Appendices B and C to accompany

Maccini, Moore, and Schaller (2014) “Inventory Behavior with Permanent Sales Shocks.”

APPENDIX B. Derivations and Calibration Method.

This appendix is organized as follows. Section | shows the log-linearization of the Euler
equation. Section Il derives the decision rule. Section 111 shows how to derive the cointegrating
regression from the Euler equation. Section IV gives the derivation of the analytical conditional
variance ratio. Section V shows how we calibrate the model using the cointegrating regression.
Sections | through 1V are organized in a Proposition-Proof format. This is done to make it easy
for the reader to locate the derivation of interest. In the text of the paper results are not stated as

formal propositions.
I. Log-Linear Euler Equation.
Proposition 1: Log-linearizing the optimality conditions around steady-state values yields

E., {(e1 :1) 6,3[InY,-BInY,,, | +92¢913[th 7 _|nwt+1] w0
+B(5,-1)8,7[INN, —In X, ]+6,Jr., + 6,30}, +¢} =0

Proof: The representative firm is assumed to minimize the present discounted value of expected

total costs,

where Eq =E{.|Qq}, and

52
C,=PC, +HC, = AY W% + 51[ ';'(”J X +8N, 4,

t
subject to the inventory accumulation equation,
N, =N =Y, - X,. 4)
and to a non-negativity constraint on the stock of inventories,

N, >0 . ()



Applying the Law of Iterated Expectations, and assuming that the non-negativity constraint on

inventories is not binding so that N, >0, the optimality conditions for this optimization problem

reduce to:
E. {ﬂt [elAYtgrl\thz - ftl}} =0 (6)
N = 1 1 !
E. ﬂt{ﬂm(é‘zé‘ltx t J +53§t+1J+§t] =0 (7")
Et—l {ﬂt [Nt - Nt—l _Yt + Xt]} =0 (9)

where &' is the lagrange multiplier associated with (4).

. . . N . Y,
Define the inventory-sales ratio as R, =—+ and the output-sales ratio as R, =—-, let
X X

t t

lower case letters represent the growth rates of upper case letters so that, for example,

t

N : AY AW %
=1+x,, and use the approximation ~1-x,. Then, define J, =————— as average
X 1+x Y,

production  cost so  that  marginal production  cost s 6J,, define

N 51 N X 51 \ . 51 ‘
=0, t =0 | —t —s | D ~5TR. (1- 5,1
. l(xtﬂ] l[xt X j 1(Xt 1+Xt+1J ll: Nt( Xt+1):|

t+1

as average stockout avoidance costs so that marginal stockout avoidance costs are o,y , Then,

the optimality conditions, (6) and (7"), can be written as

EL{A[63,-& =0 (A1)

£ | A (68 (Rall-x)" " +6, -8 )+ & ][ -0 (A2)

Then, divide (9) by X, , and re-arrange to obtain



c {ﬂ {m X, No Y% X, X }o
t-1 t
Xt Xt—l Xt—l Xt Xt—l Xl—l

or, using the appropriate definitions,
E {ﬁt [RNt (1+ X ) —Ry1 =Ry (l+ X ) + (1+ X )]} =0 (A-3)

We assume that the ratios, R, R,, J,, and y,, which are defined above, are stationary
with finite expected values. The growth rate of sales, x,, is also assumed to be stationary.

We assume that in steady state the expected values of the ratios, average production cost,
average stockout avoidance cost, and the growth rates of variables are constants. The non-
stochastic steady state is defined where shocks are zero, and the inventory sales ratio, the output-

sales ratio, average production cost, average stockout avoidance cost, the growth rates, the real

interest rate, and the multiplier are constant, so that R, =Ry, =R,, R,=R,, J, =7, v, =v,

X, =X=X, =B =0,and & =& =&". The steady state implied by (A-1)-(A-1) is then

91‘]_:51 (A-4)
B(8,p+8,)+(1-B)& =0 (A-5)
XR, +1=R, (A-6)

where a "bar" above a variable denotes a constant expected steady state value and where to

derive (A-6) we divide the steady state expression for (A-3) by 1+ x and use the approximation
— 1 — —
Rn (1+;j ~ Ry (1—X).

On notation, a “~” above an upper case letter denotes a log-deviation from the steady

state, while a “” above a lower case letter denotes a deviation from the steady state growth rate.
So, for example, the log-deviation of R, from its steady state value is ﬁNt =InR, —InR, , while
the deviation of the growth rate of sales is X, = x, —X . Similar notation applies to other

variables. The log-linearized optimality conditions are then



el‘TEt—ljt - é?lEt—lé:;tl =0 (A'7)

EELE - PEELE +E B+ B(6,-)0WEL [ Ry—%u|=0 (A9

—_ A

§N Et—lRNt - RN RNt—l - ﬁv Et—lRYt + ﬁN Et—l)zt =0 (A'9)

where S = 1% ~1-T and where in (A-9) we have assumed that XRnt = XRv 0.
+T

Now, use (A-7) to eliminate &'E_&* and &'E_ &L, from (A-8), and use (A-4) to get
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(5 1)52‘//Et1[ XI+1:|+6‘]Etlr:(+l 0 (A-10)

Now, recognize that

Ry =InR, —InR, =InN,—In X, —InR, (A-11-a)
R, =INR, -INR, =Y, —In X, —InR, (A-11-b)
J;=InJ,~InJT =InA +(6,-1)InY, +6,InW, ~InJ (A-11-c)
% =x-X=AInX -X (A-11-d)
f=r-T (A-11-e)

Substituting (A-11-a)-(Al1-e) into (A-10) and collecting terms yields
01‘]_[Et—1 In A\ _IEEt—l In A+1} +

(6,-1)6,J[ E_,InY, - BE_, InY,, |+ 6,67 E_,InW, - BE,_, InW, , | (A-12)

+B(8,-1)8,w[E NN, —E,_,InX,,,]+6,JE .., +c=0



where ¢ is a constant that depends on steady state values. Let In A be stationary. Define

G2, =InA —BInA_, and note that G, will also be stationary.' Equation

(A-12) then yields

B {(6,-1)6,3[InY, - BInY,, |+ 6,6,3[ W, - BInW, , ]
+B(5,-1)8,7[INN, —In X, ]+6,Jr., + 6,30}, +c} =0

t+1

(10)

QED, Proposition 1.

I1. Decision Rule.

Proposition 2. The model implies that the firm's decision rule is

InN, =T,+A4InN_+TyInX_,+T, InW_, +T 7, ,+T 75 ,+U, a7
where
— 1
PR A N e 2 2
=l = - E[(Hg) +4;} , (21-a)
£ = (%-1)oy R, (21-b)
(6,-1)6J Ry’

where 0< 4, <1,4 >0, I', is aconstant, and u, is a stationary shock.

Proof: Substitute (A-11-a,b,d) into (A-9) to get
L, InY, =R E_AINN,+RE_, InX, +c, (A-13)

Y In our empirical work we allow for In A to contain a deterministic trend. As we discuss in the proof of

Proposition 6 below, our empirical results confirm the assumption that G, is stationary.



where c, is a constant. Then, using (A-13) to eliminate E,_,InY, and E, ,InY,,, from (10) yields

Y

-IR — - R
(6,-1)63 {ﬁ—N E_AINN, +E, _ In xt}ﬁ(el ~1)6,3 {ﬁ—N E_AINN_, +E_In xm}

Y
+0,03[E,InW, - BE_, InW, ]+ B (5, -1)8,w [E_,INN, -E_, In X, ,] (A-14)

+81J_|:(71_7/2)7[1t—1+(7/3_72)ﬂ-St—l+}/2:|+91‘]_Et—latﬁl+cz =0

where c, is a constant. Combining terms gives

(6, —1)013;—N[Et_1A InN, - BE_AINN,, |+(6,-1)6T [ E_In X, - BE_,InX,,, |
Y
+6,0,T[ E_, InW, - BE_, InW,_, |+ B (5, -1)S,wE_, InN, (A-15)

_3(52 _1)§2JEt—1 In X, + elj[(71 _72)771t—1 +(7/3 _72)773t—1 +72]+91‘]_Et—1UA +C, =0

t+1

Collecting and using (15), equation (A-15) can be written as

R _
Et_{ f (L) In NM} =E =, (A-16)
RY
where
5,-1)6,v R
f(L)=1- T G V20T P O (A-17)
B (6-1)67 R, V;
and
S D %0 1 78 PRSI S
t (91 _1)01\] t+1 t
(A-18)
HZ 1 ~ A

InW,_, +—= %, InW, + ! I, +=

(01_1) t+1 ﬁ(gl_l) t E(el_l) ﬁ(el_l)uwl C4

where c, is a constant.

Let A,,i= 1,2 denote the roots of the second-order polynomial in (A-17). The roots

must satisfy the quadratic equation:



/12—{1+%+42+%=0 (A-19)
where
_ (52 _1)5 Jﬁ_ -
“ (6163 ®R, G0

Note that ¢ >0 follows from 6, >1,5, <0, >0,J >0,R, >0, and R, >0. From (A-19), using

E:L we have
1+r

i) ] -5t ]

or

Jy=1+ F+2 © - %[(hg)z +4§f (21-2)
and

/12=1+F;‘; + %[(hg)ﬁ%f (A-20)

Since ¢ >0 itis clear that 4, >1. Also, from (A-20) it is clear that 4, <1. Observe from (A-17)
that 4,4, :% > 0. It follows that 4, >0. Collecting, we have 0< 4, <1.

Since 4, is the stable root and A, is the unstable root, solve A, forward in (A-17) and use

A ,=—=— to obtain

1



:U|| 0|

Y Y j=0

R = (1"
> Et—l In Nt:ﬂ’lF—e_Nln NtlZ“ZJ EtIEHJ:l
(A-21)

§ . w .
=4 1§_N In Nt—l_ B 1 Z:I:(ﬂ}L 1>J Et—lE‘Hj }
Y j=0

To resolve the forward sum on the right-hand side of (A-21), we assume that sales and

input prices are 1(1) processes of the form:

In X, =g, +InX_, +u’ (A-22-3)

InW, = g, +InW,_, +u)’ (A-22-b)

where u* ~ii.d.(0,0%) and u ~ii.d.(0,5). For the theoretical derivations, we impose no

distributional restriction.?

Using the definition of =, in (A-18), the terms involving sales on the right-hand side of

(A-21) can be written as
— x — j _ 1
_mlz{(ml) Et_l(—aln X s +Fln xtﬂ.ﬂ (A-23)
j=0

(8,-1)3,p

where a=1+ Ly
(6,-1)8.

Note from (A-22-a) that E, ,In X,, . is a linear function of X, , forj=0,1,2, ....

t+]

It therefore follows that

— s — j — 1 -
_ﬂﬂlz[(ﬁ%l) Et_l(—aln X +§In Xtﬂ.ﬂ =c, +I, In X, ;. (A-24)
j=0

2 For the simulations that explore DOLS bias, we assume that u and u; have Gaussian distributions with &% and

0'\,2\, set equal to their sample values (e.g., variance of the change in log sales) and x, and g4, setequal to 0.



The terms involving real input prices on the right-hand side of (A-21) can, using the same

argument applied to (A-23), be written as

21 N (7 ) 0, 0, _ I -
_ﬂﬂljz_;[(ﬂﬂl) Et—l( _mlnwm_'_ﬁ(ﬁl—l) InWt]:l = Gy +TWe, . (A-25)

Consider next the terms involving the real interest rate on the right-hand side of (A-21),

_E/l 1 2{(?’1 1)j ﬁ El—lrt+1+j } : (A'26)

Assuming that the real interest rate follows a three-state Markov-switching process and using the
learning process developed above in the text, we have that
E_.r. [P | (A-27)

t+1+ =
where

T Pu Pau Py
[
r, =66l 7,=|7, |,and P=|p, Py Psy |

T3 Pis Pz Pss

Since 7, =1— (7, + 75, ), we have from (A-27) that E, .., ;is a linear function
ofz,, and 7, , forj=0,1,2, ... . It follows that

— — j 1 ~ ~
_ﬂl 1 z {(ﬂﬂ 1) m Et—lrt+l+j :| =C, + r;rlﬂlt—l + rng T3t (A'28)

The terms involving Ut’jlﬂ. on the right-hand side of (A-21) can be written as

_E/?“ 1 2{(51 1)j ﬁ Et—latﬁlﬂ } = utA—l . (A-29)

Since the G,, . are stationary, u,*, will be stationary.

t+1+
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Finally,

3| (72)" Jece=pa3 (2) e (13%)0 = Car (A-30)

—

Thus, using the definition of =, (A-18), in (A-21) and then substituting from (A-24), (A-
25), (A-28), (A-29), and (A-30) we have

E,InN,=4, NInN AT InX +T, InW,_,
'R, (A-31)

= ~ = A
+ 0 7 AT a7y + T+ U

:U|| 0|

<z

where T, =c, +¢, +C_+C_,

Now, log-linearizing the accumulation equation, (4), yields

RyRy —R Ry, —RR, +R % =0 (A-32)
Substitute (A-11-a), (A-11-b), and (A-11-d) into (A-32) to get

Ry[INN,=In X, =InRy |-R [INN_, -In X, ~InRy ]|

~R,[InY,=InX, IR, [+R,[InX,~InX_, -X]=0

or

:U|| |

NInN, - RN INN,,—InY,+In X, +¢, =0 (A-33)

Y Y

Taking expectations of (A-33) gives

201 2|
FT'I

<z

. InN RN InN, ,—E_,InY,+E_,;InX,+¢, =0 (A-34)

Y



11

Subtract (A-34) from (A-33) to get

NInN, —E_ InN,]-[InY,—E_, InY]+[In X, —E_; In X,] =0 (A-35)

:U|| |

Y
Define u’ =InY,—E,_, InY, as the production error and u =In X, —E,_, In X, as the sales error,

then (A-35) becomes

—InN, —EtlFiN InN, +u’ —u’ (A-36)
RY RY

]

Substituting (A-31) into (A-36) gives

NInN, =4, LT N_,+T, InX,_, +T, InW_,
'R, (A-37)

+0 07 A1 a7ty + 1 + U

:U|| 0|

<Z

where ur =u’, +u, —u’.

Finally, multiply (A-37) by =~ to get the decision rule, equation (17) in the text, where

u = (R /Ry (U +u —u). (A-38)

Note that u,acts as a buffer, absorbing unanticipated shocks to production and sales. Rational
expectations implies that u’ =InY, —E,_, InY, and u =In X, —E,_, In X, are both i.i.d. mean zero
and, therefore, stationary. Since, in (A-29), u’, is the conditional expectation of a weighted sum
of stationary shocks it is itself stationary. Since u’,, u’ and u* are stationary it follows from

(A-38) that u, is stationary. QED, Proposition 2.
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Proposition 3. Decision Rule Coefficient on Sales: The coefficient on sales in the decision rule,

ry ,is

r, {M—F}Q(LJ (18)

(6,-1)63 Ryl1+r—24,
DS.w _
Further, I, 20 as Mi(el—l)ep.
< r <

Proof: From (A-22-a) it follows that

Et—l In Xt+j+1 = :ux + Et—l In Xt+j

and therefore

— 1 - 1
Etl(—aln XHIH. +Fln XHJ. j =—-au, +(?—a] E . In Xtﬂ. )

Also,
E,InX,;=u+E,InX

t-1+j "

Hence,

- 1 1 - 1 -
Et_l(—aln Xt +Fln X“jj: (7—2ajyx +(7—aJ E. .In Xt

This in (A-23) gives

_Eﬂ’ 12 (Eﬂ’l)jEt—l (_aln >(t+1+j +%In Xt+jj = _le ( = —25];&

i=0

(A-39)

For the stochastic process governing In X, , (A-22-a), we can use the formulas for geometric and

arithmetic-geometric series to re-write the forward sum in (A-39) as

(B ] _ B;Ll/'lx 1 _
;(/ﬂl) B X s = gy Yy e (A-40)
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Using (A-40) we can rewrite (A-39) as

— © J— j — 1 -
_ﬂﬂlz[(ﬁ%l) Et_l(—aln X +§In Xtﬂ.ﬂ =c, +I, In X, (A-41)
-0
where
pA 1 -
o= Pl (a2
(1-p2,) LA
and
F\ :_[L_EJLJ
IB 1_18/11
or, using the definition of a and E:L_
1+r
" 5, -6,y -
O G L7 N U (A-42)
(6,-1)63  |1+7-2,

o0,-1)o. - — _
To show that T, 20 as @i(el—l)ép , note that R and R, are both
< r <

positive, and 0 <A <1 implies that },1/(1+;—/11)>0, so the sign of I‘X depends on the term

in square brackets, which will be positive if and only if

5,-1)8,w _
(6,-1)8,w >(6,-1)67
r
And vice-versa. QED, Proposition 3.
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Proposition 4. Decision Rule Coefficient on Input Costs: The coefficient on input costs in the

decision rule FW is

b, R A
r, ——-_——>2 Y| 721 <0 19
w (6,-1) RN[1+r—/11] (19)

Proof: Proceeding as with the terms in sales and using (A-22-b), the terms involving real input
prices on the right-hand side of (A-21) can be written as (A-25), where

wwtalda e

~ _ 6 [, 1) Bi, \_ 16 A, ]
FW_(el—l)[l ﬁ)[l—ﬁilj (91—1)[1#—11] (A-43)

where the last equality follows from % =1+r. We then obtain (19) from (A-43) and

:U|‘ 0|

r,==-T,.

N

To show that I',, <0 note that under the assumptions of the model & >1 and 6, >0. We
assume that 7, the unconditional mean real interest rate, is positive. Thus FHZ/(el—l) >0. We
have that 0< 4, <1 and soﬂ,l/(1+F—;tl) >0. Since R, >0and R, >0 it then follows from

(19) that T, <O0. QED, Proposition 4.

Proposition 5. Decision Rule Coefficients on the Interest-Rate-Regime Probabilities:

The model implies that the decision rule coefficients on the Interest-Rate-Regime Probabilities

are
_ 1]
_ -1
 — iy'[l—’lap} 4 (20-a)
1 (91_1) R, L+r 0
_ (0]
_ -1
r - &y'[l—lip:' 3 (20-b)
3 (91_1) Ry 1+r 1
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where y'=[y, 7, 7,]. Furthermore, if

(Py+Py)/2>05 (A-44-3)
(P +Py)/2>05 (A-44-b)
Pz =Py = 0, (A-44-c)

then, I'’ >0and I, <0.

Proof: Since the eigenvalues of SA,P lie inside the unit circle®, we can use (A-27) to write

i(ﬁi 1)j Bl = i(ﬁl 1)j r, [PHZ”HJ = rv’Pzi(ﬁi 1P)j 7T
_ ~

j=0 j=0
(A-45)
=1, P*[1-B2,P] 7.,
Using (A-45) and noting that 1, P> =[y, 7, 7], (A-27) can be written as
=, s, 0\ 1 -1, — -1
_ﬂ/’i’lz (ﬂll) =—FE i1, = [71 72 73][' _ﬂ/ﬂtlp] Ty (A-46)

~ B(el _1) t-1't+1+ (91 _1)

Since AR AL —E/llPTis (1x3) and 7, , =1 (7, , + 75 ,) We can rewrite (A-

(91_1)
46) as (A-28) where, using =ﬁ,
+
_ af 1]
= —4,4 [71 7, 73] | — ﬂ'l_P}l -1 (A-47)
" (01_1) L 1+r 0
] 4 0]
T P il'PT - A
= (6,-1) L 1+ L

and

® Hamilton (1994) pages 681 and 732.
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0
A _ -1
szE . [7/1 V2 73][|_ﬂllp} 1. (A'49)
(91_1) 0
We then have (20-a) from (A-47) and T, §—~ﬂl, and we have (20-b) from (A-48) and

=

F,.

r =

3

:U|‘<:U|

N

To establish Tw>0and T.s<0, recall that [z, 7, 7]=r/P® and let

’ - -1 . -
[51,8,:85 ] =1 P?[ 1= BAP]| . Since (9

1

A
! ]<O, it then follows from (A-47) and (A-48)

that [ >0and T'rs <0 ifand only if s, <s, <s,.

We can expand the definition of [s,,s,,s,] to get
[5.5,.5,]= 1, P? [I + BAP+(B) PP+ (BA) PP+ }

:[rV'P2+E/11rV'P3+(B/11)2 P (BA) 1P+ } .
Define
[0:(0), 9,(0), 5(0)]=1,=[1.1,.1.] (A-50)
and let [g,(j), 9,(J), 9:(j)] be defined by
[9,(i+1), 9,(i+1), g.(i+1)]=[a,(i). 9,(i). g9:(i)]P (A-51)
forj=0,1,2,3, ....
Then from (A-51) [g,(2), 9,(2). 9,(2)]=r,P? and

(505, 5]= 2 (B4) [0.D) 0,() (D] or

5, = 0,(2)+ B0, +(B) 9,4)+(BA) 6,(5)+...

5, =0,(2)+ B1,9,(3)+(BA) 9, +(BA,) 9,5) +...



17
5, = 0,(2)+ B0, +(BA) 0,4 +(BA,) 95(5)+...

We establish an intermediate proposition to show that (A-44-a)-(A-44-c) are sufficient
for 9,(j)<9,(i)<9;(i), i=123 ...
Lemma: Let [g,(j), 9,(J). 9.(J)] bedefined by (A-51). If g,(j)<d,(j)<g,(j) and
conditions (A-44-a)-(A-44-c) are true, then g, (j+1)<g,(j+1)<g;(j+1).

Proof of Lemma: Note from the definition of P that the elements of each of its columns must sum

to one. Using (A-44-c) we can therefore write that

Py P2y 0
P=|(1-py) P (1-pss) |- (A-52)
0 (1_ Py — p21) Pss

From (A-52) and (A-51) we then have

9, (J+1)=9,(i) P +9,(1)(1~pu), (A-53)
9, (1+1)=0,() P+ 9, (J) P + 95 (1) (1= P = P21, (A-54)
Os(1+1) =9, (i) (1~ Pss)+ 9 (1) Pss- (A-55)
Subtracting (A-53) from (A-54) gives
9, (1+1) =0, (i+2) =0, (J) (P = Pua)+ 9o (1) (Pus+ P 1)+ 95 (1) (1~ Py = P2a) - (A-56)

From (A-56) it follows that
0[9,(i+1)-g,(i+1)]
Py

Evaluating (A-56) at the maximum possible value of p,,, that is at p,, =1—- p,,, and using (A-

=0,(j)-9;(j)<0. (A-57)

44-a) gives g, (j+1)—g,(J+1)=[9,(i)— 8, (i)]( Py + Pz, —1) > 0. It follows that
0,(j+1)<g,(j+1) forall values of p,.

Next, subtracting (A-54) from (A-55) we have that
0:(J+1)= 9, (i +1) =0, (1) (=P22)+ 92 (1) (1= P = Psa) + 9o (§) (P2 + P+ P =1).  (A-58)
From (A-58) it follows that
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5[gs(j+z)p_92(j+l)]:ga(j)_gl(j)>0_ (A-59)

Evaluating (A-58) at the minimum value of p,,, thatis at p,, =0, and using (A-44-b) gives

95 (J+1)—=9,(i+1)=[09;(i)-9,(J)](Pp + P5—1)>0. It follows that

9,(j+1)<g,(j+1) forall values of p, . Collecting, we have
gl(j+1)<gz(j+1)<gs(j+1)- QED, Lemma.

Note that since r, < r,< r,, (A-50) gives g,(0)<g,(0)<g,(0). The lemma then gives

that 9,(j)<9,(j)<9,(j), for j=1,2,3, ... . Thisin turn implies that s, <'s, <, and therefore

that T >0and T3 <O0. QED, Proposition 5.

I11. Cointegrating Regression.

Proposition 6. The model in Section Il implies that inventories, sales, input costs, and the
interest-rate-regime probabilities are cointegrated, with cointegrating regression

InN, =b, +by In X, +b, INnW, +b_ 7, , +b, 775, ; +v,, (22)
where
r(6,-1)6,J 16,6,3
LGOI (23-4) b, =% (23-b)
(6,-1) 6, (6,-1) 6,
(1+F)913 (23.0) (1+F)013 (23-4)
b, ==(rn-7)—"—"—"—= -C b ==(r3-7,)———— -
n (7/1 7/2)(52_1)52'// 73 (73 72)(52—1)52l//

b, is a constant, and v, is a stationary error term.

Proof: Begin from (A-15). Add and subtract BE, , InW, and BE, , In X, where appropriate,

recognize that In X,,, =In X, + Aln X,,;, and re-arrange terms to get
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23|| |

0,03( (1~ B)E . InW, - BE_,AINW,, |+(6,-1)6,T 2+ E_,AINN, - BE_AINN,,

Y

+(6,-1)63[(1- B)EIn X, - BE_ AN X, |+ B(5,-1)8,wE I N,

(A-60)
ﬂ(5 1) Zl//Et 1[InX +Aln Xt+1]+e‘]|: 72 Ty 1+(73_7/2)7T3t—1+72:|
+6,JE, 0, +c, =0
Then, combining terms appropriately yields
~BO,0JE_ AW, , +(6,-1)0.T ET[ E_AINN, - BE_AINN,,, |
Y

B[ (6,-1)63 +(5,-1),y |E_AInX,,,

1-8)(6,-1)63 - B(5,-1)6,» ]

(1-A)(6-D0I-B(5-Yow _ (A-61)

t-1

B(5,-1)0, NN, — =
+A( )l//{ N, + 6, 15

0,6, 03
ﬁal |nWt +m[(7ﬁ _7/2)7711—1 +(7/3 _72)72'&71 +;/2:|}

+6,JE,_,G +c, =0

We have assumed that In A is stationary.” IfIn A were nonstationary, then we would not obtain

a cointegrating vector. In the data, the Johansen-Juselius test rejects the null hypothesis of no

cointegrating vector (as reported in the paper). The stochastic process for In A implies that

InA —gInA,, =0, is stationary.

Re-write (A-61) to get

“1f In A contains a deterministic trend, the cointegrating relationship will contain a trend, which we allow for in

the empirical work.
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Eu {2 +B(5,-1) 8w [INN,~b, In X ~b, "W, ~b_7, , ~b_ 7, || =0 (A-62)
where
X =-PBO,0,IAINW,,, +(6, —1)913Fi—N[A|n N, —BAINN,,, |

R, (A-63)

- B[(6,-1)63 +(8,-1)8,p |AIn X, + 6,30, +c,
where b, b,, b, and b_are given by equations (23-a)-(23-d) in the text and c, is a constant.
Observe that y, is stationary since AInN,,,, AInW,,,, Aln X,,;, and 0/}, are all 1(0).
Let 7, = %+ B(8,-1) 8,y NN, =b, In X, =by, InW, —b_ 7, , ~b_7,, |. Rational

expectations and then implies that y,, —E, , v, is i.i.d mean zero and, hence, stationary. As (A-

62) gives that y, —E, 7, = x5, it follows that y,, is stationary, and since y, is stationary, it

follows that

[INN,=b, In X, =b, INW, b, 7, ,~b, 7y, | ~ 1(0). (A-64)

Writing the cointegrating relationship implied by (A-64) as a cointegrating regression we

have equation (22) where b, is a constant, and v, is a stationary error term. QED, Proposition 6.

Proposition 7. Signs of the Coefficients in the Cointegrating Regression:

NDS.v _
A b, 20 as Mi(el—l)ep
< r <
B. b, <0

C. If (A-44-a), (A-44-b), and (A-44-c) hold, then b, >0, and b, <O0.

Proof of A. From the definition of b, in (23-a) it follows that

b, > 0if and only if QR LN (6,-1)67
r

b, <0ifand only if (%-D)oy (6,-1)67 ,
r
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and

0,-1)06. -
b, =0if and only if M =(6,-1)6J . QED, Proposition 7A.
r

Proof of B: Under the assumptions of the model 4, >1, 6, >0, and &, <0. Since J denotes the
steady-state value of average production costs, it follows that J> 0. Note that
v =5, Ry (1—?)]5271. R, denotes the steady-state inventory/sales ratio, so R,> 0, and X

denotes the steady-state growth rate of sales which is assumed to be weakly positive and less

than one. It follows that & >0. We have assumed that 7, the unconditional mean real interest
rate, is positive. Collecting we havet >0, 6, >1, 6,>0, J>0, 6,<0, and 7 >0. Thus,

from (23-b), b, <0. QED, Proposition 7 B.

Proof of C: Under the assumptions of the model 6, >1and &, <0. Also, from the proof of B,
above, we have ¥ >0, J >0, and y > 0. It follows from (23-c) and (23-d) that b_, > 0 if and
only if y,—», <0 and that b_, <0 if and only if y, -y, >0 or, equivalently, that b_, >0 and
b, <O0ifandonlyify, <y, <y,.

Recallthat [, 7, 7]=r/P’=[r, r, r]P?. Since r,<r,<r, itfollows from

Lemma 1 that if (A-44-a)-(A-44-c) hold then y, <y, <y,. QED, Proposition 7 C.

IV. Analytical Conditional VVariance Ratio.

Proposition 8.

Var[InY,|InY,_, | _ 1 +<l—/11+fx) (1_/1 +fx) 1-A o 1-4]
Var[ln X,| In th(m)} 1.1 (1+n) l 1-2
n

(33)
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where Var(InY,| InY,_,) is the variance of InY, conditional on InY,

t-n?

Var(InX [ In X _ M) is

the variance of In X, conditional on In X , o% is the variance of the sales shock, o, is the

t—(n+1)

variance of the cost shock, and

R 5 -1)8w - A

' —RTFX = ( 2 ) ZZ/ -r 1 (34-a)
R, (6,-1)63 A+r—2,)

. R T A

Tw ZF\:—NFW =— 6, 1 (34-b)
R, 6, -1\ 1+r -4,

where T'x and T'w are the elasticities of output with respect to sales and input costs,

respectively.

Proof: To derive the variance of output, re-write the production error so that

InY, =E,_, InY, +u (A-65)

Then, solve (A-34) for E, , InY, and substitute into (A-65) to get

InY,==E

:U|| 0|

<

L InN, —ﬁ—N E,INnN_,+E_InX, +c, +u (A-66)

Y

Then, substitute (A-31) for ﬁ E, ,In N, into (A-66) and combine terms to get
R

Y

|

InY,=—(1-2,)=2In N, +Tx In X, +Tw INW,_, + Ty + Ty, +U2

—<;UI

(A-67)
+E,In X, +¢,+u

where T'x, Tw, [, and T, are defined above by (A-42), (A-43), (A-47) and (A-48),

respectively, and where ¢, =I", +c,. Finally, use the assumption that sales is an 1(1) process of

the form given by (A-22-a) and combine terms to get
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R . . . N
InY,=—(1-2,)==InN_, +(1+Tx |)In X _, +Tw InW,_, + Tz, , + s,
t ( 1) RY t-1 ( ) t-1 t-1 1it-1 3t-1 (A-68)

+ul +¢, +u)
where C, =C, + 4, .

In order to simplify the analysis and focus on the traditional explanations for the variance

ratio puzzle, we assume that the interest rate is constant (which implies that the probabilities are
fixed over time) and that u’ =0and u*, =0 in the remainder of this section. Then, first-

differencing (A-68) and using these assumptions yields

AlnY, =—(1—/11)§—NAIn Ny +(1+Tx JAIN X, +TwAINW,, (A-69)
Y
Use (A-33) to eliminate I;—NA InN, , from (A-69) to get
Y
AInY, =—(1-4,)(InY, ;= In X, + ;) +(1+Tx JAIn X, + TwA W, (A-70)
Or,
INY, = A,nY_, +(1=2,)In X, +(1+Tx )AIn X +TwA W, +c, (A-71)

Then, using the processes for sales and input prices, (A-22-a) and (A-22-b), to eliminate
Aln X, and AInW,_, from (A-71) gives

InY,=4,InY_,+(1-2,)In X, +<1+fx )(uffl + )+fw (ut"‘fl + Ly, )+c9
(A-72)

= 2InY, +(1=2,)In X+ (14D Jul, + Tty +c,.

Next, using backward substitution, (A-72) can be written as

=2y + B 2, (12? d IPTCRRES TS (A7)
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Through backward substitution, the stochastic process for sales may be written as

In X =N Xy + DU (A-74)
j=k
for k =0,1,...n and where we have assumed x, =0. Substituting (A-74) for the terms involving

> A In X in (A-73), we have that

i=1

n—.

—il)[Zut J /11Zut J+2,22ut [t ] lZut J (A-75)

=

InY, =A4"InY_, +(1-4, )[ ﬂljln X _ne)

(1+Fx)

Z +Tz//{lut i TCp

Combining terms appropriately, (A-75) may be re-written as

InY, =A4"InY_, +(1- 2, (Zﬂl]mxt 41

+[1—/11+1+fx ]uél +[(l—/11)21:ﬂl (1+Fx )ﬂl:|utxz

) . (A-76)
{(1—,11)2/1; +(1+Tx )Af}u}_s ---{(1—/11)221' (14 Tx) 4] 1} X
i=0 i=0
+Tw Zn:ﬂ{‘lut‘“fi +Cy
i=1
Or, more concisely,
n-1 K
InY, =4"InY_, +(1-4, (Zﬂijln Xy + { D2 A (1+1“X)4 } u.,
i k=0 i=0 (A-??)

+Tw Z Y 4oy,

Our objective is to calculate the variance of InY, at horizon n. We therefore treat the

initial values of sales and output as known (non-stochastic) quantities, implying that
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Var[In X, ., |=Var[InY_,]=0. Further, we assume that the sales shock and the cost shock

are uncorrelated at all leads and lags, specifically that cov(u*,u”)=0 Vr,s. Then, taking the

variance of (A-76), or equivalently, (A-77), yields

[

Var[InY,]= [1—/11+1+1:x T o {(1—/11)22; +(1+fx )/11}2 o

i=0

n-1

(1= A1) YA +(1+Tx )ﬂf}zai....{(l—zl)zg (14T ),1;1}2 o’

i=0

n

- no{(l—il)_z}{ +(1+Tx );le} o +[f®22§“‘”}afv (A-78)

i=1

where o7 is the variance of u; and o, is the variance of u;"; .

Computing geometric sums and combining terms appropriately gives

~ 1-A" ~ \(1-A]
Var[InYt]:{n+(l—Al+Fx)2[1 ;2J+2(1—/11+FX)£1 /Ilﬂai
— A2 _

' (A-79)
~2 [1— /Ilzn )
+Tw 142 Oy

1

Recognize from (A-74) and the assumption that Var[In X, [=0 that

Var[In X,]=(n+1)oy. (A-80)

Then, dividing (A-79) by (A-80), we have equation (33) as stated in the text.
QED, Proposition 8.
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APPENDIX C: Vector Autoregression
Following Bernnke and Mihov (1998) we estimate the following VAR:

Z = Z BZ,  + Zn:ci P +A"Y, (C-1)
P= Z DZ  + Zn:Gi P, +A, (C-2)

where Z denotes a vector of macroeconomic variables and P denotes a vector of policy variables.
In our model the macroeconomic variables are the natural logarithms of real sales (In X,), the
GDP deflator, real input prices (InW,), and real inventories (InN,). Our policy block is the
same as Bernakne and Mihov’s, so that the elements of P are total reserves, non-borrowed
reserves, and the Fed funds rate. B,,C,, A*,D,,G,, and A”are matrices, v and v, are vectors of

structural shocks whose elements are mutually uncorrelated by assumption. Policy variables, by

assumption, have no contemporaneous affect on macroeconomic variables so thatC, =0.

Re-write equation (C-2) as

Pt = (I _Go)ilZn:DiZt—i +(l _Go)ilzn:GiPt—i—i—et (C-3)
where,
e, =(1-G,) A'v,, (C-4)

Note that e,, the vector of residuals from the policy-block VAR, is orthogonal to the residuals
from the macroeconomic block. If the elements of (1 —G,)™* A" are known (C-4) can be used to
recover the unobservable v, , which includes the monetary policy shock, from the observable e, .

To identify the elements of (I —G,)™* A" Bernanke and Mihov (1998) characterize the
Fed funds market. Omitting time subscripts let e, denote innovations in the Fed funds rate,

and let v* denote exogenous shocks to the demand for total reserves. Innovations in total reserve

demand, e, are then given by

€p = —QCpp +V° (C-5)
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where o >0. Also, if e, denotes innovations in the discount rate, then e, which denotes
innovations in the demand for borrowed reserves, is given by

€gr = —0(Ber —€pisc) +V° (C-6)
where V" denotes exogenous shocks to the demand for borrowed reserves and where @ >0.

Innovations in the demand for non-borrowed reserves, eg.;, are by definition

€ner = €1r —Cpr - (C-7)
Innovations in the supply of non-borrowed reserves, e}, are governed by Federal Reserve
policy. Let

€er =8V’ + @V +V° . (C-8)

Here v°, the monetary policy shock, is an exogenous shock to the supply of non-borrowed
reserves. The policy parameters, ¢° and ¢°, describe how the Fed will react to the shocks

v® andVv®.  Bernannke and Mihov show that (C-5) — (C-8) can be used to express each of the

elements of (1 -G,)™" A" as a function of the parameters a,w,¢", and ¢°. Order variables so

.
jZété{. (We use a
t=1

that e, =[e;s €\er €l @nd v, =[v’ v® V"]' and let VérT[et]:(ﬁ

constant term plus six lags of the seven variables, so that k = 43.) Since Var,[e ] is a (3x3)

symmetric matrix it has six unique elements. Note from (C-4) that

E(ee,)= [(l ~G,)" AP] E(vtv;)[(l -G,)" AP]’.

Since the elements of v, are i.i.d. by assumption, we can write

c: 0 O
E(vv))=l 0 o’ 0
0 0 o

The matrix E(e.e})is also (3x3) and symmetric. Equating E(e.e;)to Var,[e,] therefore places
six restrictions on the seven unknown structural parameters: «,w,¢°,4",0,07, and o7 . At
least one more restriction is needed to identify these parameters and, hence, the elements of

(1-G,) " A°.



28

Bernanke and Mihov (1998) examine five alternative sets of identifying restrictions.
Four of these sets impose two additional restrictions so that the model is over identified.
Bernanke and Mihov call their fifth set the “just identified” model as it imposes the single
additional restriction that « =0. This restriction is motivated by Strongin’s (1995) argument
that the demand for total reserves is inelastic in the short run. Impulse-response functions show
that a monetary policy shock has qualitatively similar effects under all five sets of restrictions.

We therefore take the simplest approach, set a« =0, and solve E(ee;)=Var[e,] for the

remaining six structural parameters.

We estimate the VAR we using monthly data from December 1961 through August 2004.
We obtain monthly observations of the GDP deflator using the state-space procedure of
Bernanke, Gertler, and Watson (1997). This procedure uses several monthly series on prices to
infer the unobserved monthly value of the GDP Deflator. In the policy block, following
Bernanke and Mihov (1998) we render total reserves and non-borrowed reserves stationary by
measuring each as a ratio to a 36-month moving average of total reserves. > Not surprisingly, our
parameter estimates are quite similar to Bernanke and Mihov’s.

Having identified the parameters that characterize the money market it is then possible to

identify the monetary policy shocks by inverting equation (C-4) to obtain

v eTR
V| = [(l ~G,)* AZ] €an
Vv

€rrr

The middle row of this equation is
V== (" +4° )erg +(1+4° ey — (g’ — 04" Jery (C-9)

Inserting the policy-block residuals for e, e,gx, and e, on the right-hand side of (C-9) gives

the time series of monetary policy shocks, {vts }tT:1

® There is a dramatic spike in the reserves data in the months of September and October 2001, following the
September 11™ attacks. We eliminate this spike by interpolating the series from August 2001 to November 2001.
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Effects of Oil Price Shocks”, Brookings Papers on Economic Activity, (1), pp. 91-142.

Strongin, Steven (1995), “The Identification of Monetary Policy Disturbances: Explaining the
Liquidity Puzzle”, Journal of Monetary Economics, 35(3), pp. 463-97.
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