
  

  

 

 

  

 

 

                                     

               

 

   

The Interest Rate, Learning and Inventory investment 

By Louis J. Maccini, Bartholomew J. Moore, and Huntley Schaller 

    APPENDIX B 

Derivations 

Derivation of Equation (7). Using (3) in (5) the linearized Euler equation can be written 

as the following fourth- order difference equation in Nt: 

Et {θ Nt − Nt−1 + Xt − β ( Nt+1 − Nt + Xt+1 ) + γ Nt − Nt−1 − ( Nt−1 − Nt−2 ) + Xt − Xt−1 

−2β ( Nt+1 − Nt − ( Nt − Nt−1 ) + Xt+1 − Xt ) + β 2 ( Nt+2 − Nt+1 − ( Nt+1 − Nt ) + Xt+2 − Xt+1 ) 

+ξ W − βW +δβ N −α X +ηr + c = 0 .( t t+1 ) ( t t ) t+1 } 

Rearranging we have 

[ ] E (A.1)E f L N( )  = Ψt t+2 t t 

where 

1 1 θ + 2 1( +β )γ  L+ 
1 θ (1+ β )+γ (1+ 4β + β 2 ) +δβ   L2f L( )  ≡ −    2  γβ γβ 

1 3 1 4− θ + 2 1( +β ) L 2γ  + L2 γβ β 

and 

1 1X + θ γ  2 + β  X − θ +γ 1+ 2β −αδβ  XΨ = −  +t t+2  ( ) t+1 2  ( )  tγβ γβ 

1 ξ η c
+ X − (W −βW ) − r − . (8)2 t−1 2 t t+1 2 t+1 2β γβ γβ γβ 
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Let λ i , i = 1,2,3,4 , denote the roots of the fourth-order polynomial on the left-hand side 

of (A.1). Order these roots as < < < λ 4  .  It follows thatλ 1 λ 2 λ 3 

1 1 1λ =  and λ = ,  with , <  . Suppose further that , < 1.λ 1 λ 2 λ 1 λ 24 βλ 1
3 βλ 2 β 

Solve the unstable roots forward to obtain 

βλ λ j+1 j+11 2E N  =(λ + λ ) N −λ λ  N + 
∞
 βλ  − βλ   E Ψ . (7)t t 1 2 t−1 1 2 t−2 λ λ ∑ ( 1 ) ( 2 )  t t+ j( − ) 

1 2 j=0 

Note that λ  and λ  are either real or complex conjugates, so that λ + λ  and λ λ  are1 2 1 2 1 2  

real. 

Derivation of (9). To resolve the forward sum on the right-hand side of (7) note that we 

assume that sales and input prices follow AR(1) processes: 

t − xt . . .(0, 2X = µx + ρx Xt 1 +ε , where ε xt ∼ i i d  σ x )  and 

W = µw + ρ t 1 +ε , where εwt ∼ i i d  σ 2 ) .t wW − wt . . .(0, w 

We allow for the special case of ρx = ρw =1. 

1.) The terms involving X on the right-hand side of (7) can be written as 

βλ λ  ∞ j+1 j+1  1 1 2  ∑ (βλ ) − (βλ )  E −X 2 + a X 1 − a X + Xt−1+ j   (A.2)1 2 t t+ +  j 1 t+ + j 0 t+ j 2(λ −λ ) j=0 
   β 1 2   

where a1 ≡ 
1 
θ +γ (2 + β ) and a0 ≡ 

1
2 θ +γ ( + β ) −αδβ  1 2   .γβ γβ 

Note that, for j = 0, 1, 2, … ,  E Xt = µx + ρ t 1 jE X − +t + j x t 

2 2 3 
t = µ (1+ ρ + ρ E X  E X  µ (1+ ρ ρ + ρ E X − +E Xt+ +j 1 x x ) x t t−1+ j , and t t+2+ j = x x + x ) x t t 1 j . 

It therefore follows that 
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 1 E −X + a X  − a X  + X = t  t+ +2 j 1 t+1+ j 0 t+ j 2 t−1+ j β  

2  3 2 1  
 (1 ρx + ρx ) + a1 + ρx ) − a0  µx + −ρx + a1ρx − a0 x 2  t t−1+ j− +  (1  ρ + E X  

β  

and thus, 

1 1 βλ (1 ρx +ρ ) +a (1+ρx) − 0 ∑ 
j+   i− +  x 

2
1 a  

j 

∞

=0 
(βλ i ) Et 


−Xt+ +2 j +a X1 t+1+ j −a X0 t+ j + β 2 Xt− +1 j 

 
= 

1−βλ  i 

µx 

 3 2 1  ∞ 
j+ βλ i−ρ + a ρ − a ρ +  (βλ ) E X  1 . (A.3)x 1 x 0 x 2 ∑ i t t− +  j

 β  j=0 

For the AR(1) process governing Xt ,the forward sum in (A.3) is   

∞ j βλ µ 1i x(βλ ) E X  = + X∑ i t t− +1 j t−1 
j=0 (1− βλ )(1− βλ ρ ) (1− βλ ρ )i i x i x 

This in (A.3) gives   

j+1  1 ∑
∞ 

(βλ ) E −X +a X  −a X  + X = i t  t 2 j 1 t+ +1 j 0 t j 2 t 1 + +  + − +  j 
j=0  β  

 3 2 1  −1( ,x i ) x + βλ i−ρx + a1ρx − a0 ρx + 2  − βλ iρx ) Xt−1c ρ λ µ  (1  (A.4)
β  

where 

2 2 3 2 −2βλ − +  ρ ) ) − a (βλ ) (−ρx + a ρ − a0 ρx + β )
( ,x i ) ≡ + . i  (1 ρx + x + a1(1+ ρx 0  i 1 x c ρ λ  

1− βλ (1− βλ )(1− βλ ρ )i i i x 

Using (A.4) we can rewrite the term (A.2) as  

βλ λ j 1 j+1  1 2  + 1 ∞ 

(βλ ) − (βλ )  E −X 2 + a X  1 − a X  + Xt−1+ j (λ λ  ) ∑ 1 2  t t+ +  j 1 t+ + j 0 t+ j β 2−1 2  j=0   

= cX +ΓX Xt−1 (A.5) 
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βλ λ where c ≡ 1 2  c( ,λ ) − c(ρ ,λ )X λ λ  
[ ρx 1 x 2 ]µx    and  

( − 2 )1 

 1 2 3 2 −2Γ ≡ β λ λ  (−ρ + a ρ − a ρ + β )  .X 1 2  x 1 x 0 x  
 (1− βλ 1ρx )(1− βλ 2 ρx )  

2.) Proceeding as with the terms in X, the terms involving W on the right-hand side of (7) 

can be written as 

 ξ  λλ   ∞ j+1 j+1 1 2   − ∑ (βλ1 ) −(βλ2 ) Et (Wt+ j −βWt+1+ j ) = cW +ΓWWt (A.6)
 γβ  (λ1 −λ 2 ) 


 j=0 

   

 ξ  λλ1 2where c ≡ −  [c( ,ρ λ )−c(ρ ,λ )]µ ,W   w 1 w 2 w
 γβ (λ −λ )1 2 

 2 2 −β λ i (βλ i)  (1−βρw)( ,w λ i) ≡   w , andc ρ + µ
1−βλ i (1−βλ i)(1−βλ iρw)  

 ξ   (1−βρ )  
W  1 2   . Note that if λ λ 2> 0  then Γ < 0 .Γ ≡ −  λ λ  w 

 1 W
 γ  (1−βλ  ρ1 w)(1−βλ 2ρw) 

3.) Similarly, assuming that rt follows r = µr + ρ t 1 +ε , where ε ∼ . .  .(0,σ r 
2 )t r r − rt  rt i i d  , we 

obtain that 

 ∞ λ λ  j+1 j+1 η  1 2
− βλ1 − βλ E r  1 j = c +Γrrt (A.7) ∑( ) ( 2 )  

t t+ +  r
 γβ  (λ1 −λ 2 )  j=0 

   

where 

  2 2  η   1  (βλ 1 ) (βλ 2 )  c ≡ −  λ λ   + ρ  −  µr   1 2 r  r
 γ   (1− βλ 1 )(1− βλ 2 )  (1− βλ 1 )(1− βλ 1ρr ) (1− βλ 2 )(1− βλ 2 ρr )     
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 η  ρrand Γ ≡ − (λ λ  ) (  . Note that, if λ λ > 0 then Γ <  0 .r  1 2 1 2  r
 γ  1− βλ ρ )(1− βλ ρ )1 r 2 r 

4.) Finally, 

 −1  βλ λ  ∞ j+1 j+1  −λ λ1 2    1 2
 2  ∑(βλ1 ) − (βλ2 )  

c= c . (A.8)
 γβ  (λ −λ ) j=0 γ (1− βλ )(1− βλ )1 2   1 2 

5.) Using the results from (A.5), (A.6), (A.7), and (A.8) in (7) we have 

xN = Γ  + (λ + λ ) N −λ  λ  N +Γ  X +Γ  W +Γ  r + u , (9)t 0 1 2 t−1 1 2 t−2 X t−1 W t r t t 

−λ λwhere Γ =  c + c + c + 1 2 c ,0 W X r (1− βλ )(1− βλ )1 2 

>and where Γ 0 Γ <  0 Γ < 0 .X W r< 

Equation (9) in the Model without Adjustment Costs. 

In the model with γ = 0 equation (3) in (5) yields a second-order difference equation in Nt 

that has one stable and one unstable root.  Denoting the stable root by λ 1 , equation (9) 

becomes  

Nt = Γ  +  λ N0 1 t 1− +  Γ  X Xt 1− +  Γ  WW t +  Γ  r +r t 
xu ,t (9′) 

where Γ ≡X 

 −λ 

 θ 

1  θρ  x
 

− (θβ +αδβ 
 12 ) ρx  1− βλ ρ 1 x 

 
, 

 

Γ ≡W 

 −λ 

 θ 

1 ξ
 

 1(1− βρ  w )1− βλ ρ 1 w 

 
, 
 

and  −λ 1Γ ≡  ηρr   r
 θ  

 1 
1− βλ ρ 1 r 

 
. 
 

Derivation of Equation (10). 

Use equation (3) to substitute for Yt and Yt+1 in equation (5) and rearrange to get       
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E γ Y 2β∆Y + β 2∆Y − βθ ∆N + ∆X +θ∆N − βδα∆X∆ −t { ( t t+1 t+2 ) ( t+1 t+1 ) t t+1 

  θ (1 − β )   +ξ (Wt − βWt +1 ) +δβ Nt − α −  X t  +η rt +1 + c = 0 . (A.9)
 βδ       

Use ξ (Wt − βWt+1) = −βξ∆Wt+1 + (1− β )ξWt  and ηrt+1 =η∆rt+1 +ηrt  in (A.9) to get (10). 
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APPENDIX C 

Description of Cost Simulations 

In our simulations of the cost function in Section V.C, we hold Wt and Xt at their 

respective sample means in order to isolate the effect of variation in the interest rate. 

Inventories are determined from the decision rule, equations (7) and (8), using the 

Markov switching model to express expected future values of the real interest rate as 

functions of the current filter probabilities, π and π .  Output is determined from sales1t 3t 

and the change in Nt using the inventory identity, equation (3).  Given output, sales, the 

cost shock, and the level of inventories, current costs are determined from equation (1). 

At each horizon we measure the cumulative present discounted value of costs, 

discounting with the ex post real interest rate. For each parameter setting we repeat the 

simulation 10,000 times and consider the average behavior of realized costs over the 

10,000 repetitions. 

We use our estimates of the cointegrating vector to set the values of 

, , , , and γ . For our baseline parameters we set α =1θ α δ ξ  implying that the target 

level of inventories equals one month's sales, and use the normalization δ =1. To 

determine θ  and ξ , we equate the estimated coefficients on Xt and Wt from the 

cointegrating regression in levels (Table 7, row 1) to the corresponding composite 

parameters in the cointegrating vector (below equation 19). We then determine η using 

its definition, below equation (5).  Since γ cannot be determined from the cointegrating 

vector, in the baseline simulations we use γ = 0. 
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In the first set of simulations we measure the cost of not adjusting to a switch 

from the low-interest-rate regime to the high-interest-rate regime. The economy begins in 

the low-interest-rate state and the vector of probabilities is initialized at π t  = [1 0 0] '. 

We initialize inventories at their long run mean conditional on π t  = [1 0 0] '. We run the 

model for 26 periods (two years plus two lags) holding π t  = [1 0 0] '. In the 27th period 

the economy switches to the high-interest-rate state.  The firm that responds to this switch 

therefore begins to choose Nt using π t  = [0 0 1] '. The firm that does not respond 

continues to choose Nt using π t  = [1 0 0] '. 

To measure the cost of not adjusting to a transitory shock we again begin in the 

low-interest-rate regime. However, in these simulations, π t is allowed to vary in response 

to transitory movements in the interest rate. After the initial 26 periods we add to the 

realized interest rate, in the 27th period, a positive shock equal to one standard deviation 

of the transitory shock (i.e., equal toσ1 ). The filter probabilities of the firm that responds 

to this shock, π  and π , detect and adjust to this one-time transitory shock. The filter 1t 3t 

probabilities of the firm that does not respond do not detect or adjust to this shock.  

For both simulations, we run the model forward from the 27th period (the period 

of the shock or regime change) and calculate the cumulative ex post present discounted 

value of costs at horizons of six, twelve, twenty-four, and forty-eight months.  The cost of 

not responding is measured by subtracting the costs of the firm that responds from the 

costs of the firm that does not respond.   


