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1 Notat ons  

⃗We use � = (�1, ..., ��) to denote a vector of � random variables representing costs of 

contractors submitting bids in a given First Price Sealed Bid auction. The support of the 

random vector �⃗ is given by  � = [�, �]� with � > 0. Functions ��⃗ :  � → [0,  ] and 

��⃗ :  � → [0, ∞) denote the cumulative distribution function and the probability density 

function of vector �⃗ correspondingly. 

The support of the bid distribution that arises through the equilibrium bidding be-

havior is denoted by  � = [�, �]� and � ⃗  (.) and  � ⃗ (.) denote the corresponding cumulative � � 

distribution and probability density functions of the bid vector. 

We use ���1,...�� 
(.) and  ���1,...�� 

(.) to denote the cumulative distribution function and 

probability density function of the joint distribution of sub-vector � 1,... � of the random 

vector �. 

2 Suffic ent Cond t on 

We assume that data are generated by the First Price Sealed Bid Procurement auction. 

More specifically, we assume that assumptions �1 − �5 hold. 

(�1) Bidders are symmetric, i.e., �⃗ is a vector of exchangeable random variables: 

� ⃗ (�) =  � (�(�))� �(�⃗ ) 

� ⃗  (�) =  � (�(�))� �(�⃗ ) 

for every permutation �(.) of the vector �⃗ components. 

∂2� ⃗
(�2) Function ��⃗ (...) satisfies the strict affiliation property, i.e.,   > 0.

∂��∂�� 

(� ) Function ��⃗ (..) is continuously differentiable on the interim of  � and continuous 

everywhere on the support, including the boundary. 

(�4) Function ��⃗ (..) > 0 everywhere on the support, including the boundary. 

(�5) For a sub set of four bidders the following inequality holds: 

���1 ,�2,�3,�4 
(�, �, �, �) − ���1,�2 

(�, �)���3,�4 
(�, �) = 0∕ 

  



Notice that if (�5) holds for some sub set of four bidders, it also holds for all sub-sets 

due to the exchangeability of function ��⃗ . 

McAdams (2006) proves that the model with affiliated private values has a unique 

equilibrium in monotone strategies if (�1)-(�4) are satisfied. The equilibrium bidding strate-

gies are continuously differentiable. Moreover, in the procurement auction equilibrium bid-

ding implies that the bid is at least as high as the underlying cost draw. Therefore, � > 0. 

We next formulate a testable implication that holds in this environment. 

Propos t on 4 (as  n the paper) 

��1 ��3(�1)-(�5) impl  the following propert : (�1) (  , ) are not independent for an  � 1, 2, 3, 4��2 ��4 

subset of �⃗ such that �� ∕= �� whenever � ∕= �. 

Proof 

Due to monotonicity and continuous differentiability of the bidding functions property 

(�5) implies that 

���1,�2,�3,�4 
(�, �, �, �) − ���1 ,�2 

(�, �)���3,�4 
(�, �) ∕= 0  ( )  

Next we show that under assumptions (�1)-(�5) the following equality breaks down: 

���1 
��3 

(�1, �2) =  ���1 
(�1)���3 

(�2) 
,

��2 
��4 

��2 
��4 

��1 ��3 ��1 ��3for some �1, �2 on the support of ( , ). This implies that ( , ) cannot be indepen-
��2 ��4 ��2 ��4 

dent, since �1, �2 are necessarily points of continuity for ���1 
��3 

given (� ) and  � > 0. 
,

��2 
��4 

Indeed, ∫ 
���2 

��4 
(�1, �2) =  (�1, �1 ∗ �1, � , �2 ∗ � )�� ��1. (2)���1,�2,�3,�4,

��1 
��3 � � 

Similarly, ∫ � 

� ∫ � 

���2 
(�1) =  

��1 

(�1, �1 ∗ �1)��1.���1,�2 
(3) 

and 

∫ � 

���4 
(�2) =  (� , �2 ∗ � )�� .���3,�4 

��3 � 
(4) 

� 
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Therefore, we need to show that 

∫ ∫� � 

���1,�2,�3,�4 
(�1, �1 ∗ �1, � , �2 ∗ � ) − ���1,�2 

(�1, �1 ∗ �1) ∗ ���3,�4 
(� , �2 ∗ � )�� ��1 ∕= 0. 

� � 
(5) 

Through the choice of (�1, �2) we can ensure that only points in a small neighborhood of 

(�, �, �, �) appear in integration in (5). 

Without loss of generality let’s assume that 

��1,�2,�3,�4 (�, �, �, �) − ��1,�2 (�, �)��3,�4 (�, �) > 0. 

Then due to continuity of ��⃗ this inequality holds in some neighborhood of (�, �, �, �). If we 

choose �1 and �2 in such a way that the values of (�1, �1 ∗ �1, � , �2 ∗ � ) that lie within the 

support are confined to the small neighborhood above then 

���2 
��4 

(�1, �2) > ���2 
(�1) ∗ ���4 

(�2). 
,

��1 
��3 

��1 
��3 

End of Proof 

Remark 1 The proof easily extends to the case when the support of cost distribution,  � , is  

a convex  set  in  �� , provided that the boundary has no more than a single point of tangency 

with any linear hyperspace of the type 

 (�1, �2, � , �4) :  �  = ��� for some � >  0 and  � ∕= �}. 

Remark 2 Property (�1) forms the basis of the test for the model with affiliated values 

versus a model with unobserved heterogeneity. As will be shown below, property (�5) holds  

for many affiliated distributions. Therefore, property (�1) is consistent with affiliated val-

ues, while it is not supported by the model with unobserved auction heterogeneity. Hence, 

accepting (�1) is indicative of affiliation and is equivalent to rejecting the model with unob-

served heterogeneity. On the other hand, if we are able to reject property (�1) in the data, 

then the results of the test are inconclusive. 

Remark 3 Notice, however, that the conclusion of Proposition 4 obtains without imposing 

the requirement that the distribution of �⃗ needs to be affiliated. Therefore, the proposed test 

really separates the model with unobserved heterogeneity from the set of models with other 
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sources of cost dependency. Further tests are needed to separate models with dependent 

costs from the model with strictly affiliated costs. 

Remark 4 In Proposition 4 due to exchangeability if at least one pair of ratios of distinct 

bids is independent than all pairs of ratios of distinct bids are necessarily independent. In 

the non-exchangeable case property (�1) should be modified to read: 

(�1�) There exists at least one subset of �⃗ , � 1, 2, 3, 4 with �� =∕ �� whenever � =∕ �, 
��1 ��3such that ( , ) are not independent. 
��2 ��4 

3 Examples  

In this section we study several examples that demonstrate the applicability of the condition 

in (�5). 

Example 1: Truncated Multivariate Normal Distribution. 

Let us consider an auction environment where the joint distribution of bidders’ costs is given 

by a truncated multivariate normal distribution.1 More specifically, the joint probability 

density function of bidders’ costs is given by 

 (� − �⃗) ′ Σ−1(� − �⃗)
� ⃗ (�) =  � 1 exp(− ). (6)� 

(2�) 2 ∗ Σ 22 

Here � = (�, ..., �) denotes the vector of means and Σ represents the variance-covariance 

matrix with Σ   = �2 and Σ � = ��2 for � ∕= �. 

Figure   graphs the value of 

� = ���1,�2,�3,�4 
(�, �, �, �) − ���1,�2 

(�, �) ∗ ���3,�4 
(�, �) 

as a function of � holding the difference between � and � fixed at  .5 with �⃗ = (3, 3, 3, 3), 

� =  .5, and � = 0.5. 

Similarly, figure 2 plots the value of � as a function of the value of � as it changes 

from 0.4 to 2, holding �, �, �⃗ fixed and setting � = 0.5. 

Even allowing the computational error these figures demonstrate that there exist 

1We con inue  o assume  ha  bidders are symme ric; i.e.,  heir cos s are exchangeable random variables. 
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many multivariate normal distributions that satisfy property (�5). 

Example 2: Frank’s copula. 

Next, we consider the set of cost distributions that can be represented by Frank’s copula.2 

More specifically, we are interested in the set of multivariate distributions such that 

∏ =�    =1 (exp(−� ∗ ��� (� )) −  )
��⃗ (�) =  − log(  + ). (7)

� (exp(−�) −  )(� −  ) 

Here ��� (.) denotes marginal distribution of bidder � ′ � costs. ��� (.) can be an arbitrary 

distribution of a real-valued variable with bounded support given by [�, �]. ��⃗ (�) given  by  

the expression in (7) represents a joint distribution of the affiliated random variables for any 

� >  0 as shown in Genest ( 987). 

Figure 3 shows the value of �(�) as a function of � for the multivariate distribution 

given by (7) with an arbitrary ��� (.), � and �. The figure demonstrates that such distributions 

always satisfy condition (�5) when  � >  0. 

Example 3: Dependent B ds w th Independent Rat os 

Examples  -2 consider distributions that satisfy property (�1). Next, we describe how 

a distribution which violates property (�1) can be constructed. We start by constructing a 

vector of the dependent random variables (bids) such that one pair of ratios of distinct bids 

is independent. This does not provide an example of the distribution for which (�1) fails. 

However, the logic of this example can be extended to construct an example where more (or 

even all) pairs of ratios are independent. 

A s ngle  ndependent pa r of rat os 

It is easy to construct an example of the vector of dependent random variables with 

independent ratios if pairs of bids involved in independent ratios are allowed to be indepen-

dent. More specifically, consider a vector (�1, �2, � , �4) of dependent random variables 

such that the sub-vectors (�1, �2) and  (� , �4) are independent. Then, the ratios (�1 , �3 )
�2 �4 

are necessarily independent. However, it is not possible to generalize this example to the 

case where random variables (�1, �2, � , �4) are dependent while all pairs of ratios are inde-

pendent. Below we construct an example of a random vector (�1, �2, � , �4) such that the 

sub-vectors (�1, �2) and  (� , �4) are dependent and the ratios (�1 , �3 ) are independent. 
�2 �4 

2For an ex ensive discussion of copulas and  heir applica ion  o  he analysis of affilia ed dis ribu ion, see 
Nelsen (2006). 
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⃗More specifically, let us consider a vector � = (�1, �2, � , �4) of bids with support 

in  (�) = [�, �]4 such that the corresponding density function ��⃗ :  � → [0, ∞) is given  by  

��⃗ (�) =  ��1 (�1)��2 (�2)��3 (� )��4 (�4) +  ℎ(�1, �2, � , �4). (8) 

In this expression ��� are marginal distributions of �  
′ �. The function ℎ(�1, �2) is defined 

below. Let us set 

� − � 
Δ0 = 

2 
Δ0

Δ1 = 
4 

(Δ1 − Δ0)(�4 − �)(�  − �)
Δ�3,�4 = Δ0 + 

(� − �)2 

Set ℎ(�1, �2, � , �4) = 0  if  � ≤ �2 < 0.5 ∗ �1 or 2 ∗ �1 < �2 ≤ �. Otherwise, define 

ℎ(�1, �2, � , �4) =  
�1∗� 

�1 ∗ � 
= 0  if  �2 ≤ �1 and ≤ �1 ≤ 

� + 
�2 − Δ�3 ,�4�2 2 

�1∗� �1∗� � + � +
�2 �2 = �1 if �2 ≤ �1 and − Δ�3,�4 < �1 ≤ 

2 2 
�1∗� �1∗� � + � +
�2 �2 = −�1 if �2 ≤ �1 and < �1 ≤ +Δ�3,�42 2 

�1∗� � + 
= 0  if  �2 ≤ �1 and �2 +Δ�3,�4 < �1 ≤ � 

2 
�2∗� 

�2 ∗ � � + 
= 0  if  �1 ≤ �2 and ≤ �2 ≤ �1 − Δ�3 ,�4�1 2 

�2∗� �2∗� � + � +
�1 �1 = −�2 if �1 ≤ �2 and − Δ�3,�4 ≤ �2 ≤ 

2 2 
�2∗� �2∗� � + � +
�1 �1 = �2 if �1 ≤ �2 and < �2 ≤ +Δ�3,�42 2 

�2∗� 

= 0  if  �1 ≤ �2 and 
� + 

�1 +Δ�3,�4 < �2 ≤ � 
2 

Figure 4 graphs ℎ(�1, �2, � , �4) for  �  = � and �4 = �. The function ℎ(�1, �2, � , �4) is  

constructed in such a way that 
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(�1) �1 and �2 are such that 

∫ ∫∫ � � ∫ � � 

ℎ(�1, �2, � , �4)��1��2�� ��4 = 0. 
� � � � 

(In this example, it is sufficient to choose �1 = �2.) 

(�2) � (� ∣�− ), conditional distribution of �  conditional on �− , implied by ��⃗ (�) 

depends on �− ; 

(� ) �12(�1, �2∣� , �4) implied by � ⃗ (�) depends on (� , �4);� 

(�4) ℎ(�1, �2, � , �4) integrates to zero along any hyperplane 

 (�1, �2, � , �4) :  �1 = � ∗ �2 for some � ∈ [ 
� 

� 
, 
� 
�
]} 

over a segment where � ≤ �  ≤ � for all �. 

(�1) ensures that ��⃗ (�) is a proper density. (�2) implies that the random variables 

(�1, �2, � , �4) are dependent, and (� ) guarantees that the random sub-vector (�1, �2) 

is not independent of random sub-vector (� , �4). Finally, (�1) implies that (�1 , �3 ) are  
�2 �4 

independent. 

Remark 5 We have constructed an example of the vector of dependent random 

variables (bids) that has a pair of independent ratios of distinct bids. To provide an example 

of a model with affiliated private values that generates a distribution of dependent bids with 

a pair of independent ratios we need to modify an example above in such a way that (a) the 

density � ⃗ is smooth; (b) ��� , �1, �2 and � −� should be chosen so that � ⃗ can be rationalized � � 

by a model with affiliated private values, i.e. (�1) inverse bidding function implied by the 

first order condition is monotone and (�2) ��⃗ is affiliated. This is a much harder problem. 

While it is straightforward to adjust ℎ(., ., ., .) in such a way as to achieve (�) and  (�1) it  is  

not clear whether (�2) can be accommodated. 

General z ng to Two Independent Pa rs of Rat os 

This example can be further generalized to construct a random vector with more 

pairs of independent ratios. The idea is to introduce a function ℎ(., ., .) that would integrate 
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to zero along several planes of type 

� �  (�1, �2, � , �4) :  �  = � ∗ �� for � ∕= � and some � ∈ [ , ]}. 
� � 

Define function ℎ(�1, �2, � ) in the three-dimensional cube  (�1, �2, � ) :  � ≤ �  ≤ �}
1 �1 1 �1 � so that ℎ(�1, �2, � ) = 0 unless ≤ ≤ � and ≤ ≤ � where � ∈ [ � , ] is  chosen  to  be  
� �2 � �3 � � 

close to one. 

Let’s denote by (� , �� , �) a plane given  by  

   (�1, �2, � ) :  �  = � ∗ �� , for � ∕= � and ≤ � ≤ �}. 
� 

We want to define ℎ(�1, �2, � ) so  that it integrates  to zero  over  (�1, �� , �) for every 

� such that 1 
� ≤ � ≤ � and � = 2, 3. Also, we have to make sure that the definition of 

ℎ(�1, �2, � ) is consistent for each intersection of (�1, �2, �1) with (�1, � , �2). 

To clarify the last idea let us consider an intersection of the plane (�1, � , �2) with  the  

plane (�1, �2,  ). Let us denote this segment of the line by (�1, �2). This segment necessarily ∩ ∩ 
lies both in (�1, � , �2) [�, �]2 and in (�1, �2,  ) [�, �]2 . For illustration see figure 5. As �2 ∩ ∩ 
changes from 1 

� to � the intersection with (�1, �2,  ) [�, �]2 sweeps  an area  in (�1, �2,  ) [�, �]2 . ∩ 

[�, �]2 for some 

This is the only part of (�1, �2,  ) [�, �]2 where ℎ(�1, �2, � ) can take non-zero values. Denote 

this area as Δ1. ∩ 
Similarly, we can consider an area, Δ�1 , which  is  swept  in (�1, �2, �1) 

1 ≤ �1 ≤ � by (�1, � , �2) as  �2 changes from 1 to �. Again, this area outlines the part of 
� � ∩ 
(�1, �2, �1) [�, �]2 where ℎ(�1, �2, � ) ∕= 0. The shape of this area changes in a “continuous ∩ 
way” with �1. Symmetrically, such an area can be defined in (�1, � , �2) [�, �]2 for some ∩ 
�2, 1 

� ≤ �2 ≤ �, as a collection of intersections of (�1, � , �2) [�, �]2 with all (�1, �2, �1) such  

that 1 
� ≤ �1 ≤ �. 

Denote by �(�1, �2, �1) =  ℎ(�1, �1 ∗ �1, �2 ∗ �1). This function is defined on intersections 

of the two planes, therefore, it has to be constructed so that 

�(�1, �2, �1) =  �(�2, �1, �1). (9) 

This is quite feasible since the whole set-up is symmetric. Additionally, �(�1, �2, �1) has  to  
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be constructed in such a way that 

∫ 
�(�1, �2, �1) (�2,�2)��1��2 = 0  for  every  �1 and ( 0) 

Δ�1∫ 
�(�1, �2, �1) (�3,�1)��1��1 = 0  for  every  �2. 

Δ�2 

Here  (��,�� ) denotes the Jacobian which arises during the change of variables from �  to �� . 

Such a function can be constructed, for example, by initially specifying �( , �2, �1) as  

described in figure 5. More specifically, define �( , �2, �1) so that it  is equal  to  �1 if �2 <   

and �2 if �2 ≥  . The constants �1 and �2 should be chosen in such a way that 

∫ 
�( , �2, �1) (�2,�2)��1��2 = 0. 

Δ1 

Then, for every �̃2 the function �(�1, �̃2, �1) should be constructed by adjusting �(�1,  , �1) 

to reflect how the length of the intersection of (�1, �2, �1) with (�1, � , �2) changes as �2 changes 

from   to �̃2. This construct should preserve ( 0) and will necessarily satisfy (9). 

If ℎ(�1, �2, � ) is constructed to meet ( 0) then the pairs of ratios given by ( �1 , �3 )
�2 �4 

and ( �1 , �2 ) are independent. 
�3 �4 

To complete the example we also have to ensure that 

(�1) ℎ(�1, �2, � ) is such that 

∫ ∫� ∫ � � 

ℎ(�1, �2, � )��1��2��  = 0. 
� � � 

(�2) � (� ∣�− ), conditional distribution of �  conditional on �− , implied by � ⃗ (�)� 

depends on �− ; 

(� ) � � (� � )∣�−( �)) implied by ��⃗ (�) depends on (� 
( �). 

It should be possible since the definition of �(�1, �2, �1) has a lot of build-in flexibility, 

i.e. behavior of this function along “�1 ” dimension is not restricted. 

This approach when applied to the three types of planes: (�1, �2, �1), (�1, � , �2), and 

(�1, �4, � ) will produce an example of the random vector where all pairs of the ratios of 

distinct bids are independent. 
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4 Impl cat ons for Affil ated D str but ons 

The previous section established that there exist multiple affiliated distributions that satisfy 

condition (�5). At the same time we pointed out that there exist affiliated distributions that 

violate this condition. This section undertakes to evaluate how large is the set of the affiliated 

distributions that violate condition (�5) relative to the whole set of affiliated distributions 

and, therefore, how large is the set of alternatives against which our test potentially has no 

power. 

Let us define for a given set  � ⊂ �� a set of functions, Ω, such that: 

(�) � :  � → [0, ∞] 

(�) f is three times continuously differentiable in  � , i.e. � ∈ � ( � ); 
∂2 log(� ⃗ )

(�) f is exchangeable and strictly affiliated, i.e., � > 0;
∂� ∂�� 

(�) � >  0 everywhere  in   � ;∫ 
(�) �(�) �� =  . 

�  

The set Ω represents the set of all affiliated distributions with three times continuously 

differentiable density function with support in  � . 

Similarly, we can define a set of functions, Ω0, such that: 

(�) � :  � → [0, ∞] 

(�) f is three times continuously differentiable in  � , i.e. � ∈ � ( � ); 
∂2 log(� ⃗ )

(�) f is exchangeable and strictly affiliated, i.e., � > 0;
∂� ∂�� 

(�) � >  0 everywhere  in   � ;∫ 
(�) �(�) �� =  ;  

�  

(�) ���1,�2,�3,�4 
(��, ��, ��, ��) − ���1,�2 

(��, ��) ∗ ���3,�4 
(��, ��) = 0. 

The set Ω0 is a subset of Ω, which consists of all affiliated distributions with three times 

continuously differentiable density function with support in  � that violate condition in (�5). 

 0 



Finally, associated with the set Ω is a set Θ that consists of functions, ℎ(.), such that: 

(�) ℎ :  � → [0, ∞]; 

(�) ℎ is continuously differentiable in  � , i.e. ℎ ∈ �1( � ); 

(�) ℎ is exchangeable; 

(�) ℎ >  0 everywhere  in   � ; 
∂ℎ ∂ℎ 

(�) = for every � =∕ �;
∂�  ∂�� 

The set, Θ, therefore, includes all pairs of continuously differentiable functions that could 

represent the second partial derivative of the log of exchangeable function, ��⃗ , that satis-
∂2 log(� ⃗  )  fies affiliation condition, > 0 and belongs to � ( � ). Notice that condition (e) is 
∂��∂�� 

superfluous because it is implied by (c). 

Propos t on 4a 

(a) The set Ω is isomorphic to the set Θ × �. 

(b) The set Ω0 is isomorphic to the set Θ. 

Proof 

For every function, ℎ, consider a system of partial differential equations: 

∂�(�) 
= ℎ(�) for every �. (  )

∂�� 

This is a a so-called ‘full’ system of partial differential equations that satisfies the 

regularity conditions, namely, conditions (b),(e) from the definition of Θ. Therefore, a 

solution of such a system exists and is unique up to a constant.  A generic solution of the 

system can be represented as 

�(�) =  �0(�) +  �0, for some �0 ∈ �. ( 2) 

Notice that �(.) by construction is exchangeable, continuously differentiable and sat-
∂� ∂� isfies conditions that = for every � ∕= �. Therefore, a solution of the system of partial 
∂�� ∂�� 

3See, for example, Valiron (1986). 

   



differential equations given by 

∂�(�) 
= �(�) for every �. ( 3)

∂�� 

exists and is unique up to a constant. That is, a generic solution of this system of equations 

is given by �(�) 
 =�∑ 

�(�) =  �0(�) +  �0 �  + �1, for some �1 ∈ �. ( 4) 
 =1 

Thus, for every function ℎ(.) ∈ Θ we have constructed a two-parameter family of functions 

�(.∣�0, �1) =  ���(�(.∣�0, �1) such that log(�) satisfies the affiliation condition. To obtain 

a conclusion of the lemma it is sufficient to notice that for every �0 it is possible to find 

�1 such that condition (e) in the definition of Ω is satisfied. Therefore, Ω is isomorphic to 

Θ × �. Further, constants �0 and �1 can always be chosen so that conditions (e) and (f) 

in the definition of the set Ω0 is satisfied. Therefore, Ω0 is isomorphic to Θ. 

End of proof 

Proposition 4a establishes that the set of the distributions of affiliated random variables that 

do not satisfy condition (�5) is small relative to the set of all distributions of affiliated random 

variables with the same support. In fact, Ω0 is a set of measure zero for an appropriately 

defined sigma additive measure on Ω. 
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6 F gures  

Figure  : Multivariate normal: Changing the Lower End of Support 
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Figure 2: Multivariate Normal: Changing the Variance 
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The graph in  he figure above approaches 0 as � approaches 0. However, i  is no  equal  o zero. 
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Figure 3: Frank’s Copula: Changing � 
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Figure 4: Example 3: Single Independent Pair of Ratios 
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Figure 5: Example 3: Two Independent Pairs of Ratios 
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