more detail later). With these 

econometric issues in mind, we conduct our own Monte Carlo simulations. These simulations 

show that standard OLS is severely biased: The mean point estimate of Xb  has the wrong sign 

and roughly the same magnitude as the true coefficient. In addition, our Monte Carlo simulations 

inform our choice of p (the number of augmenting leads and lags) in (24). We set p = 48, since 

this choice of p largely eliminates the bias. 

DOLS estimates of the cointegrating regression for inventories using the 1959:01 to 

2004:08 sample are presented in Table 2.  Observe that all parameter estimates are highly 

statistically significant.  Further, Wb  and 3bπ
 are negative, and 1bπ

  is positive, which are 

consistent with the theoretical predictions of the model.  Moreover, Xb  is positive, which 

indicates that in long-run equilibrium the present value of the change in marginal stockout 

avoidance costs exceeds the change in marginal production costs so that an increase in sales 

raises inventories. 

Table 2 
 Estimated Cointegrating Regression 

 
Constant Time 

Xb  Wb  
1

bπ  
3

bπ  

11.589 

(23.389) 

1.5E-03 

(10.911) 

0.250 

(3.098) 

-0.753 

(-5.244) 

       0.098 

(10.974) 

-0.028 

(-4.216) 

DOLS estimates of the cointegrating vector with t-statistics in parentheses.    

 

C. Calibration of the Structural Parameters 
 

Note from the definitions of 
3

 and Xb bπ  in (23-a) and (23-d) that  

                                                 
18 Some researchers might be inclined to cite the superconvergence property of cointegrating regressions as an 

advantage, relative to stationary econometric techniques. In light of the work of Stock and Watson (1993) and 

Caballero (1994, 1999) on the bias in coefficient estimates when OLS is used as the estimator of a cointegrating 

regression, we are hesitant to overemphasize this potential advantage of cointegrating regressions. 
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( )
( )( )3

1

2 3

11
1

X rb
b rπ

θ

γ γ

−−
=

+ −
.       (25) 

We obtain 2 3, , and  r γ γ  from our estimates of the parameters of the stochastic process for the 

real interest rate, that is, from our estimates of the elements of P and rv, which are discussed in 

Section II. (See equations (11)-(14) and the accompanying text.).  Following procedures 

developed by Hamilton (1989), our estimation of the three-state Markov-switching model yields 

estimates of the parameters, which are  

11 21 31

12 22 32

13 23 33

0.98 0.02 0.00
0.02 0.96 0.05
0.00 0.02 0.95

p p p
P p p p

p p p

= = = 
 = = = = 
 = = = 

     (26) 

and   

1

v 2

3

-1.37
r 1.77

5.04

r
r
r

   
   ≡ =   
      

.        (27) 

Together these estimates imply that the unconditional mean of the monthly real interest rate is 

 =0.001r , which gives 0.999β = . Since,  2 3, , and  r γ γ  are given from our estimates of the 

Markov switching model we invert (25) and use our estimates of 
3

 and Xb bπ  to obtain 1θ  from 

( )
3

1 2 3

ˆ1 11 ˆ
Xb r

rbπ
θ γ γ

  − + = + −     
.      (28) 

Similarly, note from the definitions of 
3

 and Wb bπ in (23-b) and (23-d) that  

( )( )3

2

3 21
Wb r

b rπ

θ
γ γ

=
+ −

.        (29) 

We invert (29) and use our estimates of 
3

 and Wb bπ to obtain a value for 2θ  from 

( )
3

2 3 2

ˆ1
ˆ
Wbr

r bπ
θ γ γ

 +
= −  

 
.       (30) 
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 Given the values of 2 3, , and  r γ γ  from our estimation of the Markov-switching model 

and the estimates of 
1 3

, , , andX Wb b b bπ π  from the cointegrating regression, the structural 

parameters 1θ  and 2θ  are determined from equations (28) and (30), respectively.  

Finally, note from the definitions of 
3

bπ in (23-d) and ψ  (below (10)) that  

( )( )
( ) ( )3 2

2 3 1

( 1)

2 2 1

1

1 1N

r J
b

R x
π δ

γ γ θ

δ δ δ
−

+ −
=

 − − 
      (31) 

or, rearranging and using the estimate of 
3

bπ ,  

( ) ( ) ( )( )2

3

( 1)

2 2 1 2 3 1
ˆ 1 1 1Nb R x r J

δ

π δ δ δ γ γ θ
−

 − − = + −  .   (32) 

Using the estimate of 
3

bπ , the normalization19 1 1δ = , and given values20 for 

, ,  and ,NR x J  equation (32) gives a single restriction on the value of 2δ .  We have assumed that 

2 0δ < . We therefore search numerically over 2 ( ,0]δ ∈ −∞  to find the value of 2δ  that satisfies 

(32).21  

Thus, using equations (28), (30), and (32) we obtain a unique value for each of the 

model’s structural parameters – there are no free parameters.  The values that we obtain are 

reported in Table 3: Panel A.    The calibrated parameters are consistent with our theoretical 

predictions.  In particular, 1 1θ > , 2 0θ > , and 2 0δ < . 

Table 3:  
Calibrated Structural Parameters and Decision Rule Coefficients 

 
Panel A: Cost Function Parameters 

1θ  2θ  1δ  2δ  

65.097 64.354 1   -0.676 

                                                 
19 This normalization implies that we can only evaluate the relative magnitude of other structural parameters such as 

1θ  and 2δ . A comparable situation exists with linear-quadratic inventory models, where the relative magnitude of 
key structural parameters determines the behavior of inventories. See, e.g., Ramey and West (1999), p. 894. 
20 , ,  and NR x J  are steady-state ratios.  For NR  and x , we therefore use the sample mean values of t tN X  and 

1t tX X+∆ , respectively, which gives 0.468NR = and 0.00108x = . J denotes the steady-state value of average 
production costs. Based on data from the 1992 Census of Manufacturing, we estimate production costs to be 73.4% 
of total output and set 0.734J = . 
21 Our numerical search shows that only one value of 2δ  satisfies (32).   
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Panel B: Decision Rule Coefficients 

1λ  XΓ  WΓ  
1π

Γ  
3π

Γ  

0.949 0.0128 -0.0386 0.0011 -0.0008 

As shown in equation (1), 1θ  and 2θ  are the elasticities of production cost with respect to output and with respect to 
input costs, respectively. As shown in equation (3), 2δ  is the elasticity of stockout avoidance costs with respect to 
the inventory/sales ratio. As is common in the inventory literature, 1δ   is normalized to 1. Consequently, 1θ 2θ , and 

2δ , are measured relative to 1δ . (The storage cost parameter 3δ  is not included in the table because it does not affect 
the decision rule coefficients.) The coefficients 1λ , XΓ , WΓ , 1πΓ , and 3πΓ  are the coefficients in the firm's decision 
rule on lagged inventories, sales, input costs, and the Bayesian probabilities of the low-interest-rate and high-
interest-rate regimes, respectively. 
 
 
D.  Calibration of the Decision Rule Coefficients 
 

The decision rule and its coefficients are presented in equations (17)-(21).  The 

derivations of the decision rule coefficients are presented in Appendix B.  Using the calibrated 

structural parameters, and given values22 for , , , , and rYNR R J xψ , we obtain calibrated values 

of the decision rule coefficients.   These are presented in Table 3: Panel B.   

The calibrated decision rule coefficients are consistent with theoretical predictions and 

are economically sensible.  An increase in costs or an increase in the probability that the 

economy is in the high-interest-rate regime will lower inventories.  An increase in the probability 

that the economy is in the low-interest-rate regime will increase inventories. As with our 

discussion of Xb  above, the effect of an increase in sales is in general ambiguous.  However, 

analogous to the result for Xb , XΓ  is positive since the present value of the change in marginal 

stockout avoidance costs exceeds the change in marginal production costs. 

 

 

                                                 
22 , , , , and rYNR R J xψ  are steady-state ratios. , , and NR Jx  are defined above.  YR  is the steady-state output-sales 

ratio determined by the sample mean of /t tY X , which is 1.001, and ψ  is the steady-state value of average stockout 

avoidance costs defined by ( ) 2 1

1 1NR x
δ

ψ δ
−

 = −  . Using the steady state values for NR and x and calibrated 

parameters for 1 2 and dd  , 3.58ψ = .  Note that ψ  is average steady state stockout avoidance costs, not average total 

inventory holding costs.  The latter is 3ψ δ+ , which includes both stockout avoidance costs and storage costs.  
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IV. THE TRADITIONAL INVENTORY PUZZLES 

A. Wen Puzzle 

i. Basic Results 

Wen (2005) distinguishes between the movements of production and sales at medium 

horizons (about 8-40 quarters) and short horizons (less than three quarters). At medium horizons, 

he finds that production is more volatile than sales. More surprisingly, he finds that production is 

less volatile than sales at short horizons. His empirical work shows that these stylized facts hold 

for the US, a number of other industrialized countries (Australia, Austria, Canada, Denmark, 

France, Finland, Great Britain, Japan, the Netherlands, and Switzerland), Europe as a whole, and 

the OECD as a whole.  Wen (2005, p. 1533) argues that, "The stylized fact that production and 

inventories exhibit drastically different behaviors at the high- and low-cyclical frequencies offers 

a litmus test for [inventory] theories."23 

 We begin by explaining the intuition for our solution to the Wen puzzle. Suppose the firm 

is hit with a permanent sales shock, as illustrated in Figure 1. At first, because the firm set 

production before it knew what demand would be in period one, output is essentially unchanged 

and the shock is absorbed by running down inventories. Thus, in the first period, the volatility of 

output is low relative to the volatility of sales. In the second period, output responds to the sales 

shock. This increases the measured variance of output, but the conditional variance of output is 

still smaller than the conditional variance of sales (where both are conditional on their levels 

before the shock). Over the medium term, output continues to move in a delayed response to the 

                                                 
23 Wen’s argument runs as follows. The short-horizon behavior of output and sales is consistent with production 

smoothing but not with stockout avoidance. The medium-horizon behavior of output and sales is consistent with 

stockout avoidance but not with production smoothing. The medium-horizon behavior of output and sales is 

consistent with increasing returns to scale (i.e., concavity of the production cost function), but the short-horizon 

behavior is not. Finally, if cost shocks are incorporated into a model with a production-smoothing motive, cost 

shocks can make output more variable than sales, but: 1) cost shocks make output more variable than sales at both 

short and medium horizons; or 2) when non-negativity constraints on inventories dominate, cost shocks have no 

effect on the correlation between inventory investment and sales. Wen (2005) thus concludes that none of the 

existing explanations for the variance ratio puzzle -- stockout avoidance, cost shocks, or increasing returns to scale -- 

can simultaneously account for the behavior of output and sales at both short and medium horizons. It is not clear 

that recent papers such as Khan-Thomas (2007) or Wen (2011) are able to explain the Wen Puzzle any better than 

earlier papers. These two papers certainly do not offer an explicit solution for the Wen Puzzle. 
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original shock, but sales are unchanged, since the initial shock was permanent. Eventually, the 

ongoing movements in output lead to a measured variance of output that is greater than the 

variance of sales, so the conditional variance ratio exceeds one. (Just below, we explain further 

what we mean by the conditional variance ratio.) In the long run, output and sales move by the 

same amount, so the conditional variance ratio approaches the unconditional variance ratio, 

which, as we show below, is equal to one. 

Figure 1 
 Response of Production to a Sales Shock 

 

 
 
The solid line shows the path of sales in the wake of a one-time, one-standard-deviation permanent sales shock. The 
line with open circles shows the response of output in the model when the structural parameters are calibrated using 
the cointegrating regression for inventories. The line with solid triangles shows what the response of output would 
be if the ratio 1 2θ δ  were 2.5 times its calibrated value. 
 As this intuition illustrates, we need a counterpart to the variance ratio that takes into 

account the horizon. This is where the conditional variance ratio fits in. The numerator of the 

conditional variance ratio is the variance of output, conditional on output n periods in the past. 

The denominator is the variance of sales, conditional on sales n+1 periods in the past. (Both 

output and sales are measured in logs for analytical tractability.) For specificity, assume the I(1) 

process for sales is 1ln ln X
t t tX X u−= + , where  is i.i.d. with mean 0 and variance 2

Xσ . Based 

on the model in Section II, we obtain the following result.24 
                                                 
24 To obtain the conditional variance ratio, first solve for the decision rule for output. To do so, use the solution for 

1 lnt tE Y−  and the inventory identity and assume that sales and input costs follow I(1) processes (specifically, 

random walks). To simplify the analysis and to focus on the traditional explanations for the variance ratio puzzle, 

assume further that real interest rates are constant, which implies that the probabilities are fixed over time.  Then, the 

decision rule for output is: 
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          (33) 

where Var ( )ln | lnt t nY Y −  
is the variance of ln tY  conditional on ln t nY − , Var ( )( 1)ln | lnt t nX X − +  is 

the variance of ln tX  conditional on ( )1ln t nX − + , 2
Xσ is the variance of the sales shock, 2

Wσ  is the 

variance of the cost shock, and  

( )
( ) ( )

2 2 1

1 1 1

1
1 1

N
X X

Y

R
r

R J r
δ δ ψ λ
θ θ λ

 −
Γ = Γ = − − + − 
                    (34-a) 
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 
Γ = Γ = −  − + − 
                                           (34-b) 

where XΓ  and WΓ  are the elasticities of output with respect to sales and input costs, 

respectively. 

 Equations (33) and (34) confirm a key insight in the existing literature. The variability of 

output, relative to sales, depends on the relative strength of the production smoothing and 

stockout avoidance motives. More precisely, it depends on the convexity of production costs 

divided by the convexity of stockout adjustment costs (i.e., ( ) ( )2 2 1 11 1 Jδ δ ψ θ θ− − ). A key new 

insight of our paper is that this is true in the “short run”, but not in the long run.  

Using equation (33) and the calibrated parameters, we can calculate the analytical 

conditional variance ratio as a function of the horizon n .  The solid line in Figure 2 shows that  

                                                                                                                                                             
 ( ) ( )1 1 1 1 1 1ln ln 1 ln 1 X W

t t t X t W t YY Y X u u cl l− − − −= + − + + Γ + Γ +        

where X

t ku
−  is the sales shock and W

t iu
−  is the input cost shock.  Next, using backward substitution, the above equation 

can be written as:  

( ) ( ) ( )
1 1

1
1 1 1 ( 1) 1 1 1 1

0 0 0 1
ln ln 1 ln 1 1 .

n n k n
n i i k X i W

t t n t n X t k W l t i Y
i k i i

Y Y X u u cl l l l l l l
− −

−
− − + − − −

= = = =

   = + − + − + + Γ + Γ +   
   
∑ ∑ ∑ ∑ 

    

Taking the variance of this equation appropriately yields the Analytical Conditional Variance Ratio.  See Appendix 

B for the details. 
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Figure 2 
 Analytical Conditional Variance Ratio 

 

 
 
The solid line shows the analytical conditional variance ratio calculated from equation (33), where the structural 
parameters are calibrated using the cointegrating regression. The dashed line shows the analytical conditional 
variance ratio if the relative strength of the production smoothing and stockout avoidance motives (i.e., the ratio of 
the convexity of production costs to the convexity of the stockout avoidance costs, ( ) ( )2 2 1 11 1 Jδ δ ψ θ θ− − ), were 
equal to 2.5 times the calibrated value. The horizontal axis shows the horizon (n) in months. 

 

the analytical conditional variance ratio is less than one at short horizons and greater than one at 

business cycle horizons. 

We define the empirical conditional variance ratio as 
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( )( 1)
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=

−
 .   (35)  

To motivate the empirical conditional variance ratio, note that ln tX , conditional on ( )1ln t nX − + , is 

the sum of subsequent sales shocks: 

 
( )

1

1
1

ln ln
n

X
t t jt n

j
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+

−− +
=

= +∑ .         (36) 

Thus, the variance of log sales, conditional on ( )1ln t nX − + , is 

 ( ) ( ) ( ) 2
( 1) ( 1)ln | ln ln ln 1 .t t n t t n XVar X X Var X X n σ− + − +≡ − = +     (37) 

In the data, the empirical conditional variance ratio shows the pattern documented by Wen 

(2005).   As shown in the first row of Table 4, at short horizons, the empirical conditional 
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variance ratio is less than one; for example, for 1n =  month, it is 0.62; for 2n =  months, it is 

0.71.   At business cycle horizons, the empirical conditional variance ratio is greater than one; for 

example, for 50n =  months, it is 1.02; for 70n =  months, it is 1.01. 

Table 4 
Conditional Variance Ratio for Selected n  

 
 Short Horizons Business Cycle Horizons 

1n =  2n =  8n =   40n =   50n =  70n =  
Analytical 0.62 0.71 0.98 1.02 1.02 1.01 
Empirical 0.56 0.74 0.89 1.00 1.02 1.02 
The row labeled “Analytical” reports the analytical conditional variance ratio from the model, which is calculated 
from equation (33) with the structural parameters calibrated to the data. The row labeled “Empirical” reports the 
empirical conditional variance ratio, calculated from the data using the definition in equation (35).  
 

The analytical conditional variance ratio has the same pattern as the empirical conditional 

variance ratio. At short horizons, both are substantially below one, as shown in Table 4. At 

business cycle horizons, both are larger than one.  

ii. The Role of the Interest Rate 

Equations (33) and (34) provide an important new insight: The variability of output, 

relative to the variability of sales, depends on the mean real interest rate. We begin by explaining 

the intuition. Next, we use the equations of the model to precisely describe the details. Finally, 

we use the model to illustrate the effect of the mean real interest rate.  

Suppose the firm is making a marginal decision about output in response to an increase in 

sales. The cost of producing one more unit of output is a one-time cost. The benefit of an 

additional unit of inventory is the present value of the reduction in stockout avoidance costs.  If 

production smoothing dominates, the firm’s desired long-run inventory stock decreases.  But, if 

stockout avoidance dominates, the desired long-run inventory stock increases. Of course, the 

present value of the reduction in stockout avoidance costs depends on the mean real interest rate, 

so the reciprocal of the mean real interest rate (i.e., ) weights the stockout avoidance motive. 

The higher the mean real interest rate, the less weight the firm places on stockout avoidance.  

From the decision rule for inventories, we can derive the long-run desired stock of 

inventories 25, *
tN . 

                                                 
25 Specifically, the desired stock of inventories is derived by setting *

1ln ln lnt t tN N N−= =  and  in equation 

(17).   
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[ ]*
1 1 1 1 1 3 3 1 0

1

1ln ln ln
1t X t W t t tN X W π ππ π

l − − − −= Γ + Γ + Γ + Γ + Γ
−

    (38) 

The coefficient XΓ  determines whether or not a positive sales shock increases *
tN .26  

0X
>

Γ
<

   as   
 

( ) ( )2 2
1 1

1
1 J

r
δ δ ψ

θ θ
− >

−
<        (39) 

   
 

The left-hand side of the inequality is the present value of the change in marginal stockout 

avoidance costs. The right-hand side is the change in marginal production costs. Thus, condition 

(39) formalizes the intuition presented above. To the best of our knowledge, our work is the first 

to highlight the role of the real interest rate in understanding the relative variances of output and 

sales. 

 Once we take into account the role of the real interest rate, we find that the stockout 

avoidance motive dominates the production smoothing motive. This is directly reflected in the 

estimate of the cointegrating regression coefficient on sales , which will be positive, as we 

can see from equation (23-a), if the stockout avoidance motive dominates the production 

smoothing motive (i.e., if condition (39) is satisfied). In fact, the point estimate of  from the 

cointegrating regression is positive. This provides direct evidence that stockout avoidance 

dominates production smoothing, even before we calculate the structural parameters and 

substitute them into condition (39) or use them in equation (33) to calculate the analytical 

conditional variance ratio. 

 Condition (39) plays a role in equations (33) and (34), since XΓ  also appears there. 

Equations (33) and (34) are the equations that describe how the volatility of output, relative to 

the volatility of sales, evolves in the short and medium run (i.e., over any finite horizon).   

                                                 
26 XΓ  is defined in equation (18). ( )1 11 rλλ + −  is positive because: 1) equation (21-b) shows that 1λ  is strictly 

positive and less than or equal to one; and 2)  is positive. Recall that ( ) 2 1

1 1 Nx R
δ

ψ δ
−

 = −  , 1 0δ > , and 2 0δ < , 

so, under the very mild assumption that the steady-state growth rate of sales  is less than 100%, 0ψ > . Thus 

( )2 21 0δ δ ψ− >  . Recall that 1 1θ >  and , so ( )1 11 0Jθ θ− > .  and . Thus, the sign of XΓ  

depends on the inequality in equation (39).          
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The role of the real interest rate in determining the analytical conditional variance ratio is 

illustrated in Figure 3. In our data, the mean annual real interest rate is 1.2%, which corresponds  

Figure 3 
 The Real Interest Rate and the Analytical Conditional Variance Ratio 

 

       
The solid line shows the analytical conditional variance ratio, calculated from equation (33), where the annual mean 
real interest rate is set equal to its value in the data, which is 1.2%.  The line with open circles shows the analytical 
conditional variance ratio for a mean real interest rate of 0.3% and the line with triangles shows the analytical 
conditional variance ratio for a mean real interest rate of 5%. 

 

to a monthly real interest rate of 0.1% (i.e., r = 0.001). This implies that the production-

smoothing motive dominates the analytical conditional variance ratio at short horizons, as shown 

by the solid line. If the real interest rate were lower, the stockout avoidance motive would be 

even more important and the analytical conditional variance ratio would be greater than 1 at still 

shorter horizons, as shown by the line with open circles. If the real interest rate were higher, the 

stockout avoidance motive would be less important.  For example, for a mean annual real interest 

rate of 5.0%, production smoothing would dominate at all horizons and the analytical conditional 

variance ratio would never be greater than 1, as illustrated by the line with triangles. 
iii. The Cyclicality of Inventory Investment 

An important question in the literature has been the cyclicality of inventory investment; 

see, e.g., Ramey and West (1999) and Wen (2005).  The inventory identity implies that 

 
[ ] [ ] [ ] [ ]2 , .Var Y Var X Var N Cov X N= + ∆ + ∆      (40) 

 
Equation (32) illustrates the close relationship between the variance ratio puzzle and the 

cyclicality of inventory investment. Suppose inventory investment were acyclical, so 

[ ], 0Cov X N∆ =  . Then [ ] [ ] 1Var Y Var X ≥ , since [ ] 0Var N∆ ≥  . Thus, the only way that 
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[ ] [ ]Var Y Var X could be less than one would be if inventory investment were countercyclical 

(i.e., [ ], 0Cov X N∆ < ). In the data, researchers tend to find that inventory investment is 

procyclical. If production smoothing were the dominant motive, the empirical result that 

inventories are procyclical would be another puzzle.  

 As we emphasize in this paper, ADF tests fail to reject the null hypothesis that sales are 

I(1). As discussed above, this implies that the stock of inventories is I(1), so inventory 

investment is I(0). In the long run, the variance of an I(0) variable becomes arbitrarily small 

relative to the variance of a I(1) variable, so, in the long run, [ ]Var N∆  becomes arbitrarily small 

relative to . Similarly, in the long run, [ ],Cov X N∆  becomes arbitrarily small relative to 

. Equation (40) therefore provides another way of seeing the result that the variance ratio 

is 1 in the long run, since [ ] [ ] 1Var Y Var X =  asymptotically.  

 At business cycle horizons, the conditional variance ratio is greater than 1, both 

theoretically (in our calibrated model) and empirically. This is consistent with the empirical 

evidence that inventory investment is procyclical, since [ ], 0Cov X N∆ >  implies that 

[ ] [ ] 1Var Y Var X > . The simplest way to see the intuition is to look at Figure 1. Focus on the 

case where the stockout avoidance motive dominates the production smoothing motive (the case 

consistent with our estimates of the cointegrating regression). The path of output is represented 

by the line with open circles. Output hardly moves at the time of the shock, because the firm has 

set production before it knows the current state of demand. The only way it can meet the increase 

in demand is by depleting its inventories. If the stockout avoidance motive dominates, in the next 

period, output increases by more than the increase in sales because the firm needs to increase 

output to meet the new, permanently higher level of demand and because it needs to replace the 

inventories that were depleted in the initial period. Thus, inventory investment is high at the 

same time that sales are high; i.e., inventory investment is procyclical (at business cycle 

horizons).  

B. Variance Ratio Puzzle 

 Equation 33 allows us to calculate the long-run variance ratio by taking the limit as n 

approaches infinity. This has the effect of making the conditioning information arbitrarily 
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unimportant. The result is that, in the long run, [ ] [ ]ln ln X 1t tVar Y Var = . A striking aspect of 

this result, is that the long-run variance ratio is one regardless of the strength of production 

smoothing, stockout avoidance, or cost shocks.  

We have not been able to find a statement of this result in the literature. The closest we 

have been able to find is an inequality obtained by West (1990) – [ ] [ ] 1Var Y Var X ≤  – that 

applies both when sales follow a stationary stochastic process and when sales are ( )1I .27 

 It may be helpful to provide some intuition. We begin by explaining the standard 

production smoothing intuition and show how it is fundamentally changed when sales shocks are 

permanent. Suppose sales shocks are transitory and that sales take one of two possible values – 

Low ( ) or High ( ) – with equal probability, as shown in Figure 4. It is then optimal for the 

firm to always produce at a Middle ( ) level of output, since this is cheaper than producing at 

output levels  half of the time and  half of the time (which corresponds to cost at the point 

on the straight line directly above ).  

 

Figure 4 
Transitory Sales Shocks: Intuition for 

Production Smoothing 

Figure 5 
Intuition for the Effect of a Permanent Sales 

Shock 

  

                                                 
27 More precisely, West asserts that 2 2 0t tE X Y − ≥  . Under his assumption that all variables have zero 

unconditional mean, 2 2 2 2
t t t t t tE X Y E X E Y Var X Var Y         − = − = −          , so his result implies that 

[ ] [ ] 1Var Y Var X ≤ . 
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 Suppose instead that the firm faces a permanent sales shock that shifts the whole 

distribution of sales so that the middle point is now , rather than , as illustrated in Figure 

5. Now the firm always wants to produce at the middle point , since this is the point at which 

it minimizes cost. In the long run, the firm will therefore change output by the same amount as 

the permanent shock to sales.  

If the variance ratio is one in the long-run, why do empirical researchers typically obtain 

estimates of the variance ratio that are greater than one?  We can use a simple figure to explain 

the intuition. In Figure 1, the solid line shows the path of sales in response to a one-standard-

deviation shock. Because the shock is permanent, sales move to a higher level in period one. 

Because we are illustrating a one-time shock, there is no further movement in sales.  

 The simulated path of output is shown by the line with open circles in Figure 1. In the 

long run, output and sales move by the same amount. With a long enough sample, an empirical 

researcher would therefore obtain a variance ratio of one. 

  In period one, production barely moves. This reflects the buffering role of inventories, 

which is captured in our model by the assumption that the firm does not know the state of 

demand at the time it sets production for period one. In the initial period, the increase in sales is 

met by depleting inventories. If the stockout avoidance motive dominates the production 

smoothing motive, in period two, output rises by more than the amount of the sales shock. This is 

illustrated in the line with open circles. Because output rises more than the amount of the sales 

shock, an empirical researcher with several years of data will obtain a variance ratio greater than 

one. 

 Table 5 reports the variance ratio for simulations with different sample sizes. For a fairly 

small sample size (50 observations), the variance ratio is 1.09. As the sample size increases, the 

variance ratio falls. For a sample size of 548 monthly observations (the length of our sample), the 

simulations yield a variance ratio of 1.02, which is in line with the typical empirical finding of a 

variance ratio greater than one. For a large enough sample (5000 monthly observations), the 

small sample bias disappears and the variance ratio is 1.00. 
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Table 5 
Simulation Evidence on Small Sample Bias in the Variance Ratio 

 
Sample Size 

(Number of Monthly 
Observations) 

50 125 250 548 1000 2500 5000 

Median Variance Ratio 1.09 1.05 1.03 1.02 1.01 1.01 1.00 
 
This table is based on simulations of the calibrated model for different sample sizes. The second row reports the 
median variance ratio over 10,000 repetitions of the simulation.  
 
 Intuitively, the amount by which production changes in period two will depend on the 

relative strength of the production smoothing and stockout avoidance motives. The production 

smoothing motive tends to lead the firm to change output by less than the change in sales in the 

short run. On the other hand, the firm does not want to lose sales by running out of inventory, so 

the stockout avoidance motive tends to lead the firm to change output by more than the change in 

sales – to satisfy the new, permanently higher level of demand and to replenish the inventories 

that were depleted by the initial sales shock. 

 The simulation results confirm this intuition. The line with solid triangles in Figure 1 

shows what the response of production would be if the production smoothing motive dominated 

the stockout avoidance motive. In this case, output would rise by less in period two than the 

amount of the original sales shock. Production gradually creeps upward, asymptotically 

approaching the new, higher level of sales. If the production smoothing motive dominates the 

stockout avoidance motive, small sample bias causes the variance ratio to approach one from 

below. For example, if we increase the ratio 1 2θ δ  by a factor of 2.5, the variance ratio is 0.99 

for sample sizes of 50 or 125. The fact that empirical researchers typically find that the variance  

ratio is greater than one provides indirect evidence that our approach to calibrating the inventory 

model is on the right track. 

C. Slow Adjustment Puzzle 

 In early empirical work on inventories, a common specification was the stock-adjustment 

equation. Lovell (1961), for example, developed a model that yielded an inventory investment 

relationship of the form: 

( )*
1 1N  N   N   N  uN

t t t t tϑ− −− = − +                  (41) 
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where uN
t is a shock. In the Lovell framework, inventory investment is proportional to the gap 

between the actual and desired stock of inventories.  The proportionality factor, ϑ , measures the 

speed of adjustment, since it captures the fraction ϑ  of the deviation between desired and actual 

inventories that is closed each period. The slow adjustment puzzle is that estimated values of ϑ  

appear to be implausibly low.  Blinder and Maccini (1991, page 82) summarize the puzzle as 

follows, "Theory strains to explain low adjustment speeds unless the incentive to smooth 

production is extremely strong, which is hard to reconcile with the fact that production is more 

variable than sales. So the puzzle remains." 28 

Intuitively, greater convexity of production costs increases the incentive to smooth 

production, which makes the firm slow to change the level of production. With respect to 

stockout avoidance, the intuition is as follows. In the data, sales shocks are permanent, so the 

desired long-run inventory level rises when sales go up. The stronger the stockout avoidance 

motive, the more quickly the firm wants to adjust output to reach its new desired long-run 

inventory level. 

 To formally analyze the role of production smoothing and stockout avoidance, we begin 

by deriving the inventory investment relationship by subtracting 1ln tN −  from both sides of (17) 

to get 

( ) *
1 1 1ln ln 1 ln lnt t t t tN N N N ul− − − = − − +       (42) 

where *ln tN  is the desired long-run stock of (log) inventories as defined in equation (38). 

Comparing (42) to (41) we see that 11 λ−  measures the speed of adjustment. Using the definition 

of 1λ  in (21-a), this speed of adjustment term can be written as  

  ( )
1

2 2
1

11 4
2

r rλ ζ ζ ζ
   − = − + − + +     

     (43)  

where ζ  is defined in equation (21-b). 

                                                 
28 A number of possible explanations have been put forward for slow adjustment. One emphasizes econometric 

problems -- either omitted variables or problems with the econometric procedure – see Maccini and Rossana (1984) 

and Blinder (1986a).  Another explores the effect of aggregation bias – see Christiano and Eichenbaum (1989), Seitz 

(1988), Blinder (1986a), and Coen-Pirani (2004). See Blinder and Maccini (1991) and Ramey and West (1999) for 

surveys. 
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The term ( )2 21δ δ ψ−  is the convexity of stockout avoidance costs and ( )1 11 Jθ θ−  is the 

convexity of production costs. Note from (21-b) that they enter ζ  as a ratio. This implies that it 

is the relative strength of production smoothing and stockout avoidance that matters. As we have 

seen, this is a recurring theme that emerges from our analysis.29 Straightforward mathematics 

shows that an increase in the convexity of production costs relative to the convexity of stockout 

avoidance costs decreases the speed of adjustment.30  

In general, it is not possible to recover the transition dynamics of a variable from a 

cointegrating regression. Intuitively, this is because the cointegrating regression captures the 

long-run behavior of the variable, abstracting from transition dynamics. Our model is an 

exception, because the “stickiness” of inventories arises from the structure of the model, rather 

than from an ad hoc adjustment cost function. By deriving the cointegrating regression from the 

model, we are able to recover the structural parameters from the cointegrating regression 

coefficients. The structural parameters imply that the speed of adjustment 11 0.051ϑ λ= − = . 

This is consistent with estimates from the large empirical literature on the speed of adjustment of 

inventories. (See Blinder and Maccini (1991) and Ramey and West (1999).)  Table 6 shows how 

the speed of adjustment varies with the relative strength of the production smoothing and 

stockout avoidance motives. 

 

 

 

                                                 
29 In the model section, we explain that we choose to represent the stockout avoidance motive in the cost function 

because this makes the analysis far clearer. Equation (21-b) is an example of how our modeling choice is helpful in 

clarifying that it is the relative importance of production smoothing and stockout avoidance that matters. 
30 To see this, differentiate (43) with respect to ( ) ( )2 2 1 11 1 Jδ δ ψ θ θ− − , recalling: 1) the parameter restrictions 

1 1θ >  and 2 0δ < ; 2) the definitions of J  (steady-state average production cost) and ψ  (steady-state average 

stockout avoidance costs), which imply that 0J >  and 0ψ > ; and 3) the definitions of YR  (steady-state 

output/sales ratio) and NR  (steady-state inventory/sales ratio), which imply that 0YR >  and 0NR > .  
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Table 6 
Convexity of Production Costs and the Speed of Adjustment 

 
Ratio of the 

Convexity of 
Stockout Avoidance 

Costs to the 
Convexity of 

Production Costs  
( )
( )

2 2

1 1

1
1 J

δ δ ψ
θ θ
−
−

 

Decision Rule 
Coefficient on 

Lagged Inventories 
 
 
1λ  

Speed of Adjustment 
 
 
 
 

( )11 λ−  

2.760 0.129 0.871 

0.2760 0.472 0.528 

0.0613 0.698 0.302 

0.0063 0.891 0.109 

0.0013* 0.949 0.051 

0.0006 0.967 0.033 
This table shows the effect of the relative strength of the production smoothing and stockout avoidance motives on 
the speed of adjustment of inventories toward the long-run desired stock of inventories. The asterisk indicates the 
calibrated value. 

 

D. Input Cost Puzzle 

Economic theory suggests that higher input costs should reduce inventory holdings. 

Intuitively, this is because higher input costs make it more expensive for the firm to produce a 

marginal unit of output and therefore make it more expensive to build up inventories. Our model 

is consistent with previous economic theory in this respect. The effect of input costs on desired 

long-run inventories is reflected in WΓ  in equation (38). From the definition of WΓ  in equation 

(19), it is straightforward to show that the effect of higher input costs is to reduce desired long-

run inventories under the assumptions of the model.31  

Although economic theory is clear on this point, the empirical inventory literature 

provides limited evidence that input costs significantly reduce inventory holdings. (See, e.g., the 

                                                 
31 Under the assumptions of the model, 1 1θ >  and 2 0θ > . We assume that r , the unconditional mean real interest 

rate, is positive.  Thus  ( )2 1 1 0rθ θ − > .  We have that 10 1λ< < , so ( )1 11 0rλλ + − > .  Since 0YR > and 

0NR > , it follows from (19) that 0.WΓ <  
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survey of empirical studies in Ramey and West (1999).) In contrast, when we estimate the 

cointegrating regression, Wb  is -0.753 with a t-statistic of -5.244. Thus, the cointegrating 

regression provides significant evidence that an increase in input costs reduces inventories. 

Why does the cointegrating regression provide stronger evidence than previous studies? 

The culprit for the weak evidence in earlier studies is the slow adjustment of inventories. The 

adjustment speed is 11 0.051λ− = , which implies that only about 5% of the gap between desired 

long-run inventories *ln tN  and actual inventories 1ln tN −  is closed each month, as shown in 

equation (42). This means that the response of inventories to a decrease in input costs is spread 

over many months. This is illustrated in Figure 6, which shows the dynamic response of  

Figure 6 
Response of Inventories to a Permanent Input Cost Shock 

 
 

inventories to a permanent input cost shock, based on the calibrated model. It takes about two 

years (25 months, to be precise) for inventories to get ¾ of the way to the new steady state after a 

shock. This means that a very large number of lags would be needed to capture the effect of the 

shock with traditional techniques. But the lag coefficients are not structural parameters. In fact, 

they will be affected by shocks to other variables, so they will not be stable over time. This 

means it is nearly hopeless to try to estimate the effect of input cost shocks using traditional 

techniques (i.e., the econometrics of stationary variables). This is illustrated in Table 7. The first 

column of the table presents estimates of the coefficients on lagged input costs from a regression 

of ln tN  on 1ln tN − and three lags each of ln tX  and ln tW . The second column presents similar 
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information for a specification that uses 12 lags each of ln tX  and ln tW . The first two columns 

report the medians of the point estimates and standard errors over 10,000 repetitions of the 

simulation. None of the coefficients on input costs are statistically significant. In fact, in every 

case, the coefficient estimate is much smaller in absolute value than the standard error. The third 

and fourth columns present the same information as the second column, this time for two 

randomly selected repetitions of the simulation. The last two columns illustrate how different the 

estimates of the lag coefficients and the cumulative effect can be. For example, the coefficients 

on the first two lags have different signs in the two sample repetitions (not to mention very 

different magnitudes). The sum of the first three coefficients is about 0.04 in the first sample 

repetition, compared to about -0.24 in the second sample repetition.  

Intuitively, the cointegrating regression provides strong evidence on the effect of input 

cost shocks because it is based on permanent shocks and therefore reflects the long-run 

relationship between input costs and inventories. In the long run, input costs do have a 

significant effect, but, because the response of inventories is so slow, traditional (stationary) 

econometric techniques are not well suited to capturing this effect. 

While on the subject of cost shocks, we briefly address another issue. In the literature, 

cost shocks have been a leading potential explanation for the variance ratio puzzle.32 In our 

model, as in other models, cost shocks tend to increase the conditional variance ratio. However, 

numerical results based on equation (33) show that the contribution of production cost shocks to 

the conditional variance ratio is negligible – less than 1%. The production smoothing and 

stockout avoidance motives, rather than cost shocks, are the main determinants of the variance 

ratio in the short and medium run (i.e., at any finite horizon). 

 
 
 
 
 
 
 
 
 
 

                                                 
32 In their survey, for example, Ramey and West (1999) discuss highly persistent shocks to production cost as an 

explanation for the variance ratio puzzle. 
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Table 7 
The Effect of Input Costs on Inventories:  

An Illustration of the Results from Stationary Econometrics 
(Based on Simulations of the Calibrated Model) 

 
 

Input Costs Median Coefficient Estimate 
(Standard Error) 

 

Two Sample Repetitions 
Coefficient Estimate 

(Standard Error) 
3 Lags 12 Lags 12 Lags 12 Lags 

1ln tW −   -0.0383 
(0.1781) 

-0.0371 
(0.1812) 

-0.2045 
(0.1829) 

0.0035 
(0.1942) 

2ln tW −  0.0020 
(0.2499) 

0.0031 
(0.2542) 

0.2620 
(0.2521) 

-0.0646 
(0.2741) 

3ln tW −  -0.0036 
(0.1784) 

0.0034 
(0.2541) 

-0.0180 
(0.2520) 

-0.1817 
(0.2732) 

4ln tW −   0.0018 
(0.2541) 

-0.3948 
(0.2512) 

0.2675 
(0.2743) 

5ln tW −   0.0013 
(0.2542) 

0.4724 
(0.2516) 

0.3162 
(0.2748) 

6ln tW −   -0.0013 
(0.2542) 

0.1930 
(0.2524) 

-0.3526 
(0.2767) 

7ln tW −   -0.0020 
(0.2542) 

-0.7395 
(0.2526) 

-0.0484 
(0.2770) 

8ln tW −   -0.0025 
(0.2542) 

0.5551 
(0.2547) 

0.2666 
(0.2754) 

9ln tW −   0.0023 
(0.2542) 

-0.0597 
(0.2561) 

0.1921 
(0.2756) 

10ln tW −   -0.0021 
(0.2543) 

-0.2228 
(0.2563) 

-0.5220 
(0.2749) 

11ln tW −   0.0012 
(0.2543) 

0.1397 
(0.2563) 

0.3477 
(0.2767) 

12ln tW −   0.0010 
(0.1815) 

-0.0281 
(0.1851) 

-0.2628 
(0.1956) 

The coefficients and standard errors come from a regression of ln tN  on 1ln tN − and lags of ln tX and ln tW , based 
on simulated data from the calibrated model. The entries in the first two columns represent the median over 10,000 
repetitions of the simulation. 
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V. MONETARY POLICY PUZZLES 
A. Monetary Policy Shocks 

To identify monetary policy shocks we follow Bernanke and Mihov (1998) and estimate 

a vector autoregression whose variables are divided into a policy block and a non-policy block. 

In our version of the Bernanke-Mihov VAR, the non-policy block consists of the natural 

logarithms of real sales ( ln tX ), the GDP deflator, real input prices ( ln tW ), and real inventories  

( ln tN ).33  Our policy block, which is the same as Bernanke and Mihov’s, consists of total 

reserves, non-borrowed reserves, and the Fed funds rate and is restricted using plausible 

assumptions about the market for bank reserves. Details of this Bernanke-Mihov VAR are 

provided in Appendix C. 

Figure 7 

Empirical Response of the Probabilities to a Stimulative Monetary Policy Shock 
 
     A. Probability of Low-Interest-Rate Regime          B. Probability of High-Interest-Rate Regime 

                    
The lines in Figures 7-A and 7-B present the impulse response function of 1π  (the probability of the low-real-
interest-rate regime, as perceived by the firm) and 3π  (the probability of the high-real-interest-rate regime, as 
perceived by the firm), respectively, to a one-standard-deviation stimulative monetary policy shock. The horizontal 
axis shows time in months. 

 

Having obtained the monetary policy shocks from the Bernanke-Mihov VAR, we then 

estimate a three-variable VAR with the monetary policy shocks, 1π , and 3π .34  Figure 7 shows 

                                                 
33 We found that the inclusion of input prices was sufficient to address what is known in the VAR literature as the 

“price puzzle” and so do not add a commodity price index. 
34 We use six lags of each variable. We do not include the probabilities in the Bernanke-Mihov VAR because there 

is too much collinearity between the probabilities and the interest rate. 
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the impulse response functions of 1π  and 3π  to a one-standard-deviation easing of monetary 

policy. As Figure 7-A shows, easing monetary policy increases the probability of the low-

interest-rate state, with the peak response occurring about six months after the shock. Results are 

similar for 3π . The ergodic probability of the high-interest-rate state is about 0.19. The peak 

decline in 3π  is 0.036, which represents a decrease of about 19% in the likelihood of the high 

interest rate regime. The effect of monetary policy on 1π  and 3π  is quite persistent, with more 

than half the peak effect on 1π , for example, still present two years after the shock. 

B. The Mechanism Puzzle 

Previous empirical studies have found little evidence that the interest rate affects 

inventories.35  If the interest rate doesn't affect inventories, how does monetary policy influence 

inventories?36 If the interest rate does affect inventories, why have more than 40 years of 

empirical studies failed to find the relationship? 

 In our theoretical model, the real interest rate is subject to both transitory and persistent 

shocks. Purely transitory shocks have little effect on inventories, but firms do react to shocks that 

may be persistent. In the past, empirical inventory research has primarily used (0)I techniques.37  

These techniques tend to emphasize high-frequency movements in the data, where there is much 

transitory variation in the interest rate without corresponding variation in inventories – and much 

transitory variation in inventories (due to their role in buffering sales shocks) without 

corresponding variation in the interest rate. 

                                                 
35See Blinder and Maccini (1991, page 82). An exception is Maccini, Moore, and Schaller (2004), who also use 
( )1I econometrics and also find that inventories respond inversely to long-run movements, that is, to regime shifts, 

in real interest rates.  In contrast to the current paper, they do not address the sign and timing puzzles.    
36 VAR-based studies that find that monetary policy shocks affect inventories include Bernanke and Gertler (1995), 
Christiano, Eichenbaum, and Evans (1996), and Jung and Yun (2011).   More recently, Benati and Lubik (2012) use 
Bayesian methods to estimate a structural VAR with time varying coefficients over a century-long time series.  
Interestingly, they find that identified interest-rate shocks induce a robust positive correlation between inventories 
and the real interest rate for both the interwar and post-WWII periods, thus deepening the mechanism puzzle.  
37 There are a few exceptions, including Granger and Lee (1989), Kashyap and Wilcox (1993), and Rossana (1993, 

1998), but none of these papers estimate the effect of the real interest rate on inventories. Rossana (1993) comes 

closest by providing separate point estimates of the effects of the nominal interest rate and inflation. 
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In this paper, we do something new: We estimate the relationship between inventories 

and the interest rate with both (0)I and (1)I  econometric techniques.38 Table 8 presents 

estimates based on applying traditional (0)I  techniques to simulated data. The first column of 

the table presents estimates of the coefficients on lags of the interest rate in a regression of ln tN  

on 1ln tN − and three lags each of ln tX , ln tW , and tr . The second column presents similar 

information for a specification with 12 lags. None of the coefficients on the interest rate are 

statistically significant. In fact, in every case, the coefficient estimate is much smaller in absolute 

value than the standard error.  

Table 2 reports our estimates of the cointegrating regression. The key coefficients for the 

mechanism puzzle are those on 1π  (the probability of the high-interest-rate regime) and 3π (the 

probability of the low-interest-rate regime). Theory predicts that the coefficient on 1π  should be 

positive and the coefficient on 3π  should be negative. The data confirm both of these theoretical 

predictions. The coefficients on both 1π  and 3π  are significantly different from zero.  

The decision rule for the firm’s choice of inventories, equation (17), shows that monetary 

policy shocks can affect inventories through their effects on sales, input costs, 1π  and 3π . 

Having calibrated our model to the cointegrating regression, we can use the calibrated decision 

rule to measure the economic importance of the effect that interest-rate movements have on 

inventories.  In general, the previous literature has treated the interest rate as constant and so has 

been unable to measure the effect of interest-rate movements. 

We define the opportunity-cost effect as the change in inventories that results from a 

monetary policy shock, holding sales and input costs constant. To measure this effect we 

generate the theoretical response of inventories to a monetary policy shock.  We first use our 

Bernanke-Mihov VAR to find the response of sales and input costs to a one-standard-deviation 

stimulative monetary policy shock. We then use the response of sales and input costs together 

with the response of 1π  and 3π  (as shown in Figure 7) in our calibrated decision rule to calculate 

the theoretical response of log inventories to the monetary policy shock. Using this theoretical 

                                                 
38 Maccini, Moore, and Schaller (2004) estimate the cointegrating regression for inventories on actual data, but do 

not compare (0)I and (1)I  econometric techniques on simulated data. 
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response we can measure the peak effect of a monetary policy shock on log inventories. 

Repeating this exercise, but holding sales and input costs constant, we find that the opportunity-

cost effect is equal to 78% of the peak effect. Thus, although the opportunity-cost effect has been 

extremely difficult to detect using (0)I  econometric techniques, our calibrated model suggests 

that it is economically important. 

Table 8 
The Effect of the Interest Rate on Inventories: 

An Illustration of the Results from Stationary Econometrics 
(Based on Simulations of the Calibrated Model) 

 
Real Interest Rate Median Coefficient Estimate 

(Standard Error) 
 
3 Lags 12 Lags 

1ln tr −   -0.1222 
(0.9435) 

-0.1201 
(1.0056) 

2ln tr −  -0.0957 
(0.9693) 

-0.0874 
(1.0481) 

3ln tr −  -0.0660 
(0.9436) 

-0.0440 
(1.0660) 

4ln tr −   -0.0198 
(1.0734) 

5ln tr −   -0.0210 
(1.0768) 

6ln tr −   -0.0114 
(1.0778) 

7ln tr −   -0.0525 
(1.0778) 

8ln tr −   0.0035 
(1.0766) 

9ln tr −   -0.0130 
(1.0736) 

10ln tr −   0.0084 
(1.0662) 

11ln tr −   -0.0090 
(1.0486) 

12ln tr −   0.0016 
(1.0060) 

The coefficients and standard errors come from a regression of ln tN  on 1ln tN − and lags of ln tX , ln tW , and tr , 
based on simulated data from the calibrated model. Each entry represents the median over 10,000 repetitions of the 
simulation. 
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C. The Sign Puzzle 

Stimulative monetary policy reduces the interest rate and should, therefore, increase 

inventories. However, VAR studies find that the short-term effect of stimulative monetary policy 

is to decrease inventories. This is the sign puzzle. To verify that the sign puzzle exists in our 

data, we use our Bernanke-Mihov VAR to calculate the empirical response of inventories to a 

monetary policy shock. The responses of the Fed funds rate and inventories to a one-standard-

deviation stimulative monetary policy shock are shown in Figure 8.  As found in other studies, 

the Bernanke-Mihov VAR estimated with our data shows that the initial response to a stimulative 

monetary policy shock is a decline in both the Fed Funds rate and inventories. 

 
Figure 8 

Empirical Responses to a Stimulative Monetary Policy Shock 
 

             A.  Federal Funds Rate      B.  Inventories 

                   
 
Figures 8-A and 8-B present the empirical impulse response function of the Fed funds rate and inventories, 
respectively, to a one-standard-deviation stimulative monetary policy shock. The horizontal axis shows time in 
months. 
 

Does our model generate this negative short-term decline in inventories for a stimulative 

monetary policy shock?  As explained in our discussion of the mechanism puzzle above, we use 

the empirical response of sales, input costs, 1π , and 3π  in our calibrated decision rule, equation 

(17), to find the theoretical response of log inventories to a monetary policy shock.39 The solid 

line in Figure 9 presents this theoretical response of inventories to a stimulative monetary policy 

shock. As the figure shows, the initial response is for inventories to decline. The key to 

understanding our model's success in matching the empirical sign puzzle is the role of 

inventories in buffering demand (sales) shocks. Sales rise in the wake of a stimulative monetary 

                                                 
39 Since the monetary policy shock is by definition unanticipated we assume that the initial increase in sales is also 

unanticipated. 
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policy shock. Production does not respond immediately, so inventories fall as they buffer the 

positive sales shock. 

 

 

 

Figure 9 
Theoretical Response of Inventories to a Stimulative Monetary Policy Shock 

 

                          
 
The solid line displays the theoretical response of inventories to a one-standard-deviation stimulative monetary 
policy shock, based on the model presented in Section II, calibrating the structural parameters using the 
cointegrating regression. The dashed line shows the theoretical response of inventories based on setting 1 2θ δ  equal 
to 0.5 times the value obtained when the parameters are calibrated using the cointegrating regression. The horizontal 
axis shows time in months. 
 
D. The Timing Puzzle 

 The transitory effect of a monetary policy shock on the Fed funds rate is shown by the 

empirical impulse response function in Figure 8-A. Within eight months, the Fed funds rate 

returns to its pre-shock level. It is only many months later that inventories rise above their pre-

shock level, as shown in Figure 8-B. The peak effect of the monetary policy shock on inventories 

occurs years after the shock.40 This is the timing puzzle.  

Regime switching and learning provide part of the explanation for the timing puzzle. 

Because of learning, the Bayesian probabilities of being in a given interest rate régime respond 

slowly to a change in the interest rate. This can be seen in Figure 7-A, where more than one-third 

of the effect of the monetary policy shock on 1π  is still present three years after the shock. 

                                                 
40  This is also documented in Christiano, Eichenbaum, and Evans (1996) and Jung and Yun (2005). 
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Simulations of the calibrated model show that learning delays the response of inventories by 

about one quarter (three months). 

 Production smoothing also plays a role. An interest rate shock changes the desired long-

run inventory level. However, changing output away from the usual level is expensive because of 

the convexity of the cost function. If firms recognize that the interest rate shock is transitory, 

they will adjust output and the stock of inventories little, if at all. Because firms are reluctant to 

adjust output, the change in the stock of inventories is delayed. 

 In Figure 9, we illustrate the effect of changes in the convexity of production cost, 

relative to the convexity of stockout avoidance cost, on the theoretical impulse response function 

for inventories. If we set 1 2θ δ  equal to half the value implied by the cointegrating regression 

estimates, the peak effect on inventories occurs twenty-eight months earlier (the dashed line in 

Figure 9).  

 

VI.  SUMMARY AND CONCLUSIONS  

 Less priority has been given to research on inventories in recent years than in the 

preceding decades. An important reason is probably the belief that inventories tend to cushion 

shocks (particularly, demand shocks). Since macroeconomists have been searching for 

mechanisms that amplify shocks, inventories have not seemed like a particularly promising 

research avenue. We find that output responds more than one-for-one to a demand shock over the 

time horizon that is relevant for business cycles. This response is driven by the firm’s inventory 

policy. In view of the fact that inventory movements account for a large share of the drop in 

output during recessions (including the Great Recession), it may be time for us to pay more 

attention to inventories.  

 Our model is not radically innovative relative to the workhorse linear-quadratic model. 

We do extend the standard model by assuming constant elasticity cost functions, which permit 

log-linear approximations around steady state values, but the economic mechanisms are 

essentially the same.41 The key innovative aspect of our approach is to take seriously the 
                                                 
41 Bils and Kahn (2000) argue that this class of models (including the linear-quadratic model and our variant) is ill-

suited to studying the cyclical properties of marginal cost or the markup. Our objective, however, is to explain the 

four traditional puzzles and three monetary policy puzzles. For this objective, sticking close to the linear-quadratic 

model – and putting the stockout avoidance motive in the firm’s cost function – is tremendously helpful in clarifying 
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empirical evidence that sales shocks are ( )1I . This leads to a series of new analytical insights 

about inventories. In the long run, the variance ratio (variance of log output/variance of log sales) 

is one. The long-run variance ratio is not affected by the production smoothing or stockout 

avoidance motives. However, at business-cycle horizons, our analytical results show that the 

conditional variance ratio does depend on the relative strength of these two motives. The steady-

state real interest rate plays a key role in determining whether production smoothing or stockout 

avoidance dominates the behavior of inventories at business-cycle horizons. All of these results, 

which flow from our analytical approach, are new.   

Once we take into account the fact that sales shocks are (1)I , we are able to explain a 

wide range of inventory puzzles. Although our model is not radically new, treating sales shocks 

as (1)I  does suggest a different way of calibrating an inventory model – using the cointegrating 

regression that links inventories to sales, input costs, and the probability of being in a given real-

interest-rate regime.  

The model and the empirical work together shed light on four traditional inventory 

puzzles that have plagued the literature for decades. Our resolution of two of the puzzles hinges 

on the interaction between the production smoothing and stockout avoidance motives. One 

important traditional puzzle is the Slow Adjustment Puzzle (inventories adjust very slowly to 

their desired levels). Our analytical results show that the adjustment speed is slow because the 

convexity of production costs is high, relative to the convexity of stockout avoidance costs. Part 

of the Wen Puzzle is that the variance of production exceeds the variance of sales at business 

cycle horizons.42 Our analytical results show that this occurs because the present value of the 

change in marginal stockout avoidance costs exceeds the one-time change in marginal 

production costs. This is where the real interest rate plays a key role. 

Another traditional puzzle that is crucial both to economic policy and to our 

understanding of the aggregate economy is the effect of input costs on inventories. Economic 

theory predicts that higher input costs should decrease the level of inventories. But it has been 

                                                                                                                                                             
the economic mechanisms that are at work. Just think about how many of the puzzles we explain in terms of the 

convexity of production cost relative to the convexity of stockout avoidance cost. 
 
42 The other part of the Wen Puzzle is the fact that the variance of production is less than the variance of sales at 

short horizons. 
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devilishly difficult to find empirical evidence of the effect of observable cost shocks on 

inventories. The key empirical problem is the slow adjustment of inventories to shocks. This 

means that the effect of an input cost shock is spread over several years. It is very difficult to 

pick up this effect with stationary econometric techniques. When we use a conventional partial 

adjustment specification (a long-established technique, based on stationary econometrics, that 

has been used both in the inventories literature and other areas of economics) to estimate the 

effect of input costs on inventories using simulated data from the model, none of the coefficients 

are significant. This is not surprising, since the effect of the cost shock is spread over several 

years and the lag coefficients are not structural parameters. In fact, the lag coefficients depend on 

the sequence of shocks, both to the interest rate and other variables. In contrast, the cointegrating 

regression captures the long-run effect of input costs. Using actual US data, the cointegrating 

regression shows that input costs have a highly significant effect on inventories. 

The cointegrating regression itself helps us solve several important monetary policy 

puzzles. A puzzle that is of crucial importance for economic policy is the Mechanism Puzzle. 

Empirical work based on stationary econometrics has found little evidence that the interest rate 

affects inventories. If the interest rate doesn't affect inventories, how does monetary policy 

influence inventories? In fact, we find that persistent changes in the interest rate have a strong 

effect on inventories. This comes through clearly in the cointegrating regression, where 1π  and 

3π , the probabilities of being in the low and high interest-rate regime, respectively, are highly 

significant. We make two further contributions. First, we find that more than 75% of the peak 

change in inventories in response to a monetary policy shock in the simulations is accounted for 

by the pure "opportunity cost" effect of the change in the interest rate (i.e., the direct effect of the 

interest rate on inventories, as opposed to indirect effects through changes in sales or input 

costs). Second, we show that, despite the fact that the interest rate has a strong effect on 

inventories, the coefficients on lagged values of the interest rate are statistically insignificant if 

we use ( )0I  econometrics to estimate the relationship between inventories and the interest rate 

in the simulated data. 

Our model and empirical work are able to rationalize the puzzling “double-hump” 

response of inventories to a stimulative monetary policy shock, which reflects the Sign Puzzle 

and the Timing Puzzle.  In response to a stimulative monetary policy shock, inventories initially 
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decline, then rise for several years, and then decline again in the data. Our results indicate that 

the buffering role of inventories accounts for the initial decline and that the slow adjustment 

speed of the subsequent increase in inventories is due to a combination of production smoothing 

and the rational reluctance of firms to interpret a transitory decline in the interest rate as 

permanent. Inventories decline again as the effect of the transitory monetary policy shock 

ultimately fades away. 

 Two further points should be emphasized. First, we do not allow ourselves any free 

parameters when we use the model to explain the puzzles. The key structural parameters are 

calibrated using the cointegrating regression (and the Hamilton (1989) technique for estimating 

Markov switching models). There are no free parameters that we can use to match empirical 

moments. 

 Second, in previous papers that attempt to explain inventory puzzles, the objective has 

been to explain "static moments" such as the relative variance of production and sales or the 

correlation of inventory investment with output. In this paper, we set the bar higher: We explain 

both static moments and the dynamic response of inventories.  

 Finally, the model and empirical work are purposely set in a partial equilibrium 

environment.  We show that a basic model of inventory holding behavior by a representative 

firm together with I(1) sales shocks is capable of reconciling the various traditional and monetary 

policy puzzles that have occupied the inventory literature for decades.  An important task for 

future work is to incorporate this paper’s insights into a general equilibrium framework with 

endogenous sales and input prices.  



48 
 

REFERENCES 

Baumol, William (1952), “The Transactions Demand for Cash:  An Inventory Theoretic 

Approach”,  The Quarterly journal of Economics, 66 (4), pp. 545-556. 

 
Benati, Luca and Thomas A. Lubik (2012), "Sales, Inventories, and Real Interest Rates: A 

Century of Stylized Facts" Journal of Applied Econometrics (forthcoming). 

 

Bernanke, Ben S. and Mark Gertler (1995), “Inside the Black Box: The Credit Channel of 

Monetary Policy Transmission”, Journal of Economic Perspectives, Winter, 9(1), pp. 

27-48. 

 

Bernanke, Ben S. and Ilian Mihov (1998), “Measuring Monetary Policy”, Quarterly Journal of  

 Economics, 113(3), pp. 869-902. 

 

Bils, Mark and James A. Kahn (2000), “What Inventory Behavior Tells Us about Business 

Cycles”, American Economic Review,  90(3), pp. 458-481. 

 

Blanchard, Olivier (1983), “The Production and Inventory Behavior of the American 

 Automobile Industry”, Journal of Political Economy, 91(3), pp. 365-400. 

 

Blinder, Alan S. (1986-a), “More on the Speed of Adjustment in Inventory Models”, 

 Journal of Money, Credit, and Banking, 18(3), pp. 355-365. 

 

Blinder, Alan S. (1986-b), “Can the Production Smoothing Model of Inventory Behavior 

 be Saved?”, Quarterly Journal of Economics, 101(3), pp. 431-453. 

 

Blinder, Alan S. and Louis J. Maccini (1991), "Taking Stock: A Critical Assessment of Recent 

Research on Inventories", Journal of Economic Perspectives, Winter, 5(1), pp. 73-96. 

 

Caballero, Ricardo J. (1994), "Small Sample Bias and Adjustment Costs," Review of 

 Economics and Statistics, 76(1), pp. 52-58. 

http://dx.doi.org/10.1002/jae.2408
http://dx.doi.org/10.1002/jae.2408


49 
 

 

Caballero, Ricardo J. (1999), “Aggregate Investment,” in John B. Taylor and Michael Woodford 

(eds.), Handbook Of Macroeconomics, vol. 1B, Amsterdam: North Holland, pp. 813-862. 

 

Chang, Yongsung, Andreas Hornstein and Pierre-Daniel Sarte, “On the Employment Effects of 

Productivity Shocks:  The Role of Inventories, Demand Elasticity and Sticky Prices”,  

Journal of Monetary Economics, v 56, pp. 328-343. 

 

Christiano, Lawrence J. and Martin Eichenbaum (1989), “Temporal Aggregation and the  Stock 

Adjustment Model of Inventories”, in T. Kollintzas (ed), The Rational Expectations 

Inventory Model, Springer-Verlag, New York, pp. 70-109. 

 

Christiano, Lawrence J., Martin Eichenbaum and Charles Evans (1996), The Effects of 

 Monetary Policy Shocks: Evidence from the Flow of Funds”, The Review of 

 Economics and Statistics, 78 (1), pp. 16-34. 

 

Coen-Pirani, Daniele (2004), “Markups, Aggregation, and Inventory Investment”, 

 American Economic Review, 94(5),  pp. 1328-1353. 

 

Eichenbaum, Martin (1989), Some Empirical Evidence on the Production Level and 

 Production Cost Smoothing Models of Inventory investment”, American  Economic 

Review, 79(4), pp. 853-864. 

 

Garcia, Rene and Pierre Perron (1996), “An Analysis of the Real Interest Rate under 

 Regime Shifts”, Review of Economics and Statistics, 78(1), pp. 111-125 

 

Granger, C.W.J., and T.H. Lee (1989), “Investigation of Production, Sales and Inventory 

Relationships Using Multicointegration and Non-Symmetric Error Correction Models,” 

Journal of Applied Economics 4, pp. S145-S159. 

 

 



50 
 

Hamilton, James D. (1989), “A New Approach to the Economic Analysis of Nonstationary 

  Time Series and the Business Cycle”, Econometrica, 57(2), pp. 357-84.  

 

Hamilton, James D. (1994), Time Series Analysis, Princeton: Princeton University Press. 

 

Hamilton, James D. (2002), “On the Interpretation of Cointegration in the Linear- Quadratic 

Inventory Model”, Journal of Economic Dynamics and Control, 26(12), pp. 2037-49. 

 

Holt, Charles C., Franco Modigliani, John F. Muth and Herbert A. Simon (1960),  Planning, 

Production, Inventories and Work Force, Englewood Cliffs, NJ:Prentice Hall. 

 

Humphreys, Brad, Louis Maccini, and Scott Schuh (2001), “Input and Output Inventories,”  

 Journal of Monetary Economics, v 47, pp. 347-375. 

 

Iacoviello, M., F. Schiantarelli, and Scott Schuh (2007), “Input and Output Inventories in 

General Equilibrium”, Working Paper, Boston College.  

 

Jones, Christopher and Selale Tuzel (2013),  “Inventory investment and the Cost of Capital”,  

 Journal of Financial Economics, 107, pp. 557-579. 

 

Jung, Yongseung and Tack Yun (2011), “Inventory and Dynamic Effects of Monetary Policy 

            Shocks”, Working Paper. 

 

Jung, Yongseung and Tack Yun (2012), Inventory Investment and the Empirical Phillips Curve”,  

 Working Paper. 

 

Kahn, James (1987), “Inventories and the Volatility of Production”, American Economic 

  Review, 77(4), pp. 667-679. 

 

 

 



51 
 

Kahn, James (1992), Why is Production More Volatile than Sales?  Theory and Evidence  on the 

Stockout-Avoidance Motive for Inventory-Holding”, Quarterly Journal of Economics, 

107(2), pp. 481-510. 

 

Kashyap, Anil K. and David W. Wilcox (1993), “Production and Inventory Control at the 

General Motors Corporation in the 1920s and 1930s”, American Economic Review, 83(3), 

pp. 383-401. 

 

Khan, Aubhik and Julia Thomas (2007), "Inventories and the Business Cycle: An Equilibrium 

Analysis of (S,s) Policies", American Economic Review, 97, 1165- 1188. 

 

Lovell, Michael C. (1961), “Manufacturer’s Inventories, Sales Expectations, and the 

 Acceleration Principle”, Econometrica, 29(3), pp. 293-314. 

 

Maccini, Louis J., Bartholomew J. Moore, and Huntley Schaller (2004), “The Interest Rate, 

 Learning, and Inventory Investment”, American Economic Review, 94(5),  pp.1303-1327. 

 

Maccini, Louis J. and Adrian Pagan (2013), “Inventories, Fluctuations and Business 

 Cycles”, Macroeconomic Dynamics, 17(1), pp. 89-122. 

 

Maccini, Louis J. and Robert J. Rossana (1984), "Joint Production, Quasi-Fixed Factors  of 

Production, and Investment in Finished Goods Inventories", Journal of Money, Credit,  

and Banking, 16, pp. 218-236. 

 

Ogaki, M and J.Y. Park (1997), “A Cointegration Approach to Estimating Parameters”, Journal 

 of Econometrics, 82(1), pp. 107-134. 

 

Ramey, Valerie A. (1989, “Inventories as Factors of Production and Economic  Fluctuations”, 

American Economic Review, 79(3), pp. 338-54. 

 



52 
 

Ramey, Valerie A. (1991), "Nonconvex Costs and the Behavior of Inventories", Journal of 

Political Economy, 99(2), pp. 306-334. 

 

Ramey, Valerie A. and Daniel Vine (2006), "Tracking the Source of the Decline in GDP 

 Volatility: An Analysis of the Automobile Industry", American Economic  Review, 96, 

1876-1889. 

 

Ramey, Valerie A. and Kenneth D. West (1999), "Inventories", in John B. Taylor and Michael 

Woodford (eds.), Handbook of Macroeconomics, Volume 1B, Amsterdam: North-

Holland, pp. 863-923. 

 

Rossana, Robert J. (1993), “The Long-Run Implications of the Production Smoothing Model of  

Inventories:  An Empirical Test”, Journal of Applied Econometrics, 8, pp. 295-306. 

 

Rossana, Robert J. (1998), “Structural Instability and the Production Smoothing Model of  

Inventories”, Journal of Business and Economic Statistics, 16(2), pp. 206-215. 

 

Schaller, Huntley, (2006), “Estimating the long-run user cost elasticity,” Journal of  

Monetary Economics, 53(4), 725-736. 

 

Seitz, Helmut (1988), “Still More on the Speed of Adjustment in Inventory Models: A  

Lesson in Aggregation”, University of Manheim Discussion Paper. 

 

Stock, James H., and Mark W. Watson (1993), “A Simple Estimator of Cointegrating 

 Vectors in Higher Order Integrated Systems”, Econometrica, 61(4), pp. 783-820. 

 

Tobin, James (1956),  “The Interest Elasticity of the Demand for Cash”,  Review of Economics 

 and Statistics”, 38 (3), pp. 241-247. 

 

Wang, Peng-fei and Yi Wen (2009), “Inventory Accelerator in General Equilibrium”, 

 Working Paper, Federal Reserve Bank of St. Louis. 



53 
 

 

Wen, Yi (2005), "Understanding the Inventory Cycle", Journal of Monetary Economics,  52,  

1533-1555. 

 

Wen, Yi (2008), "Input and Output Inventories", Working Paper, Federal Reserve Bank  of St. 

Louis. 

 

Wen, Yi (2011), “Input and Output Inventory Dynamics”, American Economic Journal: 

Macroeconomics, 3, 181-212. 

 

West, Kenneth D. (1986), "A Variance Bound Test of the Linear-Quadratic Inventory Model", 

Journal of Political Economy, 94(2), pp. 374-401. 

 

West, Kenneth D. (1990),  “The Sources of Fluctuations in Aggregate inventories and GNP”, 

Quarterly Journal of Economics, 115(6), pp. 939-972  

 

West, Kenneth D. (1995), “Inventory Models”, in: M. Pesaran and M., Wickens, 

(Eds.), Handbook of Applied Econometrics, Vol. I, Macroeconometrics, Basil 

Blackwell, Oxford, pp. 188-220. 

 

 

  



54 
 

APPENDIX A. Data and Sources 
 

The real inventory and shipments data for the manufacturing sector of the U.S. economy 

are produced by the Bureau of Economic Analysis and are derived from the Census Bureau’s 

Manufacturers’ Shipments, Inventories, and Orders survey.  They are seasonally adjusted, 

expressed in millions of 1996 chained dollars, and cover the period 1959:01-2004:08 (due to 

issues of data availability).  An implicit price index for shipments is obtained from the ratio of 

nominal shipments to real shipments.  

Real sales tX  are defined as real shipments.  Output tY   is defined as real sales plus the 

change in tN  (the real value of inventories).   

Input costs tW   were constructed as a weighted average of materials prices, nominal 

wage rates and energy prices with .67, .30 and .03 respectively as the weights.  The weights 

reflect the percentage of production costs in manufacturing allocated to materials, compensation, 

and utility costs calculated from data in the 1992 Census of Manufacturing.   The nominal wage 

rate was measured by the seasonally adjusted index of average hourly earnings of production and 

nonsupervisory workers in manufacturing which was obtained from the Bureau of Labor 

Statistics.  Energy prices were measured by the seasonally adjusted index of crude petroleum 

prices which is a commodity producer price index obtained from the Bureau of Labor Statistics.  

The materials price index is a weighted average of materials and supplies purchased by each 

two-digit industry in manufacturing from producers outside of manufacturing where the weights 

were determined from input-output tables.  It was constructed from highly detailed commodity 

producer price indexes obtained from the Bureau of Labor Statistics and input-output 

relationships obtained from the 1982 Benchmark Input-Output Tables of the United States.  See 

Humphreys, Maccini and Schuh (2001) for details.   Nominal cost shocks were converted to real 

values using the shipments deflator.  

The nominal interest rate is the 3-month Treasury bill rate.  The real rate tr   was 

computed by deducting the three-month inflation rate calculated by the Consumer Price Index. 

 Average production costs tJ  are defined as 1 2 /t t t tAY W Yθ θ . As described in the section on 

calibration, 1θ  and 2θ   were calculated from the data using the cointegrating regression. tA  is a 

shift variable that captures the state of technology, fixed factors of production, and the 
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organizational structure of the firm; it is not directly observable. We assume that it follows a log-

linear trend, which implies that it can be removed by detrending 1 2 /t t tY W Yθ θ . We later test this 

assumption. If tA contains a stochastic trend, it will be reflected in tν  in equation (22) and that 

equation will not be a cointegrating relationship. In the data, tests are consistent with equation 

(22) being a cointegrating relationship.  

 Average stockout avoidance costs tψ  are defined as ( ) 2 1
1 11Nt tR x

δ
δ

−

+−   , where 

Nt t tR N X=  and 1tx +  is the growth rate of sales between t and t+1.  As described in the section 

on calibration, 2δ  was calculated from the data using the cointegrating regression, and 1δ  is 

normalized to one (following the literature, where one of the parameters must be normalized, and 

this is often 1δ ). 

The Fed funds rate and reserves data are from the Federal Reserve Bank of St. Louis’s 

FRED II database.  The monthly interpolation of the GDP Deflator uses the seasonally adjusted 

quarterly deflator from FRED II (GDPCTPI) and the seasonally adjusted monthly producer price 

indices for crude materials, capital equipment, finished goods, and intermediate materials and 

supplies (PWCMSA, PWFPSA, PWFSA, and PWIMSA, respectively) from DRI Basic 

Economics. 
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Appendices B and C are not intended for publication.  
They are available online at http://econ.jhu.edu/directory/louis-maccini/ 

 

APPENDIX B. Derivations and Calibration Method. 

 

 This appendix is organized as follows. Section I shows the log-linearization of the Euler 

equation. Section II derives the decision rule. Section III shows how to derive the cointegrating 

regression from the Euler equation.  Section IV gives the derivation of the analytical conditional 

variance ratio. Section V shows how we calibrate the model using the cointegrating regression.  

Sections I through IV are organized in a Proposition-Proof  format. This is done to make it easy 

for the reader to locate the derivation of interest.  In the text of the paper results are not stated as 

formal propositions.   

 
I. Log-Linear Euler Equation. 
 
Proposition 1: Log-linearizing the optimality conditions around steady-state values yields 
 

 
( ){

( ) [ ] }
1 1 1 1 2 1 1

2 2 1 1 1 1 1

1 ln ln ln ln

1 ln ln 0

t t t t t

A
t t t t

E J Y Y J W W

N X Jr Ju c

θ θ β θ θ β

β δ δ ψ θ θ

− + +

+ + +

   − − + −   

+ − − + + + =

  (10) 

 
 
Proof: The representative firm is assumed to minimize the present discounted value of expected 

total costs, 

0
1 1

,
t

j t
t j

E Cβ
∞

= =

 
 
 

∑ ∏        

where { }0 0. |E E= Ω , and  

  
2

1 2 1
1 3 1

t
t t t t t t t t

t

NC PC HC AY W X N
X

δ
θ θ δ δ−

−

 
= + = + + 

 
,    

subject to the inventory accumulation equation,  

1 .t t t tN N Y X−− = −        (4)  

and to a non-negativity constraint on the stock of inventories, 

   0tN ≥  .        (5)  



57 
 

Applying the Law of Iterated Expectations, and assuming that the non-negativity constraint on 

inventories is not binding so that 0tN > , the optimality conditions for this optimization problem 

reduce to: 

 

 { }1 21 1
1 1 0t t t t t tE AY Wθ θβ θ ξ−
−  − =           (6)                

 
2 1

1 1
1 1 2 1 3 1

1

0t
t t t t t

t

NE
X

δ

β β δ δ δ ξ ξ
−

− + +
+

       + − + =         
     ( 7′ )     

 [ ]{ }1 1 0t t t t t tE N N Y Xβ− −− − + =        (9) 

 

where 1
tξ  is the lagrange multiplier associated with (4).  

 Define the inventory-sales ratio as t
Nt

t

NR
X

=  and the output-sales ratio as t
Yt

t

YR
X

= , let 

lower case letters represent the growth rates of upper case letters so that, for example, 

1

1t
t

t

X x
X −

= + , and use the approximation 1 1
1 t

t

x
x
≈ −

+
.  Then, define 

1 2
t t t

t
t

AY WJ
Y

θ θ

=  as average 

production cost so that marginal production cost is 1 tJθ , define 

 ( )
2 2 2

2

1 1 1
1

1 1 1 1 1
1 1 1

1 1
1

t t t t
t Nt t

t t t t t

N N X N R x
X X X X x

δ δ δ
δ

ψ δ δ δ δ
− − −

−

+
+ + +

     
= = = ≈ −        +     

  

as average stockout avoidance costs so that marginal stockout avoidance costs are 2 tδ ψ , Then, 

the optimality conditions, (6) and ( 7′ ), can be written as  

 

 { }1
1 1 0t t t tE Jβ θ ξ−  − =           (A-1)                

 

 ( )( )( ){ }2 1 1 1
1 1 2 1 1 3 11 0t t t Nt t t tE R x

δ
β β δ δ δ xx

−

− + + +
 − + − + =  

   (A-2) 

 

Then, divide (9) by 1tX −  and re-arrange to obtain 
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 1
1

1 1 1 1

0t t t t t t
t t

t t t t t t

N X N Y X XE
X X X X X X

β −
−

− − − −

   − − + =  
   

 

or, using the appropriate definitions,  

 

 ( ) ( ) ( ){ }1 11 1 1 0t t Nt t Nt Yt t tE R x R R x xβ− −+ − − + + + =      (A-3) 

 

We assume that the ratios, NtR , YtR , tJ , and tψ , which are defined above, are stationary 

with finite expected values.  The growth rate of sales, tx , is also assumed to be stationary.   

We assume that in steady state the expected values of the ratios, average production cost, 

average stockout avoidance cost, and the growth rates of variables are constants.  The non-

stochastic steady state is defined where shocks are zero, and the inventory sales ratio, the output-

sales ratio, average production cost, average stockout avoidance cost, the growth rates, the real 

interest rate, and the multiplier are constant, so that  1Nt Nt NR R R−= = , Yt YR R= , tJ J= , tψ ψ= , 

1t tx x x+ = = , 1t tβ β β+ = = , and 1 1 1
1t tξ ξ ξ+ = = .  The steady state implied by (A-1)-(A-1) is then  

1
1Jθ ξ=                                                          (A-4) 

  ( ) ( ) 1
2 3 1 0β δ ψ δ β ξ+ + − =     (A-5) 

1N YxR R+ =       (A-6) 

where a "bar" above a variable denotes a constant expected steady state value and where to 

derive (A-6) we divide the steady state expression for (A-3) by 1 x+  and use the approximation 

( )1 1
1

N NR R x
x

  ≈ − + 
.   

 

On notation,  a “^” above an upper case letter denotes a log-deviation from the steady 

state, while a “^” above a lower case letter denotes a deviation from the steady state growth rate.  

So, for example, the log-deviation of NtR  from its steady state value is ˆ ln lnNt Nt NR R R= − , while 

the deviation of the growth rate of sales is ˆt tx x x= − .  Similar notation applies to other 

variables.   The log-linearized optimality conditions are then 
1 1

1 1 1
ˆˆ 0t t t tJE J Eθ ξ ξ− −− =          (A-7)                
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( )1 1 1 1 1
1 1 1 1 1 2 2 1 1

ˆ ˆ ˆˆ ˆ1 0t t t t t t t Nt tE E E r E R xxx  βxxx   β δ δ ψ− − + − + − +
 − + + − − =   (A-8) 

 

  1 1 1 1
ˆ ˆ ˆ ˆ 0N t Nt N Nt Y t Yt N t tR E R R R R E R R E x− − − −− − + =     (A-9) 

 

where 1 1
1

r
r

β = ≈ −
+

and where in (A-9) we have assumed that   0Nt YtxR xR= ≈ . 

 Now, use (A-7) to eliminate 1 1
1

ˆ
t tEξ ξ−  and 1 1

1 1
ˆ

t tEξ ξ− +  from (A-8), and use (A-4) to get  

 

( )1 1 1 1 1 2 2 1 1 1 1 1
ˆ ˆ ˆ ˆ ˆ1 0t t t t t Nt t t tJE J JE J E R x JE rθ βθ β δ δ ψ θ− − + − + − +

 − + − − + =   (A-10) 

 

Now, recognize that      

 

 ˆ ln ln ln ln lnNt Nt N t t NR R R N X R= − = − −               (A-11-a) 

 ˆ ln ln ln ln lnYt Yt Y t t YR R R Y X R= − = − −              (A-11-b) 

 ( )1 2
ˆ ln ln ln 1 ln ln lnt t t t tJ J J A Y W Jθ θ= − = + − + −                (A-11-c) 

 ˆ lnt t tx x x X x= − = ∆ −                    (A-11-d) 

 t̂ tr r r= −                       (A-11-e) 

Substituting (A-11-a)-(A11-e) into (A-10) and collecting terms yields  
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where c  is a constant that depends on steady state values.  Let ln tA  be stationary. Define 

1 1ln lnA
t t tu A Aβ+ +≡ −  and note that 1

A
tu + will also be stationary.43 Equation  

(A-12) then yields   

  

 
( ){

( ) [ ] }
1 1 1 1 2 1 1

2 2 1 1 1 1 1

1 ln ln ln ln

1 ln ln 0

t t t t t

A
t t t t

E J Y Y J W W

N X Jr Ju c
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β δ δ ψ θ θ

− + +

+ + +

   − − + −   

+ − − + + + =

  (10) 

QED, Proposition 1. 

 

II. Decision Rule. 

Proposition 2. The model implies that the firm's decision rule is  

 

0 1 1 1 1 1 1 1 3 3 1ln ln ln lnt t X t W t t t tN N X W uπ πl π π− − − − −= Γ + +Γ +Γ +Γ +Γ +           (17) 

where   

( )
1

2 2
1

11 4
2 2

r rζλ ζ ζ+  = + − + +  
,                  (21-a) 

( )
( )

2 2

1 1

1
1

Y

N

R
J R

δ δ ψ
ζ

θ θ
−

=
−

,        (21-b) 

 

where 10 1λ< < , 0,ζ >  0Γ  is a constant, and tu
 
is a stationary shock. 

 

Proof:  Substitute (A-11-a,b,d) into (A-9) to get 

1 1 1 1ln ln lnY t t N t t Y t tR E Y R E N R E X c− − −= ∆ + +     (A-13) 

 

                                                 
43 In our empirical work we allow for ln tA  to contain a deterministic trend.  As we discuss in the proof of 

Proposition 6 below, our empirical results confirm the assumption that 1
A
tu + is stationary. 
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where 1c  is a constant. Then, using (A-13) to eliminate 1 lnt tE Y−  and 1 1lnt tE Y− +  from (10) yields 

( ) ( )
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    (A-14) 

where 2c  is a constant.  Combining terms gives 
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(A-15) 

 

 Collecting and using (15), equation (A-15) can be written as  

 

 1 1 1( ) lnN
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  (A-18) 

where  4c  is a constant.  

Let iλ , i = 1,2 denote the roots of the second-order polynomial in (A-17).  The roots 

must satisfy the quadratic equation: 
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β β
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where  
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Note that 0ζ >  follows from 1 21, 0, 0, 0, 0,  and 0Y NJ R Rθ d ψ> < > > > > .  From (A-19), using 
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1 r
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+

 we have 
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and  
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Since 0ζ >  it is clear that 2 1λ > . Also, from (A-20) it is clear that 1 1λ < .  Observe from (A-17) 

that 1 2
1λλ
β

=  > 0. It follows that 1 0λ > .  Collecting, we have 10 1λ< < .   

Since 1λ  is the stable root and 2λ  is the unstable root, solve 2λ  forward in (A-17) and use 

2
1

1  λ
βλ

= to obtain 
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( )

1

1 1 1 1
0 2

1 1 1 1 1
0

1ln ln

ln

j

N N
t t t t t j

jY Y

j
N

t t t j
jY

R RE N N E
R R

R N E
R

l
l

l βl βl

+
∞

− − − +
=

∞

− − +
=

  
 = − Ξ 
   

 = − Ξ  

∑

∑

 .      (A-21) 

 

To resolve the forward sum on the right-hand side of (A-21), we assume that sales and 

input prices are I(1) processes of the form:  

 

1ln ln X
t x t tX X uµ −= + +                 (A-22-a) 

1ln ln W
t w t tW W uµ −= + +                (A-22-b) 

 
2where . . .(0, )X

t Xu i i d σ  and 2 . . .(0, )W
t Wu i i d σ . For the theoretical derivations, we impose no 

distributional restriction.44  

Using the definition of tΞ  in (A-18), the terms involving sales on the right-hand side of 

(A-21) can be written as 

 

( )1 1 1 1
0

1ln ln
j

t t j t j
j

E a X Xβl βl
β

∞

− + + +
=

  
− − +  

  
∑      (A-23) 

 

where ( )
( )

2 2

1 1

1
1

1
a

J
δ δ ψ
θ θ
−

= +
−

. 

Note from (A-22-a) that 1 lnt t jE X− +  is a linear function of 1tX −  for j = 0, 1, 2, … . 

It therefore follows that    

( )1 1 1 1 1
0

1ln ln ln
j

t t j t j X X t
j

E a X X c Xβl βl
β

∞

− + + + −
=

  
− − + = +Γ  

  
∑  .                  (A-24)      

 

                                                 
44 For the simulations that explore DOLS bias, we assume that X

tu  and W
tu  have Gaussian distributions with 2

Xσ  

and 2
Wσ  set equal to their sample values (e.g., variance of the change in log sales) and Xµ  and Wµ  set equal to 0. 
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The terms involving real input prices on the right-hand side of (A-21) can, using the same 

argument applied to (A-23), be written as 

 

( ) ( ) ( )
2 2

1 1 1 1 1
0 1 1

ln ln
1 1

j

t t t W W t
j

E W W c Wθ θβl βl
θ β θ

∞

− + −
=

  
− − + = +Γ   − −   

∑   . (A-25)   

      

Consider next the terms involving the real interest rate on the right-hand side of (A-21), 

( ) ( )1 1 1 1
0 1

1
1

j

t t j
j

E rβλ βλ
β θ

∞

− + +
=

 
−  

−  
∑ .      (A-26) 

 

Assuming that the real interest rate follows a three-state Markov-switching process and using the 

learning process developed above in the text, we have that  

 

2
1 1 v 1r j

t t j tE r P π+
− + + −

′  =          (A-27) 

where  

v 1 2 3r [ , , ]r r r′ = ,  
1 1

1 2 1

3 1

t

t t

t

π
π π

π

−

− −

−

 
 =  
  

, and 
11 21 31

12 22 32

13 23 33

.
p p p

P p p p
p p p

 
 =  
  

  

 

Since ( )2 1 1 1 3 11t t tπ π π− − −= − + , we have from (A-27) that 1 1t t jE r− + + is a linear function of

1 1 3 1 and t tπ π− −  for j = 0,1,2, … . It follows that   

( ) ( ) 1 31 1 1 1 1 1 3 1
0 1

1
1

j

t t j t t
j

E r cπ π πβλ βλ π π
β θ

∞

− + + − −
=

 
− = + Γ +Γ 

−  
∑      (A-28) 

 

 The terms involving 1
A
t ju + + on the right-hand side of (A-21) can be written as  

( ) ( )1 1 1 1 1
0 1

1
1

j A A
t t j t

j
E u uβλ βλ

β θ

∞

− + + −
=

 
− ≡ 

−  
∑  .              (A-29) 

Since the 1
A
t ju + + are stationary, 1

A
tu − will be stationary.   
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Finally, 

 ( ) ( ) ( )
1 1

1 1 4 1 1 4 4
0 0 11

j j

t con
j j

E c c c cβλβλ βλ βλ
βλ

∞ ∞+

−
= =

   = = =       −∑ ∑               (A-30)                

 

Thus, using the definition of tΞ , (A-18), in (A-21) and then substituting from (A-24), (A-

25), (A-28), (A-29), and (A-30) we have 

 

1 1 1 1 1

1 1 1 3 3 1 1

ln ln ln lnN N
t t t X t W t

Y Y
A

t t o t

R RE N N X W
R R

uπ π

l

π π

− − − −

− − −

= + Γ +Γ

+Γ +Γ +Γ +

 

  

               (A-31) 

 

where  0 X W conc c c cπΓ = + + + . 

 

 Now, log-linearizing the accumulation equation, (4), yields 

 

1
ˆ ˆ ˆ ˆ 0N Nt N Nt Y Yt N tR R R R R R R x−− − + =       (A-32) 

 

Substitute (A-11-a), (A-11-b), and (A-11-d) into (A-32) to get 

 

[ ]
1 1

1

ln ln ln ln ln ln

ln ln ln ln ln 0
N t t N N t t N

Y t t Y N t t

R N X R R N X R

R Y X R R X X x
− −

−

   − − − − −   
 − − − + − − = 

 

or 

1 5ln ln ln ln 0N N
t t t t

Y Y

R RN N Y X c
R R −− − + + =      (A-33) 

Taking expectations of (A-33) gives 

 

1 1 1 1 5ln ln ln ln 0N N
t t t t t t t

Y Y

R RE N N E Y E X c
R R− − − −− − + + =    (A-34) 

 



66 
 

Subtract (A-34) from (A-33) to get 

 

[ ] [ ] [ ]1 1 1ln ln ln ln ln ln 0N
t t t t t t t t

Y

R N E N Y E Y X E X
R − − −− − − + − =   (A-35) 

Define 1ln lnY
t t t tu Y E Y−= −  as the production error and 1ln lnX

t t t tu X E X−= −  as the sales error, 

then (A-35) becomes 

 

1ln ln Y XN N
t t t t t

Y Y

R RN E N u u
R R−= + −       (A-36) 

Substituting (A-31) into (A-36) gives 

 



1 1 1 1

1 1 1 3 3 1

ln ln ln lnN N
t t X t W t

Y Y

tt t o

R RN N X W
R R

uπ π

l

π π

− − −

− −

= + Γ +Γ

+Γ +Γ +Γ +

 

  

     (A-37) 

 

where  1
A Y X

t t t tu u u u−= + − . 

Finally, multiply (A-37) by Y

N

R
R

 to get the decision rule, equation (17) in the text, where 

Y
X X

N

R
R

Γ = Γ , Y
W W

N

R
R

Γ = Γ , 
1 1

Y

N

R
Rπ πΓ = Γ , 

3 3

Y

N

R
Rπ πΓ = Γ , 

Y
t t

N

Ru u
R

=  and Y
o o

N

R
R

Γ = Γ .   

From the definitions of  tu  and tu  it follows that  

 

( )( )1/ .A Y X
t Y N t t tu R R u u u−= + −       (A-38) 

 

Note that tu acts as a buffer, absorbing unanticipated shocks to production and sales. Rational 

expectations implies that 1ln lnY
t t t tu Y E Y−= −  and 1ln lnX

t t t tu X E X−= −  are both i.i.d. mean 

zero and, therefore, stationary. Since, in (A-29), 1
A
tu −  is the conditional expectation of a weighted 

sum of stationary shocks it is itself stationary.  Since 1
A
tu − , Y

tu  and X
tu  are stationary it follows 

from (A-38) that tu is stationary.      QED, Proposition 2. 
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Proposition 3.  Decision Rule Coefficient on Sales: The coefficient on sales in the decision rule, 

XΓ  ,  is 

 
( )
( )

2 2 1

1 1 1

1
1 1

Y

N
X

Rr
J R r

δ δ ψ λ
θ θ λ

   −
= −   − + −    

Γ
     

(18)
  

 

Further,  0X
>

Γ
<

   as   ( ) ( )2 2
1 1

1
1 J

r
δ δ ψ

θ θ
− >

−
<

.
 

Proof: From (A-22-a) it follows that  

 

1 1 1ln lnt t j x t t jE X E Xµ− + + − += +  

and therefore 

1 1 1
1 1ln ln lnt t j t j x t t jE a X X a a E Xµ
β β− + + + − +

  
− + = − + −  
   

. 

Also, 

1 1 1ln lnt t j x t t jE X E Xµ− + − − += + . 

Hence, 

1 1 1 1
1 1 1ln ln 2 lnt t j t j x t t jE a X X a a E Xµ
β β β− + + + − − +

    
− + = − + −    
     

. 

      

This in (A-23) gives 

( )

( )

1
1 1 1 1

0 1

1 1 1 1
0

1 1ln ln 2
1

1 ln

j

t t j t j x
j

j

t t j
j

E a X X a

a E X

βlβl βl µ
β βl β

βl βl
β

∞

− + + +
=

∞

− − +
=

   −
− − + = −   −   

 
− − 

 

∑

∑
   (A-39) 

                                             

For the stochastic process governing ln tX , (A-22-a), we can use the formulas for geometric and 

arithmetic-geometric series to re-write the forward sum in (A-39) as   

( ) 1
1 1 1 12

0 1 1

1ln ln
(1 ) (1 )

j x
t t j t

j
E X Xβl µβl

βl βl

∞

− − + −
=

= +
− −∑       (A-40) 
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Using (A-40) we can rewrite (A-39) as  

( )1 1 1 1 1
0

1ln ln ln
j

t t j t j X X t
j

E a X X c Xβl βl
β

∞

− + + + −
=

  
− − + = +Γ  

  
∑                    (A-41)         

where   

  
( )

( )1
12

1

1 2
1

X xc a
βλ

βλ µ
ββλ

 
= − + − 

 −
            

and 

 

1

1

1
1X a βλ

βλβ
 

Γ = − −  − 
     

or, using the definition of a  and 1
1 r

β =
+

, 

 

( )
( )

2 2 1

1 1 1

1
1 1X r

J r
δ δ ψ λ
θ θ λ

 −
Γ = − 

− + −  
 .       (A-42) 

 

We then have (18) from (A-42) and Y
X X

N

R
R

Γ = Γ .  

To show that 0X
>

Γ
<

 as ( ) ( )2 2
1 1

1
1 J

r
δ δ ψ

θ θ
− >

−
<

, note that  and  are both 

positive, and  implies that , so the sign of  depends on the term 

in square brackets, which will be positive if and only if  

       

And vice-versa.         QED, Proposition 3. 
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Proposition 4. Decision Rule Coefficient on Input Costs: The coefficient on input costs in the 

decision rule  is 

( )
2 1

1 11 1
Y

N
W

r R
R r

θ λ
θ λ

 
= −  − + − 

Γ <0      (19) 

Proof: Proceeding as with the terms in sales and using (A-22-b), the terms involving real input 

prices on the right-hand side of (A-21) can be written as (A-25), where 

 
( )

2 1

1 1 1

1 11 1
1 1 1W wc θ βλ µ

θ βλ βλβ

     
= + −     − − −     

 

 

 
( ) ( )

2 1 2 1

1 1 1 1

11
1 1 1 1W

r
r

θ βλ θ λ
θ βλ θβ λ

   
Γ ≡ − = −    − − − + −    
      (A-43) 

 

where the last equality follows from 1 1 r
β
= + .  We then obtain (19) from (A-43) and 

Y
W W

N

R
R

Γ = Γ .   

To show that 0WΓ < note that under the assumptions of the model 1 1θ >  and 2 0θ > . We 

assume that r , the unconditional mean real interest rate, is positive.  Thus  ( )2 1 1 0rθ θ − > .  We 

have that 10 1λ< <  and so ( )1 11 0rλλ + − > .  Since 0YR > and 0NR >  it then follows from 

(19) that 0.WΓ <         QED, Proposition 4. 

 

Proposition 5. Decision Rule Coefficients on the Interest-Rate-Regime Probabilities: 

The model implies that the decision rule coefficients on the Interest-Rate-Regime Probabilities 

are 

( )
1

1
1

1
1

1
1

1
01

Y

N
r

R I P
Rπ

λλ γ
θ

−

−
+

 −    ′≡ −  −   
Γ      (20-a)   

( )
1

1
1

3
1

0
1

1
11

Y

N
r

R I P
Rπ

λλ γ
θ

−

−
+

 −    ′≡ −  −   
Γ      (20-b)  
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where [ ]1 2 3γ γ γ γ′ ≡ .   Furthermore, if 

( )11 22 2 0.5p p+ >         (A-44-a) 

( )22 33 2 0.5p p+ >         (A-44-b) 

13 31 0p p= = ,         (A-44-c) 

then, 
1

0πΓ > and 
3

0πΓ < . 

Proof: Since the eigenvalues of 1Pβλ lie inside the unit circle45, we can use (A-27) to write  

( ) ( ) ( )2 2
1 1 1 1 v 1 v 1 1

0 0 0

12
v 1 1

r r

r

j j jj
t t j t t

j j j

t

E r P P P

P I P

βλ βλ π βλ π

βλ π

∞ ∞ ∞
+

− + + − −
= = =

−

−

′ ′ = = 

′  = − 

∑ ∑ ∑
  (A-45) 

 

Using (A-45) and noting that [ ]2
v 1 2 3r P γ γ γ′ ≡ , (A-27) can be written as 

( ) ( ) ( ) [ ] 11
1 1 1 1 1 2 3 1 1

0 11

1
11

j

t t j t
j

E r I Pλβλ βλ γ γ γ βλ π
θβ θ

∞ −

− + + −
=

  −  − = −   −−  
∑  (A-46) 

 

Since 
( ) [ ] 11

1 2 3 1
1 1

I Pλ γ γ γ βλ
θ

−−  − −
is (1x3) and ( )2 1 1 1 3 11t t tπ π π− − −= − +  we can rewrite (A-

46) as (A-28) where, using 1
1 r

β =
+

,  

 
( ) [ ]

1

1
1 1

1 2 3
1

1

1

0
1 1

I P
rπ

λλ γ γ γ
θ

−

−

 
−    Γ = −   − + 

  

     (A-47)  

 
( ) [ ]

3

1
1 1

1 2 3
1

0

1

1
1 1

I P
rπ

λλ γ γ γ
θ

−

−

 
−    Γ = −   − + 

  

     (A-48) 

and 

                                                 
45 Hamilton (1994) pages 681 and 732. 
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( ) [ ] 11

1 2 3 1
1

0

1

0
1

c I Pπ
λ γ γ γ βλ

θ
−
 

−   ≡ −   −
  

.     (A-49) 

 

We then have (20-a) from (A-47) and 
1 1

Y

N

R
Rπ πΓ = Γ , and we have (20-b) from (A-48) and 

3 3

Y

N

R
Rπ πΓ = Γ .   

  To establish  1 0πΓ > and  3 0πΓ < , recall that [ ] 2
1 2 3 vr Pγ γ γ ′≡  and let 

[ ] 12
1 2 3 v 1(1 3)
, , rs s s P I Pβλ

−

×
′  ≡ −  .  Since  1

1

0
1

λ
θ
− 

< − 
, it then follows from (A-47) and (A-48)  

that   1 0πΓ > and  3 0πΓ <  if and only if 1 2 3s s s< < .  

We can expand the definition of [ ]1 2 3, ,s s s  to get   

 [ ] ( ) ( )2 32 2 3
1 2 3 v 1 1 1, ,  r ...s s s P I P P Pβλ βλ βλ ′= + + + +  

 

        ( ) ( )2 32 3 4 5
v 1 v 1 v 1 vr r r r ...P P P Pβλ βλ βλ ′ ′ ′ ′= + + + +  

 .   

Define  

( ) ( ) ( ) [ ]1 2 3 v 1 2 30 , 0 , 0 r , ,g g g r r r′= =         (A-50) 

and let ( ) ( ) ( )1 2 3, ,g j g j g j    be defined by  

 ( ) ( ) ( ) ( ) ( ) ( )1 2 3 1 2 31 , 1 , 1 , ,g j g j g j g j g j g j P+ + + =        (A-51) 

for j = 0, 1, 2, 3, … .            

Then from (A-51) ( ) ( ) ( ) 2
1 2 3 v2 , 2 , 2 rg g g P′=    and  

[ ] ( ) [ ]1 2 3 1 1 2 3
2

, , ( ) ( ) ( )
j

j
s s s g j g j g jβλ

∞

=

=∑ , or  

 ( ) ( )2 3

1 1 1 1 1 1 1 1(2) (3) (4) (5) ...s g g g gβλ βλ βλ= + + + +  

 ( ) ( )2 3

2 2 1 2 1 2 1 2(2) (3) (4) (5) ...s g g g gβλ βλ βλ= + + + +  
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 ( ) ( )2 3

3 3 1 3 1 3 1 3(2) (3) (4) (5) ...s g g g gβλ βλ βλ= + + + +  

 

We establish an intermediate proposition to show that (A-44-a)-(A-44-c) are sufficient 

for ( ) ( ) ( )1 2 3 ,    1, 2,3, ...g j g j g j j< < =   .   

Lemma:  Let ( ) ( ) ( )1 2 3, ,g j g j g j    be defined by (A-51).  If ( ) ( ) ( )1 2 3g j g j g j< <  and 

conditions (A-44-a)-(A-44-c) are true, then ( ) ( ) ( )1 2 31 1 1g j g j g j+ < + < + . 

Proof of Lemma: Note from the definition of P that the elements of each of its columns must sum 

to one.  Using (A-44-c) we can therefore write that  

 ( ) ( )
( )

11 21

11 22 33

22 21 33

0
1 1

0 1

p p
P p p p

p p p

 
 = − − 
 − − 

.     (A-52) 

From (A-52) and (A-51) we then have  

 ( ) ( ) ( )( )1 1 11 2 111 1g j g j p g j p+ = + − ,     (A-53) 

 ( ) ( ) ( ) ( )( )2 1 21 2 22 3 22 211 1g j g j p g j p g j p p+ = + + − − ,   (A-54) 

( ) ( )( ) ( )3 2 33 3 331 1g j g j p g j p+ = − + .     (A-55) 

Subtracting (A-53) from (A-54) gives 

( ) ( ) ( )( ) ( )( ) ( )( )2 1 1 21 11 2 11 22 3 22 211 1 1 1g j g j g j p p g j p p g j p p+ − + = − + + − + − − .     (A-56) 

From (A-56) it follows that  

 
( ) ( ) ( ) ( )2 1

1 3
21

1 1
0.

g j g j
g j g j

p
∂ + − +   = − <

∂
               (A-57) 

Evaluating (A-56) at the maximum possible value of 21p , that is at 21 221p p= − , and using (A-

44-a) gives ( ) ( ) ( ) ( ) ( )2 1 2 1 11 221 1 1 0.g j g j g j g j p p+ − + = − + − >    It follows that 

( ) ( )1 21 1g j g j+ < +  for all values of  21p . 

 Next, subtracting (A-54) from (A-55) we have that  

( ) ( ) ( )( ) ( )( ) ( )( )3 2 1 21 2 22 33 3 22 33 211 1 1 1g j g j g j p g j p p g j p p p+ − + = − + − − + + + − . (A-58) 

From (A-58) it follows that 
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( ) ( ) ( ) ( )3 2

3 1
21

1 1
0.

g j g j
g j g j

p
∂ + − +   = − >

∂
     (A-59) 

Evaluating (A-58) at the minimum value of 21p , that is at 21 0p = , and using (A-44-b) gives 

( ) ( ) ( ) ( ) ( )3 2 3 2 22 331 1 1 0.g j g j g j g j p p+ − + = − + − >    It follows that  

( ) ( )2 31 1g j g j+ < +  for all values of  21p .  Collecting, we have    

 ( ) ( ) ( )1 2 31 1 1g j g j g j+ < + < + .     QED, Lemma. 

 

Note that since 1 2 3r r r< < , (A-50) gives ( ) ( ) ( )1 2 30 0 0g g g< < .  The lemma then gives 

that ( ) ( ) ( )1 2 3 ,  for  1, 2,3, ...g j g j g j j< < =  . This in turn implies that 1 2 3s s s< <  and therefore 

that  1 0πΓ > and  3 0πΓ < .       QED, Proposition 5. 

 

 

 

 

III. Cointegrating Regression. 

Proposition 6. The model in Section II implies that inventories, sales, input costs, and the 

interest-rate-regime probabilities are cointegrated, with cointegrating regression 

1 30 1, 1 3, 1ln ln lnt X t W t t t tN b b X b W b bπ ππ π n− −= + + + + + ,                      (22) 

where 

( )
( )

1 1

2 2

1
1

1Xb
r Jθ θ
δ δ ψ

=
−

−
−

              (23-a)                    
( )

2 1

2 21W
r Jb θ θ

δ δ ψ
= −

−
                    (23-b)  

( )
( )
( )2 2

1
1 21 1

1 J
b

r
π

θ
γ γ

δ δ ψ
= − −

−

+
   (23-c)                  ( )

( )
( )2 2

1
3 23 1

1 J
b

r
π

θ
γ γ

δ δ ψ
= − −

−

+
            (23-d) 

 

0b  is a constant, and tv  is a stationary error term. 
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Proof: Begin from (A-15). Add and subtract 1 lnt tE Wβ −  and  1 lnt tE Xβ −  where appropriate, 

recognize that 1 1ln ln lnt t tX X X+ += + ∆ , and re-arrange terms to get 

 

( ) ( )

( ) ( ) ( )

( ) [ ] ( ) ( )

2 1 1 1 1 1 1 1 1 1

1 1 1 1 1 2 2 1

2 2 1 1 1 1 2 1 1 3 2 3 1 2

1 1 1 2

1 ln ln 1 ln ln

1 1 ln ln 1 ln

1 ln ln

0

N
t t t t t t t t

Y

t t t t t t

t t t t t

A
t t

RJ E W E W J E N E N
R

J E X E X E N

E X X J

JE u c

θ θ β β θ θ β

θ θ β β β δ δ ψ

β δ δ ψ θ γ γ π γ γ π γ

θ

− − + − − +

− − + −

− + − −

− +

   − − ∆ + − ∆ − ∆  

 + − − − ∆ + − 

− − + ∆ + − + − +  

+ + =

 (A-60) 

 

Then, combining terms appropriately yields 

 

( )

( ) ( )

( ) ( )( ) ( )
( )

( )
( ) ( )

( ) ( )

2 1 1 1 1 1 1 1 1

1 1 2 2 1 1

1 1 2 2
2 2 1 1

2 2

2 1 1
1 1 2 1 1 3 2

2 2 2 2

ln 1 ln ln

1 1 ln

1 1 1
1 ln ln

1

1
ln

1 1

N
t t t t t t

Y

t t

t t t t

t t t

RJE W J E N E N
R

J E X

J
E N E X

J JE W

βθ θ θ θ β

β θ θ δ δ ψ

β θ θ β δ δ ψ
β δ δ ψ

β δ δ ψ

β θ θ θ γ γ π γ γ π
β δ δ ψ β δ δ ψ

− + − − +

− +

− −

− −

 − ∆ + − ∆ − ∆ 

 − − + − ∆ 

 − − − −+ − +
−

−
+ + − + −

− − 3 1 2

1 1 1 2 0

t

A
t tJE u c

γ

θ

−

− +

+  


+ + =

  (A-61) 

We have assumed that ln tA  is stationary.46  If ln tA  were nonstationary, then we would not 

obtain a cointegrating vector. In the data, the Johansen-Juselius test rejects the null hypothesis of 

no cointegrating vector (as reported in the paper). The stochastic process for ln tA  implies that 

                                                 
46 If ln tA  contains a deterministic trend, the cointegrating relationship will contain a trend, which we allow for in 
the empirical work. 
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1 1ln ln A
t t tA A uβ + +− ≡   is stationary. 

 

Re-write (A-61) to get 

 

( ){ }1 31 2 2 1 1 3 11 ln ln ln 0t t t X t W t t tE N b X b W b bπ πb δ δ ψ π πχ− − − + − − − − − =    (A-62) 

  

where 

( )

( ) ( )

2 1 1 1 1 1

1 1 2 2 1 1 1 3

ln 1 ln ln

1 1 ln

N
t t t t

Y

A
t t

RJ W J N N
R

J X Ju c

βθ θ θ θ β

β θ θ δ δ ψ θ

c + +

+ +

 = − ∆ + − ∆ − ∆ 

 − − + − ∆ + +  

   (A-63) 

where 
1 3

, , , and X Wb b b bπ π are given by equations (23-a)-(23-d)  in the text and 3c  is a constant.  

Observe that tχ  is stationary since ln t iN +∆ , ln t iW +∆ , ln t iX +∆ , and 1
A
tu +  are all I(0).  

Let ( )
1 32 2 2 1 1 3 11 ln ln lnt t t X t W t t tN b X b W b bπ πχ b δ δ ψ π πχ − − ≡ + − − − − −  .  Rational 

expectations and then implies that 2 1 2t t tEχ χ−−  is i.i.d mean zero and, hence, stationary. As (A-

62) gives that 2 1 2 2t t t tEχ χ χ−− = , it follows that 2tχ is stationary, and since tχ  is stationary, it 

follows that  

1 31 1 3 1ln ln ln (0)t X t W t t tN b X b W b b Iπ ππ π− − − − − −  − .   (A-64) 

 

  Writing the cointegrating relationship implied by (A-64) as a cointegrating regression we 

have equation (22) where 0b  is a constant, and tv  is a stationary error term. QED, Proposition 6. 

 

Proposition 7. Signs of the Coefficients in the Cointegrating Regression: 

A. 0Xb >
<

  as   ( ) ( )2 2
1 1

1
1 J

r
δ δ ψ

θ θ
− >

−
<  

B.  

C. If (A-44-a), (A-44-b), and (A-44-c) hold, then  
1

0bπ > , and 
3

0.bπ <   

Proof of A. From the definition of Xb  in (23-a) it follows that  
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0Xb > if and only if    ( ) ( )2 2
1 1

1
1  ,J

r
δ δ ψ

θ θ
−

> −
 

0Xb < if and only if    ( ) ( )2 2
1 1

1
1  ,J

r
δ δ ψ

θ θ
−

< −
 

and  

0Xb = if and only if    ( ) ( )2 2
1 1

1
1  .J

r
δ δ ψ

θ θ
−

= −    QED, Proposition 7A. 

 

Proof of B: Under the assumptions of the model 1 1θ > , 2 0θ > , and 2 0δ < .  Since J denotes the 

steady-state value of average production costs, it follows that J > 0. Note that 

( ) 2 1

1 1NR x
δ

ψ δ
−

 = −  . NR  denotes the steady-state inventory/sales ratio, so NR > 0, and x  

denotes the steady-state growth rate of sales which is assumed to be weakly positive and less 

than one. It follows that 0ψ > . We have assumed that r , the unconditional mean real interest 

rate, is positive.  Collecting we have 0r > ,  1 1θ > , 2 0θ > , J > 0, 2 0δ < , and 0ψ > .  Thus, 

from (23-b), 0Wb < .       QED, Proposition 7 B. 

 

Proof of C: Under the assumptions of the model 1 1θ > and 2 0δ < .  Also, from the proof of B, 

above, we have 0r > , 0J > , and 0ψ > . It follows from (23-c) and (23-d) that 1 0bπ >  if and 

only if 1 2 0γ γ− <  and that 3 0bπ <  if and only if 3 2 0γ γ− >  or, equivalently, that 1 0bπ >  and 

3 0bπ < if and only if 1 2 3γ γ γ< < .    

Recall that [ ] [ ]2 2
1 2 3 v 1 2 3r P r r r Pγ γ γ ′≡ = .   Since 1 2 3r r r< < , it follows from 

Lemma 1 that if  (A-44-a)-(A-44-c) hold then 1 2 3γ γ γ< < .  QED, Proposition 7 C. 

 
 
IV. Analytical Conditional Variance Ratio. 
 

Proposition 8. 
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[ ]
( )

( )
( )

( )



2
1 1 1

1 2
1 11

2 2 2
1
2 2
1

1 1 1Var ln ln 1 1 21 1 1 1Var ln ln 1

1
1 1

n nX
t t n

X

t t n

n
W W

X

Y Y
nX X

n

n

l l l
l

l l

l σ
l σ

−

− +

− + Γ     − −
= + − +Γ +       + − −       + 

   −Γ
+     + −    

½

½

    (33) 

where ( )Var ln lnt t nY Y −½
 
is the variance of ln tY  conditional on ln t nY − , ( )( )1Var ln lnt t nX X − +½  is 

the variance of ln tX  conditional on ( )1ln t nX − + , 2
Xσ is the variance of the sales shock, 2

Wσ  is the 

variance of the cost shock, and  



( )
( )

12 2

1 1 1

1
1 (1 )

N
X X

Y

R r
R J r

λδ δ ψ
θ θ λ

 −
Γ = Γ = − 

− + −  
                    (34-a) 



12

1 11 1
N

W W
Y

R r
R r

λθ
θ λ

 
Γ = Γ = −   − + − 

       (34-b) 

where  XΓ  and WΓ  are the elasticities of output with respect to sales and input costs, 

respectively. 

 

Proof:   To derive the variance of output, re-write the production error so that 

 

  1ln ln Y
t t t tY E Y u−= +            (A-65) 

Then, solve (A-34) for 1 lnt tE Y−  and substitute into (A-65) to get 

 

 1 1 1 1 5ln ln ln ln YN N
t t t t t t t t

Y Y

R RY E N E N E X c u
R R− − − −= − + + +     (A-66) 

Then, substitute (A-31) for 1 lnN
t t

Y

R E N
R − into (A-66) and combine terms to get 

 
( )    

1 31 1 1 1 1 1 3 1 1

1 6

ln 1 ln ln ln

ln

AN
X Wt t t t t t t

Y
Y

t t t

RY N X W u
R

E X c u

π πl π π− − − − − −

−

= − − +Γ +Γ +Γ +Γ +

+ + +

 (A-67) 
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where  XΓ , WΓ , 
1π

Γ , and 
3π

Γ  are defined above by (A-42), (A-43), (A-47) and (A-48), 

respectively,  and where 6 5oc c= Γ + .  Finally, use the assumption that sales is an I(1) process of 

the form given by (A-22-a) and combine terms to get 

 

( ) ( )   

1 31 1 1 1 1 1 3 1

1 7

ln 1 ln 1 ln lnN
X Wt t t t t t

Y
A Y
t t

RY N X W
R

u c u

π πl π π− − − − −

−

= − − + +Γ +Γ +Γ +Γ

+ + +

  (A-68) 

where 7 6 Xc c µ= + . 

 In order to simplify the analysis and focus on the traditional explanations for the variance 

ratio puzzle, we assume that the interest rate is constant (which implies that the probabilities are 

fixed over time) and that 0Y
tu = and 1 0A

tu − =  in the remainder of this section.  Then, first-

differencing (A-68) and using these assumptions yields 

 

( ) ( ) 

1 1 1 1ln 1 ln 1 ln lnN
X Wt t t t

Y

RY N X W
R

l − − −∆ = − − ∆ + +Γ ∆ +Γ ∆     (A-69) 

 

Use (A-33) to eliminate 1lnN
t

Y

R N
R −∆  from (A-69) to get 

 
( )( ) ( ) 

1 1 1 5 1 1ln 1 ln ln 1 ln lnX Wt t t t tY Y X c X Wl − − − −∆ = − − − + + +Γ ∆ +Γ ∆    (A-70) 

 
Or, 
 

( ) ( ) 

1 1 1 1 1 1 8ln ln 1 ln 1 ln lnX Wt t t t tY Y X X W cl l− − − −= + − + +Γ ∆ +Γ ∆ +    (A-71) 

 
Then, using the processes for sales and input prices, (A-22-a) and (A-22-b), to eliminate 

1ln tX −∆  and  1ln tW −∆  from (A-71) gives 

 

 

( ) ( )( )  ( )

( ) ( ) 

1 1 1 1 1 1 9

1 1 1 1 1 1

ln ln 1 ln 1

ln 1 ln 1 .

X W
X Wt t t t X t W

X W
X Wt t t t Y

Y Y X u u c

Y X u u c

l l µ µ

l l

− − − −

− − − −

= + − + +Γ + +Γ + +

= + − + +Γ +Γ +
  (A-72) 

Next, using backward substitution, (A-72) can be written as 
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( ) ( ) 

1
1 1 1 1 9

1 1 11 1 1

11
ln ln ln

n n nX Wn i i X i W
t t n t i t i t i

i i i
Y Y X u u c

l
l l l l

l l l− − − −
= = =

+ Γ− Γ
= + + + +∑ ∑ ∑   (A-73) 

 

Through backward substitution, the stochastic process for sales may be written as 

 

 ( 1)ln ln
n

X
t k t n t j

j k
X X u− − + −

=

= +∑         (A-74) 

for 0,1,...k n=  and where we have assumed 0Xµ = .  Substituting (A-74) for the terms involving 

1
1

ln
n

i
t i

i
Xl −

=
∑ in (A-73), we have that 

( )

( )

( ) 

1

1 1 1 ( 1)
0

2 1
1 1 1 1

1 2 3

1 1 10
1 11 1

ln ln 1 ln

1 ...

1

n
n i

t t n t n
i

n n n n
X X X n X
t j t j t j t j

j j j j n

n nX Wi X i W
t i t i

i i

Y Y X

u u u u

u u c

l l l

l l l l

l l
l l

−

− − +
=

−
− − − −

= = = =

− −
= =

 = + −  
 

 
+ − + + + + 

 

+ Γ Γ
+ + +

∑

∑ ∑ ∑ ∑

∑ ∑

    (A-75) 

 

Combining terms appropriately, (A-75) may be re-written as 

( )

 ( ) ( )

( ) ( ) ( ) ( )


1

1 1 1 ( 1)
0

1

1 1 1 1 1 2
0

2 1
2 1

1 1 1 3 1 1 1
0 0

1
1

1

ln ln 1 ln

1 1 1 1

1 1 1 1

n
n i

t t n t n
i

X i X
X Xt t

i

n
i X i n X

X Xt t n
i i

n
i W

W Yt i
i

Y Y X

u u

u u

u c

l l l

l l l l

l l l l l l

l

−

− − +
=

− −
=

−
−

− −
= =

−
−

=

 = + −  
 

  + − + +Γ + − + +Γ    
   + − + +Γ ⋅⋅⋅+ − + +Γ      

+ Γ +

∑

∑

∑ ∑

∑ 

  (A-76) 

Or, more concisely, 
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( ) ( ) ( )


1 1

1 1 1 ( 1) 1 1 1 1
0 0 0

1
1

1

ln ln 1 ln 1 1

.

n n k
n i i k X

Xt t n t n t k
i k i

n
i W

W Yt i
i

Y Y X u

u c

l l l l l l

l

− −

− − + − −
= = =

−
−

=

   = + − + − + +Γ      

+ Γ +

∑ ∑ ∑

∑ 

 (A-77) 

 Our objective is to calculate the variance of ln tY  at horizon n.  We therefore treat the 

initial values of sales and output as known (non-stochastic) quantities, implying that 

[ ]( 1)Var ln =Var ln 0t n t nX Y− + −  =  .  Further, we assume that the sales shock and the cost shock 

are uncorrelated at all leads and lags, specifically that cov( , ) 0 ,X W
su u sτ τ= ∀ .   Then, taking the 

variance of (A-76), or equivalently, (A-77), yields 

[ ]  ( ) ( )

( ) ( ) ( ) ( )



( )

212 2 2
1 1 1 1

0

2 22 1
2 2 1 2

1 1 1 1 1 1
0 0

2 2 1 2
1

1

Var ln 1 1 1 1

1 1 .... 1 1

i
X Xt X X

i

n
i i n

X XX X
i i

n
i

W W
i

Y l σ l l l σ

l l l σ l l l σ

l σ

=

−
−

= =

−

=

  = − + +Γ + − + +Γ    

   + − + +Γ + − + +Γ      

 + Γ  

∑

∑ ∑

∑

 

( ) ( ) 

( )
21 2 2 12 2

1 1 1 1
0 0 1

1 1
n k n

ii k
X WX W

k i i
λλλ   σ λ σ

−
−

= = =

   = − + +Γ + Γ      
∑ ∑ ∑     (A-78) 

where 2
Xσ  is the variance of X

t iu −  and 2
Wσ is the variance of W

t iu −  . 

Computing geometric sums and combining terms appropriately gives 

 

[ ] ( ) ( )



2
2 1 1 2

1 12
1 1

2
2 1 2

2
1

1 1
Var ln 1 2 1

1 1

1
1

n n

X Xt X

n

W W

Y n
l l

l l σ
l l

l
σ

l

    − −
= + − +Γ + − +Γ       − −     

 −
+ Γ   − 

   (A-79) 

 

Recognize from (A-74) and the assumption that ( 1)Var ln 0t nX − +  =    that 
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 [ ] ( ) 2Var ln 1t XX n σ= + .        (A-80) 

 

Then, dividing (A-79) by (A-80), we have equation (33) as stated in the text. 

 QED, Proposition 8. 
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Appendices B and C are not intended for publication.  
They are available online at http://econ.jhu.edu/directory/louis-maccini/ 

 

APPENDIX C: Vector Autoregression 

Following Bernnke and Mihov (1998) we estimate the following VAR:  

0 0

v
n n

Z Z

t i t i i t i t
i i

B C AZ Z P
− −

= =

= + +∑ ∑       (C-1) 

 
0 0

v
n n

P

t i t i i t i t
i i

D G AP Z P
− −

= =

= + +∑ ∑       (C-2) 

where Z denotes a vector of macroeconomic variables and P denotes a vector of policy variables. 

In our model the macroeconomic variables are the natural logarithms of real sales ( ln tX ), the 

GDP deflator, real input prices ( ln tW ), and real inventories ( ln tN ).  Our policy block is the 

same as Bernakne and Mihov’s, so that the elements of P are total reserves, non-borrowed 

reserves, and the Fed funds rate. , , , , ,  and Z P
i i i iB C A D G A are matrices, v  and vZ

t t are vectors of 

structural shocks whose elements are mutually uncorrelated by assumption.  Policy variables, by 

assumption, have no contemporaneous affect on macroeconomic variables so that 0 0C = .  

 Re-write equation (C-2) as  

  
1 1

0 0
0 1

( ) ( ) e
n n

t i t i i t i t
i i

I G D I G GP Z P− −

− −
= =

= − + − +∑ ∑     (C-3)  

where,  

 
1

0
e ( ) vP

t t
I G A−= − .        (C-4)  

Note that et , the vector of residuals from the policy-block VAR, is orthogonal to the residuals 

from the macroeconomic block.  If the elements of 1
0( ) PI G A−−  are known (C-4) can be used to 

recover the unobservable vt , which includes the monetary policy shock, from the observable et .  

 To identify the elements of 1
0( ) PI G A−−  Bernanke and Mihov (1998) characterize the 

Fed funds market.  Omitting time subscripts let FFRe  denote innovations in the Fed funds rate, 
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and let dv denote exogenous shocks to the demand for total reserves.  Innovations in total reserve 

demand, TRe , are then given by  

 TR FFRe e dvα= − +         (C-5) 

where 0α ≥ . Also, if DISCe  denotes innovations in the discount rate, then BRe , which denotes 

innovations in the demand for borrowed reserves, is given by 

 BR FFR DISCe (e e ) bvω= − − +        (C-6) 

where bv  denotes exogenous shocks to the demand for borrowed reserves and where 0ω ≥ .  

Innovations in the demand for non-borrowed reserves, D
NBRe , are by definition 

 D
NBR TR BRe e e= − .        (C-7) 

Innovations in the supply of non-borrowed reserves, S
NBRe , are governed by Federal Reserve 

policy. Let  

 S
NBRe d d b b sv v vφ φ= + + .       (C-8) 

Here sv , the monetary policy shock, is an exogenous shock to the supply of non-borrowed 

reserves. The policy parameters,  and d bφ φ , describe how the Fed will react to the shocks 

 and d bv v . Bernannke and Mihov show that (C-5) – (C-8) can be used to express each of the 

elements of 1
0( ) PI G A−−  as a function of the parameters , , ,  and d ba ω φ φ .  Order variables so 

that TR NBR FFRe [e e e ]'t =  and  v [ ]'d s b
t v v v=  and let 

1

1 ˆ ˆˆ [e ] e e
T

T t t t
t

Var
T k =

  ′=  − 
∑ . (We use a 

constant term plus six lags of the seven variables, so that k = 43.)  Since ˆ [e ]T tVar  is a (3x3) 

symmetric matrix it has six unique elements.  Note from (C-4) that  

 ( ) ( )1 1
t t 0 t t 0(e e' )= (v v )P PE I G A E I G A− − ′   ′− −    . 

Since the elements of tv are i.i.d. by assumption, we can write   

 

2

2
t t

2

0 0
(v v ) 0 0

0 0

d

s

b

E
s

s
s

 
 ′ =  
  

. 

The matrix t t(e e )E ′ is also (3x3) and symmetric.  Equating t t(e e )E ′ to ˆ [e ]T tVar  therefore places 

six restrictions on the seven unknown structural parameters: 2 2 2, , , , , ,  and d b
s d ba ω φ φ sss   .  At 



84 
 

least one more restriction is needed to identify these parameters and, hence, the elements of 

( ) 1
0

PI G A−− .  

 Bernanke and Mihov (1998) examine five alternative sets of identifying restrictions.  

Four of these sets impose two additional restrictions so that the model is over identified.  

Bernanke and Mihov call their fifth set the “just identified” model as it imposes the single 

additional restriction that 0α = .  This restriction is motivated by Strongin’s (1995) argument 

that the demand for total reserves is inelastic in the short run. Impulse-response functions show 

that a monetary policy shock has qualitatively similar effects under all five sets of restrictions. 

We therefore take the simplest approach, set 0α = , and solve t t ˆ(e e ) = [e ]T tE Var′  for the 

remaining six structural parameters. 

 We estimate the VAR we using monthly data from December 1961 through August 2004.  

We obtain monthly observations of the GDP deflator using the state-space procedure of 

Bernanke, Gertler, and Watson (1997). This procedure uses several monthly series on prices to 

infer the unobserved monthly value of the GDP Deflator. In the policy block, following 

Bernanke and Mihov (1998) we render total reserves and non-borrowed reserves stationary by 

measuring each as a ratio to a 36-month moving average of total reserves. 47  Not surprisingly, 

our parameter estimates are quite similar to Bernanke and Mihov’s.     

Having identified the parameters that characterize the money market it is then possible to 

identify the monetary policy shocks by inverting equation (C-4) to obtain  

 ( )
TR11

0 NBR

FFR

e
e
e

d

s z

b

v
v I G A
v

−−

   
    = −    
     

   

The middle row of this equation is  

 ( ) ( ) ( )TR NBR FFRe 1 e es d b b d bv φ φ φ αφ ωφ= − + + + − −    (C-9)  

Inserting the policy-block residuals for TR NBR FFRe , e , and e  on the right-hand side of (C-9) gives 

the time series of monetary policy shocks, { }
1

Ts
t t

v
=

.  

                                                 
47 There is a dramatic spike in the reserves data in the months of September and October 2001, following the 
September 11th attacks.  We eliminate this spike by interpolating the series from August 2001 to November 2001. 
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Additional References for Appendix C. 

Bernanke, Ben S., Mark Gertler, and Mark Watson (1997), “Systematic Monetary Policy  and the 
 Effects of Oil Price Shocks”, Brookings Papers on Economic Activity,  (1), pp. 91-142. 

 
Strongin, Steven (1995), “The Identification of Monetary Policy Disturbances: Explaining the 

Liquidity Puzzle”, Journal of Monetary Economics, 35(3), pp. 463-97. 
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