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1. Introduction

It is not uncommon for commentators on the prospects for an economy to draw attention to
recent inventory movements. Thus, if there has been a run down in stocks below what is
perceived to be normal levels, this is taken as a sign of favourable output prospects in future
periods; the reasoning behind this conclusion being that output not only needs to be produced
to meet sales, but also to replenish stocks. Early in the history of business cycle research the
question arose of whether the presence of inventory holdings by firms was a contributor to the
“up and down” movements seen in economies. The classic analyses of this question were by
Metzler (1941), (1947), who concluded that “An economy in which businessmen attempt to
recoup inventory losses will always undergo cyclical fluctuations..”. His model emphasised the
fact that a business would attempt to keep inventories as a proportion of expected sales and so
would re-build these if they declined below that target level. Given that sales had to be forecast
from their past history, he showed that output would follow a second order difference equation
which would have complex roots in many cases. Consequently his model produced a periodic
cycle in output and this constituted the foundation of his conclusion. Of course the fact that a
periodic cycle can be generated does not mean that it is an important one since the amplitude
could be quite small.
After Metzler’s work, interest in inventories shifted to deriving optimal rules for stock hold-

ings that balanced the cost of being away from a target level against the cost of the sharp output
changes that would be needed if any given level of sales was to be met automatically by rapid
output adjustment. The classic work in this vein is by Holt et al. (1960) and a good summary
of the type of model that results is Rowley and Trivedi(1975, ch 2). This strand of research pro-
duced optimal decision rules for inventory holdings that effectively rationalized the ad hoc rules
that underlay Metzler’s models. The hallmark of these models is that there are some exogenous
driving forces such as sales and cost shocks and then optimal decisions are made in response to
what is known about them. A large body of literature has used models of optimal inventory
holdings in empirical work-See Blinder and Maccini (1991) and Ramey and West (1999) for
surveys of the literature.
A fundamental problem with Metzler’s analysis was that it concentrated upon the possibility

of a periodic cycle in output. This view of the business cycle has long been rejected in economics
since economic cycles are quite irregular and far from periodic. Instead the tradition in economics
has been to describe cycles through their characteristics, such as the duration of time between
successive peaks and troughs, in series taken to represent the level of aggregate economic activity.
The latter is most commonly regarded as the level of GDP. Expansions and recessions are then
defined by the fact that they are initiated by turning points (peaks and troughs) in the activity
series. This is the way in which the NBER in the U.S., and the myriad of agencies around the
world who follow their approach, measure the business cycle. When one looks at the cycle in
this way there is no longer any need for output to follow a second order difference equation
with complex roots in order to produce a business cycle. Indeed, it is a feature of GDP series
around the world that such complex roots do not seem to be in the data, and yet there is an
indisputable business cycle - see Pagan(1999).
Harding and Pagan (2002) set out a framework in which the dating of cycles through turning

points can be formally analysed. Denoting the level of economic activity asQt, the turning points
in Qt and qt = lnQt are identical and Harding and Pagan showed that it was the DGP of either
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∆Qt or ∆qt that contains all the information needed to describe the cycle in economic activity.
In particular, if one thinks of a linear model for ∆qt then it is natural to summarize the DGP
with the following parameters:

1. Long-run growth in output (µ)

2. The volatility of output growth ( defined as proportional to the standard deviation of ∆qt,
σ∆q)

3. Parameters αj describing any serial correlation in output growth

These parameters can be imbedded in a simple model which captures the AR(2) orientation
of much of the early business cycle literature

(∆qt − µ) = α1(∆qt−1 − µ) + α2(∆qt−2 − µ) + σ∆qεt, (1.1)

where εt is i.i.d(0, 1).
This model is quite a good description of GDP for many countries - see Pagan(1999). Con-

sequently, it is not surprising that the data generating process (DGP) for ∆qt, when quantified
using estimates of µ, α1, α2, is capable of producing a good description of many of the features
of the average business cycle for a number of countries. This does not mean that the match with
business cycle characteristics is perfect, since the DGP in (1.1) would not generate a crucial fea-
ture of business cycles in some countries e.g. the US, which sees the average cycle exhibiting very
fast recoveries from recessions, although this feature is not so noticeable in other countries- see
Harding and Pagan (2001). Since the linear model above tends to produce a constant growth
rate in activity during expansions and contractions, it would fail to produce such a feature.
Hence some non-linearity in output growth (or an asymmetric density for εt) is needed to pro-
duce this characteristic, although it has not proven easy to find exactly what that non-linearity
would be.
It is useful to think about questions regarding the business cycle in terms of the three sets

of parameters given above. Such an analysis can be qualitative or quantitative. Thus on a
qualitative level it might be expected that a rise in µ, a fall in σ and a reduction in positive
serial correlation would lead to longer cycles. Quantitatively, once one has set out a DGP for∆qt
it is possible to simulate data from the chosen model and to ask if the simulated characteristics
are a good match with those seen in the data. To this end Harding and Pagan (2002) provided
computer programs in the GAUSS language that could be used to perform such an analysis. In
Harding and Pagan (2000) it was shown how to use this approach to examine whether some
popular theories of the business cycle e.g. real business cycle and endogenous growth models
in order to see if they are capable of producing realistic business cycles. In the Australian
context the methods were used in Dungey and Pagan (2000) to explore what the influence of
international factors was upon the Australian growth cycle.
It seems useful to re-examine the relation of inventories and the business cycle by utilizing

the approach and techniques of the view of cycles described above i.e. as one reflecting turning
points. That inventories may be important for understanding the US cycle can be seen from an
analysis we have performed on U.S. data for sales and GDP using the BBQ algorithm in Harding
and Pagan (2002). The data used is from 1947/1 until 2001/4. When we date turning points
with BBQ we find that the average durations of GDP recessions and expansions are 3.2 and
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20.1 quarters while those for sales are 3.4 and 33.5 i.e. expansions in sales are much longer than
those in GDP. Prima facie, we would expect this since the mean growth rates are virtually the
same (.008395 and .008371), but the standard deviations of the growth rates are quite different
at .0101 and .0084 respectively. Thus the longer cycle in sales is expected since the probability
of getting a negative growth rate in it is much lower than for GDP. One possibility to account
for this difference in volatilities is that it is due to the way that sales movements get transformed
into GDP changes through the presence of inventories in the system.
To understand these outcomes for GDP and inventories we need to build a model that

is capable of being quantified and which can be used to investigate what type of cycles are
generated when there are inventories in the system and when there are not. The model chosen
is an extension of that in Humphreys et al (2001). It sees the objectives of firms as attempting
to balance the costs of keeping raw material stocks in line with output, and finished goods stocks
in line with sales, with the extra costs incurred by rapid adjustment in output and purchases
of raw materials. Because of the presence of raw materials it has some additional driving forces
such as the level of raw material prices as well as the traditional one of the sales of finished
goods. The model also allows for a number of other shocks such as productivity and various
cost shocks associated with inventories. Given that data on raw material usage is not readily
available Humphreys et al collapsed the system down to a two equation one describing the
optimal decisions relating to input and output inventories alone. By working with the original
form of the model however we can solve for the optimal decision rules for material usage, raw
material stocks and finished good stocks. These can then be used to determine value added, as
this constitutes GDP. That introduces a complication as value added, output, raw materials and
raw material prices enter into a non-linear relationship. Consequently we are forced to simulate
data on these quantities and that points to indirect estimation methods as a way of quantifying
the unknown parameters.
A number of questions will be addressed in this paper. First, on a general level, we want

to examine the question of whether the presence of inventories is a major contributor to the
business cycle. Second, there are some specific questions regarding the U.S. cycle that have
arisen in recent literature which will be explored and analysed both generally and with the model
above. One of these, which came out of the experience of the long expansion of the 1990’s, is
whether the business cycle has become longer i.e. whether the time between successive peaks (or
troughs) has become longer. Qualitatively, if the GDP growth rate was described by (1.1) we
would know that this would occur if the long run growth rate of GDP increases, the volatility of
GDP growth decreases, or the degree of positive correlation in growth rates lessens. McConnell
and Perez-Quiros (2000) found that the volatility in the growth rate in U.S. GDP seemed to
shift after the mid 1980’s and this observation also seems to be true for many other counties
around the world, including Australia (although the date of this shift varies). Thus, such lower
volatility should lead to a longer cycle. Pagan (2000) showed simulations of the business cycle
under the assumption that σ had effectively halved and these indicated that it would lengthen
the business cycle quite substantially.
The causes for this decline have been much debated and are surveyed and critiqued in

Stock and Watson (2002)1. When this feature was observed it was natural that one look at

1Recent studies that have looked at the role of inventory management advances and the decline in the volatility
of output growth include Ahmed, Levin and Wilson (2000), Blanchard and Simon (2001), Irvine and Schuh (2002),
Kahn, McConnell and Perez-Quiros (2002), Kim and Nelson (1999), McCarthy and Zakrajsek (2002), and Ramey
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what trends were in the economy which might lead to such an outcome. Since there had been
great advances in inventory control methods, in particular the development of “just in time”
philosophies relating to production, it seemed possible that this might be a source of the changes
e.g. see Kahn et al (2002).
But the maintained stance in all this work has always been that the conditional volatility of

GDP growth should be a constant, Accordingly in the following section we show that this is not
so. Indeed it seems as if US GDP growth might be characterized as following a “square root ”
process in volatility, and this is a familiar one from the financial literature where the change in
short term interest rates is known to exhibit “levels ”volatility.
Section 3 of the paper sets out our extended version of the Humphreys et al model and the

Euler equations. Section 4 estimates the parameters of this model. Section 5 conducts a number
of experiments with it to gain some appreciation of what the role of inventories in the business
cycle might be.

2. The DGP of GDP Growth

It is worth looking at the DGP of U.S. GDP growth in some detail. Let Qt be the level of
real GDP and qt = lnQt. Then analysis has generally proceeded by characterizing the DGP
of ∆qt = ∆ lnQt. In contrast to this orientation many models, particularly in the inventory
literature, are formulated in terms of “detrended” Q(t) rather than of qt. As we mentioned
earlier the cycles in Qt and qt are identical. Since each is determined by the DGPs of either
∆Qt or ∆qt, it is useful to think about relating the two processes.
Since the most common assumption has been that qt can be represented as an integrated

process with constant volatility, we need to elicit the implications of this for the ∆Qt process.
Thus we begin by writing

∆qt = µ+ σεt (2.1)

where εt is taken to be N(0, 1).2 Then, using the approximation ∆qt =
∆Qt

Qt−1
, which is quite a

good one for GDP, we would expect that

∆Qt = µQt−1 + σQt−1εt.

Thus if the DGP for qt was (2.1), and so has constant conditional volatility, then we would
find that the DGP for Qt has a conditional volatility that rises with the level of Qt. To see the
significance of this for our work consider the series ψt =

∆Qt

Q
, where Q is the ”mean” of Qt.

For our purpose the moments of ∆qt might be well approximated by those of ψt. Of course, if
Qt is a growing process, there is no such thing as the mean of Qt but it serves to provide some
impression of the level of the Qt process.
Table 1 then presents some values for the standard deviations of ∆Qt, ψt and qt over three

sub-periods for the US- 1947/1-1958/4, 1959/1-1982/4 and 1983/1-2001/2. The latter two
periods represent the data set we use later since we are unable to measure some of the quantities
before 1959/1, while the first period is included for comparative analysis.

and Vine (2001).
2Of course we know that there is some weak serial correlation in qt but we want to make our points in a

simple fashion. Later we will allow for the more general process.
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Table 1: Alternative Measures of the Volatility of GDP Movements
1947/1-1958/4 1959/1-1982/4 1983/1-2001/2

σ∆Q 6.45 10.48 9.94
σψ .0138 .011 .0056
σ∆q .0138 .011 .0058
A number of things stand out in this table. One is the decline in the volatility in ∆qt. A

second is that our approximation reflects this outcome very accurately. The fact that this is so
enables us to focus upon whether the decline in the volatility of ∆qt comes from the numerator,
∆Qt, or the denominator. Comparing the second and third periods it is clearly the case that
there has only been a very small reduction in the volatility of ∆Qt, and that almost all the
decline in volatility that has been observed can be attributed simply to the fact that the average
level of GDP in the second period is almost twice what it is in the first period. In contrast,
between the first and second periods, there was an increase in the volatility of ∆Qt, so that the
decline in the volatility of ∆qt comes about despite this outcome.
Now this directs us to look at the question of the form of the conditional volatility in ∆Qt.

We can start with the case when qt follows (2.1), implying that there is a “levels” effect in the
conditional volatility in the DGP of ∆Qt of the form

Et−1((∆Qt − µQt−1)2) = σ2Q2t−1.

Now in the finance literature such a levels effect is known to exist in short term interest rates
but not with a square term as above. This suggests that we follow that literature and estimate
a model of the form

∆Qt = µQt−1 + σQδ
t−1εt (2.2)

to see if δ = 1, as this value would correspond to the standard assumption that qt is a random
walk. We will refer to (2.2) as an ARVL (Autoregressive, Levels in Volatility) model.
The parameters of the ARVL model can be estimated in two stages. First µ can be consis-

tently estimated by regressing ∆Qt on Qt−1. This gives µ̂ = .008 versus the sample mean of qt
of .0083. In the second stage we note that, if et = σQδ

t−1εt = ∆Qt − µQt−1,

ln(e2t ) = lnσ2 + δ ln(Q2t−1) + ln ε
2
t

= (lnσ2 +E(ln ε2t )) + δ lnQ2t−1 + νt (2.3)

where νt = ln ε2t−E(ln ε2t ) has E(νt) = 0.3 Then, if the DGP for∆Qt is (2.2), we can consistently
estimate δ by regressing ln ê2t against a constant and lnQ

2
t−1,where êt are the residuals from the

first stage regression. This is not an efficient estimator since it ignores the fact that vt is not
normally distributed. In fact the asymptotic efficiency of the estimator relative to the MLE can
be computed as in Pagan and Ullah (1999,p22-23).
Using the two stage approach to estimate δ over the period 1959/1-2001/2 we find that

δ̂ = .26 with a standard error of .24.4 Adopting HAC robust standard errors makes very little
3According to Maple E(ln ε2t ) = − ln(2)−γ, where γ is the Euler-Mascheroni constant which is approximately

.57721566. See Heck (1993,p45) on the latter.
4The fact that µ was estimated in the first stage does not affect the asymptotic distribution of δ̂ provided

that the error term εt is conditionally symmetric. The condition for asymptotic independence of δ̂ and µ̂ is that
E(∂mt

∂µ
) = 0 where mt = lnQ2t−1(ln e

2
t − α− δ lnQ2t−1) is the moment condition being used for estimation of δ.

This becomes E(2
etet−1 lnQ2

t−1
e2t

) = 0.
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change to the standard deviation. Hence we would reject the hypothesis that δ = 1, suggesting
that the model which sees lnQt as the basic random walk process is possibly incorrect. One
needs to exercise some care here since, under the null hypothesis, Qt−1 will be an I(1) process
and so the distribution of δ̂ may not be asymptotically normal. However if data is simulated
from a process (2.1) that has µ = .0079 and σ = .008, and δ is estimated using this data, the 5%
significance level critical value seems to be around 2 i.e. the same as with stationary regressors.
Probably this occurs since the time trend in qt dominates the stochastic trend. In any case the
point estimate of δ is a long way from unity and much closer to that of zero. It implies that,
because δ is well below unity, this would mean a decline in the volatility of ∆qt as Qt−1 rises.
Hence this outcome is compatible with the long period of decline in volatility of ∆qt observed
by Blanchard and Simon(2001).
We need to recognize however that there is likely to be serial correlation in ∆Qt since qt has

often been modelled as an AR(2) process. Hence in all later results we fit the model

∆Qt = µQt−1 + a1∆Qt−1 + a2∆Qt−2 + σQδ
t−1εt.

We will refer to this as an ARVL(3) model in Qt in contrast to the ARVL(1) process that has a
maximum lag of unity in Qt. Now the estimate for δ over the period 1959/1-2001/2 is .41 with
standard error of .22. Taking a longer perspective of 1947/1-2001/2 one would get δ̂ = .50 with
standard error of .14. It needs to be said however that this stability is not so evident in sub-
periods e.g. if one estimates it using data from 1959/1-1982/4 it is 1.85 with standard error of .5
while 1983/1-2001/2 registers 2.58 and standard error of .84. It’s clear that the estimate can be
very sensitive to a few large observations and it needs a substantial sample size to overcome this
lack of precision. A different way of seeing this is in Figure 2.1 which shows a recursive estimate
of δ over the period 1947/1-2001/2. It is clear that there are some periods of time when the
estimate of δ came close to being what was predicted if there had been a pure random walk in
qt with constant volatility, but for most sample periods the estimate lies well away from unity
and, in the past decade, it has been fairly stable around the value of .5.
A different way of seeing the same result is to think about starting with qt and looking at

the volatility process in it. We therefore fit the following model

∆qt = µ+ a1∆qt−1 + a2∆qt−2 + σQγ
t−1εt (2.4)

in the same two step approach as before, but now with residuals êt = ∆qt−µ̂−â1∆qt−1−â2∆qt−2.
Now the lack of a levels effect in ∆qt requires that γ = 0. The regression over 1959/1-2001/2
gives a value of γ̂ of -.53 with a standard deviation of .2 so that once again one would reject
the hypothesis that there is no levels effect in the volatility of the growth rates in Qt. There is
an obvious difficulty with the ARVL model that eventually shocks would eventually effectively
die out if σ remained constant. Of course that has not happened as seen for the 1947/1-1959/1
period. It’s also the case that one has to think of any model as an approximation to the true
DGP and so there may be some other feature that needs to be added to our specifications. Most
notably if there is some non-linear structure to the conditional mean of qt then it would show
up in the conditional variance. This is clearly a topic that needs to be examined in some greater
depth elsewhere.
One might ask whether this is true of other variables. An important one in most inventory

models is sales Xt. Table 2 is the analogue of Table 1 for sales with xt = lnXt.
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Recursive Estimation of Levels Effect in Volatility Coefficient, 1952q1-2001q2

-5.00E+00

-4.00E+00

-3.00E+00

-2.00E+00

-1.00E+00

0.00E+00

1.00E+00

2.00E+00

3.00E+00

1 9 17 25 33 41 49 57 65 73 81 89 97 105 113 121 129 137 145 153 161 169 177 185 193

Time

C
oe

ffi
ci

en
t

Series1

Figure 2.1:

Table 2: Alternative Measures of Sales Change Volatility
1947/1-1958/4 1959/1-1982/4 1983/1-2001/2

σ∆X 5.62 8.38 8.39
σψ .0120 .0091 .0051
σ∆x .0119 .0086 .0051

The situation is clearly much the same for sales although the decline in the volatility in ∆xt
between the latter two periods is a little less marked then for GDP. This shows up in the value
of γ̂ in a regression like (2.4) being -.468 with a standard error of .2. One would reject a zero
value for γ but it is much closer than for the ∆qt regression. The point estimates therefore
suggest that one would see some reduction in the volatility in sales over time but not as much
as for value added.
Once conditional volatilities are not taken to be constant we need to recognize that the

probability of getting a fall in Qt or sales will depend not only upon the moments of ∆qt
but, as emphasized in Harding and Pagan (2002), the complete DGP of qt (or xt) becomes
important. To illustrate the importance of this we simulate data from two ARVL(1) processes
for Qt whose parameters derive from data on GDP over the period 1947/1-2001/4. In the first
σ = .83077, µ = .007708, δ = .3343 while, for the second, σ = .01019, µ = .00839, δ = 1.5 The
second ARVL model implies a random walk for qt. The durations of recessions/expansions are
2.85/23.25 in the first case and 2.62/27.40 in the second. Therefore, it is clear that the levels

5 In the case when δ is non-zero we also need to set a value for Q0 and this is taken to be the value of GDP
in 1947/1 i.e. 370 in our units.

8



effect in the ARVL model may be important in determining cyclical outcomes. It’s hard to
conduct an experiment that isolates this effect however since the models have such different
volatility structures.
All of this suggests that we need to look at developing a reasonably general model of ∆Qt

(or ∆qt) to understand movements (or lack of them) in their volatilities. There may be some
grounds for preferring the former since, if one computes the volatility of ∆Qt over the period
1947/1 until 1959/1, it rose from 6.38 to the 10.48 in Table 1. Such a rise would interact with the
levels effect - which is tending to reduce the volatility in ∆qt− and so it may be worth splitting
up the separate effects, and that requires a model of ∆Qt. Moreover, because the inventory
literature has been so focussed upon the former, we do that in the remainder of the paper.

3. The Model and its Euler Equations

The model we use is an extension of the one developed by Humphreys, et al.(2001). The model
in Humphreys et al. has the advantage that it is a model of inventories broken down by stage of
fabrication and thus distinguishes between finished goods or ”output” inventories and materials
and supplies or ”input” inventories. The latter includes work in progress inventories as well;
hereafter, we use the term materials inventories to refer to the sum of materials and supplies
and work in progress inventories. The model thus permits an analysis of the role that each type
of inventory stock plays in the production and sales process. This is an important advantage
of the model as finished goods and materials inventories may have played very different roles
in the reduction of the volatility of GDP growth. Figure 3.1 reports the ratio of finished goods
inventories to sales and the ratio of materials inventories to output for the period 1959/1 through
2001/2. As the Figure indicates, the materials-output ratio has declined about 30% since the
early eighties, but the finished goods-sales ratio has remained about constant. This suggests
that, to the extent that improved inventory management techniques have had a role to play
in reducing the volatility of GDP growth, materials inventories may have been more important
than finished goods inventories. Further, ”just-in-time” techniques which have become more
widely used in recent years are more applicable to materials inventory management than to that
of finished goods.

3.1. The Production Function

We begin with a specification of the short-run production function, which is

Yt = F (Lt, Ut, �yt) . (3.1)

where Yt is output, Lt is labor input, Ut is materials usage, and �yt is a technology shock.
Note that Ut is the flow of materials used in the production process. The capital stock is
assumed to be a completely fixed factor of production and is suppressed in the functional form.
Further, materials usage and labor are assumed to possess positive and non-increasing marginal
products, and the production function is assumed to be strictly concave in materials usage and
labor. Finally, the firm is assumed to purchase intermediate goods (work-in-process) from outside
suppliers rather than producing them internally.6 Thus, intermediate goods are analogous to

6To allow for production of intermediate goods within the firm requires extending the production function to
incorporate joint production of final and intermediate goods. This extension is a substantial modification of the
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Graph of Ratios of N/X and M/Y from 1959/2-2001/2
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Figure 3.1:

raw materials so work-in-process inventories can be lumped together with materials inventories.
Because Yt is gross output, we refer to equation (3.1) as the gross production function.

3.2. The Cost Structure

The firm’s total cost structure consists of three major components: labor costs, inventory holding
costs, and materials costs. This section describes each component.

3.2.1. Labor Costs

Labor costs are
LCt =WtLt +A(∆Lt) (3.2)

with
A0 ≶ 0 as ∆Lt ≶ 0
A00 > 0

where ∆Lt = Lt − Lt−1. The first component, WtLt, is the standard wage bill where Wt is
the real wage rate. The second component, A(∆Lt), is an adjustment cost function intended
to capture the hiring and firing costs associated with changes in labor inputs. The adjustment
cost function has the usual properties, including a rising marginal adjustment cost.

standard production process that we leave for future work.
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To reduce the number of decision variables and focus on the inventory decisions, we eliminate
labor input. Inverting the production function, equation (3.1), yields

Lt = L(Yt, Ut, �yt) (3.3)

with
LY = 1/FL > 0
LU = −FU/FL < 0
L�y = −(F�y/FL) < 0

(3.4)

where FL, FU , and F�y are the marginal products of production with respect to the factor inputs.
Substituting (3.3) into (3.2) yields

LCt =WtL(Yt, Ut, �yt) +A(L(Yt, Ut, �yt)− L(Yt−1, Ut−1, �y,t−1)) (3.5)

which is the central portion of the firm’s cost function.
To construct an econometric model, it is necessary to parameterize the labor cost function,

equation (3.5). Here, we follow the tradition of the inventory literature, which exploits general-
ized quadratic approximations of the cost structure. Specifically, the quadratic approximation
to labor costs is

LCt =
¡γ1
2

¢
Y 2
t +

¡γ2
2

¢
U2t + γ3YtUt +Wt[γ4Yt + γ5Ut]

+
¡
ϕ
2

¢
[γ6∆Yt + γ7∆Ut]

2 + �yt(γ8Yt + γ9Ut) .
(3.6)

This equation omits products of inputs involving squared terms that would appear in a com-
pletely generalized quadratic approximation of equation (3.5). Nevertheless, the approximation
captures the essential elements of the production and adjustment cost functions, and is compa-
rable to the most general approximations found in previous inventory work. Note that the labor
cost function is somewhat over-parameterized, but is left it in its most general form for now.
The signs of some, but not all, parameters in equation (3.6) are known without further

assumptions. Parameters γ1, γ6, γ8, and ϕ are all positive from the assumed convexity of the
production and adjustment cost functions. Abstracting from dynamics, ∂LC/∂Y = γ1Y +γ4W
should be positive from (3.4); given γ1 > 0, γ4 > 0 is a sufficient, though not necessary,
condition. But ∂LC/∂W = γ4Y should also be positive from the wage bill, which indicates
that γ4 must be positive. In contrast, the signs of γ2, γ3, γ5, γ7, and γ9 are unknown a priori
because they depend on the specification of the production function.

3.2.2. Inventory Holding Costs

In line with much of the output inventory literature, holding costs for output inventories are a
quadratic approximation to actual costs of the form

HCN
t = (δ0 + �nt)Nt +

µ
δ

2

¶
(Nt −N∗t )

2 (3.7)

where �nt is the white noise innovation to output inventory holding costs, N∗t is the target level
of output inventories that minimizes output inventory holding costs, and δ > 0. We adopt
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an analogous formulation for input inventories; holding costs for these stocks are a quadratic
approximation of the form

HCM
t = (τ0 + �mt)Mt +

³τ
2

´
(Mt −M∗t )

2 (3.8)

where �mt is the white noise innovation to input inventory holding costs, M∗t is the target level
of input inventories that minimizes input inventory holding costs, and τ > 0. The quadratic
inventory holding cost structure balances two forces. Holding costs rise with the level of inven-
tories, Mt and Nt, due to increased storage costs, insurance costs, etc. But holding costs fall
withMt and Nt because — given expectedM∗t and N∗t — higherMt and Nt reduce the likelihood
that the firm will “stock out” of inventories.
Finally, it remains to specify the inventory target stocks. Again following the literature, the

output inventory target stock is
N∗t = αXt (3.9)

where α > 0. The output inventory target depends on sales because the firm incurs costs due
to lost sales when it stocks out of output inventories. For the input inventory target stock, we
assume that the target stock depends on production, rather than sales. In particular,

M∗t = θYt (3.10)

where θ > 0. The input inventory target depends on production (Yt = Xt + ∆Nt) because
stocking out of input inventories also entails costs associated with production disruptions — lost
production, so to speak — that are distinct from the cost of lost sales. Lost production may be
manifested by reduced productivity or failure to realize production plans.
To summarize, the input and output inventory targets differ because the firm holds the two

inventory stocks for different reasons. The firm stocks output inventories to guard against ran-
dom demand fluctuations, but it stocks input inventories to guard against random fluctuations
in productivity, materials prices and deliveries, and other aspects of production. Although sales
and production are highly positively correlated, they differ enough at high frequencies to justify
different target stock specifications.

3.2.3. Materials Costs

Finally, we turn to the cost of purchasing materials and supplies. We assume that the real cost
of purchasing materials and supplies is given by

MCt = PM
t (Vt,Dt)Dt = φ1VtDt + (φ2/2)D

2
t (3.11)

where PM
t (Vt,Dt) = φ1Vt + (φ2/2)Dt is a ”price schedule” which states that the real price

the firm pays per unit of the quantity of materials purchased and delivered depends on a real
”base price”, Vt, and a premium or discount, (φ2/2)Dt, that depends on the amount purchased
and delivered. A natural normalization here is of course to set φ1 = 1, which is done later in
empirical work. Three cases may be distinguished:

1. Increasing Marginal Cost: φ2 > 0. In this case, the firm faces a rising supply price for
materials purchases. The firm thus experiences increasing marginal costs to purchasing
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materials due to higher premia that must be paid to acquire materials more quickly. A
rationale for such a rising supply price is that the firm is a monopsonist in the market
for materials. This is most likely to occur when materials are highly firm or industry
specific and the firm or industry is a relatively large fraction of market demand.7 The
rising marginal cost of course gives rise to the “smoothing” of purchases.

2. Decreasing Marginal Cost: φ2 < 0. In this case, the firm faces a falling supply price for
materials purchases. This captures the idea that the firm can obtain quantity discounts in
purchasing materials and supplies, so that the marginal cost falls with larger purchases.
To rationalize a falling supply price, presumably the firm again possesses some monopsony
power. The falling marginal cost gives rise to the “bunching” of purchases. Here, conditions
are needed to ensure that over-all costs are minimized.

3. Constant Marginal Cost: φ2 = 0. In this case, firms are price takers in competitive input
markets and purchase all the raw materials needed at the prevailing market price.

3.3. Cost Minimization

Assume that sales (Xt) and factor prices (Vt and Wt) are exogenous and that the firm’s opti-
mization problem is to minimize the discounted present value of total costs (TC),

E0

∞X
t=0

βtTCt = E0

∞X
t=0

βt(LCt +HCt +MCt) , (3.12)

where β = (1 + r)−1 is the discount factor implied by the constant real rate of interest r. Two
identities determine the evolution of stocks. That for finished goods inventories is

∆Nt = Yt −Xt (3.13)

while that for materials and supplies inventories is

∆Mt = Dt − Ut. (3.14)

(3.13) and (3.14) can be used to substitute out production (Yt) and deliveries (Dt) in TCt,
leaving the firm’s problem as choosing {Ut,Mt, Nt}∞t=0 to minimize equation (3.12). Taking the
derivatives of equation (3.12) with respect to Ut,Mt, and Nt produces the Euler equations which
we will solve.
Designating ∆2 as the second-difference operator, i.e., ∆2Xt = ∆Xt − ∆Xt−1, the Euler

equation for materials usage, Ut, is

Et{−βϕγ7[γ6(∆Xt+1 +∆
2Nt+1) + γ7∆Ut+1]

+γ2Ut + γ3(Xt +∆Nt) + γ5Wt + ϕγ7[γ6(∆Xt +∆
2Nt) + γ7∆Ut]

+φ1Vt + φ2(∆Mt + Ut) + γ9�yt + c1} = 0.
(3.15)

7This is analogous to the literature on adjustment cost models for investment in plant and equipment where
external adjustment costs are imposed in the form of a rising supply price for capital goods. See, e.g. Gould
(1968) or Abel( ).
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This optimality condition shows that the firm balances the marginal cost of ordering and using
materials this period (second line) against the marginal cost of using materials next period
(first line). Note that in period t+ 1 the only cost is the marginal cost of usage in production.
All inter-temporal costs associated with materials occur through the input inventory optimality
condition.
The Euler equation for materials inventories, Mt, is

Et {−β[φ1Vt+1 + φ2(∆Mt+1 + Ut+1)]

+φ1Vt + φ2(∆Mt + Ut) + τ(Mt − θ(∆Nt +Xt)) + �mt + c2} = 0 .
(3.16)

This optimality condition shows that the firm balances the marginal cost of ordering and holding
input inventories this period (second line) against the cost of ordering input inventories next
period (first line).
Finally, the Euler equation for finished goods inventories, Nt, is

Et

©
β2ϕγ6[γ6(∆Xt+2 +∆

2Nt+2) + γ7∆Ut+2]
−β[γ1(Xt+1 +∆Nt+1) + γ3Ut+1 + γ4Wt+1

+2ϕγ6(γ6(∆Xt+1 +∆
2Nt+1) + γ7∆Ut+1)

+γ8�y,t+1 − θτ(Mt+1 − θ(∆Nt+1 +Xt+1))]
+γ1(Xt +∆Nt) + γ3Ut + γ4Wt + ϕγ6(γ6(∆Xt +∆

2Nt) + γ7∆Ut)

−θτ(Mt − θ(∆Nt +Xt)) + δ(Nt − αXt) + γ8�yt + �nt + c3} = 0

(3.17)

This optimality condition shows that the firm balances the marginal cost of producing a good
and storing it as output inventory this period (last two lines) against the cost of producing the
good in the future (first three lines). The presence of adjustment costs on labor introduces an
additional period over which costs are balanced.
Humphreys et al (2001) discuss a variety of restrictions that might be applied to the model.

Here we use a variant of what they refer to as the parsimonious gross production model, option
II. This employs the following parametric restrictions.

γ4 = −γ5
γ9 = −γ8 = 1
φ1 = 1

γ6 = 1

The restriction that φ1 = 1 is a normalization. As is well known, linear-quadratic models
of the type used here require some normalization to identify parameters. This normalization
implies that the parameters of the Euler equations are measured in terms of units of materials
prices. The other restrictions are made in the interest of specifying a labor cost function that is
parsimonious in the parameters to simplify the estimation process.
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4. Solution and Estimation of the Model

4.1. Solution

The Euler equations can be written in the form

yt = Ayt−1 +Et{B1yt+1 +B2yt+2 + T1ξt+1 + T2ξt+2}+ T0ξt + T−1ξt−1

where yt =

 Nt

Ut
Mt

 , ξt =


Xt

Wt

Vt
εyt
εnt
εmt

 . The solution for yt is then found using the approach in
Binder and Pesaran (1995). In the first stage this method determines a P such that yt−1 is
eliminated from the system, leaving a system in variables Zt = yt − Pyt−1 and ξt. Then, after
reduction to first order, one gets

ζt = SEt(ζt+1) +Q0ξt +Q1Et(ξt+1) +Q2Et(ξt+2) +Q1ξt−1, (4.1)

where ζt is constructed in a known way from Zt and its lags. Thereafter a specification is made
of the nature of the forcing processes in ξt and it is possible to solve the forward equation for ζt.
When ξt is a VAR the final solution will involve a VAR in yt and ξt but with contemporaneous
values of ξt appearing in it as well. A nice feature of the algorithm is that one can re-specify
the process generating ξt and this only affects the second stage i.e. the solution of (4.1), and
not the derivation of P .
In what follows the observable processes are assumed to have the form

∆Xt = aεyt + εxt

∆Wt = ewt

∆Vt = evt.

Thus the “sales” series is taken to be driven by a "productivity shock" as well as a “demand
shock”. Treating sales in this way is always going to be an issue once one is working with large
aggregates rather than a single firm so, although we will refer to εxt as a demand shock, it should
be borne in mind that our model is not sufficiently detailed for one to have much confidence in
such a description. The unobservable shocks are made white noise.8

As outlined above the solution method enables one to determine Nt,Mt and Ut. But we are
interested in value added Qt (GDP) and that is fundamentally connected to the variables solved
for earlier through the relation

Qt = Yt − VtUt = Xt +∆Nt − VtUt. (4.2)

Because this involves a non-linearity one might find an equation for Qt by linearizing it but,
as we expect that Ut is I(1), it is unclear how effective that would be. Instead we resort to

8We did try making productivity an I(1) process but the results were the same as we report here since the
estimated standard deviation of these shocks under either of the specifications is effectively zero.
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simulation methods: for a given set of values for the parameters of the model it is possible to
simulate data on Ut, Nt,Mt etc. from the solved Euler equations after which we obtain Yt from
Xt = Yt −∆Nt and then Qt from (4.2).

4.2. Aggregation and Data

In the model above it has been assumed that the representative firm behaves as if it is vertically
integrated, so that it is representative of the whole economy. The representative firm holds
materials inventory stocks which it uses in conjunction with labor (and capital) to produce
output of finished goods, which it adds to finished goods inventories. The finished goods
inventories may be held by manufacturers, wholesalers or retailers. In effect, we treat the
representative firm as managing the inventory stocks of finished goods whether they are held on
the shelves of the manufacturer, the wholesaler, or the retailer.
Accordingly, we construct an aggregate stock of finished goods inventories by summing the

real value of finished goods inventories in manufacturing, wholesale trade and retail trade. The
aggregate stock of materials inventories is constructed by adding up the materials and supplies
and work in progress inventories held by manufacturers.9 Value added or GDP is the real value
of aggregate GDP. The data are quarterly, seasonally-adjusted, (1996) chain-weighted series
in billions of dollars, and cover the period 1959/1 through 2001/4. GDP is of course the flow
of value added over the quarter, and inventories are measured as end-of-quarter stocks.
The sales data are the (1996) chain-weighted final sales of domestic product. Essentially

this equals Qt −∆Mt −∆Nt. Note that this will not be the same as Xt = Yt −∆Nt. There is
yearly data on Yt but no quarterly data is available. We will refer to this sales variable as Xm

t =
Qt −∆Mt −∆Nt. i.e. “sales as measured” as distinct from latent sales Xt. The real wage rate
is real compensation per hour for the business sector. Nominal materials prices is an implicit
price deflator, which was constructed by dividing the nominal value of materials inventories by
their real value. Real material prices (Vt) were obtained by dividing the nominal value by the
PPI for the business sector

4.3. Estimation

Because we are forced to simulate from our theoretical model it is logical that we estimate
the parameters utilizing the ideas of minimum distance - Chamberlain (1982), Kodde et al
(1990)- and indirect estimation - Gourieroux and Monfort (1993) and Smith (1993). In these
approaches an auxiliary model is selected and its parameters η are fitted to the data to give
η̂. The model parameters θ will imply some value for η, ηM (θ), and one chooses θ to minimize
(η̂− ηM (θ))

0(η̂− ηM (θ)). We only report point estimates here as our objective was to get some
feel for what parameter values would be appropriate for the model rather than to conduct tests
on it. Because we have some doubts about the quality of the wage data and the raw material
prices we decided that the auxiliary model would only be based on the observables Qt, Nt,Mt

and Xm
t . Hence we used a VAR(1) in these variables as the auxiliary model, assuming that Xt

and Xm
t were strongly exogenous. To perform the estimation we need to produce the analogue of

9Note that there are no materials and supplies and work in progress inventories in wholesale trade or retail
trade.
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Xm
t from the model, and this is simply done by computing Qt−∆Mt−∆Nt from the simulated

data.
Since there are sixteen unknown parameters in the model, and there are only twelve para-

meters in the VAR(1), once the strong exogeneity of Xm
t is imposed, we need to specify some

other features that are to be encompassed. We choose the standard deviations of the changes
in all four variables of the VAR along with the estimated coefficients from the regressions of
Nt on Xm

t and Mt on Qt. If we had not used the last two parameters then our estimation
strategy would be exactly indirect estimation, where the auxiliary model is being estimated by
MLE under the assumption that the shocks are normally distributed and uncorrelated with one
another. It deviates from standard minimum distance estimation in that the model being used
as the auxiliary model is not thought of as being the DGP.
The variables were all detrended by regressing each one against a constant and t. We use a

linear trend rather than the quadratic one of most of the inventory literature since it means that
the volatility of ∆Q∗t should then be close to that of ∆Qt, where Q∗t is the detrended quantity.
The model was estimated with quarterly data over the second of the periods analysed in

section 2, namely, 1959/1-1982/4. We use only the second period to ensure that we are estimating
the model over a period where the parameters of the model can be taken to be stable. This
would not be so if, for example, advances in inventory management techniques brought about
important changes in paramters after 1982. Table 3 gives the point estimates.

Table 3 Estimated Model Parameters

α .24 γ4 18.7
δ .26 γ7 -.054
θ .31 a -1.94
φ2 .32 τ .79
ϕ .32 σy .0002
γ1 1.32 σn .52
γ2 -.55 σm .05
γ3 .18 σx .99
The parameters are of correct sign and of reasonable magnitude. The large value of γ4 seems

to be due to the units of measurement of the data. It is apparent that productivity and material
cost shocks have little role in helping the model interpret the data.
Below we compare the estimates of the VAR coefficients, the standard deviations of the

variables ∆Qt,∆X
m
t ,∆Nt,∆Mt, and the regression coefficients from the model and the data.

The VAR has variables N,Q,M and Xm
t in that order and the P matrix below is the 4x4 matrix

connected to the lag values. Thus the element in the second row and first column of P is that of
Nt−1 in the Qt equation. We have assumed that Xm

t is strongly exogenous and so have dropped
the row corresponding to it. While it is not necessary that this assumption be correct, as the
auxiliary model need not be the DGP, it is actually hard to find much evidence against it.10

The subscript M means that these are the values predicted by the model. The unsubscripted
values are those for the data.11

10 It is interesting that regressing Xm
t against Qt−1,Mt−1, Nt−1 and Xt−1 (all being detrended) the F test

statistic that Mt−1, Nt−1 and Qt−1 can be deleted is 2.14 with a p value of .1. The same is true when adding
in Wt−1 and Vt−1, so it does seem as if the strong exogeneity assumption for Xt is reasonable.
11The data was scaled during estimation so that all parameters of the auxiliary model lay between -1 and 1.1.
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P̂ =

 .851 .170 −.033 −.106
−.389 .478 −.389 .706
−.091 .088 .934 −.000

 , P̂M =

 .838 .161 −.064 −.111
−.391 .465 −.373 .706
−.082 .059 .891 −.015



V =


σ∆N 3.58
σ∆Q 10.45
σ∆M 2.42
σ∆Xm 8.38

 , VM =


σ∆N 3.37
σ∆Q 10.48
σ∆M 2.56
σ∆Xm 8.38


R =

·
Reg, N on Xm .242
Reg M on Q .190

¸
, RM =

·
Reg, N on Xm .242
Reg M on Q .195

¸
The model clearly provides an excellent prediction of the standard deviation of ∆Qt during

the 1959/1-1982/4 period. This is used as the benchmark in the static experiments of the next
section.

5. Looking at Some Cycle Issues

5.1. Some Static Experiments

The model gives us a way of analysing some cyclical issues. As in all cycle analyses it is useful
to start with examining what has happened to the mean and variance of ∆Qt (or ∆qt) and to
try to explain these movements with the model. Given that the mean of ∆Qt has risen from the
1959/1-1982/4 period, while the standard deviation has remained constant, an amelioration in
the business cycle might have been expected. Now the model is rather silent on why the mean
of ∆Qt has changed, due to its use of detrended data, and mostly it focuses upon explaining
changes in the standard deviation of ∆Qt But if the model was linear, then we would expect
that ∆Qt = k∆Xm

t , where the multiplier k comes from the model. Consequently, if we pass a
trend in Xt through the model we can gain some appreciation for how the mean in ∆Qt would
change as that for ∆Xm

t does. Doing so we find that the rise in the mean of ∆Xm
t from the

second to the third sub-period should have increased the mean of ∆Qt from 7.2 to 14.82. This
compares with the observed movement of 7.03 to 14.96. Hence this determinant of business cycle
outcomes owes more to the unexplained trend changes in an exogenous variable, sales, than to
the model.
Turning to the volatility we might ask what factors impact upon the volatility of ∆Qt and

whether the changes in these factors have been important historically. Some of these factors
are changes in the technologies relating to inventories. Such technical change might be regarded
as enabling a lower ratio of stocks to sales or perhaps an ability to forecast current sales more
accurately. The latter may come from electronic ticketing, which enables firms to match orders
and current sales more closely on a day by day basis, effectively implying that, on a quarterly
basis, one might assume that current sales are known. The model can be run in different modes
that emulate these trends either by changing the target inventory/sales ratios or by changing

In this table we have multiplied the standard deviations by 10 to make them consistent with statistics given
earlier.
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the information available to firms when making their decisions. The effects on the volatility of
∆Qt can then be assessed.
A number of experiments were therefore run with the model, consisting of 10% and 50%

reductions in α, θ, δ, τ , σ∆X , σ∆W , σ∆V , σn and 10% and 50% increases in σm and σy, ( increases
being selected given the small magnitudes of the estimates of these latter parameters). The
resulting predictions of σ∆Q are given in Table 4. From this table it is clear that changes
in inventory technology, as summarized by changes in α and θ, would be unlikely to have a
major impact upon σ∆Q, as would changes in the volatility of real wages and materials prices.
Essentially the only factor that matters for the volatility in ∆Qt is that in ∆Xm

t . Consequently,
since the volatility in ∆Xm

t remained constant between the two sub-periods one would expect
that the volatility of ∆Qt would remain constant, and that was a feature of the data. Improved

inventory management techniques may very well have brought about a substantial decline in
the materials inventory-output ratio, as the data shows, but this seems to have had little effect
on the volatility of ∆Qt.

.

Table 4 Some Static Experiments

Effects on the Volatility of ∆Q

10% Change 50% Change
in Parameter in Parameter

Parameter σ∆Q % Change σ∆Q % Change

α 10.48 - .6% 10.81 - 2.9%
θ 10.50 .25% 10.60 1.1%
δ 10.45 -.29% 10.29 -1.8%
τ 10.49 .1% 10.56 .8%

σ∆X 9.621 - 8.2% 6.493 -38.0%
σ∆W 9.951 0% 9.94 - .1%
σ∆V 10.476 0% 10.476 0%
σn 10.424 -.5% 10.278 - 1.9%
σm 10.476 0% 10.476 0%

σy 10.485 .1% 10.547 .7%-
Baseline σ∆Q 10.476 10.476

5.2. Some Dynamic Experiments

A limitation of the analysis in the previous sub-section is that the nature of the business cycle
depends not only upon the first two moments of ∆Qt but also on its dynamics. Hence, it is
possible that the dynamics can be modified by the presence or absence of inventories, Conse-
quently, we now turn to look at some “dynamic” experiments in this sub-section. We might ask
what would have happened if various shocks had been missing. Similar parametric variations to
those in Table 4 can also be made. Table 5 contains these experiments.
Elimination of the shocks is seen to have very little impact upon the nature of the cycle.

Changes in inventory technology have some effect. Thus, with a halving of α, expansions became
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one quarter longer on average, and the same is true for δ. Perhaps somewhat surprisingly,
changes in θ and τ have essentially no effect. These seem to be small effects for such a large
change in the parameters. As mentioned earlier, an alternative approach might be that this
technology makes possible a more accurate prediction of current sales. In the model above
these have been assumed to be known. But one might want to compare the cycle based on two
scenarios: in one only past shocks are known while in the other current shocks are known. We
will perform such a comparison at a later time.
We can take the process of reducing model parameters to an extreme by considering what

would happen if no inventories were held. To achieve this one can set the parameters α = 0, θ = 0
and the parameters δ, τ to very large numbers. Then Qt = Xm

t and the GDP cycle and the
measured sales cycle would be identical. So we can actually measure the effect of inventories
in the system by measuring the characteristics of the measured sales cycle and comparing that
to the GDP cycle. To determine the nature of the cycle in measured sales we simply pass
the data on Xm

t generated in the basic experiment in Table 5 through BBQ. One then finds
that contractions in sales (Xm

t ) are of much the same length as for GDP, at 2.7 quarters, but
expansions are longer at 25.0 quarters. Hence the presence of inventories acts to modify the
business cycle, making the complete cycle around a year shorter than if they were absent. In
this sense changes in inventory technology can be thought of as influencing the business cycle
What is the source of this difference in cycles?. One contributor is the attentuation in

volatility that is caused by the model i.e. the predicted volatility of GDP change is amplified
from the volatility of sales change and this would lead to a shorter cycle given that the mean
of ∆Qt and ∆Xm

t are virtually the same. Another potential explanation is that a white noise
process for ∆Xt might become an autocorrelated one in ∆Qt and, as Harding and Pagan (2002)
observe, such dynamics can modify the cycle quite dramatically. In this instance however there is
no evidence of any serial correlation in the model-generated ∆Qt when there is none in the ∆Xt

that is passed into it. Thus it is simply the attenuation in volatility that causes the difference
in the cycle.

Table 5: Some Dynamic Experiments

Effects on Business Cycle Durations for GDP

Effect on
Recessions Expansions
(in Quarters) (in Quarters)

Set �n = 0 2.7 21.8
Set �Vt = 0 2.7 21.4
Set �Wt = 0 2.7 22.3

50% Reduction in α 2.7 22.5
50% Reduction in θ 2.7 21.3
50% Reduction in δ 2.7 22.4
50% Reduction in τ 2.7 21.4

Baseline 2.7 21.4
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One issue that is worth looking at is the effects of having different processes for the exogenous
variables. Above they have just been treated as random walks with constant volatility. But the
evidence tendered earlier was that this was not an adequate characterization. As an alternative
then ARVL(3) models were fitted to the series on detrended values of Sales (Xm

t ), real wages
(W ) and real raw material prices (V ) over 1959/1-2001/2, . although the volatility structure
depended upon the levels of the series and not the detrended value.12 These produce parameter
values:

Sales : µ = −.0035, a1 = .213, a2 = .317, σ = .079, δ = .65

Real Wages : µ = −.0284, a1 = .12, a2 = .18, σ = .079, δ = .26

Raw Mats : µ = 0, a1 = .026, a2 = .146, σ = .094, δ = −.36
Data was simulated from these processes and then passed through the model to produce “de-
trended” values of Q(t). The observed trend in Q(t) was then added back to this series and the
business cycle analysis was conducted on the resulting Q(t). A similar process was followed to
generate a comparable set of data on the level of sales. Using such output the average duration
of recessions/expansions were 3.1/24.9 for GDP and 3.7/28.3 for sales. These are to be compared
to the estimated durations of 3.7/23.8 for GDP and 4/28.5 for sales (using BBQ for dating over
the period 1958/1-2001/4). Hence the model produces a good representation of the duration of
the business cycle. In particular it is interesting that it correctly predicts a longer cycle in sales
than in GDP.
It was mentioned earlier that a characteristic of business cycles in the U.S. and Australia is

the fast growth in the early stages of an expansion. One can measure this by looking at the
extent to which the growth rate in these phases remains constant with the period of time spent
in the phase. As explained in Harding and Pagan (2002) the latter is summarized by an ”excess”
index that measures the extent to which the actual path which output follows in expansions or
contractions differs from a triangle. The value of this excess statistic for GDP is 1.1. It should
be said here that a number like 1.1 is a very significant departure from the benchmark of a
constant growth rate at every point in the expansion. Linear models of GDP cannot produce
such a feature. Since the inventory models that we construct above also make GDP growth a
linear stochastic process, it is clear that they are not capable of reproducing this outcome. For
the U.S. Sichel (1994) has claimed that, once the inventory change is removed from GDP, then
there is no evidence that growth in the early stages of an expansion is different to the later
stages. Now removal of inventory changes produces measured sales so that one way to assess
this claim is to compute the ”excess” statistics for the measured sales and GDP cycles. For sales
the statistic has the value of 2.34 so that the effect is even stronger once inventories are removed.
Thus our conclusion would be that any non-linearity in the GDP process arises from the nature
of the sales process and is not obviously due to inventories (although inventories might modify
it a little). How then does one reconcile this outcome with Sichel’s contention?. The answer
seems to be that Sichel compares the average growth in sales over the early and later parts of an
expansion using the GDP expansion dates and not the sales expansion dates. Given that these
cycles are very different in the U.S., it is clear that doing the comparison in this way is rather
misleading.

12Of course since Xm
t is not the same as Xt we cannot really assume that the ARVL process for the former is

the same as for the latter.
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6. Conclusions

This paper seeks to shed light on the nature of the volatility of GDP growth and on the role
that inventories play in the business cycle. We begin with an analysis of the form of the data
generating process for GDP growth. We argue that the data generating process for the change
in the level of GDP is well described by an ARVL—an Autoregressive, Levels in Volatility—Model
whereby the conditional volatility of the change in the level of GDP rises with the level of GDP.
This in turn implies that the DGP for the growth rate of GDP is governed by a "square root"
process where the conditional volatility of GDP growth declines with the level of GDP.
We then used a model of inventory holding behavior to investigate the degree to which

advances in inventory holding techniques can be responsible for the decline in volatility of GDP
growth. The model is well-suited to the task in that it distinguishes between finished goods
inventories and materials inventories. We estimate the model and expose it to a number
of experiments. We find that even substantial changes in important parameters governing
inventory holding behavior have rather small effects on the volatility of changes in the level of
GDP and on the length of the business cycle. This suggests that, while advances in inventory
management techniques may have reduced materials/output ratios, they have had little effect
on the reduction of the volatility of output growth.
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