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Abstract 

Declines in inventory investment account for a large fraction of the drop in output during 
a recession. But the relationship between monetary policy and inventories is unclear.  
Three main puzzles have been identified in the literature on monetary policy and 
inventory investment -- the mechanism puzzle, the sign puzzle, and the timing puzzle. 
First, the mechanism puzzle. Monetary policy changes the interest rate and should affect 
inventories, since the interest rate represents the opportunity cost of holding inventories.  
In fact, VAR studies find that monetary policy affects inventories.  But 40 years of 
empirical literature on inventories has generally failed to find any significant effect of the 
interest rate on inventories. Second, the sign puzzle. Contractionary monetary policy 
raises the interest rate.  An increase in the interest rate should decrease inventories 
through the increase in opportunity cost. VAR studies find that the short-term effect of 
contractionary monetary policy is to increase inventories. Third, the timing puzzle. 
Monetary policy induces transitory changes in the interest rate.  The effect of monetary 
policy on the interest rate largely disappears within one year.  But inventories begin to 
fall only after the transitory shock to the interest rate has largely dissipated.  We use 
simulations of a theoretical model based on learning and regime shifts in the real interest 
rate to address all three puzzles.  
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I. INTRODUCTION 

Inventory investment tends to decline precipitously during recessions.  Blinder 

and Maccini (1991) find that drops in inventory investment account for more than 80% of 

the fall in output during postwar recessions in the US. In their Handbook of 

Macroeconomics chapter, Ramey and West (1999) document the large declines in 

inventory investment during recessions across most of the G-7 countries. 

This paper focuses on the role of inventories in the monetary policy transmission 

mechanism.  Three main puzzles have been identified in the literature on monetary policy 

and inventory investment. 

The first puzzle is the mechanism puzzle. Monetary policy changes the interest 

rate and should affect inventories, since the interest rate represents the opportunity cost of 

holding inventories. In fact, VAR studies find that monetary policy shocks affect 

inventories. But 40 years of empirical literature on inventories has generally failed to 

find any significant effect of the interest rate on inventories.  So how does monetary 

policy affect inventories? 

In our theoretical model, the real interest rate is subject to persistent and transitory 

shocks. Firms don’t react much to transitory shocks, but they do react to persistent 

shocks (regime changes).  The previous 40 years of empirical inventory research 

primarily used econometric techniques that emphasized high-frequency variation in the 

data, where there is much transitory variation in the interest rate without corresponding 

variation in inventories – and much transitory variation in inventories (due to their role in 

buffering sales shocks) without corresponding variation in the interest rate.  Empirical 

tests based on cointegration techniques, which emphasize low-frequency (long-run) 
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movements in the variables, provide support for our model by showing a strong statistical 

relationship between the interest rate and inventories. 

The second puzzle is the sign puzzle. Contractionary monetary policy raises the 

interest rate.  An increase in the interest rate should decrease inventories through the 

increase in opportunity cost. VAR studies find that the short-term effect of 

contractionary monetary policy is to increase inventories. 

Our solution to the puzzle is linked to the role of inventories in buffering demand 

(sales) shocks. Our empirical results show that demand shocks dominate the high-

frequency movements in inventories.  Sales drop rapidly in the first few months 

following a contractionary monetary policy shock.  Inventories rise as they buffer 

negative sales shocks in the first few months following a contractionary monetary policy 

shock. 

We test our solution to the sign puzzle by simulating the dynamic path of 

inventories in response to a monetary policy shock to assess whether the model produces 

the rise in inventories in the first few months after a contractionary shock that is observed 

in the actual data.  

The third puzzle is the timing puzzle. Monetary policy induces transitory changes 

in the interest rate.  The effect of monetary policy on the interest rate largely disappears 

within one year.  But inventories begin to fall only after the transitory shock to the 

interest rate has largely dissipated. 

Our solution to the timing puzzle works as follows.  Because of learning, the 

Bayesian probabilities of being in a given interest rate régime respond slowly to a change 

in the interest rate (in simulations of our model).  Although the effect of monetary policy 
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on the interest rate tends to be short-lived, the effect on the probabilities is persistent.  

More than one third of the initial effect on the probabilities remains three years after the 

monetary policy shock. 

The main elements of our theoretical model are learning and the behaviour of the 

real interest rate.  The mean real interest rate tends to be highly persistent, with 

occasional large shifts.  For example, the mean real interest rate was around 2% during 

the 1960s and early 1970s but negative from the mid-to late 1970s and much higher 

through much of the 1980s.  As Garcia and Perron (1996) have shown, the behaviour of 

the real interest rate can be well captured by a Markov switching process with transitory 

fluctuations around persistent interest-rate regimes.  Our model incorporates this 

stochastic process for the real interest rate into the optimization problem faced by the 

firm. 

In the real world, no one posts a notice that the interest rate has shifted from a 

high-interest-rate regime to a low-interest-rate regime.  Instead, firms must try to infer the 

expected path of interest rates from their best guess about the current interest rate regime. 

This best guess must be based on observable data, including current and past interest 

rates.  Our theoretical model captures this by assuming that firms engage in a learning 

process. 

The paper is organized as follows. Section II introduces the model.  Section III 

describes how we identify monetary policy shocks and how we estimate the effect of 

monetary policy shocks on the Bayesian probabilities of being in a given interest rate 

régime.  Section IV explains how we use the cointegrating regression for inventories to 

calibrate the model.  Section V presents simulations of the effects of a monetary policy 
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shock. Section VI illustrates the pure interest rate effect and the broad interest rate 

effects (through sales and through costs) during a particularly interesting episode of 

recent U.S. macroeconomic history, the Volcker disinflation.  Section VII provides a 

summary and conclusion. 

II. The Model 

The Firm’s Optimization Problem 

We begin by summarizing the basic model of the firm developed in Maccini, 

Moore and Schaller (2004). The representative firm is assumed to minimize the present 

value of its expected costs over an infinite horizon.  Real costs per period are assumed to 

be quadratic and are defined as 

θ 2 γ 2 δ )2C = ξW Y + Y + (∆Y ) + (N −αX  (1)t t t t t t−1 t2 2 2 

where θ ,γ ,δ ,ξ ,α > 0. Ct denotes real costs, Yt, real output, Nt, end-of-period real 

finished goods inventories, X t , real sales, and Wt , a real cost shock, which we will 

associate with real input prices.  The level of real sales, X t , and the real cost shock, Wt, 

are given exogenously. The first two terms capture production costs.  The third term is 

adjustment costs on output.  The last term is inventory holding costs, which balance 

storage costs and stockout costs, where αX t is the target stock of inventories.   

1Let β t  be a variable real discount factor, which is given by β t = , where rt1+ rt 

denotes the real rate of interest.  The firm’s optimization problem is to minimize the 

present discounted value of expected costs, 
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∞ t−1 

E0 ∑

∏β j 


Ct ,      (2)  

t=0  j=0  

subject to the inventory accumulation equation, which gives the change in inventories as 

the excess of production over sales, 

Nt − Nt−1 = Yt − X t .      (3)  

The Euler equation that results from this optimization problem is  

E {θ (Y − β Y ) +γ (∆Y − 2β ∆Y + β β ∆Y )  (4)t t t+1 t+1 t t+1 t+1 t+1 t+2 t+2 

+ξ (W − β W ) +δβ  ( N −α X )} = 0t t+1 t+1 t+1 t t+1 

where from (3) Y = N − N + X . Observe that (4) involves products of the discount t t t−1 t 

factor and the choice variables and products of the discount factor and the forcing 

variables. Linearizing these products around constant values, which may be interpreted as 

stationary state values or sample means, yields a linearized Euler equation: 

2E {θ (Y − βY ) +γ (∆Y − 2β∆Y + β ∆Y ) +ξ (W − βW ) (5)t t t+1 t t+1 t+2 t t+1 

+δβ ( N −α X ) +ηr + c} = 0t t+1 t+1 

1where = ( Y +ξW ) > 0,  c = − r β (θY +ξW )η β θ < 0 , β = , and a bar above a 
1+ r 

variable denotes the stationary state value. 
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To interpret the Euler equation, ignore adjustment costs and the constant term for 

simplicity, define η = βη̂ , and re-arrange (5) to get 

E Y +ξW E { N −αX 1 ˆr = E β θY + ξWt {θ t t}+ tβ δ ( t t+ ) +η t+1} t { t 1 + t+1} 

Now, t {θ +ξ tE Y  Wt }  is the marginal cost of producing a unit of output today, 

E β θ{ Y +ξW }   is the discounted marginal cost of producing a unit of output t t+1 t+1 

tomorrow, and E β δ{ (N −αX ) +η̂r } are discounted marginal carrying costs oft t t+1 t+1 

inventories, consisting of marginal holding costs plus the marginal interest charges.  To 

have a unit of output available for sale tomorrow, the Euler equation thus states that the 

firm should equate the marginal cost of producing a unit of output today and carrying it in 

inventories to the discounted marginal cost of producing the unit of output tomorrow.  

A key innovation in Maccini, Moore and Schaller (2004) is to assume that the real 

interest rate follows a three-state Markov switching process.1  This is consistent with 

empirical patterns in real interest rates—See Garcia and Perron (1996) and the empirical 

work in Maccini, Moore and Schaller (2004).  Specifically, we assume that the real 

interest rate follows 

rt = rSt 
+σ S ⋅ε t (6)

t 

where ε t ~ i.i.d. N(0,1) and where St ∈ {1, 2, 3} follows a Markov switching process. 

Let 1 < < 3 , so that when St = 1 the real interest rate is in the low-interest-rate regime, r r r2 

when St = 2 the real interest rate is in a moderate interest rate regime, and when St = 3 the 

real interest rate is in a high-interest-rate regime. St and ε t  are assumed to be 

1 For a comprehensive discussion of Markov switching processes, see Hamilton (1994, Chapter 22). 



 

       

 

 

 

      

 

 

  

 

  

7 

independent. Denote the transition probabilities governing the evolution of St by 

pij = Prob(St = j | St−1 = i).  Collecting these probabilities into a matrix we have  

 p p p 11 21 31 
 P =  p12 p22 p32  . 
 p p p  13 23 33  

We assume that the firm knows the structure and parameters of the Markov 

switching process but does not know the true real interest rate regime.  The firm must 

therefore infer St from observed interest rates. We denote the firm’s current probability 

assessment of the true state by πt. That is,    

π t 1|  1  Prob(St = Ωt )  
    π t = π 2t = Prob(St = 2 |Ωt ) ,      
π t    3 |  3  Prob(St = Ωt ) 

where the firm’s information set, Ωt , includes the current and past values of rt. Here, 

π it is the firm’s estimate at date t of the probability that the real interest rate is in regime i. 

To understand the learning process, consider how the firm uses its observation of 

the current real interest rate to develop its probability assessment, π t . Beginning at the 

end of period t-1 the firm uses π t−1 together with the transition probabilities in P to form 

beliefs about the period t interest rate state prior to observing rt .  That is the firm  

evaluates π ≡ Prob (S i for i = 1, 2, 3  using= Ω| )it t| 1  t  t−1− 

π 1 |t t−1
  
π 2 |t t  −1  = Pπ t−1        (7)  
π  3 |t t  −1  
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Once the firm enters period t and observes rt , it uses the prior probabilities from (7) 

together with the relevant conditional probability densities to update π t according to 

Bayes’ rule. Specifically, 

π it t| 1  ⋅ (r |t St = i)− f
π it = 3 for i =1, 2,3.     (8)  

∑π jt t| 1− ⋅ f (r |t St = j) 
j=1 

Thus, the firm uses Bayes’ rule and its observations of the real interest rate to learn about 

the underlying interest rate regime. 

Given π t , the expected real interest rate, which may be interpreted as an ex ante 

real interest rate, may then be computed as 

′E r = r Pπ = γ π  +γ π  +γ π  (9)t t+1 v t 1 1t 2 2t 3 3t 

where r ′ = [r , r  , r  ] , γ ≡ p r + p r + p r , γ ≡ p r + p r + p r , andv 1 2 3 1  11 1  12  2  13  3  2  21 1  22  2  23  3  

γ ≡ p r + p r + p r . Since π +π +π =1 by definition, we can eliminate π  from 3  31 1  32  2  33  3  1t 2t 3t 2t 

the right hand side of (9) to obtain 

Et tr +1 = (γ1 − 2 ) 1 + (γ 3 −γ 2 )π t +γ 2  (10)γ π t 3 

Now, to isolate the expected real interest rate in the linearized Euler equation, 

partition (5) so that 

E θ Y − βY + γ ∆Y − 2β∆Y + β 2∆Y +ξ (W − βW )t { ( t t+1 ) ( t t +1 t +2 ) t t +1  (11) 

+δβ(Nt −αXt+1)}+ηE rt t+1 +c =0.  
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Then, substitute (10) into (11) to get 

E θ Y − βY + γ ∆Y − 2β∆Y + β 2∆Y +ξ (W − βW )t { ( t t+1 ) ( t t+1 t+2 ) t t+1  (12) 

+δβ (N −α X ) +η γ( −γ π) + η γ( −γ π) +ηγ + c = 0.  t t+1 } 1 2 1t 3 2 3t 2 

We now derive the decision rule for optimal inventories that is implied by the 

firm’s optimization problem.  Assume now that sales and real input prices follow 

independent AR(1) processes and that the current information set of the firm includes 

lagged values of sales, and current and lagged values of input prices and the interest rate. 

Assume further that the firm carries out its production plans for time t, so that E Yt t  = Yt . 

Then the inventory accumulation equation, (3), implies that (N − t ) = − Xt − E  Xt )t E Nt ( t , 

xwhich means in effect that inventories buffer sales shocks.  Define u ≡ −(X − E X  ) ast t t t 

the sales forecast error. In the appendix, we show that the linearized Euler equation, (5), 

may be written as a fourth-order expectational difference equation.  Denote λ 1  and λ 2 

as the stable roots of the relevant characteristic equation.  We then show in the appendix 

that the firm’s actual inventory position is 

0 λ N −  + Γ W 1 t + Γ  π x .Nt = Γ  + (λ 1+ 2 ) t−1 λ λ1 2 Nt−2 + ΓX X t−1 W t + Γπ π1 π 3 3t + ut (13) 

where 

Γ
> 0 , Γ < 0 , Γ > 0 , Γ < 0 .X W π1 π 3< 

III. MONETARY POLICY 
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First-Stage VAR 

We identify monetary policy shocks by using our data set to estimate the six-

variable semi-structural VAR developed by Bernanke and Mihov (1998).  The variables 

in the model are divided into two blocks of three variables each.  The non-policy or 

“macroeconomic” block consists of real GDP, the GDP deflator, and a commodity price 

index, and is unrestricted.  The policy block, which consists of total reserves, non-

borrowed reserves, and the federal funds rate, is restricted using plausible assumptions 

about the market for bank reserves. These restrictions, together with the assumption that 

policy shocks only affect macroeconomic variables after a one-month lag, are sufficient 

to identify the unobserved structural monetary policy shocks and their dynamic effects on 

the macro economy.     

The VAR model is  

k k 

Y = ∑ B Y  +∑C Z + AY v Y      (14)  t i t−i i t−i t 
i=0 i=0 

k k 
ZZ = ∑ D Y  +∑G Z + A v      (15)  t i t−i i t−i t 

i=0 i=0 

where Y denotes the vector of macroeconomic variables and Z denotes the vector of 

Y Z Ypolicy variables. B ,C A, , D ,G ,  and A are matrices, v  and v are vectors of mutually i i i i t t 

uncorrelated structural shocks. The assumption that policy variables have no 

contemporaneous affect on macroeconomic variables2 requires that C0 = 0 . 

2 This assumption is plausible for the monthly data used in this paper, and for the 
monthly and bi-weekly data in Bernanke and Mihov (1998) but would be less plausible 
for lower frequency data. 
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Re-write equation (15) so that only lagged values of the policy variables appear 

on the right-hand-side. The result is  

k k 
−1 −1Z = (I G− ) ∑D Y + (I G )0 i t i  − 0 ∑G Z

−
+ u t    (16)  t − i  t i  

i=0 i=1 

where, 

−1 Z u = (I − G ) A v .       (17)  t 0 t 

Note that u t is the portion of the residuals from the policy-block VAR that is orthogonal 

to the residuals from the non-policy block.  If the elements of (I −G0 )−1 AZ are known 

then we can use (17) to recover the unobservable structural shocks, vt , from the 

observable VAR residuals. 

To obtain the restrictions necessary to identify (I −G0 )−1 AZ Bernanke and Mihov 

(1998) consider the market for federal funds.  Omitting time subscripts let uFFR  denote 

innovations in the federal funds rate, and let vd denote exogenous shocks to the demand 

for total reserves. Innovations in total reserve demand, uTR , are then given by 

u = −αu + vd        (18)  TR FFR 

where α ≥ 0 . Also, if denotes innovations in the discount rate, then u , which  uDISC BR 

denotes innovations in the demand for borrowed reserves, is given by 

u = −β (u  − u ) + vb       (19)  BR FFR DISC 

where vb  denotes exogenous shocks to the demand for borrowed reserves and where 

β ≥ 0 . Innovations in the demand for non-borrowed reserves, uD
NBR , are by definition 

uD = u − u .        (20)  NBR TR BR 
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Use (18) and (19) to substitute for the terms on the right-hand side of (20), assume that 

uDISC = 0 , and rearrange the result to obtain 

 −1  D  vd   vb  
u = u + − .     (21)  FFR   NBR      α + β  α β  ++ α β           

Innovations in the supply of non-borrowed reserves, uS
NBR , are governed by 

Federal Reserve policy. Let 

S d d  b b  suNBR =φ v +φ v + v .       (22)  

Here vs is an exogenous shock to the supply of non-borrowed reserves. The policy 

parameters,  φ d and φ b , describe how the Fed will react to shocks to the demand for total 

reserves and borrowed reserves, respectively.  Consider two examples.  If the Fed is 

d btargeting non-borrowed reserves, it will set φ φ= = 0  and, in so far as it is possible,  

hold the supply of non-borrowed reserves constant. If instead the Fed is targeting the 

federal funds rate, it will set φ d =1 and φ b = −1, and fully accommodate shocks to reserve 

demand. A positive shock to the demand for total reserves will be accommodated by an 

increase in the supply of non-borrowed reserves.  A positive shock to the demand for 

borrowed reserves will be offset by a decline in the supply of non-borrowed reserves. 

D S DSince uNBR = uNBR  in equilibrium we can substitute the right-hand side of (22) for uNBR in  

(21) to obtain 

1−φ d  d  −1  s 1+φ b  buFFR =  v +  v −  v .    (23)  
α β+ α β+ α β+      

Combine equations (18), (22), and (23) to give equation (17) with 

d s bu′ t ≡ [uTR uNBR uFFR ] , v′ t ≡ v v v  , and 
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 −α  d  α   α  b 
 ( )1 −φ +1    ( )1 +φ  α β+   α β+  α β  +  

−1 Z d b( I G  
0 
) A =  φ 1 φ−  

 
 1 −φ d   −1   1 +φ b      −  α β+  α β+  +

 Let Ω̂ 
T denote the estimated variance-covariance matrix of the policy-block 

residuals. That is,  

 1  T 

   α β   

Ω =  u uˆ ˆ ′ˆ 
T  ∑ t t  

 − T k  t=1 

where û t is the vector of (orthogonalized) policy-block residuals obtained by estimating 

the VAR in equations (14) and (15).3  Since Ω̂ 
T is a (3x3) symmetric matrix it has six 

unique elements. Next, note from (17) that  

−1 Z  −1 Z  ′ E(uu )=′ ( I G− 0 ) A E (vv )′ ( I G− 0 ) A .    

Since the elements of vt are i.i.d. by assumption, we can also write   

σ d 
2 0 0  

 2 E(vv )′ = 0 σ 0 . s  
 0 0 σ b 

2   

The matrix E(uu )′ is, of course, also (3x3) and symmetric.  Equating E(uu )′ to Ω̂ 
T 

therefore places six restrictions on the seven unknown structural parameters: 

d b 2 2 2α , β φ φ σ σ, , ,  ,  ,  and  σ . At least one more restriction is needed to identify theses d b 

I G −1 Aparameters and, hence, the elements of ( − ) Z .0 

3 Since we use a constant term plus 12 lags of the six variables, k = 73. 
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Beranke and Mihov (1998) examine five alternative sets of identifying 

restrictions.  Four of these sets impose two additional restrictions so that the model is 

over identified.  For example, as explained above, the set of restrictions consistent with 

targeting the federal funds rate is φ d =1 and φ b = −1. Bernanke and Mihov call their fifth 

set the “just identified” model as it imposes the single additional restriction that α = 0 . 

This restriction is motivated by Strongin’s (1995) argument that the demand for total 

reserves is inelastic in the short run. Impulse-response functions show that a monetary 

policy shock has qualitatively similar effects under all five sets of restrictions. We 

therefore take the simplest approach to identification, the just identified model.  We set 

α = 0 and solve E(uu )′ = Ω̂ 
T for the remaining six structural parameters. 

To estimate the VAR we use monthly data from December 1961 through 

February 1999. In the macroeconomic block we use the producer price index for crude 

materials as our commodity price index and obtain monthly observations of real GDP and 

the GDP deflator using the state-space interpolation procedure of Bernanke, Gertler, and 

Watson (1997). 4 In the policy block we render total reserves and non-borrowed reserves 

stationary by measuring each as a ratio to a 36-month moving average of total reserves. 5 

We report the results of our estimation in Table 1. Not surprisingly our estimates 

are similar to Bernanke and Mihov’s.  The estimate of β is positive and significant 

indicting that an increase in the federal funds rate relative to the discount rate leads to an 

increase in the demand for borrowed reserves.  The estimate of φ d is positive and the 

estimate of φ b is negative, though both are less than one in absolute value.  This suggests 

4 The interpolation procedure is described in the appendix (forthcoming). 
5 This follows Bernanke and Mihov (1998). 
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that the Fed dampens fluctuations in the federal funds rate by partially accommodating 

shocks to the demand for reserves.  

Table 1: Parameter estimates for the just identified model (assumes α = 0 ). 

β dφ bφ σ d σ b σ s 

0.029 
(0.009) 

0.762 
(0.063) 

-0.350 
(0.267) 

0.009 0.014 0.011 

Estimates for the sample 1961:12 through 1999:2. Standard errors in parentheses. 

Having identified the structural parameters that characterize the money market it 

is then possible to identify the monetary policy shocks by inverting equation (17) to 

obtain 

 vd  uTR  
   −1 −1 

s z  v = ( I −G ) A  u      (24)     0  NBR      
vb u      FFR  

The middle row of this equation is  

s d b TR b NBR d b FFRφ φ u 1 φ u − α − φ u  (25)v = − +  + +  φ β  (  ) ( )  ( ) 
TR NBR FFRInserting the policy-block residuals for u , u , and u  on the right-hand side of (25) 

syields the time series of monetary policy shocks, {v }T 
.t t=1 

The Link between Monetary Policy and the Probabilities 

We use a straightforward procedure to estimate the effect of monetary 

policy shocks on the probabilities: we estimate a three-variable vector autoregression, 

with monetary policy shocks, π1 , and π3 , with three lags of each variable. The graph 

below shows the impulse response function of π1  to a one-standard-deviation easing of 



 

 

 

 

  

 

 

16 

monetary policy. As the impulse response function shows, easing monetary policy 

increases the probability of the low interest rate state.   

Shock to MPshk6199 w ith 3 lags in VAR 
0.050 

0.045 

0.040 

0.035 

0.030 

0.025 

0.020 

0.015 

0.010 

The effect of monetary policy on π1  is hump-shaped and peaks about two months after 

the shock. At the peak, a one-standard-deviation easing of monetary policy increases the 

probability of being in the low interest rate régime by about 0.045.  To put this in 

perspective, the ergodic probability of being in the low interest rate régime is about 0.25. 

The effect of monetary policy on π1  is quite persistent, with half the peak effect still 

present two years after the shock. 

Results are similar when we look at the effect of monetary policy easing on π3 . 

Loosening monetary policy reduces the probability of the high interest rate régime.  The 

impulse response function is again hump-shaped, with the maximum response occurring 

two months after the shock.  The maximum response is quantitatively similar to that of 

π1  (though, of course, in the opposite direction), as shown in the graph below.  The 

ergodic probability of the high interest state is about 0.12.  The 0.042 decrease in the 

probability of the high interest state caused by monetary policy easing therefore 

represents more than a 35% decrease relative to the ergotic probability.  As in the case of 

the probability of low interest rate state, the effect of a monetary policy shock is quite 
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persistent. The results are qualitatively and quantitatively robust to variation in the 

number of lags in the vector autoregression. 
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IV. CALIBRATION 

The coefficients in the decision rule (λ ,λ ,Γ ,Γ Γ, ,  and Γ )  are known 1 2 X W π1 π 3 

functions of the model’s structural parameters. We therefore begin by using our previous 

empirical results to establish plausible values for those structural parameters.    

We obtain the parameters of the stochastic process for the real interest rate, the 

elements of P and rv , from our estimation of the three-state Markov-switching model. 

Those estimates are 

 p = 0.98 p = 0.01 p = 0.0011 21 31 
 P = p = 0.02 p = 0.98 p = 0.0412 22 32  
 p = 0.00 p = 0.01 p = 0.96 13 23 33  

and 

   r1 -1.71  
    ′ rv ≡ r2 = 1.61 .      
   r  5.15  3      
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Together these estimates imply that the unconditional mean of the monthly real interest 

rate is r =0.001 , which gives β = 0.999 . 

Next we set baseline values for , , , , and η , the structural parameters from δ α γ θ ξ  

the cost function. We set α =1 implying that the target level of inventories equals one 

month's sales. From the Euler equation, it follows that the parametersδ ,α θ ξ,, and η  are 

uniquely identified only up to a multiplicative constant. We therefore adopt a widely used 

normalization and set δ =1. We then use our estimates of the cointegrating relationship 

among N ,  X , W , π ,  and π to determine the values of θ , ξ , andη .t  t  t 1t  3t  

We show in the appendix that the linearized Euler equation can be re-written as 

E ∆ −  + θ∆N − βδα∆X − βξ∆Wt { γ ( Yt 2β∆Yt +1 + β 2∆Yt+2 ) − βθ (∆Nt +1 + ∆X t+1) t t+1 t +1 

  θ (1− β )   
+ βδ Nt −α−  Xt  + (1− β )ξWt }  (26)

βδ    

+ η(γ −γ )π + η γ( −γ )π + ηγ  + c = 01 2 1t 3 2 3t 2 

Suppose now that X , W , π  and π  are I(1).6 This implies that N  will be I(1) andt t 1t 3t t 

inventories, sales, the cost shock, and the probabilities will be cointegrated with 

cointegrating vector    

  θ (1− β )  ξ (1− β ) η γ( −γ ) η γ( −γ ) 1 2 3 21 ,  −α−  , , ,   (27)
βδ βδ βδ βδ    

6 Since π1t and π3t have a restricted range, one might wonder whether it is better to model them as I(0) or 
I(1). We note two points.  First, in careful applied econometric research, variables with restricted ranges, 
such as the nominal interest rate, are modeled as I(1) variables when they are highly persistent.  (See, e.g., 
Stock and Watson (1993) and Caballero (1994).) Second, unit root tests indicate that π1t and π3t are I(1).   
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When the cointegrating vector is expressed in the form of a regression, X , W π  andt t 1t 

π 3t  will be on the right hand side of the equation, so their coefficients will have signs 

opposite to those shown in the cointegrating vector above.   

In Maccini, Moore, and Schaller (2004) we estimate this cointegrationg 

regression.  Equating the estimated coefficients on Xt and Wt from that regression to the 

corresponding composite parameters in the vector above we can, given the imputed 

values of δ ,α ,  and β , solve the resulting two equations for θ and .ξ  The parameters 

β ,γ γ1, 2 ,  and γ 3 are determined from the estimation of the Markov-switching model of 

interest rates and δ is set as a normalization.  Equating the estimated coefficients on π1t 

and π 3t from the cointegrating regression to the corresponding composite parameters in 

the vector above will therefore yield two separate restrictions on η . Since, in the 

cointegrating regression, the coefficient on π 3t is more precisely estimated7 we equate 

η (γ −γ )that coefficient to 3 2  and solve the result for η . Since γ cannot be determined 
βδ 

from the cointegrating vector, in the baseline simulations we assume that there are no 

adjustment costs and set γ = 0.  The baseline parameter values that result from this 

exercise are reported in Table 2, below. 

We then use the expressions, derived in the appendix, to determine the values of 

λ1, λ2 , ΓX , ΓW , Γπ 1  and Γπ 3  from the structural parameters. To set Γ0 , note from the 

decision rule that the steady state level of inventories is given by   

7 In our estimation of the cointegrating vector the coefficient on π has a t statistic of  –6.36 and the 3t 

coefficient on π1t  has a t statistic of 1.73. 
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N =  Γ  +Γ  X +Γ  W +Γ π +Γ π 1− λ + λ + λ λ    (28)s ( 0 X s W s π1 1s π 3 3s ) ( 1 2 ) 1 2  

where a subscript “s” denotes the steady-state value.  Having determined λ1, λ2 , ΓX , 

ΓW , Γπ1  and Γπ 3 , we find Γ0 by substituting the sample mean values of N, X, and W 

together with the ergodic probabilities into equation (28) and solve the result for Γ0 . The 

decision rule coefficients for the baseline parameter setting are reported in Table 4. The 

sample mean values of N, X, and W, which are necessary to determine Γ0 , are reported 

in Table 3. 

In section III above we identified the dynamic response of π  and π to a1t 3t 

monetary policy shock. We can now simulate how inventories respond to a monetary 

policy shock by using those values for π and π  in the decision rule. Specifically, we 1t 3t 

initialize π1t  and π3t  at their ergodic values and then allow them to change as shown in 

the impulse response functions in section III. Since our purpose is to isolate the pure 

interest rate effect of monetary policy, we do not allow Xt  and Wt to vary systematically 

in response to the policy shock. Instead, we model each of these variables as an 

exogenous random walk with zero drift and initialize each at their sample mean value. 

The standard deviations of the innovations in Xt and Wt are set equal to the standard 

deviations of ∆Xt and ∆Wt, respectively, as obtained from our sample. Given Xt and, 

from the decision rule, Nt we determine Yt  from the inventory accumulation identity, 

Y =X  +N  − N . In the simulations that follow we initialize the level of inventories at t t t t−1 

its steady state value, which is also its sample mean by construction. 
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Table 2: Parameters of the Cost Function, Baseline Values 

δ α θ ξ η γ

 1 1 765.09 302,001 61.92×10  0 

Table 3: Sample Mean Values 

N X W Y 

53,312.21 107,276.34 110.24 107,393.97 

Table 4: Coefficients in the Decision Rule 

λ1 λ2 ΓX ΓW Γπ 1 Γπ 3 Γ0 

0.965 0 0.008 -10.55 7287.52 -5307.89 985.01 

V. SIMULATIONS OF THE EFFECTS OF A MONETARY POLICY SHOCK 

Figure 1 shows the impulse response function of the stock of inventories to a one 

standard deviation stimulative monetary policy shock.  It is important to understand that 

the impulse response function in Figure 1 shows the effect of monetary policy only 

through the narrow interest rate channel.  In the simulations, we do not allow monetary 

policy to affect inventories through sales or costs, only directly through the interest rate. 

To the best of our knowledge, this is the first attempt to isolate the pure interest rate 

effect of monetary policy on inventories.   

The response of the stock of inventories is hump-shaped, with the effect peaking 

about three years after the shock. Some intuition may be helpful.  In a production 
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smoothing inventory model, the cost function is convex. This means that it is cheaper to 

produce at an intermediate level of output, rather than sometimes producing at low output 

and sometimes producing at high output.  This makes the production level sticky:  firms 

would prefer to produce at their usual (intermediate) output level, even when hit by 

transitory shocks. The more convex the cost function, the stickier output is. 

In general, the previous literature has treated the interest rate as constant, so most 

of the standard intuition has been built up around sales and cost shocks.  Interest rate 

shocks work a bit differently, but much of the standard intuition still applies.  An interest 

rate shock changes the desired long-run inventory level.  However, changing output 

(away from the usual level) is expensive because of the convexity of the cost function.  If 

firms recognize that the interest rate shock is purely transitory, they will adjust output 

(and therefore the stock of inventories) little, if at all, since there are no sales or cost 

shocks. (We allow for sales and cost shocks in the simulations for Figure 1, but, over 

many iterations, positive and negative sales shocks cancel out, providing us with a picture 

of the effect of a pure monetary policy shock.)  Because firms are reluctant to adjust 

output, the change in the stock of inventories is spread out over many months. 

The shock to monetary policy illustrated in Figure 1 does not lead to a regime 

shift in the interest rate, but it does have some persistence.  The result is that the stock of 

inventories gradually rises and then, as the effects of the monetary policy shock 

eventually die away, the stock of inventories gradually declines. 

At the peak, inventories are higher by an amount that corresponds to a little more 

than 0.3% of output. A one standard deviation stimulative monetary policy shock 

reduces the interest rate by 0.37% (37 basis points).   
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Figure 2 shows the impulse response function of inventory investment to a 

monetary policy shock of the same magnitude.  Inventory investment is of particular 

interest for monetary economics because it is fluctuations in inventory investment that 

contribute to fluctuations in aggregate demand.  The response is again hump-shaped, with 

the effect peaking two months after the shock.  The response of inventory investment is 

much quicker than the response of fixed investment.  The stylized fact is that the peak 

response of fixed investment occurs more than a year after a shock. 

The effect of monetary policy on inventory investment is persistent.  About half 

the peak effect is still present nearly two years after the shock.  It takes about three years 

for the effect to dissipate. 

As noted above, it is the convexity of the cost function that spreads out the 

response of inventories to shocks. The convexity of the cost function is captured in the 

parameterθ . In Figure 3, we illustrate the effect of changes in θ  on the impulse response 

function for the stock of inventories.  If we set θ  equal to half the value implied by the 

cointegrating regression estimates, the peak effect on inventories is smaller – a little more 

than 0.2% of output, compared with somewhat more than 0.3% of output for the baseline 

value of θ . The peak response occurs sooner with a lower value of θ  -- less than two 

years after the shock, compared with about three years after the shock for the baseline 

value of θ . 

We also illustrate the effect of a higher value of θ  in Figure 3. If we set θ  equal 

to twice the value implied by the cointegrating regression estimates, the peak response of 

inventories is nearly 0.6% of output.  The reaction to the monetary policy shock is 
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considerably more sluggish with a higher value of θ , with the peak response occurring 

more than four years after the shock.   

Figure 4 illustrates the effect of different values of θ  on inventory investment. 

Values of θ  that are twice as large – or half as large – as the value of θ  implied by the 

cointegrating regression estimates have almost no effect on the peak response of 

inventory investment.  This variation in the convexity of the cost function also has no 

effect on the timing of the peak response of inventory investment, which still occurs two 

months after the shock. Variation in θ  does have an effect on the persistence of the 

effects of the shock. With θ  at half its baseline level, the effects of the monetary policy 

shock die out about a year and a half after the shock.  With θ  at twice its baseline level, 

the effects of the monetary policy shock are still present four years after the shock.   

Figure 5 provides a sensitivity analysis with respect to another parameter, ξ , the 

coefficient on input price cost shocks in the cost function.  As Figure 5 illustrates, 

variations in ξ  have little effect on either the magnitude or the timing of the peak 

response of the stock of inventories. 

In the linearized Euler equation [equation (5)], the parameter on the interest rate is 

η . The decision rule parameters on π1  and π3  ( Γπ 1  and Γπ 3 ) are functions of η . As 

noted above, we calibrate η  using the coefficient on π3  in the cointegration regression, 

which is precisely estimated (with a t-statistic of 6.4).  Nonetheless, η  is an important 

parameter, and it may be of interest to explore the effect of variation in η  on the impulse 

response function. Figure 6 illustrates the impulse response function with η  set equal to 
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twice its baseline value and half its baseline value.8  Variation in η  makes a difference to 

the magnitude of the stock of inventories at the peak response, which is about 15% lower 

if we set η  equal to half its baseline value and about 35% higher if we set η  equal to 

twice its baseline value.  Variation in η  has no effect on the timing of the peak response 

of the stock of inventories, nor, more generally, on the shape of the impulse response 

function. 

Figure 7 illustrates the sensitivity of inventory investment to variation in η . As 

for the stock of inventories, the only effect is on the magnitude of the peak response.  The 

effects on the peak response are comparable to those for the stock of inventories.   

In our baseline parameter settings, we include no adjustment costs on output.  In 

other words, we setγ =0. The inventory literature has not reached a consensus on the 

existence of costs of adjusting output, let alone the precise value of γ . This is part of the 

reason we set γ =0. A second reason is that we cannot calibrate γ  using the 

cointegrating regression.  The intuition for this is simple.  The cointegrating regression 

captures long-run relationships. Adjustment costs on output affect high-frequency 

dynamics but not the long-run relationship.  Figure 8 explores the sensitivity of inventory 

investment to several possible values ofγ . Unlike any of the other parameters we have 

considered so far, changes in γ  affect the timing of the peak response of inventory 

investment.  As Figure 8 shows, increasing γ  from 0 to a value equal to twice the 

baseline value of θ  delays the peak response from two months after the shock to six 

8 The impulse response function “confidence interval” (constructed by considering values of η  calculated 

using the cointegrating regression coefficient on π3  plus two standard errors and minus two standard 
errors, respectively) lies well inside the impulse response functions based on setting η  equal to twice its 
baseline value and half its baseline value. 
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months after the shock.  Increasingγ  also increases the peak response of inventory 

investment.  Moving from γ =0 to a γ  of twice the baseline value of θ  increases the 

peak response by about 40%. An increase in γ  also increases the persistence in the 

effect of a monetary policy shock on inventory investment, so that the effect no longer 

dies out after about three years, but instead lasts more than four years.   

VI. THE VOLCKER DISINFLATION 

From January 1979 through the end of 1984, the U.S. economy experienced a 

recession, a brief recovery, the most serious recession since the Great Depression, and a 

period of rapid economic growth, so this is one of the more interesting episodes in post-

war U.S. macroeconomic history.  We can use our model of inventories with learning and 

regime switches, calibrated using the cointegrating regression for inventories, to show the 

pure interest rate effect and the broad interest rate effects through sales and through costs 

during this period. 

Our methodology is straightforward.  The model implies the decision rule for 

inventories, equation (13). We can use the Markov switching regression for the real 

interest rate to calculate π1  and π3  as they would have been calculated by agents in the 

model, who can observe interest rates but are not able to directly observe the interest rate 

regime.  We can then substitute the actual path of π1  and π3 , as calculated using the 

Markov switching regression, into the decision rule for inventories.  Holding sales and 

costs constant, this allows us to trace out the pure interest rate effect.  We can then add 

the broad interest rate effect through sales by substituting the actual path of sales into the 
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decision rule. Finally, we can add the broad interest rate effect through costs by 

substituting the actual path of real input prices into the decision rule.9 

Figure 9 shows the path of π3  over the Volcker disinflation.  In January 1979 

agents perceived a zero probability of currently being in the high interest rate regime.  As 

monetary policy tightened, the probability briefly rose and fell and then rose again to a 

plateau (close to 1) that persisted for the remainder of the Volcker disinflation.   

The line marked with Xs in Figure 10 shows the effect on the stock of inventories.  

The brief spike in π3  in 1979 leads to a small (but persistent) decline in inventories. 

When π3  rises to 1 in 1980, this initiates a long, gradual decline in inventories.  This is 

the pure interest rate effect. 

The line marked with circles adds the broad interest rate effect through sales.  To 

better understand the effect through sales, look at Figure 11, which illustrates the path of 

detrended sales. As monetary policy tightens in 1979, sales fall.  The effect of the drop in 

sales is initially buffered by inventories, which rise as sales fall.  When sales again begin 

to rise following the first, brief recession, the effect on output is again buffered by 

inventories, which fall during the brief expansion between the 1980 and 1981-82 

recessions. When the second phase of monetary tightening begins, sales again fall, this 

time remaining below trend for years during the unusually deep and lengthy 1981-82 

recession.  Because of their buffering role, inventories again rise in the initial stage of the 

recession, but to a lower level than in mid-1980 because the economy is now in the high 

interest rate regime.  As the recession continues, the stock of inventories begins to 

9 Of course, this is a simplification.  The actual path of sales and costs was surely influenced by other 
shocks.  But the Volcker disinflation is a period when many economists believe that monetary policy 
shocks played a relatively large role.   
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gradually fall. Although there are substantial fluctuations in sales, the level of sales is 

roughly flat over the period from mid-1981 to mid-1983.  The stock of inventories is 

driven gradually downward over this period by the pure interest rate effect.  The stock of 

inventories falls dramatically in the initial stages of the recovery as inventories again 

buffer shocks to sales. Because of the strong persistence in the inventory process – and 

because the interest rate is now in the high interest rate regime – inventories remain low 

during 1984. 

The line marked with small rectangles in Figure 10 adds in the broad interest rate 

effect through costs.  The most striking fact is how close this line is to the line that holds 

real input prices constant.  Much of the inventory literature has failed to find a significant 

effect of observable cost shocks on inventories.  When we estimate the cointegrating 

regression implied by our model, we obtain a t-statistic of 4.3 on W (real input prices). 

Even though we are able to find a highly significant long-run effect of costs on 

inventories, the estimated parameters imply that cost shocks have a small effect on the 

path of inventories, relative to the effect of sales.10 

The magnitude of the pure interest rate effect is substantial during the Volcker 

period. About one-third of the deviation of inventories from their initial level can be 

attributed to the pure interest rate effect.  This can be seen in Figure 10 by comparing the 

line (with Xs) showing the pure interest rate effect in early 1985 with the line (with small 

rectangles) showing the pure interest rate effect plus the broad interest rate effect through 

both sales and costs. 

10 Interestingly, 1979 and 1980, years that saw large oil price shocks, are the period in which cost shocks 
have the largest effect on inventories, as shown by the distance between the path of inventories that 
includes the effect through costs and the path of inventories that includes the effect through sales but not 
through costs. 

https://sales.10
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Figure 12 shows inventory investment during the Volcker period. The line 

marked with asterisks shows the pure interest rate effect. The line marked with Os 

includes the broad interest rate effect through both sales and costs.  The pure interest rate 

effect on inventory investment is small.  It is completely dominated by the effect of sales 

shocks, which clearly account for almost all of the high-frequency variation in inventory 

investment.  Figure 12 is a dramatic illustration of one of the key points in Maccini, 

Moore, and Schaller (2004). It is virtually impossible to find the effect of the interest rate 

on inventories using techniques that emphasize high-frequency movements in the data. 

Figure 12 makes it clear that this is primarily because of sales shocks and the short-run 

buffering role of inventories. 

VII. CONCLUSION 

Recent work, based on a theoretical model that incorporates learning and regime 

shifts in the real interest rate, has allowed us for the first time to identify and precisely 

estimate the relationship between inventories and the interest rate.  The theoretical model 

implies a cointegrating relationship between inventories, sales, costs, and π1  and π3  (the 

probabilities of being in a given interest rate regime).  In this paper, we simulate the pure 

interest rate effect of monetary policy on inventories using the theoretical model and 

parameter estimates from the cointegrating regression derived from the model.   

The response of the stock of inventories to a monetary policy shock is hump-

shaped, with the effect peaking about three years after the shock.  At the peak, the stock 

of inventories is higher by an amount that corresponds to about 0.3% of output in 
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response to a one-standard-deviation stimulative shock to monetary policy (i.e., a 37 

basis point decrease in the interest rate).   

The response of inventory investment, a variable that is more directly relevant for 

business cycles, is also hump-shaped.  The peak response of inventory investment to a 

one-standard-deviation monetary policy shock is about 0.025% of output.  The response 

of inventory investment is quite persistent, with the effects still visible more than two 

years after the shock. 

  Variation in the convexity of the cost function (away from the parameter 

estimated from the cointegrating regression) has a substantial effect on both the 

magnitude and the timing of the peak response of the stock of inventories.  Intuitively, 

this is because a more convex cost function makes output (and inventories) more sticky 

with respect to shocks, a point that is discussed in more detail in Section V.  In contrast, 

plausible variation in the convexity of the cost function has little effect on either the 

magnitude or the timing of the peak response of inventory investment.   

The sensitivity of the cost function to input prices is precisely measured in the 

cointegrating regression.  Plausible variation in the relevant parameter has little effect on 

either the magnitude or timing of the peak response of the stock of inventories. 

In the Euler equation for inventories [equation (5)], the parameter on the interest 

rate is η . The coefficient in the cointegrating regression that we use to calibrate η  is 

precisely measured (t-statistic of 6.4), but, because η  is an important parameter, we 

explore the effect of variation in η . Doubling η  increases the peak response of the stock 

of inventories by about 35%; halving η  decreases the peak response by about 15%.  

Variation in η  has a comparable effect on the peak response of inventory investment but 
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no effect on the timing of the peak response nor on the shape of the impulse response 

function for either the stock of inventories or inventory investment. 

The Volcker disinflation is one of the major -- and most interesting -- episodes in 

recent US economic history.  We use our model to illustrate the pure interest rate effect 

and the broad interest rate effects through sales and through costs during the 1979-84 

period. The pure interest rate effect accounts for about one-third of the low-frequency 

movement in the stock of inventories during the Volcker disinflation. The broad interest 

rate effect through costs plays a very modest role.  The high-frequency movements in 

inventories are dominated by sales shocks, because inventories act as a buffer for sales. 

The overall conclusion that emerges from the results is that monetary policy does, 

indeed, influence inventories through the pure interest rate effect, but the magnitude of 

the effect is fairly small in response to a typical monetary policy shock, and it takes a 

long time for the effect to be fully realized.  The pure interest rate effect on inventory 

investment is very small and completely dominated by sales shocks. 

The results have important implications for our understanding of the monetary 

policy transmission mechanism.  Inventory investment accounts for a large proportion of 

the decline in output during a typical recession, but the results suggest this does not come 

about because tighter monetary policy raises the opportunity cost of holding inventories 

and therefore leads to a drop in inventory investment.  Instead, the results suggest that the 

main impact of monetary policy on inventories occurs indirectly, through changes in final 

demand.  These changes in final demand may come through some mix of conventional 

channels, such as the effect of an increase in the interest rate on business fixed investment 
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or residential investment, and the broad credit channel (e.g., through reduced cash flow 

for finance constrained firms). 
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APPENDIX A 

Derivation of Equation (13) 

Using (3), the linearized Euler equation in (5) can be written as the following 

fourth- order difference equation in Nt: 

Et {θ Nt − Nt−1 + Xt − β ( Nt+1 − Nt + Xt+1 ) + γ Nt − Nt−1 − ( Nt−1 − Nt−2 ) + Xt − Xt−1 

−2β ( Nt+1 − Nt − ( Nt − Nt−1 ) + Xt+1 − Xt ) + β 2 ( Nt+2 − Nt+1 − ( Nt+1 − Nt ) + Xt+2 − Xt+1 ) 

+ξ (W − βW ) +δβ ( N −α X ) +ηr + c} = 0 .t t+1 t t+1 t+1 

Rearranging we have 

[ ] E (A.1)E f L N( )  = Ψt t+2 t t 

where 

1 1 θ + ( +β )γ L+ 
1 θ 1+ β ) +γ 1+ 4β + β 2 ) 2f L( )  ≡ −   2 1    ( ( +δβ  L  2  γβ γβ 

1 3 1 4θ + γ ( +β ) L−  2 1  + L2   2γβ β 

and 

1 1 
t X t+2 + θ γ (2 + β ) Xt+1 − 2 θ +γ (1 2β ) −αδβ   tΨ = −   +   + X

γβ γβ 

1 ξ η c
+ X − (W −βW ) − r − .2 t−1 2 t t+1 2 t+1 2β γβ γβ γβ 

Let λ i , i = 1,2,3,4 , denote the roots of the fourth-order polynomial on the left-hand side 

of (A.1). Order these roots as < < < λ 4  .  It follows thatλ 1 λ 2 λ 3 

1 1 1λ =  and λ = ,  with , <  . Suppose further that , < 1.λ 1 λ 2 λ 1 λ 24 βλ 1
3 βλ 2 β 
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Solve the unstable roots forward to obtain 

βλ λ j+1 j+11 2E N  =(λ + λ ) N −λ λ  N + 
∞
 βλ  − βλ   E Ψ . ()t t 1 2 t−1 1 2 t−2 λ λ  ∑( 1 ) ( 2 )  t t+ j( 1 − 2 ) j=0   

where 

1 1
Ψ t j  = −Xt+2+ j +  + (2 + β ) Xt+1+ j − θ +γ 1+ β ) −αδβ  Xt j+ θ γ   2 ( 2  + γβ γβ 

1 ξ η c 
− 2 + +  t 1+ 2 Xt 1 − (Wt+ j −βWt 1 j ) − 2 r + +  j − 2 ()

β γβ γβ γβ 

Note that λ  and λ  are either real or complex conjugates, so that λ + λ  and λ λ  are1 2 1 2 1 2  

real. 

To resolve the forward sum on the right-hand side of () note that we assume that 

sales and input prices follow AR(1) processes: 

X = µ + ρ X +ε , where ε ∼ . . .(0, 2i i d  σ )t x x t−1 xt xt x 

W = µ + ρ W +ε , where ε ∼ . . .(0, 2i i d  σ )t w w t−1 wt wt w 

where we allow for the special case of ρx = ρw =1. Further, we assume that the real 

interest rate follows the Markov-switching process in ().  Given these assumptions, we 

now proceed to derive the terms for each of the forcing variables: 

1. Consider first the terms involving  X on the right-hand side of (), which can be written 

as 

βλ 1λ 2  ∞ j+1 j+1   1 ∑(βλ1 ) − (βλ2 )  Et −Xt+ +2 j + a1 Xt+1+ j − a0 Xt+ j + 2 Xt−1+ j   (A.2)
(λ 1−λ 2 )  j=0    β  
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  + β where a1 ≡ 
1 θ +γ (2 + β ) and a0 ≡ 

1
2 
θ + γ (1 2β ) −αδ  .  γβ γβ 

Note that, for j = 0, 1, 2, … ,  E X  = µ + ρ E X − + jt t+ j x x t t 1 

2 2 3E X  = µ (1+ ρ ) + ρ E X  , and E X  = µ (1+ ρ + ρ ) + ρ E X  .t j 1 x x x t t 1 j t t+2+ j x x x x t tt + + − +  − +1 j 

It therefore follows that 

 1 E −X + a X  − a X  + X = + +  1 t 1t t 2 j 1 t+ + j 0 t+ j 2 − + j β  

2  3 2 1 − +(1 ρx + ρx ) + a1(1+ ρx ) − a0  µx + − ρx + a1ρx − a0 ρx + E Xt t−1+ j  2β  

and thus, 

j+1  1  i (1 ρx +ρx 
2) +a1(1+ρx) 0 ∞ βλ − +  −a  

βλ E −X + +  a X  −a X  X − +   =∑ ( i ) t  t 2 j + 1 t+ +1 j 0 t+ j + t 1 j µx 
j=0  β 2 

 1−βλ i 

 1  ∞ 
j+ βλ i−ρ

3 + a ρ 2 −a ρ +  (βλ ) E X  1 . (A.3)x 1 x 0 x 2 ∑ i t t− + j
 β  j=0 

For the AR(1) process governing Xt ,the forward sum in (A.?) is   

∞ j βλ µi 1xβλ E X  = + X∑( ) t − + j 1i t 1 t−(1− βλ )(1− βλ ρ ) (1− βλ ρ )j=0 i i x i x 

This in (A.?) gives   

∞ 
j+  1 ( ) 1 E + + +a X  − − + j∑ βλi t −Xt 2 j 1 t+ +1 j a X0 t+ j + 2 Xt 1  = 

j=0  β  

 3 2 1  −1( , )  + βλ ρ + a ρ a ρ (1  βλ ρ ) X (A.4)c ρ λ µ  − − + −x i x i x 1 x 0 x 2  i x t−1β  
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where 

2 2 3 2 −2 
i (1 ρ a (1 ρ ( a1 +βλ − +  x + ρx ) + 1 + x ) − a0  βλ i) (−ρx + ρx − a0 ρx β ) ( , )  ≡ + .c ρ λx i 1− βλ (1− βλ )(1− βλ ρ )i i i x 

Using (A.?) we can rewrite the term (A.?) as  

βλ λ  ∞ 
j+1 j+1  1 1 2   − βλ  E − 2 + a X 1 − X ∑ (βλ1 ) ( 2 ) t X t + +  j 1 t+ + j a0 Xt+ j + t−1+ j λ λ  0 ( − ) j=

   β 2 
1 2   

= cX +ΓX Xt −1 (A.5) 

βλ λ where c ≡ 1 2  c( ,λ ) − c(ρ ,λ )
λ λ  

[ ρx 2 ]µx    and  X 1 x( − 2 )1 

 1 2 3 2 −2Γ ≡ β λ λ  −ρ + a ρ − a ρ + β .X 1 2  ( x 1 x 0 x )   
 (1− βλ 1ρx )(1− βλ 2 ρx )  

2. Consider now the terms involving W on the right-hand side of ().  Proceeding as with 

the terms in X, the terms involving W can be written as 

1 2   
−

ξ  λλ  
∑
∞ 

(βλ1 )
j+1 
−(βλ2 )

j+1 
Et (Wt+ j −βWt+1+ j )


 = cW +ΓWWt (A.6)

 γβ 
 (λ1 −λ 2 ) 

 
j=0 
   

 ξ  λλwhere c ≡ −  [c( ,ρ λ )−c(ρ ,λ )]µ ,W   
1 2  

w 1 w 2 w
 γβ (λ1 −λ 2 ) 

2 2 −β λ (βλ )  (1−βρ ) i i wc ρ + µ( ,w λ i) ≡   w , and 
1−βλ i (1−βλ i)(1−βλ i ρw)  

 ξ   (1−βρw)  
W  λ λ1 2   . Note that if λ λ 2> 0  then < 0Γ ≡ −   1 ΓW . 

 γ  (1−βλ  ρ1 w)(1−βλ 2ρw) 



 

    

 

  

                     

 

 

38 

3. Consider next the terms involving expected future interest rates.  Here we assume that 

the real interest rate follows the Markov-switching process in (). Consider the 

expectation of a firm that knows the structure and parameters of  () but does not know the 

true state. Recall that we denote the firm’s current probability assessment of the true state 

by π t , where 

π  Prob(S = Ω1| ) 1t t t 
    π = π = Prob(S = 2 |Ω )t  2t    t t  
 3  Prob(St = Ωt )π t    3 |  

3 

and let π m|t ≡ Prob(S = j | Ω ).   Note that,  in general,  π +m t =∑ pijπ +m−1|t . Thus,jt+ t+m t jt | it 
i=1 

m m 
+ | =P ⋅π t .   It follows that  E(r +m |Ω )=r '[P π t ] , where r ' ≡ [r1 r r3 . We canπ t m t  t t v v 2 ] 

therefore write that, for i = 1,2 , 

∞ ∞ ∞j+1 j+1 −1j+1 j( )i E r+ + = βλ ∑(  ) r ' P π βλ r '∑(βλ P) P = λ r ' I −βλ iP P t .βλ βλ = π β   π∑ t t 1 j i i v t i v i t i v 
j=0 j=0 j=0 

Using this result we have 

 η  λ λ   ∞ j +1 j+1 1 2   β − β  E r  1 j  Γ (A.?)−  ∑( )λ1 (  )λ 2  t t+ +  = π t
 γβ λ λ  ( 1 − 2 )  j=0  

where 

 −η  λ λ   −1 −11 2Γ  ≡ Γ Γ  Γ =]  β r ' λ I − βλ P − λ I − βλ P P  .(  )× [ 1 2 3   v { 1 1  2  2  }1 3  γβ λ λ−  1 2  

Since π1t + π2t + π3t =1 by definition, we can use π2t =1- ( π1t + π3t) to eliminate π2t from 

the right hand side of (A.?).  The resulting expression is, 
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 λ λ  j+1 j+1 η  1 2   ∞
 −  ∑ βλ − (βλ E r 1 = Γ +Γ  π +Γ  π (A.?)( 1 ) 2 ) t t+ +  j  2 π1 1t π 3 3t γβ  (λ1 −λ 2 )  j=0 
   

where we define Γ ≡ (Γ −Γ ) and Γ ≡ (Γ −Γ ) .π1 1 2 π 3 3 2 

4. Finally, the constant term is 

 ∞ −1  βλ λ1 2   j+1 j+1  −λ 1λ 2 2  ∑(βλ1 ) − (βλ2 )  c= c . (A.??)
 γβ  (λ1 −λ 2 )  j=0    γ (1− βλ 1 )(1− βλ 2 ) 

5. Now, assume that the firm carries out its production plans for time t, so that E Yt t  = Yt . 

Then the inventory accumulation equation, (3), implies that ( N − E N ) = −( X − E X ) .t t t t t t 

xDefine u ≡ −( X − E X ) as the sales forecast error, then the relationship that defines t t t t 

the firm’s actual inventory position is 

 N = λ + λ N −λ λ  N + 
βλ λ1 2  

∞ 

βλ  
j+1 
− βλ  

j+1 
E Ψ + ux ()t t λ λ ∑( ( ( 1 2 ) t−1 1 2 −2 ( 1 − ) j 

1 ) 2 )  t  t j+ t 
2 =0 

where again Ψ t j  is defined by ().  Substituting (A.5), (A.6), (A.) and (A.) into (), we + 

have that 

N = Γ  + λ + λ N −λ  λ  N +Γ  X +Γ  W +Γ  π +Γ  π + ux  ()t 0 ( 1 2 ) t−1 1 2 t−2 X t−1 W t π1 1t π 3 3t t 

where 

−λ 1λ 2Γ =0 cW + cX +Γ2 + c 
γ (1− βλ 1 )(1− βλ 2 ) 
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Γ
> 0 , Γ < 0 , Γ > 0 , Γ < 0 .X W π1 π 3< 

Model without Adjustment Costs 

In the model with γ = 0 equation (3) in (5) yields a second-order difference equation in Nt 

that has one stable and one unstable root. Denoting the stable root by λ 1 , equation () 

becomes  

N = Γ + λ N +Γ  X + Γ W + Γ  π + Γ  π + u x  ()t 0 1 t −1 X t−1 W t π1 1t π 3 3t t 

where Γ and Γ are defined as in (19’) and where Γ ≡ Γ −Γ , Γ  ≡ Γ −Γ , andX W π1 1 2 π 3 3 2 

 −η  −1[Γ1 Γ2 Γ3 ] ≡  λ 1r 'v I − βλ 1P P. 
 θ  
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Figure 1: Impulse response function of the stock of inventories 

C
ha

ng
e 

in
 s

to
ck

 o
f i

nv
en

to
rie

s 
(%

 o
f o

ut
pu

t) 

0.35 

0.3 

0.25 

0.2 

0.15 

0.1 

0.05 

0 
0 5 10 15 20 25 30 35 40 45 50 

Months 

 

 



 42 

0 5 10 15 20 25 30 35 40 45 

Figure 2: Impulse response function of inventory investment 
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Figure 3: Impulse response function of the stock of inventories 
Variation in convexity of cost function 
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Figure 4: Impulse response function of inventory investment 
Variation in convexity of cost function 
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Figure 5: Impulse response function of the stock of inventories 
Variation in sensitivity of costs to input prices 
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Figure 6: Impulse response function of the stock of inventories 
Variation in sensitivity of inventories to the interest rate 
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Figure 7: Impulse response function of inventory investment 
Variation in sensitivity of inventories to the interest rate 
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Figure 8: Impulse response function of inventory investment 
Variation in adjustment costs on output 
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Figure 9: Pi_3 during the Volcker Disinflation 
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Jun-80 Oct-81 Feb-83 Jul-84 

Figure 10: The stock of inventories during the Volcker Disinflation 
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Figure 11: Actual and trend sales during the Volcker Disinflation 
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Figure 12: Inventory investment during the Volcker Disinflation 
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