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The Interest Rate, Learning, and Inventory Investment  

Abstract 

Economic theory predicts a negative relationship between inventories and the real interest 

rate, but previous empirical studies (mostly based on the older stock adjustment model) 

have found little evidence of such a relationship.  We derive parametric tests for the role 

of the interest rate in specifications based on the firm’s optimization problem.  These 

Euler equation and decision rule tests mirror earlier evidence, finding little role for the 

interest rate. We present a simple and intuitively appealing explanation, based on regime 

switching in the real interest rate and learning, of why tests based on the stock adjustment 

model, the Euler equation, and the decision rule – all of which emphasize short-run 

fluctuations in inventories and the interest rate – are unlikely to uncover a relationship. 

Our analysis suggests that inventories will not respond much to short-run fluctuations in 

the interest rate, but they should respond to long-run movements (regime shifts; e.g., 

between low real rates in the 1970s and high rates in the early 1980s).  Both simple and 

sophisticated tests confirm our predictions and show a highly significant long-run 

relationship between inventories and the interest rate, with an elasticity of about -1.5. 

Furthermore, a formal model of our explanation yields a distinctive, testable implication. 

This implication is supported by the data. 
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I. Introduction 

In their survey of inventory research, Blinder and Maccini (1991) observe that an 

important puzzle in the empirical research on inventories is that the real interest rate 

seems to have little impact on inventory investment.  But, very little research on this 

issue has been conducted over the last decade. As an indicator of the lack of work, the 

recent survey by Ramey and West (1999) barely mentions the effect of interest rates on 

inventories. 

The lack of an effect of the real interest rate on inventory investment is a puzzle 

for two reasons. First, it severs one of the conventional channels through which monetary 

policy influences spending. Monetary policy is implemented by changing short-term 

interest rates, which standard theory predicts should influence inventory investment 

spending. Second, the financial press is replete with statements by business people 

asserting that higher interest rates induce firms to cut inventory holdings.  Although it is 

sometimes not clear whether the interest rate under discussion is real or nominal, there is 

nonetheless the perception of an inverse relationship between inventory investment and 

interest rates.  Yet, almost no evidence exists for such an effect. 

Earlier empirical work with inventories utilized flexible accelerator or stock 

adjustment models.  Among the key issues investigated in this literature was the 

relationship between inventory investment and interest rates.  See Akhtar (1983), Blinder 

(1986a), Irvine (1981), Maccini and Rossana (1984), and Rossana (1990) for relatively 

recent studies using this approach.1  These studies typically assumed that “desired stocks” 

depend on the current expected real interest rate as well as current expected sales and 

1 Stock adjustment models were first used in empirical work with inventories by Lovell (1961).  See Akhtar 
(1983) for a survey of the relevant literature prior to the eighties. 
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expected input prices. Current expected real rates were related to actual rates through 

distributed lag relationships and empirical work proceeded.  These studies, however, 

generally failed to establish substantial and systematic evidence of a relationship between 

the real interest rate and inventory investment, especially with finished goods inventories 

in manufacturing.  Furthermore, the literature was subject to the criticism that it lacked a 

basis in explicit optimization. 

In the eighties, the linear-quadratic model of inventory behavior combined with 

rational expectations began to be applied to empirical work on inventories.  The linear-

quadratic model of inventory behavior was developed by Holt, Modigliani, Muth and 

Simon (1960), and was revived in the economics literature in the eighties by Blinder 

(1982, 1986b) who used the model in analytical work.  When combined with rational 

expectations, the model is a very fruitful framework for empirical work.  However, the 

relationship between the real interest rate and inventory movements was not a key issue 

under investigation in empirical research with the linear-quadratic model. Rather, 

research focused on attempts to explain why production seemed to fluctuate more than 

sales, which contradicts the production-smoothing motive for holding inventories, and 

why inventory stocks seemed to exhibit such persistence.   

Two approaches were employed in empirical research.  One approach estimated 

Euler equations using generalized methods of moments techniques.  Contributions using 

this approach include Durlauf and Maccini (1995), Eichenbaum (1989), Kashyap and 

Wilcox (1993), Kollintzas (1995), Krane and Braun (1991), Ramey (1991), and West 

(1986). In this work, it proved difficult to estimate the structural parameters of interest 

when the discount factor, which is defined by the real interest rate, is allowed to vary. 
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Hence, researchers invariably assumed that the discount factor is a given, known value, 

which of course eliminates by assumption any effect of the real interest rate on inventory 

investment.  

Given the finite sample problems with generalized methods of moments applied 

to Euler equations, another approach used in empirical work with the linear-quadratic 

model was to solve for the optimal choice of inventories, that is, for the decision rule, and 

to estimate it using maximum likelihood techniques2. See Blanchard (1983), Fuhrer, 

Moore and Schuh (1995), and Humphreys, Maccini and Schuh (2001).  However, solving 

for the decision rule requires an Euler equation that is linear in its variables.  Since Euler 

equations are nonlinear in the discount rate, and therefore in the real interest rate, 

researchers again resorted to a constant and known discount rate for reasons of 

tractability. 

A few studies departed from the linear-quadratic framework and allowed real 

interest rates to vary. Miron and Zeldes (1988) utilize an approach with a Cobb-Douglas 

production function that emphasizes cost shocks and seasonal fluctuations. Kahn (1992) 

and Bils and Kahn (2000) focus on a more rigorous treatment of the stockout avoidance 

motive. In these studies, when a check was made, no effect on the empirical implications 

of the model was found when the real interest rate was allowed to vary or was held 

constant.3  An exception is Ramey (1989) who developed a model that treats inventory 

stocks as factors of production, and found evidence of interest rate effects through 

relevant imputed rental rates.   

2 As is well known, the decision rule for optimal inventories can be converted into a stock adjustment 
model.  A key difference between this approach and the earlier stock adjustment principles is that the 
desired stock now depends on expected future sales, input prices, and real interest rates as well as current 
expected values. 
3 See Miron and Zeldes (1988) and Kahn (1992).   
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Given the lack of strong evidence of a relationship between the real interest rate 

and inventory movements, a number of authors conjectured that the problem with the 

standard model is that it assumes perfect capital markets, so that firms may borrow or 

lend as much as they want at given interest rates.  Rather, they argued that capital market 

imperfections arising from asymmetric information will impose finance constraints on the 

firm’s inventory decision. These constraints suggest that the cost of external finance to 

the firm is inversely related to the firm’s internal financial position, as measured by liquid 

assets or cash flow. See Kashyap, Lamont and Stein (1994), Gertler and Gilchrist (1994), 

and Carpenter, Fazzari and Petersen (1994) for contributions to this approach.  They find 

that such financial variables do have an influence on inventory movements of small firms 

but not of large firms.  This leaves open the relationship between the real interest rate and 

inventory movements for large firms and in the aggregate. 

The purpose of this paper is to take a fresh look at the relationship between the 

real interest rate and inventory investment.  This is obviously an important issue for 

empirical work on the transmission and effectiveness of monetary policy, and 

complements the empirical work underway with interest rate rules as descriptions of 

monetary policy. We begin by extending the typical approach taken with the linear-

quadratic model, specifically to obtain a specification in which the interest rate appears in 

a separate term with its own coefficient.  Essentially, this involves an appropriate linear 

approximation of the Euler equation in the real interest rate.  This enables us to solve for 

the optimal level of inventories as a linear function of the real interest rate and other 

variables. 



 

 

 

 

 

 

5 

Using the linearized Euler equation as a starting point, we are able to derive 

specifications that allow us to parametrically estimate the effect of the interest rate on 

inventories. We use two approaches – the linearized Euler equation and the firm’s 

decision rule for inventories (which can be derived from the linearized Euler equation). 

We undertake empirical work with monthly data on inventories for the nondurable 

aggregate of U.S. manufacturing for the period 1959-1999. The results reinforce the 

existing puzzle: these specifications reveal no significant effect of the interest rate. 

Why don’t the Euler equation and decision rule show an effect of the real interest 

rate on inventories?  We suggest that the answer lies in the behavior of the interest rate, 

which displays transitory variation around highly persistent mean values (e.g., 

persistently negative real interest rates in the 1970s).  In other words, real interest rates 

appear to enter regimes that exhibit stability for extended periods with temporary 

variation around a persistent level within each regime.  Regime changes are infrequent. 

In fact, careful econometric study has provided evidence that the real interest rate is well 

described by Markov regime switching (Garcia and Perron 1996). 

If the mean real interest rate is highly persistent, firms may largely ignore short-

run interest rate fluctuations, altering their typical inventory level only when there seems 

to be a persistent change in the real interest rate.  Under these conditions, econometric 

procedures that focus on short-run fluctuations in inventories and the interest rate – such 

as the older stock adjustment or the newer Euler equation and decision rule specifications 

– may find little evidence of a relationship. 

On the other hand, firms will adjust their inventory positions if they believe there 

has been a change in the underlying interest-rate regime.  This suggests that estimation of 
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the long-run relationship between the inventories and the real interest rate may be 

fruitful.  We use two approaches. The first is simple and intuitive: we divide our sample 

into interest rate regimes – high, medium, and low – and calculate the mean level of 

(detrended) inventories in each regime.  We find that inventories are significantly higher 

when the interest rate is low. The second approach is more sophisticated.  Using the 

linearized Euler equation as a starting point, we derive the cointegrating relationship 

between inventories and the interest rate. Cointegration tests show that inventories and 

the interest rate are cointegrated. Estimates of the cointegrating vector uncover a strong 

long-run effect of the interest rate on inventories in aggregate data.  This finding is 

especially striking in view of the failure to find such a relationship using specifications 

that focus on short-run fluctuations. 

We proceed to formally model the implications of regime switching in the interest 

rate. Of course, it is sometimes difficult to distinguish between a transitory shock and a 

shift to a new persistent regime.  To capture this difficulty, we assume that firms must 

learn the unobservable regime from observable movements in the real interest rate. 

Under the assumption of regime switching and learning, the model of optimal inventory 

choice yields a distinctive implication: inventories should be based on the firm’s 

assessment of the probability that the economy is currently in a given interest rate regime.  

In particular, under the assumption of regime switching and learning, the probabilities of 

being in either the high or low interest rate regime should replace the interest rate in the 

cointegrating vector for inventories.  We test this implication and find statistically 

significant evidence that the long-run behavior of inventories is linked to these 

probabilities in aggregate data. 
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In addition to the aggregate data, we test the distinctive implication of the model 

of regime switching and learning in two-digit industry data.  In two-thirds of the 

industries, there is significant evidence that the regime probabilities influence inventories.  

In the industry data, evidence from cointegrating regressions that include the regime 

probabilities is stronger than the evidence from cointegrating regressions that include the 

interest rate.  Overall, the evidence from the two-digit industry data provides additional 

support for the hypothesis that regime switching in the real interest rate and learning play 

an important role in inventory behavior. 

The next section presents the firm’s optimization problem.  Section III examines 

the short-run relationship between inventories and the real interest rate, introducing the 

new tests for the role of the interest rate based on the Euler equation and the decision 

rule. Section IV analyzes and tests the long-run relationship between inventories and the 

real interest rate.  Section V introduces the formal model of regime switching and 

learning, derives the distinctive implication of the model, calculates the probabilities, and 

tests the implication.  Section V also presents simulations of the model.  The simulations 

illustrate why it is difficult to find a short-run relationship between inventories and the 

interest rate: the cost of not adjusting to a transitory interest rate shock is about 100 times 

smaller than the cost of not adjusting to a regime shift in the interest rate.  Section VI 

presents robustness checks, and Section VII concludes. 
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II. The Firm’s Optimization Problem 

We begin by assuming a representative firm that minimizes the present value of 

its expected costs over an infinite horizon.  Real costs per period are assumed to be 

quadratic and are defined as 

θ 2 γ 2 δ )2C = ξW Y + Y + (∆Y ) + (N −αX  (1)t t t t t t−1 t2 2 2 

where θ ,γ ,δ ,ξ ,α > 0.  Ct denotes real costs, Yt, real output, Nt, end-of-period real 

finished goods inventories, X t , real sales, and Wt , a real cost shock, which we will 

associate with real input prices.  (We do not include unobservable cost shocks, since they 

are not directly relevant to the relationship between inventories and the interest rate.  In 

Section IV.B, we discuss how the modeling of unobservable cost shocks would affect the 

cointegrating vector.) The level of real sales, X t , and the real cost shock, Wt, are given 

exogenously. The first two terms capture production costs.  The third term is adjustment 

costs on output. The last term is inventory holding costs, which balance storage costs and 

stockout costs, where αX t is the target stock of inventories. 

1Let β  be a variable real discount factor, which is given by β = , where rt t t1+ rt 

denotes the real rate of interest.  The firm’s optimization problem is to minimize the 

present discounted value of expected costs, 

∞ t 1 
E0 ∑


∏
− 

β j Ct ,      (2)  
t =0  j=0  

subject to the inventory accumulation equation, which gives the change in inventories as 

the excess of production over sales, 
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Nt − Nt−1 = Yt − X t .      (3)  

The Euler equation that results from this optimization problem is  

Et {θ (Yt − βt+1Yt+1 ) +γ (∆Yt − 2βt+1∆Yt+1 + βt+1βt+2∆Yt+2 )  (4) 

+ξ (Wt − βt+1Wt+1 ) + δβt +1 ( Nt −α Xt+1 )} = 0 

where from (3) Yt = Nt − Nt−1 + Xt . Observe that (4) involves products of the discount 

factor and the choice variables and products of the discount factor and the forcing 

variables. Linearizing these products around constant values, which may be interpreted as 

stationary state values or sample means, yields a linearized Euler equation: 

2Et {θ (Yt − βYt+1 ) +γ (∆Yt − 2β∆Yt+1 + β ∆Yt+2 ) +ξ (Wt − βWt+1) (5) 

+δβ ( N −α X ) +ηr + c} = 0t t+1 t+1 

1where = ( Y +ξW ) > 0,  c = − r β (θY +ξW )η β θ < 0 , β = , and a bar above a 
1+ r 

variable denotes the stationary state value.  This linearized Euler equation will serve as a 

basic relationship that we will use in the empirical work. 
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III. The Short-Run Relationship between Inventories and the Real Interest Rate 

A. Euler Equation Estimation 

A common approach in empirical work on inventories is to apply rational 

expectations to eliminate unobservable variables and then use Generalized Methods of 

Moments techniques to estimate the Euler equation.  We first investigate whether a short-

run relationship between inventories and the real interest rate can be found using this 

approach. 

Assume that sales, Xt , the cost shock, Wt , and the real interest rate, rt , obey 

general stochastic processes. Then, use rational expectations to eliminate expectations 

from (5) to get 

2θ (Yt − βYt+1 ) +γ (∆Yt − 2β∆Y 1 + β ∆Yt+ ) +ξ (Wt − βWt+1)  (6)t+ 2 

+δβ(Nt −αXt+1)+ηrt+1 +c =κt
I 

where κ t
I is a forecast error. 

Since not all the structural parameters of the Euler equation are identified, we 

adopt the widely used normalization and set δ  equal to 1.  We estimate the Euler 

equation by GMM,4 using a constant, Yt-1, Wt-1, Nt-1, Xt-1 and rt-1 as instruments.5  All of 

the variables are linearly detrended.6  Inventory Euler equations have been estimated by 

GMM by many authors, including Durlauf and Maccini (1995), Eichenbaum (1989), 

Kashyap and Wilcox (1993), Kollintzas (1995), Krane and Braun (1991), Ramey (1991), 

4 As discussed by West (1995), estimation by GMM is valid both in the case where sales are I(0) and in the 
case where they are I(1), as long as (in the latter case) they are cointegrated.  See particularly the discussion 
on pages 201-202.  
5 The interest rate is included because it appears in the Euler equation specification that allows for variation 
in the interest rate, and it is desirable to use a consistent set of instruments across specifications. 
6 The results are qualitatively similar if the Euler equation is estimated without detrending. 
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and West (1986). A few papers have allowed for interest rate variation, for example, Bils 

and Kahn (2000), Miron and Zeldes (1988), Kahn (1992), and Ramey (1989). To the best 

of our knowledge, however, this paper is the first to estimate a coefficient on the interest 

rate in a inventory Euler equation. 

Estimates of the Euler equation under the assumption of a constant interest rate 

are presented in the first column of Panel A of Table 1. (The version of the Euler 

equation relevant to these estimates is equation (4) with βt set equal to a constant.)  The 

target inventory-sales ratio, α , is very precisely estimated and is approximately four 

weeks of sales, which is plausible.  Further, the estimate of the slope of marginal cost, θ , 

is positive and significant, indicating rising marginal cost.  These estimates are consistent 

with those found by estimating analogous Euler equations in the recent literature.7 

Interestingly, ξ , the parameter associated with observable cost shocks, is positive (as 

theory predicts) but insignificantly different from zero.  The estimated adjustment cost 

parameter, γ , is positive, a result that is consistent with the existence of adjustment costs, 

but γ  is imprecisely estimated and not significantly different from zero. 

Estimates of the Euler equation under the assumption of a variable interest rate 

are presented in the second column of Table 1, Panel A.  The t statistic on η  provides a 

simple test for the effect of the interest rate on inventories. The point estimate of η  has 

the wrong sign and is insignificantly different from zero.  

Even if η  is not significantly different from zero, it is possible that allowing for a 

variable interest rate could improve estimates of the other parameters and, more 

generally, improve the fit of the Euler equation.  Informally, a comparison of the first and 

7 See, for example, Durlauf and Maccini (1995). 
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second columns of Panel A suggests that allowing for a variable interest rate makes some 

quantitative difference in the estimates of the other parameters but little qualitative 

difference. A formal test procedure, which is based on a comparison of the overidentifying 

restrictions between the two models, is described by Newey and West (1987).  The intuition 

for the test is straightforward.  If a model is incorrectly specified, the J statistic for the model 

will tend to be large; the difference in J statistics between two models provides a test of 

whether the improvement in specification is statistically significant.  The difference in J 

statistics is distributed as a χ 2 , with degrees of freedom equal to the number of omitted 

parameters, here equal to one.8  The Newey-West test statistic is 2.752, so it is not possible 

to reject the constant interest rate restriction.  

In the remaining panels of Table 1, we check the robustness of the results to 

changes in the specification of the model.  In the empirical inventory literature, there is 

mixed evidence on the importance of adjustment costs and observable cost shocks.9 

Panel B presents Euler equation estimates from a specification that includes observable 

cost shocks but sets γ  to zero. Estimates of the other parameters (θ , ξ , and α ) are not 

dramatically affected.  As in the Panel A results, the interest rate enters with the wrong 

sign and is insignificantly different from zero.  Also as in Panel A, the Newey-West test 

fails to reject the constant interest rate specification. 

Panel C presents estimates of a specification that allows for adjustment costs but 

sets ξ  equal to zero (so observable cost shocks do not enter).  Panel D presents estimates

 8 For the test, the same weighting matrix should be used; we use the weighting matrix from the variable 
interest rate specification, since it is the "unrestricted" model. 

9 See, e.g., the surveys by Blinder and Maccini (1991), Ramey and West (1999), and West (1995). 
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of a specification that excludes both adjustment costs and observable cost shocks.  In 

neither case is there statistically significant evidence of a role for the interest rate. 

Overall, the Euler equation results presented in this section show no evidence of a 

statistically significant relationship between inventories and the interest rate.  This is 

consistent with much earlier research, which has typically found that inventories are not 

significantly related to the interest rate. 

B. Decision Rule Estimation 

An alternative approach in empirical work with inventories is to estimate the 

decision rule. We next explore whether this approach can detect a short-run relationship 

between inventories and the real interest rate.  In an appendix, we show that the linearized 

Euler equation, (5), may be written as a fourth-order expectational difference equation in 

Nt. Let λ 1  and λ 2  denote the stable roots of the relevant characteristic equation.  The 

firm’s decision rule can be expressed as 

βλ λ ∞ j+1 j+11 2   E N =(λ + λ ) N −λ λ  N + ∑ (βλ ) − (βλ ) E Ψ (7)t t 1 2 t−1 1 2 t−2  1 2  t  t j  (λ λ− ) j=0   + 
1 2 

where 

1 1θ γ  +Ψ t j+ = −Xt+2+ j +  + (2 + β ) Xt+1+ j − θ +γ (1+ 2β ) −αδβ  Xt j  2  γβ γβ 

1 ξ η c
+ 2 Xt 1 − (Wt j −βWt+ +1 j ) − 2 r + +  j− 2  . (8)− 2 + t 1β γβ γβ γβ 
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Assume that the firm carries out its production plans for time t, so that E Yt t  = Yt . Then 

equation (3) implies that (N − E N  ) = −(X − E X  ) , which means in effect that t t t t t t 

xinventories buffer sales shocks.  Define ut ≡ −(Xt − E  Xt ) as the sales forecast error. t 

Assuming that sales, real input prices, and the real interest rate follow independent AR(1) 

processes, and that the firm’s current information set includes lagged values of sales, and 

current and lagged values of input prices and the interest rate, equations (7) and (8) give  

(λ + λ )N −λ λ N + Γ X + Γ W + rN = Γ +  Γ + u x . (9)t 0 1 2 t−1 1 2 t−2 X t−1 W t r t t 

with Γ > 0 , Γ < 0 , and Γ < 0 .X W r< 

The coefficient on sales is, in general, ambiguous, as it balances production 

smoothing and stockout avoidance.  Based on prior empirical work, we expect a positive 

coefficient, which implies that stockout avoidance dominates. It follows from Γ < 0W 

that an increase in real input prices should cause a decline in inventories. Γ < 0r 

implies that an increase in the real interest rate should induce the firm to reduce 

inventories. 

Under the assumption made above, that sales is AR(1), the decision rule is just 

identified and can be estimated by OLS.  (In later sections, we specifically assume a unit 

root process, but the result that the decision rule is just identified and can be estimated by 

OLS holds generally for any AR(1) process.) Inference can be carried out with standard 

distributions, regardless of whether sales are I(0) or I(1).10  As noted above, a number of 

10 See West (1995) for a detailed discussion of estimation and inference issues.  Our estimation procedure 
for the decision rule is also valid if there are unobservable cost shocks (including serially correlated shocks) 
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authors have estimated the decision rule, including Blanchard (1983), Fuhrer, Moore, and 

Schuh (1995), and Humphreys, Maccini, and Schuh (2001).11 

Based on previous studies that allow for interest rate variation, it would be mildly 

surprising if we found that the coefficient on the interest rate was of the theoretically 

predicted sign and statistically significant.  On the other hand, to the best of our 

knowledge, no one has previously reported estimates of the decision rule for inventories 

that allow for a variable interest rate.  Prior studies that have allowed interest rate 

variation have estimated Euler equations (although these studies, as noted above, did not 

include a coefficient on the interest rate and therefore did not parametrically estimate the 

effect of the interest rate on inventories). 

We begin by considering the most general specification of the decision rule 

(allowing for both adjustment costs and observable cost shocks) in Panel A of Table 2. 

Under the assumption of a constant interest rate, the coefficients on all of the variables in 

the decision rule are significantly different from zero.  Sales has a positive coefficient, 

indicating that the stockout avoidance motive dominates, and real input prices have a 

negative coefficient, consistent with the predictions of the theory. 

Under the assumption of a variable interest rate, the second column of Panel A 

shows that the estimated coefficient on the interest rate is positive, a result that is contrary 

to the implications of the linear-quadratic model, although the coefficient on the interest 

unless the shocks are I(1).  We consider the case of I(0) observable cost shocks in this subsection and I(1) 
observable cost shocks in Section VI. 
11  These studies have typically estimated structural parameters via nonlinear maximum likelihood 
procedures, whereas in this paper we are in effect estimating reduced form parameters.  However, since the 
relevant structural parameter connected to the real interest rate is η , and since η  appears only in the 
reduced form parameter Γ , the results for the role of the interest rate are unlikely to be improved by r 

estimating structural parameters using nonlinear procedures. 

https://2001).11
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rate is insignificant.  Further, allowing for a variable interest rate has no effect on the 

signs or significance of the coefficients on sales, real input prices, or lagged inventories. 

Panel B presents decision rule estimates from a specification that includes 

observable cost shocks but excludes adjustment costs.  This changes the specification of 

the decision rule, leading to the omission of the second lag of inventories.  Panel C 

presents estimates of a specification that allows for adjustment costs but excludes 

observable cost shocks. The specification in Panel D excludes both adjustment costs and 

observable costs shocks.  The estimated coefficient on the interest rate always has a 

positive sign, although it is never significant. The signs and significance of the other 

variables are little affected by whether or not the interest rate is variable or constant.12 

Summarizing the results from our estimation of the decision rule, there is no 

evidence that the real interest rate has a statistically significant effect on inventories. 

Again, this is consistent with earlier research.  

IV. The Long-Run Relationship between Inventories and the Real Interest Rate.  

Why is it that estimates of the Euler equation and decision rule show no 

statistically significant effect of the real interest rate on inventories?  A possible clue lies 

in the behavior of the interest rate.  Figure 1 plots the ex-post real interest rate over the 

period 1961-2000. As the figure illustrates, there are long periods when the interest rate 

is centered on a given mean. For example, the real interest rate is centered on a value just 

below 2% for much of the 1960s.  In the early 1970s, there is a shift in the mean real 

interest rate to a value of about -2%. The real interest rate rises sharply around 1980 and 

12 A minor exception is that the coefficient of sales is a bit more significant when the interest rate is 
variable.  Also, note that excluding observable cost shocks seems to reduce the statistical significance of 
sales, suggesting that excluding cost shocks creates an omitted variable bias problem. 

https://constant.12
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remains high (around 5% on average) for much of the 1980s.  In the late 1980s and for 

much of the 1990s, the real interest rate returns to a mean value that is close to its 1960s 

level. 

What implication does this behavior of the interest rate have for empirical 

estimates of the effect of the interest rate on inventories?  If the mean interest rate is 

highly persistent, firms may largely ignore short-run interest rate fluctuations, adapting 

average inventory levels only when there appears to be a persistent change in the 

opportunity cost of holding inventories. If this is the case, then econometric procedures 

that focus on short-run fluctuations in inventories and the interest rate may find little 

evidence of a relationship. 

In this section, we examine the long-run relationship between inventories and the 

interest rate.  We consider two tests. The first is a simple, intuitive test: are inventories 

lower on average during the high interest rate regime?  The second is a more 

sophisticated test: we derive and estimate the cointegrating vector for inventories under 

the assumption of variable interest rates. 

A. Tests of Means 

Our first test of the long-run relationship between inventories and the interest rate 

divides the 1961-2000 period into regimes characterized by different mean interest rates. 

Specifically, we classify the period 1972:02-1980:02 in the low-interest-rate regime, 

1980:12-1986:04 in the high-interest-rate regime, and the remaining observations in the 

medium-interest-rate regime.13 

13 This is an intuitive definition of the regimes; we introduce a formal procedure for identifying regimes in 
Section V. 

https://regime.13
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The results are presented in Table 3.  Inventories are highest in the low-interest-

rate regime and lowest in the high-interest-rate regime.  The level of detrended 

inventories is about 8% higher in the low-interest-rate regime than in the high-interest-

rate regime.  The difference in means between the high and low-interest-rate regimes is 

highly significant. To the best of our knowledge, this is the first time that this simple test 

for the long-run effect of the interest rate on inventories has been reported. 

B. Derivation of the Cointegrating Vector 

A more sophisticated test of the long-run relationship between inventories and the 

interest rate is to derive the cointegrating relationship between inventories, the interest 

rate, and any other relevant variables. The advantage of the cointegration approach over 

the simple test of means presented earlier is that it accounts for the effect of variables 

such as sales and observable cost shocks on the long-run level of inventories. 

To derive the cointegrating vector, it is helpful to rewrite the basic Euler equation, 

(5), in such a way as to put most of the variables in the form of first differences14, 15: 

14 See Kashyap and Wilcox (1993) and Ramey and West (1999) for derivations of the cointegrating 
relationship for inventories under the assumption that the interest rate is constant.   

15 We are agnostic on the issue of unobserved cost shocks, which are not of primary interest in this paper. 
As a result, we do not include a term comparable to Uct in Hamilton (2002) or Ramey and West (1999) in 
our model and thus do not address the issue of whether unobservable cost shocks are best modeled as I(0) 
or I(1).  Hamilton (2002) argues that, if one were to include unobservable cost shocks under his preferred 
assumptions, the same variables would appear in the cointegrating vector, but the coefficients would be 
altered.  It is possible to show that his argument can be generalized to our model, which includes a time-
varying interest rate and observable cost shocks.  Under assumptions similar to Hamilton’s, the same 
variables appear in our cointegrating vector.  The coefficients are altered, but signs of the coefficients 
remain the same. 
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2Et {γ (∆Yt − 2β∆Yt +1 + β ∆Yt +2 ) − βθ (∆Nt +1 + ∆X t +1) + θ∆Nt − βδα∆X t +1 − βξ∆Wt +1 +η∆rt +1 

  θ (1− β )   + βδ Nt −α−  Xt  + (1− β )ξWt + ηrt + c  = 0.  (10)
βδ     

where Yt  is again given by (3). [For the derivation of (10) from (5), see the appendix.] 

Note that we can express equation (10) as Et {χ t+2} = 0  for the appropriate definition of 

χt+2 . Rational expectations implies that the expectation error 

φ ≡ χ − E {χ } will be serially uncorrelated and therefore cannot have a unit t+2 t+2 t t+2 

root; in other words φt+2  is I(0). Since Et {χ t+2 }=0 , χt+2 = φt+2 . Since φt+2  is I(0), 

χt+2 will also be I(0).  Suppose for the moment that Nt , Xt , Wt  and rt  are I(1). Then the 

stationarity of χt+2  implies that inventories, sales, the cost shock, and the real interest 

rate will be cointegrated,  with cointegrating vector  

  θ (1− β )  ξ (1− β ) η  
1 ,  − α− , ,  . βδ βδ βδ    

It is useful to note that ADF tests show Nt , Xt , Wt  and rt  to be I(1) variables (in the 

usual sense that the tests fail to reject the null hypothesis of a unit root). 16 

From the above derivation, it follows that the cointegrating vector is the same 

regardless of whether adjustment costs are included in or excluded from the model.  To 

see why, consider the first term in parentheses in equation (10), which reflects adjustment 

16 An alternative procedure for deriving the cointegrating relationship between inventories and the forcing 
variables is to express the decision rule for optimal inventories in the form of a stock adjustment principle 
in which case the cointegrating relationship is defined by the “desired” or the “equilibrium” stock of 
inventories.  Such a procedure yields an identical cointegrating vector. 
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costs. Note that all the elements in this term enter in the form ∆Y . Thus, if Y is I(1), all 

the elements in this term will be I(0).

 The parameters α , θ , δ , ξ  are assumed to be positive, and we have shown, 

below equation (5), that η  is positive. When the cointegrating vector is expressed in the 

form of a regression, Xt , Wt  and rt  will be on the right hand side of the equation, so 

their coefficients will have signs opposite to those shown in the cointegrating vector 

above. In other words, in the long run, we expect inventories to be inversely related to 

the cost shock and the real interest rate, and, if the accelerator motive for holding 

inventories dominates the production smoothing motive, we expect inventories to be 

positively related to sales. 

C. Cointegration Tests and Estimates of the Cointegrating Vector 

Johansen-Juselius tests of cointegration between inventories, sales, observable 

cost shocks, and the interest rate are presented in Table 4 for levels, logs, and linear 

detrending of the variables.  The evidence is consistent with the theory: the tests reject the 

null hypothesis of no cointegration. 

We turn next to estimation of the cointegrating vector.  Our estimation procedure 

is DOLS as described by Stock and Watson (1993).  In contrast to SOLS estimation of 

cointegrating vectors, DOLS corrects for biases that can arise (except under rather strong 

assumptions) in finite samples.  In addition, Stock and Watson (1993) find that DOLS has 

the minimum RMSE among a set of potential estimators of cointegrating vectors.17, 18 

17 DOLS essentially adds leads and lags of the first differences of the right hand side variables to the 
cointegrating regression to ensure that the error term is orthogonal to the right hand side variables.  (For a 
brief description, see, e.g., Hamilton (1994), p. 602-612.)  In theory, the number of leads and lags could be 

https://vectors.17
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Table 5 presents estimates of the cointegrating vector.  The interest rate enters the 

cointegrating relationship with a negative sign, and the t-statistic is greater than five, 

which is very strong evidence of a long-run relationship between inventories and the 

interest rate.  This is a very striking result, especially when compared with the results 

reported above indicating no evidence of a short-run relationship between inventories and 

the interest rate.   

The point estimate of the coefficient on the interest rate (based on linearly 

detrended variables) is -0.016 and the difference in the interest rate between the high-

interest-rate regime and the low-interest-rate regime is about 6.8%. The estimated 

coefficient in Table 5 therefore implies a decrease in inventories of about 11% as the 

economy moves from the high to the low interest rate.19 

It is interesting to compare these results with the findings in Table 3.  The simple 

comparison of means in Table 3 shows that inventories are about 8% lower in the high-

interest-rate regime than in the low-interest-rate regime.  Controlling for other variables, 

specifically sales and observable cost shocks -- as the cointegrating regression does -- 

leads to a qualitatively similar but slightly larger effect. Inventories are about 11% lower 

in the high-interest-rate regime than the low-interest-rate regime. 

infinite, but this is impractical.  There is Monte Carlo evidence (for the case of fixed investment) that 
relatively high numbers of leads and lags are the most effective in reducing bias.  Caballero (1994, p. 56) 
finds that the bias is smallest when the number of leads and lags is 25 for a sample size of 120. We set the 
number of leads and lags to 24.  (Recall that we are using monthly data.) 
18 In estimating a cointegrating regression, the appropriate econometric procedure is to allow for the 
possibility of a deterministic trend. We do this both by detrending the data (in the specifications that use 
linearly detrended data) and by always allowing for a deterministic trend in the cointegrating regression.   
19 The only previously reported cointegrating vectors for inventories which allow for a variable interest rate 
of which we are aware are in Rossana (1993), which uses a rather different approach.  Instead of including 
the ex post real interest rate in the cointegrating vector, he enters the nominal interest rate and the inflation 
rate as separate variables and (using two-digit industry-level data) tests the restriction that the coefficients 
are equal in magnitude and of opposite signs.  It is therefore not straightforward to determine from the 
results he reports whether inventories have an economically or statistically significant relationship with the 
real interest rate. 
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Interestingly, cost variables enter the cointegrating regression with the 

theoretically predicted sign and a coefficient that is significantly different from zero, a 

relationship that many empirical studies that focus on short-run fluctuations fail to 

uncover. The estimated elasticity of inventories with respect to observable cost shocks is 

between -0.8 and -1.0. 

V. Formally Modeling Regime Switching and Learning 

In the previous section, we suggest an intuitively appealing explanation for the 

lack of a relationship between inventories and the real interest rate.  The behavior of the 

real interest rate is strongly suggestive of regime shifts, with transitory variation around 

persistent mean interest rates. Firms may largely ignore the short-run transitory variation 

in the interest rate and only respond to changes in the interest rate that appear to signal a 

change in the persistent regime. Consistent with this explanation, two tests confirm a 

highly significant long-run relationship between inventories and the interest rate.  In this 

section, we go a step further.  We formally model regime shifts in the real interest rate 

and show how this affects inventory behavior.  This leads to a distinctive implication of 

regime switching and learning for the long-run behavior of inventories.  In subsection D, 

we test this implication. 

A. Regime Switching and Learning 

Regime switches can be modeled by assuming that the real interest rate follows  

rt = rSt 
+σ S ⋅ε t (11)

t 

where ε t ~ i.i.d. N(0,1) and St is the interest rate regime (with the mnemonic S for 

“state”). Regime-switching in the real interest rate has been studied by econometricians. 
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In particular, Garcia and Perron (1996) show that the real interest rate in the U.S. is well 

described by a three-state Markov switching model.  We therefore assume that St ∈ {1, 

2, 3} follows a Markov switching process20. Let r r< < r , so that when St = 1 the real1 2 3 

interest rate is in the low-interest-rate regime, when St = 2 the real interest rate is in the 

medium-interest-rate regime, and when St = 3 the real interest rate is in the high-interest-

rate regime. St and ε t  are assumed to be independent. Denote the transition probabilities 

governing the evolution of St by pij = Prob(St = j |St−1 = i).  Collecting these probabilities 

into a matrix we have  

 p p p 11 21 31 

P = 
 p12 p22 p32 

 . 
 p p p  13 23 33  

Interest rate regimes are not directly observable.  No one announces to firms that 

the economy has just entered the low-interest-rate regime.  Instead, firms must make 

inferences about the underlying regime from their observations of the interest rate.  In 

other words, firms learn about the interest rate regime. 

To be precise, we assume that the firm knows the structure and parameters of the 

Markov switching process but does not know the true interest-rate regime.  The firm must 

therefore infer St from observed interest rates.  We denote the firm’s current probability 

assessment of the true state by πt. That is,    

π t 1|  1  Prob(St = Ωt )  
    π t = π 2t = Prob(St = 2 |Ωt ) ,      
π 3   Prob(St 3 | )t = Ωt  

20 For a comprehensive discussion of Markov switching processes, see Hamilton (1994, Chapter 22). 
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where the firm’s information set, Ωt , includes the current and past values of rt. Here, 

π it is the firm’s estimate at date t of the probability that the real interest rate is in regime i. 

To understand the learning process, consider how the firm uses its observation of 

the current real interest rate to develop its probability assessment, π t . Beginning at the 

end of period t-1 the firm uses π t−1 together with the transition probabilities in P to form 

beliefs about the period t interest rate state prior to observing rt .  That is the firm  

evaluates π − ≡ Prob (S = i | Ω ) for i = 1, 2, 3  usingit t| 1  t  t−1 

π 1 |t t−1
  
π 2 |t t  −1  = Pπ t−1    (12)  
π  3 |t t  −1  

Once the firm enters period t and observes rt , it uses the prior probabilities from (12) 

together with the conditional probability densities, 

1  −1 2 (rt | St i ) exp  2 (rt − r )i  for i = 1, 2, 3, (13)f = =  
σ i 2π 2σ i  

to update π t according to Bayes’ rule.  Specifically, 

π it t| 1  ⋅ f (r | St = i)
π it = 3 

− t for i =1, 2,3.    (14)  
∑π jt t| 1− ⋅ f (r |t St = j) 
j=1 

Thus, the firm uses Bayes’ rule and its observations of the real interest rate to learn about 

the underlying interest rate regime. 

Given π t , the expected real interest rate is given by 

′E r = r Pπ = γ π  +γ π  +γ π    (15)  t t+1 v t 1 1t 2 2t 3 3t 

where r ′ = [r , r  , r  ] , γ ≡ p r + p r + p r , γ ≡ p r + p r + p r , andv 1 2 3 1  11 1  12  2  13  3  2  21 1  22  2  23  3  



 

 

                        

 

 

 

 

 

 

 

 

 

25 

γ ≡ p r + p r + p r . Since π +π +π = 1 by definition, we can eliminate π  from 3  31 1  32  2  33  3  1t 2t 3t 2t 

the right hand side of (15) to obtain 

Et tr +1 = (γ1 − 2 ) 1 + (γ 3 −γ 2 )π t +γ 2     (16)  γ π  t 3 

Now, to isolate the expected real interest rate in the linearized Euler equation, 

partition (5) so that 

2Et {θ (Yt − β Yt+1 ) + γ (∆Yt − 2β∆Yt+1 + β ∆Yt+2 ) +ξ (Wt − βWt+1)
 (17) 

+δβ(Nt −αXt+1)}+ηErt t+1 +c = 0.  

Then, substitute (16) into (17) to get 

2Et {θ (Yt − β Yt+1 ) + γ (∆Yt − 2β∆Yt+1 + β ∆Yt+2 ) +ξ (Wt − βWt+1)
 (18) 

+δβ (Nt −α Xt 1)}+η γ( 1 −γ 2 )π1 + η γ( 3 −γ 2 )π t +ηγ 2 + c = 0.  + t 3 

To summarize this sub-section, we have introduced a formal model of regime 

switching and learning. The key variable in the model is π it , the firm's assessment of the 

probability of being in interest rate regime i. In the model of optimal inventory choice 

under the assumption of regime switching and learning, these probabilities replace the 

interest rate in the Euler equation.   

B. Derivation of the Distinctive Implication of Regime Switching and Learning 

We follow the same approach as in Section IV.B to derive the long-run 

implication of regime switching and learning. Re-write equation (18) so that most of the 

variables are in first differences: 
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( Y 2β∆Y + β ∆Y ) − βθ ∆N + ∆X )E { γ ∆ −  2 ( + θ∆N − βδα∆X − βξ∆Wt t t +1 t+2 t +1 t+1 t t+1 t +1 

  θ (1− β )   
+ βδ Nt −α−  Xt  + (1− β )ξWt } (19)

βδ    

+ η(γ1 −γ 2 )π1t + η γ( 3 −γ 2 )π3t + ηγ 2 + c = 0 . 

Suppose now that N , X , W , π  and π  are I(1).21  Then inventories, sales, the cost t t t 1t 3t 

shock, and the probabilities will be cointegrated with cointegrating vector 

  θ (1− β )  ξ (1− β ) η γ( −γ ) η γ( −γ ) 1 2 3 21 ,  −α−  , , ,  .
βδ βδ βδ βδ    

Again, note that, when the cointegrating vector is expressed in the form of a 

regression, X , W , π  and π  will be on the right-hand-side of the equation, so their t t 1t 3t 

coefficients will have signs opposite to those shown in the cointegrating vector above. 

We have shown earlier that η > 0 . (γ1 −γ 2 )  and (γ 3 −γ 2 )are complicated functions of 

the elements of P and rv, so it is not possible to sign them unambiguously for all 

mathematically feasible values of P and rv. They can, however, be signed for the 

empirically relevant values.  Using our estimates of the elements of P and rv,22 we obtain 

(γ −γ ) < 0  and (γ −γ ) > 0 , so the model predicts that the coefficient on π1t will be 1 2 3 2 

positive and the coefficient on π 3t will be negative.   

21 Since π1t and π3t have a restricted range, one might wonder whether it is better to model them as I(0) or 
I(1). We note two points.  First, in careful applied econometric research, variables with restricted ranges, 
such as the nominal interest rate, are modeled as I(1) variables when they are highly persistent.  (See, e.g., 
Stock and Watson (1993) and Caballero (1994).) Second, unit root tests indicate that π1t and π3t are I(1).   

22 See the next sub-section.  
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This accords with our intuition of how the probabilities should affect inventories. 

If, for example, there is an increase in π1t , the firm believes that the economy is entering 

a persistent low-interest-rate regime.  This will lower the expected opportunity cost of 

holding inventories and should therefore lead to an increase in Nt. Looking at the 

cointegrating vector, we can see this effect.  With η(γ1 −γ 2 ) < 0 , an increase in π1t  will 

lead to an increase in Nt (since π1t  will be on the right hand side of the cointegrating 

regression). Similarly, since η(γ −γ ) > 0 , an increase in π , which indicates that the3 2 3t 

firm believes the economy is entering a persistent high-interest-rate regime, will lead to a 

decrease in Nt. 

Thus, the distinctive implication of regime switching and learning is that 

inventories will be cointegrated with the probabilities π  and π  and that the coefficient 1t 3t 

on π1t  will be positive and the coefficient on π3t will be negative. 

C.  Calculating the Probabilities π  and π1t 3t 

In order to test the distinctive implication of regime switching and learning, we 

must construct the probabilities π  and π . This can be done using the techniques1t 3t 

described in Hamilton (1989 and 1994, Chapter 22).  We estimate the parameters of a 

three-state Markov switching process for the real interest rate over our sample period. 

Our estimates of the elements of the transition probability matrix are 

 p11 = 0.98 p21 = 0.01 p31 = 0.00 
 P =  p12 = 0.02 p22 = 0.98 p32 = 0.04 . 
 p13 = 0.00 p23 = 0.01 p33 = 0.96 



 

 

 

 

   

 

 

28 

Our estimates of r1, r2, and r3 (annualized) are -1.71, 1.61, and 5.15, and our estimates of 

σ1, σ2, and σ3 are 1.90, 0.80 and 1.96, respectively. 

Two features of the behavior of the real interest rate stand out from these 

estimates.  First, since p11, p22, and p33 are all close to one, the interest rate regimes are 

highly persistent. For example, these estimates indicate that, if the economy is in the 

low-interest-rate regime this period, there is a 98% probability that it will be in the low-

interest-rate regime next period.  Similarly, if the economy is in the high-interest-rate 

regime this period, there is a 96% probability that it will be in the high-interest-rate 

regime next period. This suggests that changes in the interest-rate regime will occur 

infrequently. Furthermore, once the firm comes to believe that the economy has entered 

a particular interest rate regime, it will anticipate that the current regime will persist for 

some time. 

Second, note that the difference between the mean interest rates of any two 

regimes is large relative to the standard deviations.  For example, r2 – r1 = 3.3, which is 

1.7 times as large as the standard deviation of the white noise shock in regime one. This 

suggests that, within a given regime, white noise shocks that are sufficiently large to be 

mistaken for a regime change will not be common. 

Figure 2 plots the behavior of π1t, π2t, and π3t as obtained by applying the filter in 

equations (12), (13), and (14) to the real interest rate data in our sample.  (π 2t  is not 

required for subsequent tests, since the sum of the three probabilities is 1, but we 

illustrate π 2t  in Figure 2 for completeness.)  This figure confirms that, when viewed from 

the perspective of the Markov switching model, most of the short-run variation in the real 

interest rate consists of temporary fluctuations around the mean interest rate for the 
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current regime.  For the most part, the probability of being in a given interest rate regime 

is close to 0 or 1.  Only occasionally does the Markov switching model identify shifts in 

the mean real interest rate. 

D. Tests of the Distinctive Implication of Regime Switching and Learning 

In Section V.B, we show that regime  switching and learning have a distinctive 

and testable implication: inventories will be cointegrated with π1t and π3t, the 

probabilities that the economy is in the low and high-interest rate regime, respectively. 

Johansen-Juselius tests of cointegration between inventories, sales, observable cost 

shocks, and the probabilities π1t and π3t are presented in Table 6 for levels, logs, and 

linear detrending of the variables.  The evidence is consistent with regime switching and 

learning: the tests reject the null hypothesis of no cointegration. 

Table 7 presents estimates of the coefficients in the cointegrating vector between 

inventories, sales, cost shocks, and the probabilities π1t  and π3t . Consistent with regime 

switching and learning, the coefficient on π3t  is negative and highly significant, implying 

that an increase in the probability of the high-interest-rate regime reduces inventories in 

the long run. 

The point estimate of the coefficient on π 3t  implies that an increase in the interest 

rate from 1.6% (the mean interest rate in the medium-interest-rate regime, which is the 

point of reference) to 5.1% (the mean interest rate in the high-interest-rate regime) 

reduces inventories by about 7%. The coefficient on π1t  is positive as predicted. 

Although less precisely estimated, the point estimate implies a change in inventories, 

moving from the low-interest-rate to the medium-interest-rate regime, that is similar to 
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the change implied by the estimates in Table 5, a decrease in inventories of about 5%. 

The estimated cumulative effect of a move from the low-interest-rate regime to the high-

interest-rate regime is a decrease in inventories of about 12%.  

E. Simulations of the Cost Function. 

We have argued that firms will largely ignore transitory shocks and respond only 

to interest-rate movements that signal a change in the persistent mean.  To understand 

why this is true note from equation (11) that the current realization of the transitory 

shock, ε t , affects the current interest rate but has no effect on future interest rates.  If the 

firm knew with certainty that a movement in rt was caused by a purely transitory shock, 

that movement would have no effect on E r  , and would, therefore, not affect thet t+1+ j 

firm’s choice of inventories. 23 

However, because the firm cannot directly observe the interest-rate state, it will 

attempt to infer, from the size and direction of an observed interest rate movement, 

whether or not that movement was caused by a change in regime.  If the movement is 

large enough to signal a change in the persistent state, it alters expected future interest 

rates and, therefore, the firm’s optimal choice of inventories. Transitory shocks are 

typically small relative to the differences between the interest rate means.  From our 

estimates in Section V.C, the difference between the mean interest rate in the medium-

interest-rate regime and in the low-interest-rate regime is 3.32. The difference between 

the mean interest rate in the high-interest rate regime and in the medium-interest-rate 

23 Note from the decision rule, equation (7), and from the interest rate terms in Ψ t j  that Nt depends on + 

expected future interest rates, E , but does not directly depend on the current interest rate, rt.t rt+1+j 
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regime is 3.54. In contrast, the standard deviation of the transitory shock is 1.90 in the 

low-interest-rate regime, 0.80 in the medium-interest-rate regime, and 1.96 in the high-

interest-rate regime.  Thus, a typical transitory shock is too small to be mistaken for a 

regime change; so short-run transitory variation in the interest rate will have little effect 

on the firm’s choice of inventories.   

To illustrate this point, we simulate the model and calculate the cost of not 

adjusting to a within-regime transitory shock relative to the cost of not adjusting to a 

regime change. The regime change that we simulate is a one-time switch from the low-

interest-rate state to the high-interest-rate state.  The transitory shock is a one standard 

deviation positive shock ( +σ1)  in the low-interest-rate state.  In these simulations we 

evaluate the cumulative present discounted value of costs at six, twelve, twenty-four, and 

forty-eight months after the regime change or the transitory shock. (A technical 

description of the simulations is given in an appendix.)   

The first row of Table 8 reports the results of a baseline simulation that uses 

parameters drawn from our estimates of the cointegrating vector.  Note that, at the six-

month horizon, the cost of not adjusting to a transitory shock is more than 100 times 

smaller than the cost of not adjusting to a regime change. If the firm knew with certainty 

that an observed increase in rt were caused by a purely transitory shock, it would not 

respond. To the extent that the firm does respond, it is betting on a change out of the low 

interest-rate state. The firm reduces inventories, and benefits from a reduction in current 

production costs. As the firm realizes, in light of additional observations, that the shock 

was transitory, it must rebuild its inventories and thus incur an increase in costs. With a 

convex cost function the firm will smooth the rebuilding of inventories and pay for its 
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mistake gradually. Since, in responding to a purely transitory shock, the firm has made a 

bet and lost, the cost of rebuilding inventories will tend to counterbalance the initial 

reduction in production costs. Thus the cost of ignoring a transitory shock, already very 

small at six months, declines further as the horizon is extended.   

As a check on the robustness of our results, we rerun the simulations and vary 

key parameters.  In the second row of Table 8, we use a value of θ  that is one-half of its 

baseline value; in the third, θ  is twice its baseline value.  Similarly, we first halve and 

then double ξ  in rows four and five. We also run simulations with γ =θ / 7 , in row 6, 

and with γ =θ , in row 7; relative values of the adjustment cost parameter based on 

estimates reported in Ramey and West (1999: Table 10).  As a further check on the 

robustness of our results we simulate the model using all three sets of parameters from 

Ramey and West (1999: Table 10) for which all of the parameters θ , δ ,  and α are 

positive (in Ramey and West’s table, rows one, two and six). 

With the parameters based on our estimates and those taken from Ramey and 

West, we consider ten different settings for the model's structural parameters.  In all of 

these simulations the cost of not responding to a transitory shock is uniformly very small 

relative to the cost of not responding to a regime change. 

VI. Robustness Checks 

A. Adjustment Costs and Observable Cost Shocks 

In Section III we examine the robustness of the Euler equation and decision rule 

results to the inclusion or exclusion of adjustment costs from the model.  As discussed in 

Section IV.A, however, adjustment costs make no difference to the cointegrating vector. 
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Intuitively, this is because adjustment costs affect dynamics in the short run but do not 

affect the long-run relationship.      

In the inventory literature, it is sometimes assumed that cost shocks are I(0) and 

sometimes that they are I(1).  (See, e.g., Hamilton (2002), Ramey and West (1999), 

Rossana (1993, 1998), and West (1995).)  Although ADF tests suggest that observable 

cost shocks have a unit root, we consider both possibilities.  If observable cost shocks are 

I(0), then inventories, sales, and the interest rate will be cointegrated.  In Table 9 we carry 

out cointegration tests for the case where observable cost shocks are I(0).  As Panel A of 

Table 9 reports, we find evidence of cointegration between inventories, sales, and the 

interest rate. The evidence of cointegration between inventories, sales, and the 

probabilities is even stronger, as shown in Panel B. 

In Table 10, we estimate the cointegrating vector under the assumption that 

observable cost shocks are I(0). The coefficient on the interest rate is negative, as theory 

predicts, but insignificantly different from zero, as shown in Panel A.  Panel B presents 

estimates of the cointegrating vector for the case of regime switching and learning.  The 

point estimate of the coefficient on π3t  is somewhat greater than the estimate reported in 

Table 7. As in Table 7, the t-statistics on π3t  are large. 

We present the results in Table 10 for completeness, because the inventory 

literature has modeled cost shocks as both I(0) and I(1) processes, but the results in Table 

7 are preferred for two reasons.  First, as noted above, ADF tests suggest that observable 

cost shocks are I(1). Second, the coefficients on observable cost shocks in Table 7 have 

very large t-statistics, raising the potential of omitted variable bias if observable cost 

shocks are excluded from the cointegrating regression.  Thus the results in Table 10 are 
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likely to be biased due to a misspecification of the cointegrating relationship, specifically 

the omission of observable cost shocks.   

B. Serial Correlation of the Interest Rate within a Regime 

It is possible to allow for serial correlation of the interest rate within a regime 

through suitable modification of the Markov switching model for the interest rate.24 

Allowing for serial correlation of the interest rate within a regime has two main 

implications.  First, it yields different time series of π  and π  (although, in practice, the1t 3t 

resulting probabilities are fairly similar regardless of whether or not we allow for serial 

correlation). Second, it changes the expectation of the interest rate (i.e., E r[ ]  ), leading t t+1 

to a more complicated set of interest-rate-related variables in the Euler equation. 25 

Table 11 presents estimates of the cointegrating vector that allow for serial 

correlation of the interest rate within a regime.  Again, we focus on the specification 

including observable cost shocks. (The inclusion or exclusion of adjustment costs makes 

no difference to the cointegrating vector, as noted above.)  As in the estimates reported in 

Table 7, the point estimate of the coefficient on π3t  is negative. In fact, the absolute 

magnitude of the estimated coefficient on π3t  is somewhat larger in Table 11 than in 

Table 7. As in Table 7, the t-statistics associated with π3t  are large (in this case, around 

6). 

24 See Garcia and Perron (1996) for details.  Following Garcia and Perron (1996), we focus on the case 
where the stochastic component within a regime follows an AR(2) process. 
25 Details of the derivation are available from the authors. 
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C. Evidence from Two-Digit Industry Data 

As a further robustness check, we examine two-digit industry data, focusing on 

the two-digit industries where data is available and where the linear-quadratic model is 

valid. We include both nondurables and durables industries, specifically SIC codes 21, 

22, 23, 25, 26, 27, 28, 30, and 32.26 

Unit root tests show that inventories and sales are best represented as I(1) 

variables in all of these industries.27  Cointegration tests show that inventories, sales, and 

the interest rate are cointegrated for most of the industries.  The exception is SIC code 25, 

which we retain in the sample with the appropriate caveat.   

In the aggregate data, there is strong empirical evidence that observable cost 

shocks belong in the cointegrating vector.  The situation is quite different in the two-digit 

industry data. Unit root tests strongly reject the null hypothesis of a unit root for 

observable cost shocks in SIC code 23.  In the other industries, observable cost shocks 

sometimes enter with an insignificant coefficient in cointegrating regressions.  We 

therefore report cointegrating regressions that include or exclude observable cost shocks, 

depending on whether cost shocks enter significantly. 

Table 12 presents the estimated cointegrating vector for inventories, sales, and the 

interest rate.  To save space, we focus on linearly detrended data.  The point estimate of 

the effect of the interest rate on inventories is larger (in absolute magnitude) at the 

26 The linear-quadratic model does not apply to "production to order" industries, but, in an effort to include 
as many industries as possible, we consider both the usual "production to stock" industries (where net 
unfilled orders are zero) and industries with a mix of "production to order" and "production to stock," as 
long as the mean ratio of net unfilled orders to nominal shipments is less than 1.5. 
27 We also considered SIC code 29, but the null hypothesis of a unit root for inventories is strongly rejected 
in that industry. 

https://industries.27
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industry level than in the aggregate data for SIC codes 21, 22, 27, and 30. The 

coefficient on the interest rate is negative and significant in SIC codes 21 and 27. 

Table 13 presents the estimated cointegrating vector for inventories, sales, and the 

probabilities.  The estimated coefficient on π3  is about as large or larger in the industry 

data than in the aggregate data for SIC codes 21, 22, 23, 27, 28, and 30.  Either π3  or π1 

enters significantly -- and with the theoretically predicted sign -- in most industries. 

Overall, the evidence from Table 13 (specifications that include the probabilities) is 

clearly stronger than the evidence from Table 12 (specifications that include the interest 

rate). In six out of the nine industries in Table 13, the probability of being in a given 

interest rate regime has a significant effect on inventories. This evidence provides 

additional support for the hypothesis that regime switching in the real interest rate and 

learning play an important role in understanding the relationship between inventories and 

the interest rate.   

VII. Conclusion 

We present a variety of new evidence on the relationship between inventories and 

the real interest rate.  First, we develop a tractable way to parametrically estimate the 

effect of the interest rate in the Euler equation and decision rule for inventories.  Our 

findings parallel previous work based on the older stock adjustment model: there is little 

evidence of a significant role for the interest rate from the Euler equation or the decision 

rule. Our results show that, on its own, imposing structural relations is insufficient to 

uncover a short-run link between inventories and the interest rate.   

Second, we propose an explanation for the fact that the interest rate does not show 

up in econometric estimates, either our own or those of previous researchers.  The key to 
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our explanation is that the real interest rate is governed by highly persistent regimes, with 

transitory variation within a regime. Firms do not adjust their inventories much in 

response to short-run transitory variation in the interest rate and will only respond to the 

relatively infrequent changes in regime.  If our explanation is correct, there should be 

evidence of a long-run relationship between inventories and the interest rate.  In fact, 

there is. As shown in Table 3, inventories tend to be lower when the economy is in the 

high-interest-rate regime.  Moreover, we derive the cointegrating vector between 

inventories and the interest rate and find that: 1) inventories and the real interest rate 

(together with sales and observable cost shocks) are cointegrated; and 2) the estimated 

coefficient on the real interest rate in the cointegrating regression is statistically and 

economically significant in aggregate data. 

These results are consistent with our explanation, but we go a step further.  We 

formally model optimal inventory choice under the assumption of regime switching and 

learning, derive a distinctive implication from the model, and test this implication. 

Briefly, the implication is that inventories should be cointegrated with the probabilities of 

being in the high or low-interest-rate regime.  The data -- both at the aggregate level and 

at the two-digit industry level -- confirm this implication. 

We view our results, which emphasize regime switching and learning, as 

complimentary to research that focuses on finance constraints.  Finance constraints will 

also lead to a relationship between inventories and the interest rate that is stronger in the 

long run. If finance constraints are important, in the short run inventories may be more 

strongly influenced by financial market conditions (that are not captured by the interest 
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rate) and by the availability of internal finance.28  For example, in 2001 and parts of 

2002, the interest rate was not high, but financial market conditions made it difficult for 

firms to raise funds, and the economic downturn squeezed internal funds for many firms. 

In circumstances like these, the shadow cost of funds may be greater than the market 

interest rate, and the relationship between inventories and the observed interest rate may 

be weak. In the long run, even in the presence of finance constraints, the interest rate will 

still affect inventories because long-lasting periods of low or high interest rates will span 

different short-term financial market conditions and, when finance constraints do not 

bind, firms will adjust inventories to the prevailing interest rate. 

28 As noted above, Kashyap, Lamont, and Stein (1994), Gertler and Gilchrist (1994), and Carpenter, 
Fazzari, and Petersen (1994) find evidence that finance constraints are important for inventory behavior, at 
least for some firms. 

https://finance.28
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APPENDIX A 

Data Description 

The real inventory and shipments data are produced by the Bureau of Econoic 

Analysis and are derived from the Census Bureau’s Maunfacturers’ Shipments, 

Inventories, and Orders survey.  They are seasonally adjusted, expressed in millions of 

1996 chained dollars, and cover the period 1959:01-1999:02.  An implicit price index for 

shipments is obtained from the ratio of nominal shipments to real shipments. 

The observable cost shocks include average hourly earnings of production and 

nonsupervisory workers for the nominal wage rate; materials price indexes constructed 

from two-digit producer price indexes and input-output relationships (See Humphreys, 

Maccini and Schuh (2001) for details); and crude oil prices as a measure of energy prices.   

Nominal input prices were converted to real values using the shipments deflator. The 

nominal interest rate is the 3-month Treasury bill rate.  Real rates were computed by 

deducting the three-month inflation rate calculated by the Consumer Price Index. 
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APPENDIX B 

Derivations 

Derivation of Equation (7). Using (3) in (5) the linearized Euler equation can be written 

as the following fourth- order difference equation in Nt: 

E {θ N − N + X − β ( N − N + X ) + γ N − N − ( N − N ) + X − Xt  t t−1 t t+1 t t+1   t t−1 t−1 t−2 t t−1 

2−2β ( Nt+1 − Nt − ( Nt − Nt−1 ) + Xt+1 − Xt ) + β ( Nt+2 − Nt+1 − ( Nt+1 − Nt ) + Xt+2 − Xt+1 ) 

+ξ (W − βW ) +δβ ( N −α X ) +ηr + c} = 0 .t t+1 t t t+1 

Rearranging we have 

[ ] E  (A.1)E f L N( )  = Ψt t+2 t t 

where 

1 1 2 21 θ + ( +β )γ L+ θ 1+ β ) +γ 1+ 4β + β )f L( )  ≡ −   2 1    ( ( +δβ  L  2  γβ γβ 
1 3 1 4− θ + γ ( +β ) L2 1  + L2   2γβ β 

and 

1 1 
t X + + θ γ (2 + β ) Xt 1 − θ + γ (1+ 2β ) −αδβ  XΨ = −  +t 2   + 2   tγβ γβ 

1 ξ η c
+ X − (W −βW ) − r − . (8)2 t−1 2 t t+1 2 t+1 2β γβ γβ γβ 

Let λ i , i = 1,2,3,4 , denote the roots of the fourth-order polynomial on the left-hand side 

of (A.1).  Order these roots as < < < λ 4  .  It follows thatλ 1 λ 2 λ 3 
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1 1 1λ 4 =  and λ 3 = ,  with , <  . Suppose further that , < 1.λ 1 λ 2 λ 1 λ 2βλ 1 βλ 2 β 

Solve the unstable roots forward to obtain 

βλ λ ∞ j+1 j+11 2   E N  =(λ + λ ) N −λ λ  N + ∑ (βλ ) − (βλ ) E Ψ . (7)t t 1 2 t−1 1 2 t−2  1 2  t t+ jλ λ  

Note that λ  and λ  are either real or complex conjugates, so that λ + λ  and λ λ  are 

( − )1 2 j=0 

1 2 1 2 1 2  

real. 

Derivation of (9). To resolve the forward sum on the right-hand side of (7) note that we 

assume that sales and input prices follow AR(1) processes: 

X = µ + ρ X +ε , where ε ∼ . . .(0, 2i i d  σ )  andt x x t−1 xt xt x 

W = µ + ρ W +ε , where ε ∼ . . .(0, 2i i d  σ ) .t w w t−1 wt wt w 

We allow for the special case of ρx = ρw =1. 

1.) The terms involving X on the right-hand side of (7) can be written as 

βλ λ  ∞ j+1 j+1  1 1 2  ∑ βλ − βλ E −X 2 + a X 1 − a X + X  (A.2)( 1 ) ( 2 ) t t + +  j 1 t+ + j 0 t+ j t−1+ j (λ 1−λ 2 )  j=0 
   β 2 

 

1 1where a ≡ θ +γ (2 + β ) and a ≡ θ +γ (1 2+ β ) −αδβ   .1 0 2 γβ γβ 

Note that, for j = 0, 1, 2, … ,  E X  = µ + ρ E X − +  jt t+ j x x t t 1 

2 2 3E X  = µ (1+ ρ ) + ρ E X , and E X  = µ (1+ ρ + ρ ) + ρ E X .t t+ +j 1 x x x t t−1+ j t t+2+ j x x x x t t−1+ j 

It therefore follows that 

 1 E −X + a X − a X + X = t  t+ +2 j 1 t+1+ j 0 t+ j 2 t−1+ j β  

2  3 2 1  
 (1 ρx + ρx ) + a1 + ρx ) − a0  µx + −ρx + a1ρx − a0 x 2  t t−1+ j− +  (1  ρ + E X  

β  
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and thus, 

∞ 1 1 βλ i (1 ρ +ρx 
2) +a (1+ρ ) −a j+   − +  x 1 x 0 =∑ (βλ i ) Et −Xt+ +2 j +a X1 t+ +1 j −a X0 t+ j + 2 Xt− +1 j  µx 

j=0  β  1−βλ i 

 1  ∞ 
j 

i−ρx 
3 a x 

2 − 0ρx ∑ ( i ) E X − +  (A.3)+ βλ + 1ρ a +  βλ t t 1 j . 
 β 2 

 j=0 

For the AR(1) process governing Xt ,the forward sum in (A.3) is   

∞ j βλ iµx 1∑(βλ i ) E Xt t 1 j = + Xt−1 
j=0 

− +  (1− βλ i)(1− βλ iρx ) (1− βλ iρx ) 

This in (A.3) gives   

j+1  1 ∑
∞ 

βλ E −X 2 +a X  −a X  + X 1 =( i ) t t+ +  j 1 t+ +1 j 0 t+ j 2 t− +  j  
j=0  β  

 3 2 1  −1c ρ λx µx( ,  i ) + βλ i−ρx + a1ρx − a0 ρx + 2  (1− βλ iρx ) Xt−1  (A.4)
β  

where 

2 2 3 2 −2− +  ρ β 
( , )  ≡ + . 

βλi  (1 ρx + ρx ) + a1(1+ ρx ) − a0  (βλ i) (−ρx + a1ρx − a0 x + )
c ρ λx i 1− βλ (1− βλ )(1− βλ ρ )i i i x 

Using (A.4) we can rewrite the term (A.2) as  

βλ λ  ∞ 
1 2  j+1 j+1  1  βλ − βλ  E −X + a X  − a X  + X

(λ λ  ) ∑( 1 ) ( 2 )  t  t+ +2 j 1 t+1+ j 0 t+ j β 2 t−1+ j  
1 − 2  j=0   

= c +Γ  X −  (A.5)X X t 1 

1 2where c ≡ 
βλ λ [c( ,λ ) − c(ρ ,λ )
λ λ

ρ ]µ    and  X x 1 x 2 x( − )1 2 

 1 2 3 2 −2 
X β λ λ  (−ρ + 1ρx − a ρx + β )Γ ≡  1 2  x a 0   . 

 (1− βλ 1ρx )(1− βλ 2 ρx )  
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2.) Proceeding as with the terms in X, the terms involving W on the right-hand side of (7) 

can be written as 

 ξ  λλ   ∞ j+1 j+1 1 2   −  ∑(βλ1 ) −(βλ2 )  Et (Wt+ j −βWt+1+ j ) = cW +ΓWWt  (A.6)
 γβ  (λ1 −λ 2 )  j=0    

 ξ  λλ1 2where c ≡ −  [c( ,ρ λ )−c(ρ ,λ )]µ ,W   w 1 w 2 w
 γβ (λ1 −λ 2 ) 

2 2 −β λ (βλ )  (1−βρ ) i i wc( ,ρw λ i) ≡  + µw , and 
1−βλ i (1−βλ i)(1−βλ iρw)  

 ξ   (1−βρw) 
Γ ≡ −  λ λ  . Note that if λ λ > 0  then < 0 .W   1 2    1 2 ΓWγ (1−βλ  ρ  )(1−βλ ρ )   1 w 2 w  

3.) Similarly, assuming that rt follows r = µ + ρ r +ε , where ε ∼ i i d  (0,σ 2 ). . .  , wet r r t−1 rt  rt r 

obtain that 

 η  λ λ   ∞ j+1 j+1  
− 1 2  


 βλ1 − βλ 

 E r  1 j = c +Γrrt  (A.7) ∑ ( ) ( 2 ) t t+ +  r
 γβ  (λ1 −λ 2 )  j=0    

where 

   η   1  (βλ 1 )
2 (βλ 2 )

2 

 cr ≡ −  λ 1λ 2  + ρr 
 − µr 

 γ   (1− βλ 1 )(1− βλ 2 )  (1− βλ 1 )(1− βλ 1ρr ) (1− βλ 2 )(1− βλ 2 ρr )    

 η  ρrand Γ ≡  (λ λ  . Note that, if λ λ > 0 then Γ <  0 .r −  1 2 1 2  rγ 1− βλ ρ  1− βλ ρ  
) ( 1 r )( 2 r ) 

4.) Finally, 

 −1  βλ λ  j+1 j+1  −λ λ 
 2  

1 2  ∑
∞ 

(βλ1 ) − (βλ2 ) 

 
c= 1 2 c . (A.8)

 γβ  (λ1 −λ 2 )  j=0  γ (1− βλ 1 )(1− βλ 2 ) 
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5.) Using the results from (A.5), (A.6), (A.7), and (A.8) in (7) we have 

xN = Γ  + (λ + λ )N −λ  λ  N +Γ  X +Γ  W +Γ  r + u , (9)t 0 1 2 t−1 1 2 t−2 X t−1 W t r t t 

−λ λwhere Γ =0 cW + cX + cr + 1 2 c ,(1− βλ 1 )(1− βλ 2 ) 

>and where Γ 0 Γ <  0 Γ < 0 .X W r< 

Equation (9) in the Model without Adjustment Costs. 

In the model with γ = 0 equation (3) in (5) yields a second-order difference equation in Nt 

that has one stable and one unstable root.  Denoting the stable root by λ 1 , equation (9) 

becomes  

N = Γ  + λ N + Γ  X +Γ  W + Γ  r + ux , (9′)t 0 1 t−1 X t−1 W t r t t 

 −λ 1   2   1 
where Γ ≡X  θρx − (θβ +αδβ ) ρx   ,   θ  1− βλ 1ρx  

 −λ 1   1   −λ 1   1  
 1 w   and Γ ≡   r 

 θ  1− βλ 1ρw   θ  1− βλ 1ρr  
Γ ≡W  ξ ( − βρ ) , r  ηρ  . 

Derivation of Equation (10). 

Use equation (3) to substitute for Yt and Yt+1 in equation (5) and rearrange to get       

2( Y 2β∆Y + β ∆Y ) − βθ (∆N + ∆X θ N − βδα∆XE {γ ∆ −  ) + ∆t t t+1 t+2 t+1 t +1 t t +1 

  θ (1 − β )   +ξ (Wt − βWt +1 ) +δβ Nt − α −  X t  +η rt +1 + c = 0 . (A.9)
 βδ       

Use ξ (Wt − βWt+1) = −βξ∆Wt+1 + (1− β )ξWt  and ηrt+1 =η∆rt+1 +ηrt  in (A.9) to get (10). 
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APPENDIX C 

Description of Cost Simulations 

In our simulations of the cost function in Section V.C, we hold Wt and Xt at their 

respective sample means in order to isolate the effect of variation in the interest rate. 

Inventories are determined from the decision rule, equations (7) and (8), using the 

Markov switching model to express expected future values of the real interest rate as 

functions of the current filter probabilities, π1t and π 3t .  Output is determined from sales 

and the change in Nt using the inventory identity, equation (3).  Given output, sales, the 

cost shock, and the level of inventories, current costs are determined from equation (1). 

At each horizon we measure the cumulative present discounted value of costs, 

discounting with the ex post real interest rate. For each parameter setting we repeat the 

simulation 10,000 times and consider the average behavior of realized costs over the 

10,000 repetitions. 

We use our estimates of the cointegrating vector to set the values of 

, , , , and γ . For our baseline parameters we set α =1θ α δ ξ  implying that the target 

level of inventories equals one month's sales, and use the normalization δ =1. To 

determine θ  and ξ , we equate the estimated coefficients on Xt and Wt from the 

cointegrating regression in levels (Table 7, row 1) to the corresponding composite 

parameters in the cointegrating vector (below equation 19). We then determine η using 

its definition, below equation (5).  Since γ cannot be determined from the cointegrating 

vector, in the baseline simulations we use γ = 0. 

In the first set of simulations we measure the cost of not adjusting to a switch 

from the low-interest-rate regime to the high-interest-rate regime. The economy begins in 
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the low-interest-rate state and the vector of probabilities is initialized at π t  = [1 0 0] '. 

We initialize inventories at their long run mean conditional on π t  = [1 0 0] '. We run the 

model for 26 periods (two years plus two lags) holding π t  = [1 0 0] '. In the 27th period 

the economy switches to the high-interest-rate state.  The firm that responds to this switch 

therefore begins to choose Nt using π t  = [0 0 1] '. The firm that does not respond 

continues to choose Nt using π t  = [1 0 0] '. 

To measure the cost of not adjusting to a transitory shock we again begin in the 

low-interest-rate regime. However, in these simulations, π t is allowed to vary in response 

to transitory movements in the interest rate. After the initial 26 periods we add to the 

realized interest rate, in the 27th period, a positive shock equal to one standard deviation 

of the transitory shock (i.e., equal toσ1 ). The filter probabilities of the firm that responds 

to this shock, π1t  and π3t , detect and adjust to this one-time transitory shock. The filter 

probabilities of the firm that does not respond do not detect or adjust to this shock.  

For both simulations, we run the model forward from the 27th period (the period 

of the shock or regime change) and calculate the cumulative ex post present discounted 

value of costs at horizons of six, twelve, twenty-four, and forty-eight months.  The cost of 

not responding is measured by subtracting the costs of the firm that responds from the 

costs of the firm that does not respond.   
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Table 1 
Euler Equation Estimates 

Panel A: Including Adjustment Costs and Observable Cost Shocks 

 Constant Interest 
Rate 

Variable Interest 
Rate 

θ  6.210 
(2.042) 

11.113 
(2.071) 

γ  1.026 
(0.593) 

1.098 
(0.433) 

ξ  0.814 
(0.469) 

1.185 
(0.484) 

α  1.060 
(7.334) 

1.317 
(4.691) 

η  -.659 
(-1.407) 

Constant  -.043 
(-.347) 

0.142 
(0.599) 

Newey-West 
test 

2.752 
[0.097] 

Panel B: Including Observable Cost Shocks but no Adjustment Costs 

 Constant Interest 
Rate 

Variable Interest 
Rate 

θ  6.482 
(2.637) 

15.072 
(2.331) 

ξ  1.172 
(0.797) 

1.359 
(0.497) 

α  1.068 
(9.181) 

1.513 
(4.609) 

η  -1.003 
(-1.780) 

Constant  -.045 
(-.441) 

0.283 
(1.045) 

Newey-West 
test 

3.171 
[0.075] 

Point estimates and (t statistics).  The last row reports the Newey-West statistic, which 
tests the constant interest rate specification against the specification in column two; the p-
value is reported in square brackets. 
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Table 1 
Euler Equation Estimates 

Panel C: Including Adjustment Costs but no Observable Cost Shocks 

 Constant Interest 
Rate 

Variable Interest 
Rate 

θ  7.714 
(2.752) 

12.401 
(2.527) 

γ  0.912 
(0.467) 

1.035 
(0.377) 

α  1.094 
(7.450) 

1.376 
(4.921) 

η  -.687 
(-1.377) 

Constant  -.023 
(-.183) 

0.199 
(0.856) 

Newey-West 
test 

2.074 
[0.150] 

Panel D: Excluding Observable Cost Shocks and Adjustment Costs 

 Constant Interest 
Rate 

Variable Interest 
Rate 

θ  8.495 
(3.191) 

17.091 
(2.591) 

α  1.131 
(8.702) 

1.611 
(4.611) 

η  -1.060 
(-1.695) 

Constant  -.003 
(-.030) 

0.370 
(1.318) 

Newey-West 
test 

2.991 
[0.084] 

Point estimates and (t statistics).  The last row reports the Newey-West statistic, which 
tests the constant interest rate specification against the specification in column two; the p-
value is reported in square brackets. 
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Table 2 
Decision Rule Estimates 

Panel A: Including Adjustment Cost and Observable Cost Shocks 

 Constant Interest 
Rate 

Variable Interest Rate 

Constant 0.032 
(4.206) 

0.031 
(3.306) 

Nt-1 1.072 
(23.548) 

1.072 
(23.514) 

Nt-2 -.114 
        (-2.529)      

-.114 
            (-2.526)       

Xt-1 0.045 
(3.736) 

0.045 
(3.733) 

Wt -.034 
        (-4.126)      

-.034 
            (-3.798)       

rt 0.001 
(0.081) 

Panel B: Including Observable Cost Shocks, no Adjustment Costs 

 Constant Interest 
Rate 

Variable Interest Rate 

Constant 0.034 
(4.451) 

0.033 
(3.482) 

Nt-1 0.959 
(101.04) 

0.960 
(99.052) 

Xt-1 0.043 
(3.615) 

0.043 
(3.612) 

Wt -.036 
(-4.333) 

-.036 
            (-3.979)       

rt 0.002 
(0.10175) 

OLS Estimate of Decision Rule with (t-statistic) 
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Table 2 
Decision Rule Estimates 

Panel C: Including Adjustment Cost, no Observable Cost Shocks 

Constant Rate Variable Rate 
Constant 0.013 

(2.073) 
0.007 

(0.969) 
Nt-1 1.108 

(24.377) 
1.105 

(24.330) 
Nt-2 -.130 

(-2.844) 
-.127 

            (-2.784)       
Xt-1 0.010 

(1.137) 
0.015 

(1.645) 
rt 0.024 

(1.583) 

Panel D: Excluding Observable Cost Shocks and Adjustment Costs 

Constant Rate Variable Rate 
Constant 0.014 

(2.227) 
0.007 

(1.045) 
Nt-1 0.981 

(118.369) 
0.980 

(118.570) 
Xt-1 0.006 

(0.729) 
0.012 

(1.313) 
rt 0.026 

(1.682) 

OLS Estimate of Decision Rule with (t-statistic) 
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Table 3: Means of Linearly Detrended Inventories in Different Interest Rate Regimes 

Interest Rate Regime Test Statistic 

Low Medium High 
Mean Log 
Inventories 
(Detrended) 

10.405 10.341 10.327 0.077 
(5.34) 
[0.000] 

The cells under Interest Rate Regime report the mean of linearly detrended inventories 
(in logs). The last column reports the difference in means between the high and low 
interest rate regimes, the (t-statistic), and the [p-value], where the t-statistic is based on 
Newey-West standard errors (allowing for an MA(12) error term) from a regression of 
linearly detrended inventories (in logs) on a constant and dummies for high and low 
interest rate regimes. Test results are similar for quadratic detrending and an MA(24).   
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Table 4 
Cointegration Tests 
Inventories, Sales, Observable Cost Shocks and the Interest Rate 

Null hypothesis: that the number of cointegration vectors is 
0 ≤1 ≤2 

Levels 50.011 
[0.035] 

27.528 
[0.129] 

7.854 
[0.636] 

Logs 68.733 
[0.000] 

35.984 
[0.015] 

15.872 
[0.094] 

Linear detrending 77.879 
[0.000] 

41.795 
[0.002] 

19.151 
[0.034] 

Johansen-Jeselius test statistics with p-values in square brackets. 
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Table 5 
Estimated Cointegrating Vector 
Inventories, Sales, Observable Cost Shocks, and the Interest Rate 

Constant Time X r W 
Levels 60901.23 

(5.46) 
[0.000] 

10.248 
(0.36) 
[0.720] 

0.351 
(2.44) 
[0.015] 

-1070.78 
(-5.11) 
[0.000] 

-401.814 
(-5.55) 
[0.000] 

Logs 3.407 
(2.60) 
[0.010] 

10.248 
(-1.51) 
[0.132] 

1.000 
(8.029) 
[0.000] 

-0.015 
(-5.19) 
[0.000] 

-0.843 
(-5.27) 
[0.000] 

Linearly 
Detrended 

0.891 
(5.40) 
[0.000] 

-.000 
(-0.82) 
[0.415] 

1.069 
(8.76) 
[0.000] 

-0.016 
(-5.33) 
[0.000] 

-0.922 
(-5.84) 
[0.000] 

DOLS estimates of the cointegrating vector with (t-statistic) and [p-values]. 



 

 
 

 

 
 

57 

Table 6 
Cointegration Tests 
Inventories, Sales, Observable Cost Shocks and the Probabilities 

Null hypothesis: that the number of cointegration vectors is 
0 ≤1 ≤2 

Levels 94.11 
[0.002] 

54.94 
[0.047] 

32.33 
[0.082] 

Logs 91.68 
[0.003] 

57.88 
[0.024] 

35.97 
[0.033] 

Linear detrending 92.37 
[0.003] 

58.11 
[0.023] 

35.95 
[0.033] 

Johansen-Jeselius test statistics with p-values in square brackets. 
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Table 7 
Estimated Cointegrating Vector 
Inventories, Sales, Observable Cost Shocks, and the Probabilities 

Constant Time X π 1 π 3 W 
Levels 51839.61 41.767 0.237 3845.719 -5262.930 -301.177 

(2.82) (1.03) (1.06) (1.73) (-6.36) (-4.34) 
[0.005] [0.306] [0.289] [0.085] [0.000] [0.000] 

Logs 2.722 41.767 0.970 0.052 -0.072 -0.647 
(1.02) 
[0.308] 

(-0.36) 
[0.722] 

(4.64) 
[0.000] 

(1.35) 
[0.178] 

(-4.23) 
[0.000] 

(-4.12) 
[0.000] 

Linearly 0.679 0.000 1.015 0.056 -0.073 -0.707 
Detrended (2.29) (1.52) (4.74) (1.37) (-4.32) (-4.51) 

[0.023] [0.131] [0.000] [0.171] [0.000] [0.000] 

DOLS estimates of the cointegrating vector with (t-statistic) and [p-values]. 
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Table 8 
Simulation of Relative Costs 

Horizon 
  Parameter Set 6 Months 12 Months 24 Months 48 Months 
(1) Baseline 0.007 0.003 0.001 0.000 
(2) θ  halved 0.007 0.003 0.001 0.000 
(3) θ  doubled 0.008 0.003 0.001 0.001 
(4) ξ  halved 0.008 0.003 0.001 0.000 
(5) ξ  doubled 0.007 0.003 0.001 0.000 
(6) γ =θ / 7 0.008 0.003 0.001 0.000 
(7) γ =θ 0.008 0.004 0.001 0.000 
(8) Ramey and West’s row1 0.002 0.000 0.000 0.000 
(9) Ramey and West’s row 2 0.000 0.000 0.000 0.000 
(10) Ramey and West’s row 6 0.006 0.002 0.000 0.000 

 cost of not adjusting to a transitory shock Each cell gives . 
cost of not adjusting to a regime change

 The first row of Table 8 reports the results of the baseline simulation, which uses 
parameters drawn from our estimates of the cointegrating vector. In the second row, θ  is 
one-half of its baseline value; in the third, θ  is twice its baseline value.  In row four, ξ  is 
one-half of its baseline value; in row five,ξ  is twice its baseline value.  We set γ =θ / 7  
in row 6, and γ =θ  in row 7; relative values of the adjustment cost parameter based on 
estimates reported in Ramey and West (1999: Table 10).  Rows eight, nine, and ten report 
the results of simulations that use parameters from Ramey and West’s (1999) Table 10 
(in Ramey and West’s table, rows one, two, and six, respectively).      
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Table 9 
Cointegration Tests 
Inventories, Sales, and Interest-Rate-Related Variables 

Panel A: Variable Interest Rate 

Null hypothesis: that the number of cointegrating vectors is 
0 <=1 <=2 

Levels 39.93 
[0.012] 

19.56 
[0.031] 

3.17 
[0.071] 

Logs 38.95 
[0.015] 

16.23 
[0.094] 

6.38 
[0.010] 

Linear Detrending 38.84 
[0.015] 

15.82 
[0.107] 

6.05 
[0.012] 

Panel B: Regime-Switching and Learning 

Null hypothesis: that the number of cointegrating vectors is 
0 ≤1 ≤2 

Levels 71.52 
[0.001] 

34.77 
[0.047] 

12.64 
[0.258] 

Logs 68.46 
[0.001] 

36.48 
[0.029] 

20.43 
[0.023] 

Linear detrending 68.13 
[0.002] 

35.97 
[0.033] 

19.81 
[0.028] 

Johansen-Juselius test statistics with p-values in square brackets. 
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Table 10 
Estimated Cointegrating Vector 
Inventories, Sales, and Interest-Rate-Related Variables 

Panel A: Variable Interest Rate 

Constant Time X r 
Levels 15288.81 

(0.56) 
[0.574] 

62.082 
(0.81) 
[0.421] 

0.213 
(0.52) 
[0.606] 

-499.931 
(-0.80) 
[0.425] 

Logs 0.584 
(0.16) 
[0.876] 

62.082 
(0.73) 
[0.465] 

0.879 
(2.65) 
[0.009] 

-0.005 
(-0.65) 
[0.518] 

Linearly 
Detrended 

0.099 
(0.27) 
[0.789] 

0.000 
(0.09) 
[0.931] 

0.904 
(2.61) 
[0.010] 

-0.005 
(-0.54) 
[0.589] 

Panel B: Regime-Switching and Learning 

Constant Time X π 1 π 3 

Levels -16692 
(-0.97) 
[0.335] 

-32.84 
(-0.61) 
[-0.545] 

0.733 
(2.56) 
[0.011] 

-3686 
(-1.50) 
[0.135] 

-4227 
(-3.07) 
[0.002] 

Logs -5.803 
(-1.94) 
[0.053] 

-32.84 
(-1.15) 
[0.250] 

1.454 
(5.39) 
[0.000] 

-0.078 
(-1.89) 
[0.072] 

-0.094 
(-3.24) 
[0.001] 

Linearly 
Detrended 

-0.476 
(-1.73) 
[0.085] 

0.000
 (0.70) 
[0.482] 

1.410 
(5.23) 
[0.000] 

-0.087 
(-1.84) 
[0.067] 

-0.094 
(-3.08) 
[0.002] 

DOLS estimates of the cointegrating vector with (t-statistic) and [p-values].  
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Table 11 
Estimated Cointegrating Vector 
Allowing Serial Correlation of the Interest Rate within a Regime  
Including Observable Cost Shocks 

Constant Time X π1 π 3 
W 

Levels 601.618 
(0.105) 
[0.916] 

-13.790 
(-1.098) 
[0.274] 

0.602 
(9.528) 

[0] 

-2211.669
 (-3.384) 
[0.001] 

-5556.076 
(-6.474) 

[0] 

-63.431 
(-1.579) 
[0.116] 

Logs -0.920 0.000 1.141 -0.021 -0.112 -0.279 
(-0.899) 
[0.369] 

(-1.876) 
[0.062] 

(14.743) 
[0] 

(-1.224) 
[0.22203] 

(-5.932) 
[0] 

(-2.430) 
[0.016] 

Linearly 0.177 0.000 1.188 -0.019 -0.117 -0.337 
Detrended (1.329) (-1.433) (14.963) (-1.069) (-5.989) (-2.967) 

[0.185] [0.153] [0] [0.286] [0] [0.003] 

DOLS estimates of the cointegrating vector with (t-statistic) and [p-values]. 
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Table 12 
Estimated Cointegrating Vector 
Industry Data 
Inventories, Sales, Observable Cost Shocks and the Interest Rate 
Linear Detrending of the variables 

Constant Time X W r 
SIC21 2.293 

(5.84) 
[0] 

0.0003 
(1.96) 
[0.051] 

-1.278 
(-3.40) 
[0.001] 

-0.042 
(-2.89) 
[0.004] 

SIC22 1.130 
(3.04) 
[0.003] 

-2.4.10-05 

(-0.16) 
[0.869] 

0.447 
(1.47) 
[0.143] 

-0.530 
(-4.11) 

[0] 

-0.0185 
(-1.59) 
[0.112] 

SIC23 -0.445 
(-1.41) 
[0.161] 

-0.0002 
(-1.64) 
[0.103] 

1.517 
(5.02) 

[0] 

-0.006 
(-0.82) 
[0.410] 

SIC25 -1.079 
(-4.44) 

[0] 

-1.8.10-05 

(-0.25) 
[0.799] 

1.451 
(7.22) 

[0] 

0.621 
(3.56) 

[0] 

0.0177 
(2.50) 
[0.013] 

SIC26 0.410 
(3.25) 
[0.001] 

-2.041.10-06 

(-0.02) 
[0.985] 

0.601 
(5.38) 

[0] 

-0.003 
(-0.644) 
[0.520] 

SIC27 0.945 
(2.77) 
[0.006] 

5.93.10-05 

(0.598) 
[0.551] 

1.539 
(7.68) 

[0] 

-1.427 
(-3.48) 
[0.001] 

-0.0411 
(-5.04) 

[0] 
SIC28 0.234 

(1.34) 
[0.180] 

8.07.10-05 

(0.70) 
[0.487] 

0.750 
(4.88) 

[0] 

-0.006 
(-0.79) 
[0.429] 

SIC30 0.287 
(0.76) 
[0.450] 

2.26.10-05 

(0.190) 
[0.850] 

0.732 
(2.014) 
[0.045] 

-0.018 
(-1.76) 
[0.079] 

SIC32 0.607 
(3.87) 

[0] 

-4.8.10-05 

(-0.948) 
[0.344] 

0.414 
(2.78) 
[0.006] 

0.008 
(1.62) 
[0.106] 

DOLS estimation of the cointegrating vector with (t-statistics) and [p-values].  Cost 
shocks are included for industries where the coefficient on the cost shock is significant. 
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Table 13 
Estimated Cointegrating Vector 
Industry Data 
Inventories, Sales, Observable Cost Shocks and Probabilities of the States 
Linear Detrending of the variables 

Constant Time X W Ps1 Ps3 
SIC21 1.038 

(1.39) 
[0.164] 

0.0005 
(2.48) 
[0.014] 

-0.017 
(-0.02) 
[0.983] 

-0.111 
(-0.68) 
[0.495] 

-0.355 
(-2.63) 
[0.009] 

SIC22 0.861 
(1.33) 
[0.183] 

-1.1.10-05 

(-0.068) 
[0.946] 

0.676 
(1.06) 
[0.289] 

-0.503 
(-4.38) 

[0] 

0.006 
(0.040) 
[0.968] 

-0.114 
(-1.97) 
[0.050] 

SIC23 -1.398 
(-2.68) 
[0.008] 

-0.0001 
(-1.10) 
[0.272] 

2.501 
(4.71) 

[0] 

-0.129 
(-1.78) 
[.0769] 

-0.167 
(-2.36) 
[0.019] 

SIC25 0.093 
(0.32) 
[0.746] 

0.0001 
(1.51) 
[0.133] 

0.858 
(2.93) 
[0.004] 

0.112 
(3.07) 
[0.002] 

0.045 
(1.19) 
[0.233] 

SIC26 0.439 
(3.40) 
[0.001] 

6.04.10-05 

(0.831) 
[0.407] 

0.735 
(6.01) 

[0] 

-0.177 
(-2.52) 
[0.013] 

0.034 
(0.983) 
[0.327] 

-0.053 
(-2.23) 
[0.027] 

SIC27 -0.193 
(-1.71) 
[0.088] 

0.0002 
(2.41) 
[0.017] 

1.193 
(11.07) 

[0] 

0.023 
(0.98) 
[0.327] 

-0.216 
(-7.17) 

[0] 
SIC28 0.106 

(0.62) 
[0.537] 

0.0001 
(1.61) 
[0.108] 

0.872 
(4.72) 

[0] 

-0.016 
(-0.284) 
[0.777] 

-0.071 
(-1.74) 
[0.083] 

SIC30 0.306 
(0.74) 
[0.462] 

0.0001 
(0.948) 
[0.344] 

0.650 
(1.50) 
[0.136] 

0.105 
(1.47) 
[0.142] 

-0.069 
(-1.43) 
[0.154] 

SIC32 0.417 
(2.72) 
[0.007] 

-7.6.10-05 

(-1.78) 
[0.077] 

0.624 
(3.93) 

[0] 

-0.046 
(-1.56) 
[0.120] 

0.054 
(2.41) 
[0.017] 

DOLS estimation of the cointegrating vector with (t-statistics) and [p-values].  Cost 
shocks are included for industries where the coefficient on the cost shock is significant. 
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