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1. Introduction 
This note is a supplemental note to Krasnokutskaya, Song, and Tang (2016a). It consists of 

five parts. Section 2 gives details about how to derive pairwise comparison index in examples 
of first-price and English auctions where bidders have asymmetric private values, or collusive 
behavior. Section 3 discusses a bootstrap method to construct a confidence set for the group 
structure. Section 4 presents further simulation results regarding the performance of our 
classification algorithm proposed in Krasnokutskaya, Song, and Tang (2016a), and Section 5 
reports summary statistics for the data used in the empirical application in the paper. 

2. Bidders with Asymmetric Values or Collusive Behavior 

2.1. First-Price Auctions with Asymmetric Bidders 

We derive the pairwise comparison inequalities in an example of asymmetric first-price auc-
tions with independent private values. 

Let the bidders in the population be partitioned into K0 groups defined by distinct private 
value distributions Fk for k = 1, 2, ..., K0. Assume that the value distributions are stochastically 
ordered with the same support. Without loss of generality, let them be stochastically increasing 
in the subscript k. That is, Fk0 first-order stochastically dominates Fk whenever k0 > k. Also 
assume that the ordering of the distributions is strict (F1(v) > F2(v) > ... > FK0 (v)) at least 
for v within some non-degenerate interval on the support. Let N(k) denote the set of all agents 
in group k. 

For simplicity, suppose that a bidder from group k becomes active with a fixed probabil-
ity that is exogenously given. Let A denote the set of entrants in a given auction and λ(A) 
denote the structure, or the profile, of entrants. That is, λ(A) is a K0-vector of integers 
(|A(1)|, ..., |A(K0)|), with A(k) being the set of entrants from group k. An entrant i submits 
bid Bi according to his private value vi, taking into account the competitive structure of an 
auction λ(A) which he observes at the time of bidding. Across auctions in the data, A and 
{Ci}i∈A are independent draws from the same population distribution. 

Let Gk(·; λ) be the distribution of Bi when i ∈ N(k). The private values are independent of 
λA under exogenous entry. Part (i) of Corollary 3 in Lebrun (1999) showed that, given any 
realization of λ(A), the supremum of the support of bids is the same for all bidder types. That 
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is, for any λ, β1(v|λ) = β2(v|λ) = ... = βK (v|λ) ≡ η(λ) < ∞ for some η(λ) ∈ (v, v), where βk 

denotes the equilibrium bidding strategy for a bidder from group k. Furthermore, the corollary 
also showed that for any λ(A), 

Fk0 (β
−1(b|λ(A))) ≤ Fk(β

−1(b|λ(A)))k0 k 

for all b ∈ [v, η(λ(A))] and k < k0 , and the inequality holds strictly at least over some interval 
on [v, η(λ(A))]. Consider i ∈ N(k0) and j ∈ N(k) with k0 > k. It then follows that X 

P {Bi ≤ b|i, j ∈ A} = 
λ(A)X 

Fk0 (β
−1 
k0 (b|λ(A)))P {λ(A)|i, j ∈ A} 

≤ 
λ(A) 

Fk(β
−1(b|λ(A)))P {λ(A)|i, j ∈ A} = P {Bj ≤ b|i, j ∈ A},k 

with the inequality holding strictly over some non-degenerate interval in the shared bid sup-
port. The inequality does not condition on the identities of the entrants other than i and 
j. 

Finally, note that by a symmetric argument, a similar inequality holds in first-price procure-
ment auctions with P {Bi ≥ b|i, j ∈ A} ≤ P {Bj ≥ b|i, j ∈ A} (with inequality being strict over 
some non-degenerate interval in the shared bid support), whenever the private cost distribu-
tion for i is stochastically lower than that of j. 

2.2. English Auctions with Asymmetric Bidders 

Consider the setting in Section 2.1, except that the auction format is English (ascending). 
The data report the identities of entrants in A and the transaction price W in each auction. 
In a dominant strategy equilibrium, the price in an auction equals the second highest private 
value among all entrants. 

With independent private values, we show below that 

(2.1) P {W ≤ w|i ∈ A, j 6∈ A} ≤ P {W ≤ w|j ∈ A, i 6∈ A} 

for all w over the intersection of support, whenever τ(i) > τ(j). Furthermore, the inequality 
holds strictly for some w over a set of positive measure in common support. This implies 

(2.2) E[W |i ∈ A, j 6∈ A] > E[W |j ∈ A, i 6∈ A]. 

The intuition behind (2.1) is as follows. Given any structure of entrants who compete with 
i or j (but not both), the distribution of the transaction price is stochastically higher when i is 
present but j is not than when j is present but i is not. Loosely speaking, when j is replaced 
by the stronger type i in the set of entrants, the overall profile of value distributions becomes 
“stochastically higher”. Then the law of iterated expectations implies (2.1) and (2.2). 

To infer the group structure, define the following indexes: 

δ+ = E[W |i ∈ A, j 6∈ A] − E[W |j ∈ A, i 6∈ A],i,j 

δ0 = |E[W |i ∈ A, j 6∈ A] − E[W |j ∈ A, i 6∈ A]| , andi,j 

δ− = E[W |j ∈ A, i 6∈ A] − E[W |i ∈ A, j 6∈ A],i,j 
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One can then use our procedure proposed in the text to classify the bidders based on pairwise 
comparison. 

We now derive (2.1) formally. Let Vi denote the private value for bidder i. Consider the 
case where i ∈ N(k0) and j ∈ N(k) where k0 > k. Let λ(A) denote the K0-vector of integers that 
summarizes the group structure of the set of entrants A. Let 1k denote the unit vector with the 
k-th component being 1. Then define: 

Hj,i(w; λ ∗ ) ≡ P {W ≤ w|j ∈ A, i 6∈ A, λ(A\{j}) = λ ∗}� � � � 

= P max Vs ≤ w λ(A) = λ ∗ + 1k + P max Vs > w,W ≤ w λ(A) = λ ∗ + 1k , 
s∈A s∈A �QK 

� 
where the first term on the right-hand side equals Fk(w) l=1 Fl(w)

λ∗ ; and the second onl 

the right-hand side is:� � � � 

P max Vs ≤ w, Vj > w λ(A\{j}) = λ ∗ + P Vj ≤ w, max Vs > w λ(A\{j}) = λ ∗ 

s∈A\{j} s∈A\{j}�YK � 
= [1 − Fk(w)] Fl(w)

λ∗ 
+ Fk(w)ϕ(w; λ ∗ ),l 

l=1 

where ϕ(w; λ∗) denotes the probability that the maximum value in A\{j} is strictly greater 
than w while the second highest value in A\{j} is less than or equal to w conditional on the 
classification λ(A\{j}) = λ∗ . Therefore �YK � 

lHj,i(w; λ ∗ ) = Fl(w)
λ∗ 

+ Fk(w)ϕ(w; λ ∗ ). 
l=1 

By the same argument, 

Hi,j (w; λ ∗ ) ≡ P {W ≤ w|i ∈ A, j 6∈ A, λ(A\{i}) = λ ∗}�YK � 
= Fl(w)

λ∗ 
+ Fk0 (w)ϕ(w; λ ∗ ).l 

l=1 

It is then straightforward to show that for any λ∗ , that Fk0 �F.S.D. Fk implies Hi,j (w; λ∗) ≤ 

Hj,i(w; λ∗) over the union of the K0 supports of {Fl : 1 ≤ l ≤ K0}, and the inequality holds 
strictly at least for some w in an interval on the intersection of the K0 supports of {Fl : 1 ≤ l ≤ 

K0}. Under exogenous entry, we get 

P {W ≤ w|i ∈ A, j 6∈ A} ≤ P {W ≤ w|j ∈ A, i 6∈ A} 

after integrating out λ∗ . The inequality holds strictly for some w over common support. 

Further Discussions 

One may wonder whether we can recover the classification of bidders in the English auction 
example through a “global” approach when the identity of the winner is reported in the data. 
That is, by comparing the distribution of transaction prices when i is the winner versus that 
when j is the winner, as opposed to the pairwise comparison approach proposed above. Let us 
explain why this is not feasible. 

For any i ∈ N(k0) and j ∈ N(k) and Fk0 �F.S.D. Fk, let A\{i, j} denote the set of entrants out 
of N\{i, j} and let M(A\{i, j}) ≡ max{Vs : s ∈ A\{i, j}}. Let φ(w; λ∗) denote the distribution 
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of M(A\{i, j}) conditional on λ(A\{i, j}) = λ∗ . Let D denote the identity of the winner in the 
auction; and Sk denote the survival function for the private value of a type-k bidder. Then, 

P {W ≤ w, D = i|i ∈ A} 

= pj P {W ≤ w, D = i|i, j ∈ A} + (1 − pj )P {W ≤ w, D = i|i ∈ A, j 6∈ A} , 

where pj is shorthand for j’s entry probability. Also note that, by construction, once condi-
tioned on the realized set of entrants from A\{i, j}, we have 

P {W ≤ w, D = i|i, j ∈ A, λ(A\{i, j}) = λ ∗}Z w 

= Fk(t)φ(t; λ ∗ )dFk0 (t) + Sk0 (w)Fk(w)φ(w; λ ∗ ), 
−∞ 

and 

P {W ≤ w, D = i|i ∈ A, j 6∈ A, λ(A\{i, j}) = λ ∗}Z w 

= φ(t; λ ∗ )dFk0 (t) + Sk0 (w)φ(w; λ ∗ ). 
−∞ 

Likewise P {W ≤ w, D = j|j ∈ A} can be written by swapping the roles of i and j and 
swapping the roles of k and k0 respectively. Then it can be shown that 

(2.3) P {W ≤ w, D = i|i ∈ A, j ∈ A} > P {W ≤ w, D = j|i ∈ A, j ∈ A}.1 

To see why the inequality in (2.3) holds, note for any λ∗ , 

P {W ≤ w, D = i|i, j ∈ A, λ(A\{i, j}) = λ ∗} 

−P {W ≤ w, D = j|i, j ∈ A, λ(A\{i, j}) = λ ∗}, 

where the difference is written as�Z w Z w � 

Fk(t)φ(t; λ ∗ )dFk0 (t) − Fk0 (t)φ(t; λ ∗ )dFk(t) 
−∞ −∞ 

+φ(w; λ ∗ ) [Sk0 (w)Fk(w) − Sk(w)Fk0 (w)] . 

The first square bracket in the display above is positive becauseZ ZZ w w w 

Fk(t)φ(t; λ ∗ )dFk0 (t) > Fk0 (t)φ(t; λ ∗ )dFk0 (t) > Fk0 (t)φ(t; λ ∗ )dFk(t). 
−∞ −∞ −∞ 

Furthermore, the second square bracket in the display is also positive because “Fk0 �F.S.D. Fk ” 
implies 

Sk0 (w) ≥ Sk(w) and Fk(w) ≥ Fk0 (w) for all w 

and these inequalities hold strictly for some set of w with positive measure. Integrating out λ∗ 

on both sides of the inequality 

P {W ≤ w, D = i|i, j ∈ A, λ(A\{i, j}) = λ ∗} 

> P {W ≤ w, D = j|i, j ∈ A, λ(A\{i, j}) = λ ∗}, 

yields the first inequality in (2.3). 
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Similarly, the difference between P {W ≤ w, D = i|i ∈ A, j 6∈ A, λ(A\{i, j}) = λ∗} and 
P {W ≤ w, D = j|j ∈ A, i 6∈ A, λ(A\{i, j}) = λ∗} equals Z ��Z w w 

φ(t; λ ∗ )dFk0 (t) − φ(t; λ ∗ )dFk(t) + φ(w; λ ∗ )[Sk0 (w) − Sk(w)] 
−∞ −∞ 

which must be positive because the two terms in the square brackets are positive. 
Now we write 

(2.4) P {W ≤ w, D = i|i ∈ A} 

= pj P {W ≤ w, D = i|i, j ∈ A} + (1 − pj )P {W ≤ w, D = i|i ∈ A, j 6∈ A} 

where pj ≡ P (j ∈ A). A similar expression exists for P {W ≤ w, D = j|j ∈ A} by swapping 
the roles of i and j in (2.4). The difference between the two positive differences 

P {W ≤ w, D = i|i, j ∈ A} − P {W ≤ w, D = j|i, j ∈ A} 

and 
P {W ≤ w, D = i|i ∈ A, j 6∈ A} − P {W ≤ w, D = j|j ∈ A, i 6∈ A} 

is indeterminate in the absence of knowledge about pi, pj . Therefore the difference between 
P {W ≤ w, D = i|i ∈ A} and P {W ≤ w, D = j|j ∈ A} is also indeterminate. 

2.3. Bidding Cartel in First-Price Procurement Auctions 

Our method can be used to detect the identities of cartel members in a model of first-
price procurement auctions in which a bidding cartel competes with competitive non-colluding 
bidders (Pesendorfer (2000)). Let the population of companies N be partitioned into a set of 
colluding firms N(c) and non-colluding firms N(nc). In each auction, the set of potential bidders 
(who are interested in bidding for the contract) A is partitioned into A(c) and A(nc). The 
cardinality of A(c) is common knowledge among the bidders. The potential bidders in A(c) 

collude by refraining from participation except for one bidder i∗ who is chosen among them to 
submit a bid.2 

In an efficient truth-revealing mechanism considered in Pesendorfer (2000), the cartel mem-
ber that has the lowest cost is selected to be the sole bidder from the cartel. That is, i∗(A(c)) = 

arg minj∈A(c) 
Cj where Cj is the private cost of bidder j. Thus, the set of final entrants who are 

observed to submit bids in the data is A∗ ≡ {i∗(A(c))} ∪ A(nc). (The set of colluding potential 
bidders is not reported in the data available to the researcher.) 

We maintain that across the auctions in the data bidders’ private costs are independent draws 
from the same distribution. Bidders are ex ante symmetric in that each bidder’s private cost is 
drawn independently from the same distribution. Entrants know that a representative of the 
cartel is participating in bidding, and all follow Bayesian Nash equilibrium bidding strategies. 

We are interested in detecting the identities of the set of colluding firms in N(c) from the 
reported bidding and participation decisions. Let N( 

0 
c) ⊂ N denote the set of bidders such 

2The cartel is sustained through side payments among its members. 
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that no two bidders in N( 
0 
c) are ever observed to compete with each other in the bidding 

stage. By construction, N(c) ⊆ N( 
0 
c) so the latter should be interpreted as a set of suspects for 

collusion. However, the set N( 
0 
c) could also contain innocent non-colluding bidders who are 

never observed to compete with each other in the data because of finite sample limitation. Our 
goal is to use bidding data to identify the group structure of N( 

0 
c), that is, to separate N(c) from 

N 0 \N(c) ≡ N(nc) ∩ N( 
0 
c).(c) 

Pesendorfer (2000) (Remark 3) shows that in any given auction with participants A(c) ∪A(nc), 
the distribution of bids from a non-colluding bidder j first-order stochastically dominates the 
distribution of the bids from the sole bidder representing the cartel i∗ .3 Specifically, for any 
such i∗ and j, 

(2.5) P {Bi∗ ≤ b|i ∗ ∈ A ∗ , |A ∗|} > P {Bj ≤ b|j ∈ A ∗ , |A ∗|} 

for all b on the common support of the two distributions.4 

The intuition, as is noted in Pesendorfer (2000), is that the sole bidder representing a cartel 
has a higher hazard rate than a non-colluding bidder. That is, relative to a competitive bidder, 
the cartel representative has a higher probability of having a low cost conditional on the costs 
being above any fixed threshold. Besides, ex ante symmetry among bidders implies that 

P {Bi ≤ b|i ∈ A ∗ , |A ∗|} = P {Bj ≤ b|j ∈ A ∗ , |A ∗|} 

whenever i, j ∈ N(c) or i, j ∈ N(nc) ∩ N( 
0 
c). 

We can then construct pairwise comparison indexes δ+ 
i,j , and δ− by replacing Gi,j andi,j , δ
0 

i,j 

Gj,i in equation (3.4) of Krasnokutskaya, Song, and Tang (2016a) with the left- and right-hand 
side of (2.5). 

3. Confidence Sets for the Group Structure 
The web appendix of Krasnokutskaya, Song, and Tang (2016b) proposes a method to con-

struct a confidence set for each group of agents having the same type. Here for the sake of 
readers’ convenience, we reproduce the procedure here using the notation of this paper. Let us 
consider a set-up where we have K0 groups and the set N of agents. Let K̂ be the consistent 
estimator of K0 as proposed in Krasnokutskaya, Song, and Tang (2016a). As for confidence 
sets, we construct a confidence set for each group of agents who have the same type. First, we 
fix k = 1, ..., K̂ and construct a confidence set for the k-th type group Nk. In other words, we 
construct a random set Ĉ  

k ⊂ N such that 

liminfn,L→∞P {Nk ⊂ Ĉ  
k} ≥ 1 − α, 

3Pesendorfer (2000) proved this result using the implicit assumption that the distribution of costs for non-
colluding bidders and that for the sole cartel is common knowledge among all participants in an auction. (See 
proof of Remark 3 in Pesendorfer (2000).) This assumption is consistent with the informational environment that 
the partition of N into N(c) and N(nc) is common knowledge among all bidders. 
4Note that the statement is conditional since the bidding strategies depend on the cardinality of the final set of 
bidders |A∗|. 
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For this, we need to devise a way to approximate the finite sample probabilities like P {Nk ⊂ 

Ĉ  
k}. Since we do not know the cross-sectional dependence structure among the agents, we 

use a bootstrap procedure that preserves the dependence structure from the original sample. 
The remaining issue is to determine the space in which the random set Ĉ  

k ⊂ N can take values 
in. It is computationally infeasible to consider all possible such sets. Instead, we proceed as 

ˆfollows. First we estimate Nk as prescribed in the paper and also obtain δ̂  
ij 
0 , the test statistic 

defined in the main text. Given the estimate N̂ 
k, we construct a sequence of sets as follows: 

δ̂0 ˆStep 1: Find i1 ∈ N\N̂ 
k that minimizes minj∈N̂ 

k i1,j , and construct Ĉ  
k(1) = Nk ∪ {i1}. 

δ̂0 ˆStep 2: Find i2 ∈ N\Ĉ  
k(1) that minimizes minj∈ ˆ i2,j , and construct Ĉ  

k(2) = Ck(1) ∪ {i2}.Ck(1) 

ˆStep m: Find im ∈ N\Ĉ  
k(m − 1) that minimizes minj∈ ˆ δ0 and construct Ĉ  

k(m) = Ck(m−1) im,j 

Ĉk(m − 1) ∪ {im}. 

Repeat Step m up to n = |N |. 

N̂ ∗ C∗Now, for each bootstrap iteration s = 1, ..., B, we construct the sets k,s and { ̂  
k,s(m)}

following the steps described above but using the bootstrap sample. (Note that this bootstrap 
sample should be drawn independently of the bootstrap sample used to construct bootstrap 
p-values p̂ij in the classification.) 

Then, we compute the following: X n o 
π̂k(m) ≡ 

1 
B 

1 N̂ 
k ⊂ Ĉ∗ . 

B k,s(m) 
s=1 

C∗Note that the sequence of sets ˆ 
k,s(m) increases in m. Hence the number π̂k(m) should also 

increase in m. An (1 − α)%-level confidence set is given by Ĉ  
k 
∗(m) with 1 ≤ m ≤ n such that 

π̂k(m − 1) < 1 − α ≤ π̂k(m). 

C∗Note that such m always exists, because ˆ 
k,s(n) = N . 

4. Further Simulation Results 
Tables 4.1 and 4.2 summarize the distribution of estimation errors in our group classification 

algorithm from 500 simulated data sets, when the number of groups is K0 = 2 and assumed 
known to the econometrician. The column Dµ shows the difference between the group means 
chosen in the simulation. 

When K0 = 2, the results show that the estimation error, as measured by the expected aver-
age discrepancy (EAD), decreases with the distance between group means. Such a reduction 
in EAD is most substantial when the number of players is larger (n = 40) and the size of 
the data is small (L = 100). Given group difference, EAD decreases as sample size increases 
moderately from L = 100 to 400. This pattern is most obvious when Dµ = 0.2. 

The other measure of estimation errors, DH(100p), also shows encouraging results. DH(100p) 
is zero for most of the cells in both panels (a) and (b), which shows that the empirical dis-
tribution of proportion of mis-classified bidders is reasonably skewed to the right. Besides, 
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the reduction in DH(100p) as the sample size increases is most pronounced with closer group 
means, regardless of the number of bidders in the population. 

When K0 = 4, the results demonstrate very similar patterns. Most remarkably, both mea-
sures of mis-classification errors only increase very marginally relative to the case with K0 = 2. 

Tables 4.3 and 4.4 report results from the full, feasible classification procedure when the 
number of groups is estimated through the penalization scheme proposed in the text. For most 
of the specifications used in these two tables, the estimates for the number of groups K̂ 

0 are 
tightly clustered around the correct K0. Compared with the results for infeasible classification 
under known K0, EAD and DH(100p) increase in most cases. Nonetheless such an increase is 
quite moderate, suggesting that our feasible classification algorithm performs reasonably well 
relative to its infeasible counterpart. 

In Tables 4.3 - 4.4, we report the analysis of computation time for the classification pro-
cedure. In Table 4.3, we give a decomposition of the time that it took for the classification 
procedure. The table clearly shows that the major computation time spent is when we con-
struct bootstrap p-values. Once the p-values are constructed, the classification algorithm itself 
runs fairly fast. 

In Table 4.4 , the computation time is shown to vary depending on the number of the 
agents (n), the number of the true groups (K0), and the number of the markets (L). The 
results show that the most computation time increase arises when the number of the bidders 
increases rather than when the number of the markets or the number of the groups increases. 
Our simulation studies are based on our MatLab code. The program was executed using a 
computer with the following specifications: Intel(R) Xeon (R) CPU X5690 @3.47 GHz 3.46 
GHz. 
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Table 4.1 : Performance of the Classification Estimator with Two Groups: 
(K0 = 2 and known) 

n L Dµ EAD DH(10) DH(25) DH(50) DH(75) DH(90) 

12 400 0.6 0.012 0.012 0 0 0 0 
12 400 0.4 0.014 0.014 0 0 0 0 
12 400 0.2 0.004 0.004 0 0 0 0 

12 200 0.6 0.004 0.004 0 0 0 0 
12 200 0.4 0.006 0.006 0 0 0 0 
12 200 0.2 1.118 0.560 0.252 0.158 0 0 

12 100 0.6 0.006 0.006 0 0 0 0 
12 100 0.4 0.084 0.078 0.006 0 0 0 
12 100 0.2 1.794 0.682 0.478 0.284 0 0 

40 400 0.6 0.018 0 0 0 0 0 
40 400 0.4 0.022 0 0 0 0 0 
40 400 0.2 1.170 0.178 0.014 0 0 0 

40 200 0.6 0.018 0 0 0 0 0 
40 200 0.4 0.020 0 0 0 0 0 
40 200 0.2 2.726 0.404 0.210 0.122 0.021 0.001 

40 100 0.6 0.020 0 0 0 0 0 
40 100 0.4 0.452 0.010 0 0 0 0 
40 100 0.2 3.720 0.902 0.578 0.234 0.132 0.043 

Note: This table summarizes the distribution of estimation errors in our classification algorithm from 
500 Monte Carlo replications when K0 = 4 and known. Here n represents the number of the 
individual players, L the number of the observed games in the data, Dµ the distance between 
population means, EAD the expected average discrepancy, and DH(100p) the hazard rate of EAD at p. 
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Table 4.2 : Performance of the Classification Estimator with Four Groups: 
(K0 = 4 and known) 

n L Dµ EAD DH(10) DH(25) DH(50) DH(75) DH(90) 

12 400 0.6 0.011 0.014 0.004 0 0 0 
12 400 0.4 0.018 0.016 0.010 0 0 0 
12 400 0.2 0.017 0.022 0.006 0 0 0 

12 200 0.6 0.013 0.018 0.004 0 0 0 
12 200 0.4 0.004 0.008 0 0 0 0 
12 200 0.2 1.112 0.764 0.188 0.024 0.008 0 

12 100 0.6 0.003 0.006 0 0 0 0 
12 100 0.4 0.044 0.040 0.024 0.002 0 0 
12 100 0.2 1.504 0.868 0.342 0.106 0.04 0 

40 400 0.6 0.115 0.020 0.020 0 0 0 
40 400 0.4 0.121 0.020 0.020 0 0 0 
40 400 0.2 2.450 0.680 0.368 0.018 0.018 0 

40 200 0.6 0.109 0.018 0.018 0 0 0 
40 200 0.4 0.140 0.026 0.026 0 0 0 
40 200 0.2 3.172 0.810 0.366 0.246 0.026 0 

40 100 0.6 0.141 0.024 0.024 0 0 0 
40 100 0.4 1.003 0.176 0.176 0.006 0 0 
40 100 0.2 4.557 0.904 0.652 0.526 0.202 0.053 

Note: This table summarizes the distribution of estimation errors in our classification algorithm from 
500 Monte Carlo replications when K0 = 4 and known. Here n represents the number of the 
individual players, L the number of the observed games in the data, Dµ the distance between 
population means, EAD the expected average discrepancy, and DH(100p) the hazard rate of EAD at p. 
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Table 4.3 : Computational Time for Various Steps of the Procedure 
(n = 60, K0 = 2, unknown, time measured in seconds) 

11 

Step 

1 
2 
3 
4 

n+4 

Description 

generating pairwise indexes from the data 
constructing bootstrap pairwise indexes 
computing bootstrap p-values 
division of a group into two 
number of groups selection 

Total Time 

L=100 

0.2987 
81.2178 

0.0012 
0.0008 
0.0002 

81.528 

L=200 

0.3543 
81.4871 

0.0014 
0.0008 
0.0002 

81.852 

L=400 

0.4607 
82.0807 

0.0014 
0.0008 
0.0002 

82.552 

Note: The table shows a decomposition of a total time it has taken for the classification procedure. 
The table shows that the major portion of the time comes from constructing the bootstrap pairwise 
indexes. Once the bootstrap p-values are constructed, the classification algorithm runs quite fast. 

Table 4.4 : Total Computational Time: across n, L, and K0 

(K0 unknown, time measured in seconds) 

L=100 L=200 L=400 L=200 L=200 
K0=2 K0=2 K0=2 K0=4 K0=6 

n = 12 3.246 3.224 3.239 3.216 3.219 
n = 24 13.057 13.177 13.259 13.185 13.189 
n = 48 51.987 52.272 52.700 52.281 52.291 
n = 60 81.528 81.852 82.552 81.862 82.874 
n = 72 116.949 117.213 117.577 116.912 117.328 
n = 96 209.426 209.971 209.834 209.884 210.058 

Note: The table shows the change in the computation time as one changes the number of the groups 
(K), the number of the markets and the number of the agents (i.e., bidders) ((n)). The major increase 
in the computation time arises when the number of the bidders increases rather than when the 
number of the markets or the groups increases. 
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5. Additional Materials for the Empirical Application 
Table 5.1 reports summary statistics for this set of projects. The table indicates that the 

projects are worth $523,000 and last for around three months on average; 38% of these 
projects are partially supported through federal funds. There are 25 firms that participate 
regularly in this market. All other firms in the data are treated as fringe bidders. An average 
auction attracts six regular potential bidders and eight fringe bidders. Since only a fraction 
of potential bidders submits bids, an entry decision plays an important role in this market. 
Finally, the distance to the company location varies quite a bit and is around 28 miles on 
average for regular potential bidders. 

Table 5.1 : Summary Statistics for California Procurement Market 

Variable Mean Std. Dev 
Engineer’s estimate (mln) 
Duration, large projects (months) 
Federal Aid 

0.523 
3.01 

0.384 

0.261 
1.56 

Number of Potential Bidders: 
Fringe Bidders 
Regular Bidders 

14.1 
8.2 
5.5 

8.4 
4.8 
3.3 

Number of Entrants: 
Fringe Bidders 
Regular Bidders 

5.4 
3.5 
1.9 

2.8 
2.7 
1.8 

Distance (miles): 
Fringe Bidders 
Regular Bidders 

18.72 
11.21 
28.34 

6.33 
5.42 

11.73 

Note: This table reports summary statistics for the set of medium size bridge work and paving projects 
auctioned in the California highway procurement market between years of 2002 and 2012. It consists 
of 1,054 projects. The distance variable is measured in miles. It reflects the driving time between the 
project site and the nearest company plant. The “Federal Aid” variable is equal to one if the project 
receives federal aid and zero otherwise. 
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