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ABSTRACT. This paper proposes a new method to study environments with unobserved 
agent heterogeneity. We focus on settings where the heterogeneous factor takes values 
from an unknown finite set, and the economic model yields testable implications in the 
form of pairwise inequalities. The method produces a consistent classification of eco-
nomic agents according to their unobserved types. The paper verifies that the method 
performs well in Monte Carlo simulations. We demonstrate empirical usefulness of this 
method by estimating a model of a first-price auction characterized by both agent and 
auction level unobserved heterogeneity using data from the California highway procure-
ment market. 
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1. Introduction 
The empirical analysis of many economic settings requires accounting for unobserved agent 

heterogeneity. The latter arises because some of the agent-specific factors influence the deci-
sions of economic agents and yet are not recorded in the data. Failing to account for unob-
served heterogeneity may lead to biased estimates and may affect the quality of counterfactual 
predictions. 

We focus on the environments where economic agents’ unobserved heterogeneity is captured 
by a discrete (non-stochastic) parameter taking values from a finite set. In such cases, the 
underlying population is organized as a collection of groups consisting of same-type agents. 
Thus unobserved heterogeneity defines a latent group structure on the set of agents. 

This paper proposes a method to recover the unobserved group structure from data. Our 
approach relies on pairwise comparisons derived from the model which are related to agents’ 
unobserved types. We establish the necessary and sufficient conditions which ensure that a 
given set of pairwise comparisons identifies the whole unobserved group structure. However, 
the estimation of the group structure requires additional insight even when identification is 
established. One possible approach would be to establish the ordering of the types by testing 
the inequality restrictions for each pair separately. However, this may not deliver a coherent 
estimate of the group structure since transitivity of ordering across pairs may not be preserved 
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in finite samples. Furthermore, it may be computationally infeasible to consider every possible 
group structure while verifying that restrictions hold for the group structure as a whole.1 The 
method we propose resolves these issues. 

The main idea of the approach proposed in this paper is to recover the whole group structure 
by sequentially subdividing the set of agents on the basis of information contained in the p-
values of the tests of pairwise inequality restrictions until a given number of groups is reached. 
We recover the whole group structure for each given number of the groups, and select the 
number of the groups (and the associated group structure) by using an appropriate goodness-
of-fit measure and a penalization scheme for over-fitting. We show that under mild regularity 
conditions for p-values, this method allows us to consistently select the correct number of 
groups and delivers a consistent estimator of the group structure. 

As this paper shows, pairwise restrictions arise from many economic models in empirical 
research. The examples we consider include unobserved product/provider attributes, unob-
served heterogeneity in firms’ costs, and assortative matching in labor markets. In these exam-
ples, the unobserved agent’s type as well as the profile of the competitor types (in multi-agent 
settings) serve as important determinants of the agent’s choices and of agent-specific outcomes 
and thus may be a source of omitted-variable bias if they are ignored in estimation. 

In many settings, recovering the unobserved group structure can be of independent interest. 
For example, it can be used to identify the colluding groups of agents, the cost asymmetries 
or product quality differences. Moreover, the method proposed in this paper is useful as a 
pre-estimation step in the structural analysis of complex economic settings such as dynamic 
industry models or auction models with asymmetric bidders.2 Specifically, uncovering the 
unobserved group structure may aid in identification of other primitives. In fact, in some 
settings it is necessary to know agent-specific unobserved heterogeneity in order to recover 
other primitives of the model.3 Further, classification step may help to reduce computational 
time in estimation of games where no explicit solution for equilibrium exists. Indeed, for 
structural estimation, one needs to relate the primitives of the model (including agents’ un-
observed heterogeneity) to the observed outcomes. The brute-force approach of modeling 
unobserved heterogeneity as agent-specific fixed effects and estimating them jointly with the 
structural parameters may be computationally infeasible in such settings since equilibrium has 

1Even if the types are known to take values from a two-point set, the total number of the candidate group 
structures for n agents is 2n which is large even with a moderate size n. 
2The first-step estimation of discrete unobserved heterogeneity does not affect the second step estimation due to 
its discreteness in terms of pointwise asymptotics. However, establishing uniform asymptotics remains an open 
question. This problem is analogous to that of post-model selection inference which arises from using consistent 
model selection in the first step estimation. For discussion on the issues, see Pötcher (1991), Leeb and Pötcher 
(2005), and Andrews and Guggenberger (2009) and references therein. Unlike the problem of variable selection, 
uniform asymptotics in our set-up is very complex, because we need to consider every possible direction in which 
a true group structure may be locally perturbed. We believe that a full theoretical investigation of that issue in 
our context merits a separate paper. 
3Such situation arises, for example, in in English auctions with asymmetric bidders when only transaction price 
and the identity of the winner are observed. Athey and Haile (2007) show that in such settings the underlying 
distributions of private values can only be identified if the groups to which winning players belong are known. 
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to be numerically computed for each configuration of agents’ types in each iteration within the 
estimation routine. Recovering agents’ unobserved groups in the first-step reduces the number 
of different agent types present in the population relative to the brute approach which may in 
turn reduce computational burden.4 

Additionally, our method is advantageous in settings where the number of agents in the 
population is moderately large but each market (observation) in the data involves only a small 
number of participants.5 In this case, despite the large number of markets observed, the re-
searcher may have only a small number of markets which contain the same set of participants. 
We call this issue the problem of the sparsely common players. In such settings, the researcher 
cannot build inference on the conditional moments given the set of participants in a market, as 
is typically done in the structural empirical literature. Hence in the interest of the accuracy of 
inference, he needs to “aggregate” the markets or the agents in order to be able to work with 
consistently estimable objects. Pairwise restrictions can be testable with accuracy even when 
the data exhibit sparsely common sets of players, since the number of markets where a given 
pair of agents is present tends to be large even if the number of markets with the same set of 
participants may be small. Thus, pairwise restrictions and the classification procedure offer a 
natural way to aggregate agents into groups which permits estimation of other primitives. 

In summary, our proposed method of recovering the unobserved group structure has the 
following advantages. First, it is nonparametric. It does not require parameterization of other 
model primitives or prior knowledge of the number of groups. Second, the estimator for the 
group structure is consistent under mild regularity conditions. Third, the method is flexible, 
and applicable to a wide range of complex structural models because the method is built to 
depend only on the p-values from the pairwise inequality restrictions. Fourth, the method 
provides a computationally feasible way to deal with unobserved heterogeneity in many appli-
cations. 

We investigate the finite sample performance of the classification method in a Monte Carlo 
study. The study is based on data generated by the model of a first-price procurement auction 
with asymmetric bidders where the means of the distributions of private costs differ across 
bidders in an unobserved way. We report the outcomes for various numbers of bidders and 
group structures. The estimation overall works quite well. The performance is better when 
the number of bidders and groups are smaller relative to the number of the markets and the 
differences between groups are larger. We also investigate the finite sample impact of the 
first step classification error on structural parameter estimates. We find that in our setting the 
second-step estimator’s quality is not substantially affected by the first-step classification error. 

4See Krasnokutskaya, Song, and Tang (2016) for an application of this approach in the analysis of online service 
markets. 
5For example, the total number of agents in population may be several hundreds but each market may attract 
only a few participants. 
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We analyze the California highway procurement market using our classification method. 
Empirical studies of auction markets often emphasized asymmetries in private values associ-
ated with observable bidder characteristics.6 In this paper, we additionally allow for unob-
servable differences in the means of cost distributions. To account for other sources of cost 
heterogeneity we control for the bidder’s distance to the project site as well as account for the 
possible endogeneity of the competitive auction structure. We use the classification method to 
recover the underlying group structure associated with unobserved cost asymmetries. Next, 
we recover the group-specific distributions of costs using Generalized Method of Moments 
estimation. Our estimates indicate that several (unobserved) groups with important cost dif-
ferences are present. We further determine that ignoring unobserved bidder heterogeneity 
leads to biased estimates of the impact of several factors on bidders’ costs. 

This paper is organized as follows. Section 2 discusses related literature. Section 3 intro-
duces the basic environment where pairwise inequality restrictions are defined. This section 
also discusses examples that motivate our classification method in various contexts. Section 4 
discusses identification of the underlying group structure from pairwise restrictions. Section 5 
proposes a consistent estimator of the unobserved group structure. Section 6 presents and dis-
cusses Monte Carlo results. Section 7 presents the empirical application. Section 8 concludes. 
Technical proofs and derivations are provided in the Appendix. 

2. Related Literature 
Researchers often turn to a finite mixture approach when dealing with unobserved agent het-

erogeneity. This method represents individual unobserved heterogeneity as a latent discrete 
random variable, whose distribution needs to be recovered from the data. In contrast, our clas-
sification method treats individual’s unobserved heterogeneity as a non-stochastic parameter 
of the environment, and aims to recover the exact type for each individual in the population. 

The data requirements for the two methods are different. Specifically, to implement our clas-
sification method the researcher needs to observe each agent participating in moderately many 
observations (markets) so that pairwise comparison between individuals is feasible based on 
some consistently estimable quantities. In comparison, the finite mixture approach does not 
require each individual to show up in many observations. This is because the objective of 
estimation is to recover the distribution of unobserved heterogeneity in the population (con-
ditional on covariates) rather than each agent’s type. 

Our classification method recovers the group structure from the pairwise comparisons, which 
naturally arise in the context of many economic models, and does not rely on parametrization 
of model primitives. Further, we allow for unobserved individual heterogeneity to be arbitrar-
ily correlated with any other observed or unobserved stochastic element of the environment. 

6Athey, Levin, and Seira (2011), Roberts and Sweeting (2013), Aradillas-Lopez, Gandhi, and Quint (2013) ac-
count for the bidder heterogeneity associated with size in timber market (‘mills’ vs ‘loggers’); Krasnokutskaya and 
Seim (2011), Jofre-Bonet and Pesendorfer (2003), and Gentry, Komarova, and Shiraldi (2016) incorporate bid-
der participation differences in highway procurement market (‘regular’ vs ‘fringe’ bidders); Conley and Decarolis 
(2016), Asker (2010) and Pesendorfer (2000) account for possible bidder heterogeneity arising due to collusion. 
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This feature is particularly useful in the settings with strategic interdependence. The finite 
mixture approach usually requires some independence between individual unobserved het-
erogeneity and (at least) a sub-vector of observed covariates. 

Both finite mixture and our approach could be applied in the estimation of the full struc-
tural model. The identification of model primitives under a finite mixture approach may be 
nontrivial and requires insights into exclusion restrictions.7 In contrast, the classification step 
usually simplifies the identification of other model primitives. Additionally, in some empir-
ical settings, the classification of agents is necessary for the subsequent estimation of other 
structural parameters. 

Our method delivers classification at a low computational cost, due to the sequential split 
algorithm we developed. In particular, the estimation of the number of groups does not present 
a computational burden. In a finite mixture approach the assumption about the number of 
groups has to be imposed at the beginning of analysis while considering alternative values of 
this parameter can be computationally prohibitive.8 

In the sense that we model the unobserved heterogeneity as a non-stochastic discrete pa-
rameter, our approach is similar in spirit to the literature on panel data models where some 
of the parameters differ across unknown groups of cross-sectional units.9 Our approach dif-
fers from this literature in terms of the assumed empirical setting. The panel data literature 
assumes that the dependent variable of each cross-sectional unit is determined explicitly by 
the observed and unobserved variables within the same cross-sectional unit. In contrast, we 
focus on settings where the dependent variables for each cross-sectional unit may depend in 
an implicit way on observed and unobserved variables associated with all other cross-sectional 
units due to equilibrium constraints. Furthermore, the details of such dependence are model-
specific. To accommodate this structure, we develop a method which uses only p-values from 
model-specific pairwise tests. 

7Kasahara and Shimotsu (2009) show how a finite mixture model of individual dynamic decisions with unob-
served types can be point-identified using the variation in the covariates reported in the data and its impact on 
the conditional choice probabilities across different types. Henry, Kitamura, and Salanie (2014) study the partial 
identification of finite mixture model when there is exogenous source of variation in mixture weights that leave 
the mixture component distribution invariant. In environments with strategic interdependence finite mixture are 
mostly used to model unobserved heterogeneity at the market rather than individual level (see, for example, Hu, 
McAdams, and Shum (2013)). 
8This is true for most finite mixture methods with the exception of the approach developed in Hu and Schennach 
(2008), Hu and Shum (2012) and Hu and Shiu (2013) which recovers the number of groups in estimation, 
using some full-rank (completeness) condition on the component distribution in the finite mixture. However, 
this method have been developed in the contexts where a single unobserved factor per observation is present 
such as single agent settings or a game-specific rather than agent-specific unobserved heterogeneity is present. 
Additionally, the completeness condition may be difficult to interpret in many settings. 
9See Sun (2005) and Phillips and Sul (2007) who study an unobserved group structure of cross-sectional units in 
the context of growth models based on large panel data; Song (2005) who explores consistency of the heteroge-
neous parameter estimators and proposes a consistent estimation method of unobserved group structure in large 
panel models; Lin and Ng (2012) also studies estimation of panel models with unknown group structure. More 
recently, Bonhomme and Manresa (2014) make use of a k-means clustering algorithm in the first step to recover 
the group structure before proceeding to estimate deep parameters characterizing data-generating process. Su, 
Shi, and Phillips (2016) develop a new Lasso method to recover the unknown group-specific parameters. 
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Our classification method is somewhat related to the computer science literature on clus-
tering.10 However, this literature pursues objectives which are fundamentally different from 
those considered in this paper. More specifically, the clustering methods aim to group ob-
jects/agents that are similar in their observable attributes. In comparison, our objective is to 
classify individuals on the basis of an unobserved attribute exploiting the relationship between 
the outcome (endogenous) variables and agents’ type implied by the economic model. 

Our approach is also designed to be applied to data structures which are quite different from 
the data typically used in clustering analysis. Specifically, clustering analysis is performed on 
data sets which include many cross-sectional units and where each unit is observed once or 
a small number of times. The performance of the procedure is evaluated by the fraction of 
misclassified units. In contrast, our method applies in settings where many observations per 
cross-sectional unit are available. We aim to classify each individual unit consistently. This is 
because we would like to allow for the possibility that classification is not an end objective of 
the analysis. Instead, it may be used as a step enabling estimation of other structural primi-
tives. In this context, it is important that the classification error should have an asymptotically 
negligible impact on the second-step estimation of other structural primitives. Our (pointwise) 
consistency result formulates conditions under which our procedure delivers this property. 

3. The Model and Motivating Examples 

3.1. The Basic Set-Up 

The population consists of a set of players denoted by N such that |N | = n. The agents are 
engaged in a payoff-generating activity. The researcher has access to the data which consist of 
L observations summarizing individuals’ decision-making. The decision-making environment 
may involve a single agent or multiple agents (when it reflects market competition, for exam-
ple). For the sake of convenience we will refer to a single observation as a game even if only 
a single player is involved. Further, we will use Sl to denote the set of players involved in l-th 
game. 

Importantly, each agent i is characterized by a non-stochastic factor qi, which is not observed 
to the researcher, such that qi ∈ Q0 = {q̄  1, ..., q̄  K0 }, with q̄  1 < · · · < q̄  K0 . This factor induces a 
partition of the set of agents into a group structure which is an ordered collection of disjoint 
subsets (N1, N2, ..., NK0 ) such that N = ∪kNk. The membership function τ : N → {1, ..., K0}
links the identity of a player to his type so that qi = q̄  τ(i) and for each k = 1, ..., K0, 

Nk = {i ∈ N : τ(i) = k} . 

The data available to the researcher contain for every observation l = 1, ..., L: a vector of 
observable characteristics for all the players involved, {Xj,l}j∈Sl , as well as at least one but 
possibly multiple vectors of outcome variables, Yl = {Yj,l}j∈Sl . The outcome variables may 

10The same applies to the literature on statistical classification which is primarily concerned with adaptive learn-
ing and prediction. See Hastie, Tibshirani, and Friedman (2009) for a comprehensive review of both literatures. 
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reflect the actions chosen by players in the course of the game or the various aspects of the 
payoff realized for individual players such as, for example, whether the player won the game 
or how many utils or dollars he collected at the end of the game. The relationship between 
the outcome variables in observation l and players’ characteristics can be summarized by a 
reduced-form expression: 

(3.1) Yi,l = ϕl(Xi,l, qi, Ωl; θ0) 

where Ωl summarizes a decision environment associated with observation l which includes 
characteristics of other participating players, {Xj,l, qj }, and other environment-specific vari-
ables some of which may be unobserved. Outcome variables also depend on the structural 
parameters of the model, θ0. These parameters may include parameters of the utility function, 
parameters of the cost function, etc. These parameters may be the ultimate objects of interest. 
Unlike the literature on panel data models, the outcome Yi,l for cross-sectional unit i is allowed 
to depend on other cross-sectional units j through a potentially nonlinear function ϕl. Often 
the function ϕl takes a complex form whose existence is ensured but its explicit form is not 
available to the researcher. 

Our method applies in the settings where for each given pair of players (i, j) a pairwise 
monotone relationship between some functions of outcome variables and these players’ unob-
served factors can be established which allows us to construct three comparison indexes δij 

+ , δij 
0 

and δij 
− that satisfy the following properties: 

(3.2) δij 
+ > 0 if and only if τ(i) > τ(j); 

δij 
0 = 0 if and only if τ(i) = τ(j); 

δij 
− > 0 if and only if τ(i) < τ(j). 

These pairwise comparison indexes δij 
+ , δij 

0 and δij 
− need to be consistently estimable using data 

generated in the settings described above. We illustrate these concepts below using several 
settings broadly studied in the literature. 

3.2. Examples 

In this section we provide examples of the circumstances where the pairwise restrictions 
exist. We also explain the reasons for using a classification method. 

3.2.1. Unobserved Attributes 

In many choice settings an economic agent chooses among multiple alternatives summarized 
by vectors of attributes where one of the attributes may not be observed by the econometrician. 
Such a model has been extensively used to analyze markets with differentiated products. One 
approach to modeling unobserved product heterogeneity in such a setting is to associate a 
fixed effect with each product. The methodology which pursues this approach relies on the 
property that a one-to-one correspondence exists between the unobserved attributes and the 
probabilities of choosing these alternatives conditional on the full choice set of the buyer 
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(see, for example, Berry, Levinsohn, and Pakes (1995)). This property allows researchers to 
recover unobserved attributes, as well as control for their impact in estimation. In the settings 
where the choice sets vary a lot across buyers, however, such an approach may be impractical 
since the choice probabilities conditional on the choice set may not be consistently estimable 
from the data. In such settings the aggregation of products (or sellers) into groups and/or 
aggregation over the choice sets may be required. The method proposed in this paper can 
be applied to infer the group structure which may serve as a basis for aggregation in such a 
context. It may be useful in the analysis of markets with local competition such as service 
markets. Specifically, Krasnokutskaya, Song, and Tang (2016) adopt this approach to study 
an online market for programming services where transactions are implemented in the form 
of multi-attribute auctions (i.e., buyers base their allocation decisions on sellers’ attributes in 
addition to prices, similar to the differentiated product markets). 

To fix ideas, consider a simplified version of the model in Krasnokutskaya, Song, and Tang 
(2016) that abstracts away from observed auction and seller’s heterogeneity. Denote by N the 
population of the sellers in this industry and by Sl the set of sellers who submitted bids for the 
project l. As in our basic set up, each seller is characterized by unobservable quality from a 
finite ordered support: qi ∈ {q̄  1, q̄  2, ..., q̄  K0 }, with q̄  k < q̄  k0 whenever k < k0 . Sellers’ qualities 
are known to buyers but are not reported in the data. 

The buyer for project l selects a seller among those who submitted bids in his auction or 
chooses an outside option so as to maximize his payoff. The payoff to the buyer from engaging 
services of seller i ∈ Sl is given by Ui,l = αlqi + �i,l − Bi,l whereas the payoff from an outside 
option is U0,l. Here αl is a non-negative weight the buyer gives to the seller’s quality relative 
to the seller’s bid, whereas �i,l reflects a buyer-seller match-specific stochastic component. 

Let us suppress the auction subscript l and define for any two sellers i, j, 

rij (b) = Pr ( i wins | Bi,l = b, i ∈ S, j 6∈ S) 

for all b on the intersection of the supports of Bi,l and Bj,l. 
If αl, Sl, {Ci,l, �i,l}i∈Sl are mutually independent11 then 

(3.3) sign(rij (b) − rji(b)) = sign(qi − qj ), 

for any b on the intersection of bid supports. Intuitively, suppose i and j participate in two 
separate but ex-ante identical auctions (in terms of the realized set of competitors) and submit 
the same price. Then the seller with a higher unobserved quality has a higher chance of 
winning. Note that the identity of the winner is not deterministic due to uncertainty about the 
buyer’s tastes in αl and �l = {�i,l}i∈Sl . The ranking of winning probabilities above is preserved 
when aggregated over different sets of competitors, as long as the probability of encountering 
a given set of competitors is the same for both sellers. This condition holds if, for example, 
the pool from which competitors are drawn excludes both i and j. This reasoning is formally 
developed in Proposition 1 of Krasnokutskaya, Song, and Tang (2016). 

11This holds, for example, when the participating sellers are not informed of the weights or the outside option of 
the buyer and are not informed about identities of other sellers they are competing with (i.e., about sellers in Sl). 
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On the basis of this property the comparison indexes can be constructed as follows: δij 
+ ≡R R 

max{rij (b)−rji(b), 0}db, δ0 ≡ |rij(b) − rji(b)| db and δ− is defined by swapping i and j in δ+ 
ij ij ij . 

We integrate over observed values of bids, b, to aggregate all the information available for the 
comparison of i and j in order to maximize the power of this comparison. Furthermore, note 
that the comparison indexes allow the researcher to use observations from the auctions with 
different profiles of competitors’ qualities. They also do not depend on specific parametric 
assumptions for the distribution of buyers’ tastes which allow the researcher to recover the 
unobserved group structure outside of the formal structural estimation. 

3.2.2. Bidder Asymmetry in First-Price Auctions 

In the markets which rely on auctions as the allocation mechanism the participants often 
have private information about their valuations for the object which is being sold. In many 
settings the participants differ not only in their realizations of the private information but 
also in the distribution from which their private values are drawn.These are settings with 
asymmetric bidders.12 

Inferring such bidder asymmetries may be important from a purely positive point of view, 
since they could be indicative of collusive arrangements, quality differences, or differences in 
information. Additionally, auction theory suggests that in order to answer mechanism design 
questions or to assess the potential outcomes of policy interventions in auction markets the 
researcher needs to know the distribution of private information at the level at which it is 
observable by the market participants. The existing empirical studies, however, limit their 
attention to the asymmetries associated with observable bidder groups due to data limitations 
or because of the computational burden associated with more sophisticated modeling. Our 
method can help to overcome some of these difficulties. We summarize the insight enabling 
the recovery of unobserved groups in the case of the first price auction while relegating a 
similar analysis for the English auction and for the asymmetries arising due to the collusive 
behavior to the Online Appendix. 

Formally, similar to our basic setting, let the population of bidders, N , be partitioned into 
K0 groups, such that each group is characterized by a distinct distribution of private values, 
Fk(.). For simplicity, we assume that the distributions of values associated with various groups 
differ only in their means and that q̄  1 < q̄  2 < ... < q̄  K0 , where q̄  k refers to the mean of the 
distribution Fk. Hence for a bidder i with τ(i) = k the mean of the cost distribution is given 
by qi = q̄  k.13 Let Sl denote the set of participants in auction l and Bl = {Bi,l} a vector of 
bids submitted by these participants where Bi,l = βk(Vi,l) with βk(.) reflecting type-symmetric 
equilibrium bidding function and Vi,l are distributed according to Fk(.) if τ(i) = k. 

12Some references to the auction studies of the environments with asymmetric bidders are provided in introduc-
tion to the paper. 
13The result here holds more generally when Fk are stochastically ordered. By strict stochastic dominance we 
mean Fk0 < Fk whenever k0 < k over a non-degenerate interval on the shared support. 
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Define Gij (b) = Pr(Bi,l ≤ b| i, j ∈ Sl).14 Then Gij (b) ≤ Gji(b) for all b in the common 
support of Bi,l and Bj,l whenever τ(i) ≤ τ(j). The inequality holds strictly at least over some 
interval with positive Lebesgue measure. This regularity has been previously established in 
the literature for a given configuration of the set of participating bidders S (see Corollary 
3 of Lebrun (1999)). Such an inequality also holds unconditionally when aggregated over 
the identities of the competitors and auction characteristics. The latter is possible because 
the index for agents i and j is based on the bids submitted in the auctions where both bidders 
participate. A similar property holds in the settings where allocations are implemented through 
first-price procurement auctions.15 The only difference is that in these settings Gij (b) should 
be defined as Gij (b) = Pr(Bi,l ≥ b| i, j ∈ Sl). 

Returning to the case of a standard first-price auction, the property above serves as a basis 
for pairwise comparison. Specifically, comparison indexes can be constructed as follows: Z 
(3.4) δ+ ≡ max {Gji(b) − Gij (b), 0} db.ij 

Likewise, define δij 
− by swapping the role of i, j in δij 

+; and define δij 
0 by taking the absolute 

value of the difference in the integrand in δ+ 
ij . 

Notice that the indexes do not condition on the set of bidders participating in the auction l. 
This feature is particularly attractive in the settings where the set of participants varies across 
auctions due to exogenous reasons or due to bidders actively making participation decisions 
since it allows to utilize observations from a large number of auctions when constructing a 
comparison index for i and j. 

3.2.3. Firms’ Cost Efficiency and Pricing Decisions 

Pairwise comparisons based on chosen equilibrium actions also arise in the settings without 
private information. Continuing with the differentiated products example, assume for simplic-
ity that each firm produces a single product and N denotes the population of firms comprising 
a given industry. The data are organized by markets (l = 1, ..., L) and Sl denotes the set of 
products available in market l. Assume that the researcher has been able to estimate the de-
mand system and thus to recover the relationship between the firms’ market shares ({σj,l(.)}) 
and the products’ attributes (xl = {xj,l}j∈Sl ), and prices (pl = {pj,l}j∈Sl ) for a given set of 
competing products Sl and given other market factors included in Ωl: σj,l(xl, pl, Ωl). 

Further, the marginal cost for firm i on market l is ci,l = ϕ(wi,l, qi, ηi,l), where wi,l are cost 
shifters that may overlap with xi,l, qi is a brand-specific unobserved heterogeneity fixed across 
markets, and ηi,l’s are i.i.d. idiosyncratic noises independent from cost shifters and unobserved 
heterogeneity. We may interpret qi as a measure of the firm i’s cost efficiency. Firms have 

14Here we need to maintain the assumption that the bid data is rationalized by a single BNE, which is standard 
in the literature. 
15In contrast to standard first-price auctions where the bidder who submitted the highest bid wins, under pro-
curement first-price auction the object is allocated to the bidder who submitted the lowest bid. 
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complete information about each others’ cost efficiencies.16 As above the population of firms 
is partitioned into groups corresponding to different levels of qi: N = ∪kNk where i ∈ Nk if 
τ(i) = k. 

The profit for firm i in market l is: πi,l = (pi,l − ci,l)σi,l(xl, pl)Ml, where Ml is a measure 
of potential consumers in market l. In any pricing equilibrium with an interior solution, the 
first-order condition implies 

σi,l(3.5) ci,l = pi,l + . 
∂σi,l/∂pi,l 

Notice that if ϕ(wi,l, qi, ηi,l) is monotone in qi then so is the right-hand side of the expression in 
(3.5) which can be constructed from the the estimates of the demand-side primitives. Hence, 
for any pair i, j ∈ N , we have qi ≥ qj if and only if E[zi,l|wi,l = w0] ≥ E[zj,l|wj,l = w0], for all 
w0, where zi,l = pi,l + σi,l , and the statement is true when both inequalities are strict.

∂σi,l/∂pi,l 

This insight is exploited in the literature analyzing productivity of firms where the re-
searchers use information available in firms’ output and input choices while controlling for 
the influence of the market conditions through the demand-side estimates (see, for example, 
DeLoecker and Warzynski (2012)). It also serves as a basis for constructing pairwise indexes. 
Specifically, define the pairwise comparison indexZ 

δ+(3.6) ij ≡ max{E[zi,l|wi,l = w0] − E[zj,l|wj,l = w0], 0}dF (w0). 

Our model equilibrium implies that δij 
+ > 0 if and only if qi > qj . Likewise, define δij 

− by 
swapping the roles of i and j in δij 

+ , and define δ0 by replacing max{·, 0} in the integral with ij 

the absolute value. 
Notice that pairwise comparison above does not condition on the set of the firm’s competi-

tors in a specific market (beyond the dependency between the products’ market shares on this 
set) or require that the firms that are being compared are present in the same market. Using an 
estimation approach which includes the classification step may be useful in the setting where 
the population of firms is large and their participation varies across markets and is poten-
tially non-random. In such environments, recovering the model primitives from the observed 
outcomes while allowing for the firm-specific unobserved heterogeneity may prove challeng-
ing either computationally or inferentially. The approach proposed in this paper allows the 
researcher to substantially reduce these burdens. 

3.2.4. Assortative Matching in Labor Market 

A growing recent literature in labor economics studies sorting of heterogeneous employees 
across heterogeneous firms.17 In the settings considered in this literature firms are hetero-
geneous so that the productivity of a given worker varies across firms when all other things 
are held equal. Similarly, workers differ in their ability which is analogous to qi introduced 

16This assumption is plausible in certain industries where production efficiency is mostly determined by firms’ 
technology or equipment that is publicly observable. 
17See, for example, Lentz and Mortensen (2010), Abowd, Kramarz, and Margolis (1999), and Lise, Meghir, and 
Robin (2011). 
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above. Under some further restrictions (see Eeckhout and Kircher (2011) and Hagedorn, Law, 
and Manovskii (2016)) it can be shown that, everything else equal, among the two workers 
employed by the same firm the worker with higher ability would earn a higher wage in equi-
librium. This forms a basis for pairwise comparisons. Specifically, let wi,f,t = W (qi, Xi,t, Ωf,t) 

denote the wage individual i earns at time t while employed by firm f , where W is a non-
stochastic function. Here Ωf,t captures all the relevant firm-specific factors while Xi,t reflects 
individual i0s characteristics other than qi. Using Nf,t to denote the set of workers employed 
by firm f at time t, define the comparison index as: for each pair i, j ∈ Nf,t, Z 

δ+ 
ij = max{mi,f,t(x0) − mj,f,t(x0), 0}dF (x0), 

where mi,f,t(x0) = E[wi,f,t|Ωf,t, Xi,t = x0]. Then δ+ > 0 if and only if qi > qj. Likewise before, ij 

define δ− by swapping the roles of i and j in δij 
+ , and define δ0 by replacing the max operatorij ij 

with its absolute value. Notice that in this setting comparison of workers is complicated by the 
(unobserved) firm heterogeneity and sorting of workers across firms. Pairwise comparisons 
allow researcher to circumvent these issues by focusing workers’ wages earned while they are 
employed by the same firm. It is also worthwhile emphasizing that this environment is not 
characterized by strategic interdependence. 

4. Identification of the Ordered Group Structure 

4.1. Identification Analysis with a Growing Number of Agents 

Our pairwise comparison method is attractive in a setting where a simultaneous ordering 
of all players is infeasible in practice. For example, a global index that would lead to a si-
multaneous ordering of all players can be difficult to derive theoretically, or cannot be reliably 
estimated due to data limitation. Such data limitation is illustrated in Figure 1, where each 
column symbolizes a “market” and each row an individual agent. The ellipses in each column 
represent agents participating in a market. The second panel shows an example of a data set 
where only very few markets share exactly the same set of participants. Nevertheless, lots 
of markets share the same pattern of participation decisions between the first and the third 
agent. The third panel shows that these two players jointly participate in many markets in the 
data; the fourth panel highlights many markets in which the first agent participates while the 
third does not. In such a data set, accurate inference based on any quantity that conditions on 
the whole set of participants is not possible due to the small number of markets available. On 
the other hand, pairwise indexes which only condition on the participation pattern between a 
fixed pair of agents can be accurately estimated. 

To accommodate this data feature formally in our asymptotic theory, let us define for any 
S ⊂ N , 

L(S) = {1 ≤ l ≤ L : Sl = S}. 
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FIGURE 1. The first panel shows an example of a data set where the set of participants 
is the same across all markets. The second panel shows another example of data where 
only few markets share the same set of participants. The third panel shows that there 
are lots of markets in the second data set where both the first and the third player partic-
ipate. Thus a researcher can estimate population quantities that condition on the joint 
participation of these two players with better accuracy than quantities that condition on 
the whole set of participants. The fourth panel highlights many markets in which only 
one out of these two players participates. 

Thus L(S) represents the set of markets where the set of participants in a market l is precisely 
S. In this paper, we say that the sets of players are sparsely common across the markets, if 

max |L(S)|/L → 0, 
S⊂N 

as L →∞, n →∞. Thus this asymptotic theory requires us to allow both the number of agents 
in the population n and the number of markets L to go to infinity, though L goes to infinity 
faster than n. 

The identification of unobserved heterogeneity when both n and L increase to infinity is non-
standard. A standard identification analysis assumes the data consists of i.i.d. observations 
drawn from a representative probability. Such an analysis investigates whether the parameter 
of interest can be uniquely determined once this representative probability is known. However, 
such a standard identification analysis is cumbersome when both the number of agents and the 
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number of markets grow to infinity. In such a framework, there is no representative probability 
on which we can base our identification analysis. 

In this paper, our identification method is based on quantities that are consistently estimable 
as n → ∞ and L → ∞. We say that our parameter of interest is identified, if it is uniquely 
pinned down by such quantities. This identification concept encompasses as a special case the 
standard identification analysis based on random sampling.18 

We say that agents (i, j) are comparable if there exist consistently estimable pairwise indexes 
δij 
+ , δij 

0 , and δij 
− such that (3.2) holds. We maintain that a researcher knows whether each pair 

of agents is comparable through some pairwise comparison index or not. The determination of 
such comparability can be done in practice by checking whether the data contains sufficiently 
many markets which allow for reliable estimation of the pairwise indexes. 

Let E be the collection of pairs (i, j) that are comparable. We refer to comparable agents as 
adjacent (or linked), so that the set E forms the set of edges in a graph on the set of agents 
N . We call this graph (denoted by G = (N, E)) the comparability graph.19 We say the ordered 
group structure τ is identified if it is uniquely determined once the comparability graph G and 
the vectors of pairwise indexes (δij 

+, δij 
0 , δij 

−)ij∈E are known. 

4.2. Identification of the Ordered Group Structure 

Let us explore the identification of τ given the comparability graph G and the vector of 
pairwise indexes. It is easy to see that if E contains only a small subset of possible pairs, 
we may not be able to identify the group structure. The identification of the ordered group 
structure τ is not guaranteed even when many pairs of agents are comparable. For example, 
even if G is a connected graph (where any two agents are connected at least indirectly), the 
ordered group structure τ may not be identified. This is illustrated in a counterexample in 
Figure 2. Certainly, when every pair of agents are adjacent in the graph G, i.e., G is a complete 
graph, the ordered group structure τ is identified.20 

Below we establish a necessary and sufficient condition for the group structure to be identi-
fied from an incomplete graph G and the pairwise comparison indexes. Let us introduce some 
definitions. 

Definition 4.1. (i) A graph Gτ is the τ -collapsed graph of G if (a) any two adjacent vertices i 
and j in G with τ(i) = τ (j) collapse to a single vertex (denoted by (ij)) in Gτ , (b) any edge 

18 As this notion suggests, identification analysis based on the unique recoverability of parameters from some 
“population” quantities would not be useful for finite sample inference, if such quantities are not consistently 
estimable in large samples. 
19In a graph (or network) G = (N, E) the set N represents the set of vertices (or nodes) and E consists of some 
pairs ij, with i, j ∈ N , where each pair ij is called an edge (or link). If (i, j) ∈ E , we say that i and j are adjacent. 
A path is a set of vertices {i1, i2, ..., iM } such that i1i2, i2i3, ...iM−1iM ∈ E . Two vertices are called connected if 
there is a path having i and j as end vertices. A graph is called connected if all pairs of vertices are connected in 
the graph. 
20 If all pairs of agents are comparable, we can split the set of agents into one group with the lowest type and 
the other group with the remaining agents. Then we split these remaining agents into one group with the lowest 
type within these agents and the remaining agents. By continuing this process, we can identify the whole group 
structure. 
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FIGURE 2. This figure illustrates an example where the comparability graph does not 
identify the group structure even when all the vertices (or nodes) are connected. Here 
the comparability graph is G = (N, E), where N = {1, 2, ..., 5} and E = {12, 23, 34, 45}. 
We cannot identify the group structure from these pairwise orderings. The two panels 
depict two different group structures that are compatible with the same pairwise order-
ing. 

in G joining a vertex k to either i or j joins vertex k to (ij) in Gτ and (c) all the remaining 
vertices and edges in Gτ consist of the remaining vertices and edges in G. 
(ii) A path in Gτ is monotone if τ(i) is monotone as i runs along the path. 
(iii) A vertex i is said to be identified if its type τ(i) is identified. 

The τ -collapsed graph of G is constructed by reducing any comparable pair of agents in G 

who have the same type to a single “agent”, and retaining edges as in the original graph of G. 
Certainly, a τ -collapsed graph Gτ is uniquely determined by δij 

0 ’s and G. Any pair of adjacent 
agents in the τ -collapsed graph must have different types, and hence the types of agents on a 
monotone path are strictly monotone. This means that every vertex on a monotone path in Gτ 

of lengh K0 − 1 is identified. Also by similar logic, every vertex on a monotone path with end 
vertices iH and iL is identified if the path has length τ(iH ) − τ(iL) and the end vertices iH and 
iL are identified. Using these two facts, we can recover the set of vertices that are identified as 
follows. 

First, set N[1] ⊂ N to be the set of vertices such that each vertex in the τ -collapsed graph 
Gτ is on a monotone path in Gτ of length K0 − 1. For j ≥ 1 generally, let N[j+1] be the set of 
vertices each of which belongs to a monotone path, say, P , such that its end vertices iH and iL 
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FIGURE 3. This figure shows an example where the condition N = N∗ in Theorem 3.1 
is violated. The first panel depicts the comparability graph as a line graph connecting 
6 vertices (or nodes). The second panel shows the τ -collapsed graph where the two 
comparable nodes 2 and 3 that have the same type are collapsed into one node named 
23. In the last panel, it is shown that Nodes 23, 4, and 5 (expressed as solid black 
nodes) are identified, because they are on a monotone path of length K0 − 1 = 2. In this 
example, Nodes 1 and 6 are not identified and thus the comparable graph does not lead 
to the identification of the group structure. 

are from N[j] and τ(iH ) − τ(iL) is equal to the length of the monotone path P . Then define [ 
N ∗ ≡ N[j]. 

j 

Given Gτ , N∗ is uniquely determined as a subset of N . It is not hard to see that if N = N∗ 

and K0 is identified, the type structure τ is identified. The following theorem shows that this 
condition is in fact necessary for the identification of τ as well. 

Theorem 4.1. Let G be a given comparability graph and Gτ be its τ -collapsed graph. The type 
structure τ is identified if and only if there exists a monotone path in Gτ whose length is equal to 
K0 − 1 and 

N = N ∗ . 

Any monotone path in Gτ cannot have length greater than K0 − 1. Note that there exists 
a monotone path in Gτ whose length is equal to K0 − 1 if and only if K0 is identified. The 
conditions in the theorem are obviously satisfied if G contains a monotone Hamiltonian path, 
i,e., a path that is monotone and covers all the vetrices. The latter condition is trivially satisfied 
when G is a complete graph. Figure 3 gives a counterexample where the condition that there 
exists a monotone path in Gτ whose length is equal to K0 − 1 is satisfied, but N 6= N∗ so that 
the comparability graph does not lead to the identification of the group structure. 
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5. Consistent Estimation of the Ordered Group Structure 

5.1. Pairwise Hypothesis Testing Problems 

In this section, we develop a method to estimate the group structure consistently for the case 
where the comparability graph is complete, so that we take E to be all ij with i, j ∈ N, i 6= j. 
The main challenge lies in the fact that we are given only pairwise comparisons. One may be 
able to determine fairly accurately the type ordering between each pair of agents i and j from 
data, but these pairwise comparisons do not necessarily generate an ordered group structure, 
because transitivity of the pairwise orderings may be violated in finite samples. Thus we need 
to develop an estimation method that imposes transitivity in finite samples. 

Our classification method is based on individual p-values from the hypotheses on pairwise 
inequalities in (3.2). We first formulate three pairwise hypothesis testing problems for each 
comparable pair ij ∈ E: 

(5.1) H0
+ 
,ij : δij 

+ ≤ 0 against H1
+ 
,ij : δij 

+ > 0, 

H0
0 
,ij : δij 

0 = 0 against H1
0 
,ij : δij 

0 6= 0 and 

H0 
− 
,ij : δij 

− ≤ 0 against H1 
− 
,ij : δij 

− > 0. 

In most examples, we have various tests available. Instead of committing ourselves to a par-
ticular method of hypothesis testing, let us assume generally that we are given p-values p̂ij 

+ , p̂ij 
0 

and p̂− 
ij from the testing of H0

+ 
,ij , H0

0 
,ij and H0 

− 
,ij , against H1

+ 
,ij , H1

0 
,ij and H1 

− 
,ij respectively. Let 

L be the size of the sample (i.e., the number of the markets) that is used to construct these 
p-values. We will explain conditions for the p-values later and explain details for construction 
of p-values using bootstrap later in Section 5.3. 

5.2. Classification Method 

5.2.1. Estimation for Two Groups using a Split Algorithm 

Suppose that the econometrician knows that there are two distinct types, i.e., K0 = 2, so 
that for each i ∈ N , qi ∈ {q̄  h, q̄  l} for some two unknown numbers q̄  h and q̄  l such that q̄  h > q̄  l. In 
this case, there could potentially be several different ways of partitioning N into two groups 
using the p-values. Here we develop a method that permits a natural extension to a more 
general case of K0 > 2. 

First, let 

Nh ≡ {i ∈ N : qi = q̄  h} and 

Nl ≡ {i ∈ N : qi = q̄  l} , 

so that the group structure is given by 

T = (Nl, Nh). 
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Even with this case of two groups, the total number of potential partitions of N is 2n , n = |N |. 
Instead of checking all the incidences of the potential partitions, we propose a split algorithm 
that estimates T in two steps. First, for each i ∈ N , we consider a pair of partitions based on 
pairwise comparisons of the other players with i. Then we choose one that is most likely to be 
the right partition. 

Step 1: For each i ∈ N , we consider two partitions of N : 

T̂  
1(i) = (N̂ 

1(i), N \ N̂ 
1(i)), and 

T̂  
2(i) = (N \ N̂ 

2(i), N̂ 
2(i)), 

where for each i ∈ N , 

N̂ 
1(i) = {j ∈ N\{i} : p̂ij + < p̂ij 

−} and 

N̂ 
2(i) = {j ∈ N\{i} : p̂ij + > p̂ij 

−}. 

The group N̂ 
1(i) is the estimated set of agents with types lower than the agent i and the group 

N̂ 
2(i) is the estimated set of agents with types higher than the agent i. Thus the first partition 

T̂  
1(i) regards i as high type and the second partition T̂  

2(i) regards i as low type. It remains to 
choose among the partitions. 

Step 2: For each i ∈ N , we define21 

s(i) = min{s1(i), s2(i)}, 

where for k ∈ {1, 2}, X1 
sk(i) = 

|N̂ 
k(i)| 

log p̂ 0 
ij . 

j∈N̂k(i) 

The index s(i) measures the degree of misclassification caused by each of the two cases. When 
most agents are correctly classified, s(i) becomes severely negative. The quantity s(i) measures 
how unlikely T̂  

1(i) or T̂  
2(i) is the right partition. Then we take ( 

ˆ T̂  
1(i

∗), if s(i∗) = s1(i∗)
T = 

T̂  
2(i

∗), if s(i∗) = s2(i∗), 

where i∗ = argmini∈N s(i). 

5.2.2. Estimation for a Known Number of Groups using a Sequential Split Algorithm 

We generalize the procedure to the case where the econometrician knows the number of 
distinct types K0 that is allowed to be greater than two. The main idea is that we split the 
groups sequentially using the previous algorithm. 

Step 1: Split N into N̂ 
+ and N̂ − using the split algorithm in the previous section. 

+ −21Alternatively, one could use p̂ij in the definition of s1(i) and p̂ij in the definition of s2(i). The consistency 
results of this paper are not affected by this modification. 
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Step 2: We relabel N̂ 
1 = N̂ − and N̂ 

2 = N̂ 
+, and compute 

p̂1 = min p̂0 
ij and p̂2 = min p̂0 

ij . 
i,j∈N̂1:i=6 j i,j∈N̂2:i6=j 

We choose r ∗ such that 

(5.2) p̂r ∗ = min p̂r 
r=1,2 

and use the algorithm in the previous section to split N̂ 
r ∗ into N̂ 

r ∗,h and N̂ 
r ∗,l to obtain a 

classification of N into three groups. 
Step k: In general, suppose that we have classifications N̂ 

1, N̂ 
2, ..., N̂ 

k (after relabeling the 
groups). For each r = 1, ..., k, we compute 

(5.3) p̂r = min p̂0 
ij . 

i,j∈N̂ 
r :i=6 j 

We choose r ∗ such that 
p̂r ∗ = min p̂r 

r=1,...,k 

and use the algorithm in the previous section to split N̂ 
r ∗ into N̂ 

r ∗,h and N̂ 
r ∗,l to obtain 

T̂  
k+1 = (N̂ 

1, N̂ 
2, ..., N̂ 

r ∗−1, N̂ 
r ∗,l, N̂ 

r ∗,h, N̂ 
r ∗+1, ..., N̂ 

k). 

We continue until the total number of groups obtained becomes K0. 

As mentioned after Theorem 5.1 below, the probability that a split divides an equi-type 
group into two is negligible. When we are given classifications N̂ 

1, N̂ 
2, ..., N̂ 

k, we define p̂r as 
in (5.3) which is used as a group homogeneity index. Intuitively, when p̂r is low, the group N̂ 

r 

is likely to be heterogeneous. As long as the current number of groups is smaller than K0, we 
select a group with the lowest homogeneity index and split the group. 

5.2.3. Consistent Selection of the Number of Groups 

Let us extend the method to the case where the number of groups is not known. Our 
proposal selects the number of groups that minimizes a criterion function which balances a 
measure of goodness-of-fit that captures misspecification bias and a penalty term for overfit-
ting. 

Suppose that we assume K groups and follow the sequential process in the previous subsec-
tion, and obtain the group structure: 

(5.4) T̂  
K = (N̂ 

1, N̂ 
2, ..., N̂ 

K ). 

We define 
KX1

V̂ (K) = min log p̂ 0 . 
K i,j∈N̂k 

ij 

k=1 

We define our criterion function as follows: 

Q̂(K) ≡ V̂ (K) + Kg(L), 
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where g(L) is slowly increasing in L. The precise condition is given in Theorem 5.2 below.22 

The component V̂ (K) measures the goodness-of-fit of the classification, and the second com-
ponent Kg(L) plays the role of a penalty term that prevents overfitting. We select K̂ as follows: 

K̂ = argminK=1,...,nQ̂(K). 

In a later section, we show that the estimated number of groups K̂ is equal to K0 with proba-
bility approaching one. 

5.2.4. Discussion about the Sequential Split Algorithm 

While there may be other alternative methods to obtain the ordered classification, the two-
step split method is deliberately designed to satisfy the following properties. 

First, the split algorithm into two groups is designed so that its consistency can be extended 
to a general case of K0 ≥ 2. The intuition is as follows. Suppose that we have K0 groups that 
are ordered, so that we have T = (N1, ..., NK0 ). The design of Step 1 ensures that whenever i 
is of type k, N̂ 

1(i) coincides with the union of j’s that have lower type than i with probability 
approaching one, and N̂ 

2(i) coincides with the union of j’s that have higher type than i with 
probability approaching one. In other words, however i may be chosen, the probability that the 
two splits (N\N̂ 

2(i), N̂ 
2(i)) and (N̂ 

1(i), N\N̂ 
1(i)) splitting an equi-type group into two different 

groups is negligible when the sample size L is large. It only remains to find estimated groups 
that are likely to be of heterogeneous types and continue to split such groups. 

Second, the algorithm is computationally feasible in many practical set-ups. The algo-
rithm does not require 2n comparisons of candidate group structures as a brute-force approach 
would. As this split algorithm forms a basic tool for the general case of unknown groups later, 
it is crucial that the algorithm do not incur heavy computational cost at this simple set-up of 
two groups. 

Third, this paper avoids comparing directly the p-values with a level of the test. Our use 
of test is not for its own sake but a tool for the consistent estimation of the group structure. 
Therefore, it is not clear what level one should use in practice. Furthermore, we need to 
carefully design an algorithm so that it treats the two cases of τ(i) < τ(j) and τ(j) > τ(i) 

symmetrically, despite the fact that the individual hypothesis testing problem treats the null 
hypothesis of τ(i) ≤ τ(j) and the alternative hypothesis of τ(j) > τ(i) asymmetrically. Our 
algorithm compares p-values with p-values to minimize the use of tuning parameters left to 
choose in practice, and treats the inequalities symmetrically. 

Fourth, designing a consistent classification method does not always ensure good finite sam-
ple properties. Note that there can be numerous variations to the method that do not affect the 
consistency of the estimated groups. However, these variations typically affect the finite sam-
ple performance of the estimator. We have determined our sequential algorithm after checking 
its finite sample performance through various Monte Carlo experiments. 

22The choice of g(L) = log log L appears to work very well from our numerous Monte Carlo simulation experi-
ments. 
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5.2.5. Construction of p-Values Using Bootstrap 

In most applications, we can use bootstrap to construct p-values for testing the inequality 
restrictions of (5.1).23 We explain this procedure using the environment considered in Monte 
Carlo experiments and in an empirical application of our method. In these sections we consider 
data from first-price auction markets. 

Formally, suppose that we are given observations {Zl}Ll=1, where Zl = (Zi,l)
n
i=1 denotes the 

observations pertaining to auction l and Zi,l denotes the vector of observations for bidder i. 
The random vector Zi,l includes the bid submitted by bidder i and other observed bidder or 
auction characteristics at auction l. Suppose that for each pair of bidders i and j, there exists 
a nonparametric function, say, rij (b) such that 

τ (i) > τ(j) if and only if rij (b) > 0 for all b in B, 

τ (i) = τ(j) if and only if rij (b) = 0 for all b in B, and 

τ (i) < τ(j) if and only if rji(b) > 0 for all b in B, 

where B is the domain of the function rij (·). 
To construct a test statistic, we first estimate rij (b) using the sample {Zl}Ll=1 to obtain r̂ij (b). 

Then we construct the following indexes:Z 
(5.5) δ̂  

ij 
+ = max {r̂ij (b), 0} db, Z 
δ̂− = max {r̂ji(b), 0} db, andij Z 
δ̂0 = |r̂ij (b)| db.ij 

For concreteness, we use the integration to form a test statistic, but one may choose to use 
other functionals such as supremum over b ∈ B. 

For p-values, we re-sample {Z∗}lL 
=1 (with replacement) from the empirical distribution of l 

{Zl}L and construct a nonparametric estimator r̂ij 
∗ (b) for each pair (i, j) in the same way asl=1 

we did using the original sample. Using these bootstrap estimators, we construct the following 
bootstrap test statistics: Z � ∗ δ̂+∗(5.6) = max r̂ (b) − ˆ db,ij ij rij (b), 0 Z � 

δ̂−∗ ∗ 
ij = max r̂ji(b) − r̂ji(b), 0 db and Z 
δ̂0∗ ∗ = r̂ (b) − r̂ij (b) db.ij ij 

23For a more recent strand of research, see Bugni (2010), Andrews and Shi (2013), Chernozhukov, Lee, and 
Rosen (2013), Lee, Song, and Whang (2013), and Lee, Song, and Whang (2014), among many others, and 
references therein. 
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Note that the bootstrap test statistic involves recentering to impose the null hypothesis. Now, 
+ − 0 δ+∗ δ̂−∗the p-values, p̂ij , p̂ij , and p̂ij can be constructed from the bootstrap distributions of ˆ 

ij , ij , 
and δ̂  

ij 
0∗ respectively.24 

5.3. Consistency of Classification 

Let us explore the sense in which T̂  is a “reliable” estimator of T . Let TK be the collection 
of all the ordered K-partitions of N . Here we formally present conditions under which T̂ = T 

with probability approaching one as n, L → ∞. ((In this paper, we consider asymptotics 
where n and L increase jointly. As for the players, we adopt asymptotics where we have 
Nn ⊂ Nn+1 ⊂ Nn+2 ⊂ .... 25)) Since we are dealing with an increasing set of agents, we need 
to clarify the meaning of a sequence of probabilities in the asymptotic theory. Let Pn be the 
collection of the distributions P of the whole vector of the observations in the data. For each 
ε > 0, ij ∈ E and s ∈ {+, 0, −}, we define 

Ps = {P ∈ Pn : δ
s (P ) ≤ 0}, and0,ij ij 

Ps : δs 
ε,ij = {P ∈ Pn ij(P ) > ε}, 

where we write the pairwise indexes δij
s as δij

s (P ) to reflect that the pairwise indexes depend 
on P . Thus Ps is the collection of probabilities under the pairwise null hypothesis Hs and0,ij 0,ij 

Ps that of probabilities under the pairwise alternative hypotheses Hs such that δs 
ε,ij 1,ij ij (P ) is 

away from zero at least by ε. Then for each subset Es 
0 ⊂ Es and subset Es ⊂ E , let \ \ 

Ps (E 0 , Es) = P0 
s
,ij , and Ps (E 0 , Es) = Ps 

0,n s ε,n s ε,ij . 
ij∈E 0 s ij∈Es\E 0 s 

Hence under any probability in P0 
s
,n(Es 

0 , Es), the pairwise null hypotheses for all the adjacent 
pairs in E 0 hold, and under any probability in Ps (E 0 , Es), the pairwise index of all the pairs in s ε,n s 

Es\Es 
0 is away from zero by more than ε. 

As for the pairwise p-values, we make the following assumptions. 

Assumption 5.1. For each s ∈ {+, −, 0}, i ∈ N , E 0 ⊂ Es ⊂ E , and ε > 0,s� 
s(i)Pn minj∈N :ij∈E ij ≤ 0 = o(1/n), along Pn ∈ P0 

s
,n(Es 

0 ), as n, L →∞, and, Esp̂0 
s� 

(ii)Pn maxj∈N :ij∈Es\E 0 s p̂
s ≤ 0 = 1 − o(1/n), along Pn ∈ Ps 
ij ε,n(Es 

0 , Es), as n, L →∞. 

Assumption 5.1 is satisfied when L increases sufficiently faster than n and pairwise individ-
ual hypotheses allow for consistent testing. (See Appendix B for further details.) 

24When aL{r̂ij (·) − rij (·)} for an appropriate normalizing sequence aL → ∞ converges weakly to a Gaussian 
process, the distribution of the statistic and the bootstrap test statistic is derived as a functional of that process 
through the continuous mapping theorem. When bL{r̂ij (·) − rij (·)} for an appropriate normalizing sequence 
bL → ∞ does not weakly converge, as in the case of kernel regression/density estimators or local polynomial 
estimators, the test statistic has a limiting normal distribution after appropriate scale-location normalization. See 
Lee, Song, and Whang (2014) for details in this latter case. 
25This asymptotics simplifies the development by removing the need to keep track of players entering and exit 
the set N and the links in En forming and disappearing as n increases. The asymptotics is a mathematical tool to 
obtain approximation of inference when a given sample size is “large” but yet finite. 
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Define for each ε > 0, [ \ [ � � 
P0,ε,n = P0 

s
,n(Es 

0 , Es) ∪ Pε,n
s (Es 

0 , Es) , 
E 0E+,E0,E− s∈{+,0,−} ⊂Ess 

where the first union is union over any disjoint subsets E+, E0, E− of E . The collection P0,ε,n 

represents that of probabilities under which for each ij ∈ E , the null hypothesis H0 
s
,ij holds or 

the alternative hypothesis H1 
s
,ij holds with the pairwise index greater than ε. In the following, 

we show that the classification with a correctly specified number of groups is consistent. 

Theorem 5.1. Suppose that Assumption 5.1 holds and that the number of the groups K0 is known 
to the econometrician. Assume furthermore that T̂  

K0 is obtained at Step K0 − 1. Then, for each 
ε > 0 and along the sequence of probabilities Pn ∈ P0,ε,n, as n, L →∞, 

ˆPn{T = TK0 } → 1. 

Theorem 5.1 shows that using consistent pairwise tests of H0
+ 
,ij , H0

0 
,ij , and H0 

− 
,ij , we can 

determine the classification of each agent with the probability of misclassification vanishing 
with the growing sample size L, when the number of groups K0 is correctly specified. 

Let us consider the case where the number of groups K0 is not known. We make the follow-
ing further assumptions. 

Assumption 5.2. There exist sequences r1,n, r2,n → 0 such that r1,n/r2,n → 0 as n → ∞ and 
the following holds for each ε > 0 and E 0 ⊂ E0 ⊂ E , as n, L →∞:n o 0 

(i)Pn minij∈Ñ(Pn) log p̂ij 
0 ≤ −r1,n = o(1) along Pn ∈ P0

0 
,n(E0 

0 , E0), n o 
0 (E 0(ii)Pn ∈Ñ(Pn) p ≤ −r2,n ∈ P0

0, E0),maxij / log îj = 1 − o(1) along Pn ε,n 

where Ñ(Pn) is the set of ij’s such that i and j are in the same group under Pn. 

Assumption 5.2 essentially requires that the test of equal type between i and j should be 
a consistent test such that we can distinguish the null from the alternative hypothesis with 
probability approaching one as n, L →∞. The condition is often satisfied when L diverges to 
infinity sufficiently larger than n. For example, following the arguments after Assumption 5.1, 
one can show that such r1,n and r2,n exist if L−h1 and L−h2 decrease faster than n−1 . 

Theorem 5.2. Suppose that Assumptions 5.1 - 5.2 hold and that r1,n/g(L) + g(L)/r2,n → 0 as 
n, L → ∞. Let ε > 0 and let Pn be a sequence of probabilities from P0,ε,n. Then, we have as 
n, L →∞, 

Pn{K̂ = K0} → 1, 

and hence the estimated group structure T̂  
K̂ with selected K̂ satisfies that as n, L →∞, 

ˆPn{T = T ̂  } → 1.K 

The main part of Theorem 5.2 is to show that K̂ is consistent for K0. When K < K0, the 
component V̂ (K) is oP (r1,n), while the penalty term increases faster than r1,n as L →∞. When 
K > K0, the component V̂ (K) diverges at a rate faster than g(L). From this, we obtain that K̂ 

is consistent for K0. 
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Table 1: Group Structure in Experiments 

Structure n K0 nk 

S1 12 2 6 
S2 12 4 3 
S3 40 2 20 
S4 40 4 10 

Note: n denotes the total number of the bidders; K0 denotes the number of the groups; nk denotes 
the number of actual bidders from group k. For each structure in the simulation design, groups all 
have the same number of bidders. 

Table 2: Parameter Specifications 

Specification Dµ µ1 µ2 µ3 µ4 

P1 0.6 2.0 2.6 3.2 3.8 
P2 0.4 2.0 2.4 2.8 3.2 
P3 0.2 2.0 2.2 2.4 2.6 

Note: For S1 and S3 (with two groups), we use µ1 and µ2 only. In S2 and S4 (with four groups), we 
use µ1, µ2, µ3, and µ4. Here Dµ denotes the constant increment between µk and µk−1. 

6. Monte Carlo Simulations 
Our Monte Carlo study proceeds in two parts. The first part focuses on the performance of 

our classification method. The second part investigates the role of the first step classification 
in the second stage estimation. The details concerning computational time associated with 
various steps are reported in the Online Appendix. 

6.1. Finite Sample Performance of the Classification 

6.1.1. Simulation Design 

The Monte Carlo simulation study is based on an example of a first-price procurement 
auction with asymmetric, independent private costs. We let the bidders be classified into 
K0 groups. We abstract away from details in the formation of equilibrium strategies, and draw 
bids from a normal distribution N(µk, σ

2) directly, so that we have {Bi1, ..., BiL} for each bid-
der i whenever the bidder belongs to the group k. The number of observations here is L, which 
represents the number of auctions observed in the data.26 

Table 1 summarizes the group structures we used in our design of Monte Carlo experiments. 
The first two structures involve a total of 12 bidders and the last two 40 bidders. Also, the first 
and third are designed to be coarser group structures than the second and fourth respectively. 
Table 2 summarizes the specification of group means of unobserved heterogeneity µk. The 
increments between group means is the largest in P1 and smallest in P3. Intuitively, the task 
to classify bidders into groups is harder to perform when these increments are smaller. The 
variance σ2 is taken to be 0.25. 
26Specifically, L represents the number of auctions in which any given pair of bidders participates. 
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Table 3: Performance of the Classification Estimator with One Group 
(K0 = 1 and unknown) 

n L K̂ 
0 EAD DH(10) DH(25) DH(50) DH(75) DH(90) 

12 400 1.020 0.024 0.001 0 0 0 0 
12 200 1.020 0.024 0.008 0 0 0 0 
12 100 1.020 0.028 0.004 0.002 0 0 0 

40 400 1.032 0.102 0.002 0.004 0 0 0 
40 200 1.064 0.114 0.018 0.010 0 0 0 
40 100 1.092 0.136 0.014 0.010 0 0 0 

Note: n is the number of bidders in population; and L the number of the markets. K̂0 is the average 
number of estimated groups in 500 simulation samples. EAD indicates the average number of 
mismatched bidders across true groups and simulated samples. DH(100λ) measures the distribution 
of mismatched bidders. For example, DH(10) = 0.002 means that except for 1 out of 500 simulation 
samples, the average number of mismatched bidders was not more than 10 percent of the total 
number of the bidders. 

We construct p-values following the procedure described in Section 5.2.5 and obtain group 
classification from 500 simulated samples. For each estimate, we used 200 bootstrap iterations 
while calculating p-values. 

To measure the performance of our classification method, we define a measure of discrep-
ancy between two ordered partitions T1 and T2 as follows: 

K1X1
(6.1) δ (T1, T2) = min |Nk 

14Nj 
2|,

K1 1≤j≤K2 
k=1 

for any two different ordered partitions, T1 = (N1
1, ..., N1 ) and T2 = (N1

2, ..., N2 ), of N , where K1 K2 

4 denotes set-difference. Then we report the finite sample performance of our classification 
method based on the following two measures: h i 

Expected Average Discrepancy (EAD) : E δ(T, T̂  
K̂ ) 

Hazard Rate of EAD at λ (DH(100p)) : Pr(δ(T, T̂  
K̂ ) > λn), 

where δ(T, T̂ ˆ ) is as defined in (6.1). Here we chose λ ∈ {0.10, 0.25, 0.50, 0.75, 0.90}. We K 

use g(L) = log log L for the penalty scheme. (We also report results from the case when the 
number of groups is known in the Online Appendix.) 

6.1.2. Results 

Table 3 reports estimates when there is no unobserved heterogeneity among bidders (K0 = 
1). In this case, the estimates for the number of groups K̂ are mostly one. This suggests our 
procedure detects the absence of unobserved heterogeneity effectively . For a given number of 
bidders, there is a moderate increase in the accuracy of our classification results as the number 
of markets increases (in terms of both EAD and DH(100λ)). 
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Table 4: Performance of the Classification Estimator with Two Groups: 
(K0 = 2 and unknown) 

n L Dµ K̂ 
0 EAD DH(10) DH(25) DH(50) DH(75) DH(90) 

12 400 0.6 2.000 0.012 0.012 0 0 0 0 
12 400 0.4 2.000 0.014 0.014 0 0 0 0 
12 400 0.2 2.000 0.004 0.004 0 0 0 0 

12 200 0.6 2.000 0.004 0.004 0 0 0 0 
12 200 0.4 2.000 0.006 0.006 0 0 0 0 
12 200 0.2 2.100 1.376 0.496 0.224 0.158 0 0 

12 100 0.6 2.000 0.006 0.006 0 0 0 0 
12 100 0.4 2.004 0.080 0.078 0.002 0 0 0 
12 100 0.2 2.050 1.721 0.654 0.480 0.154 0.038 0 

40 400 0.6 2.004 0.025 0.002 0.002 0 0 0 
40 400 0.4 2.000 0.011 0 0 0 0 0 
40 400 0.2 2.002 1.085 0.094 0 0 0 0 

40 200 0.6 2.000 0.018 0 0 0 0 0 
40 200 0.4 2.000 0.020 0 0 0 0 0 
40 200 0.2 2.132 3.352 0.700 0.376 0.200 0.122 0.012 

40 100 0.6 2.004 0.025 0 0 0 0 0 
40 100 0.4 2.022 0.433 0.008 0 0 0 0 
40 100 0.2 2.046 4.574 0.888 0.578 0.265 0.092 0.015 

Note: K̂0, EAD and DH(100λ) are defined as in Table 3. Dµ is the difference between group means µ1 

and µ2. Conditional on the number of markets (L) and the number of bidders in population (n), the 
classification task is harder when the difference between group means Dµ is smaller. 

Table 4 reports results for K0 = 2. The estimates for the number of groups are mostly 
2, except for a few incidences of overestimation. The simulation results suggest estimation 
accuracy is lower when the difference between group means is smaller. Nevertheless, even 
with Dµ = 0.2 and n = 40 in moderate-sized samples with L = 200 or 100, the average 
estimates for the number of groups is 2.132 or 2.046. 

The performance in terms of EAD and DH(100λ) shows a similar pattern. Except for the 
hardest cases with Dµ = 0.2, EAD is small and ranges from 0.006 to 0.080. For example, 
when Dµ = 0.4, n = 40 and L = 200, the bidders are mostly accurately classified into two 
groups. However, when Dµ = 0.2, the performance deteriorates substantially in this case as 
expected. This pattern is also reflected in DH(100λ). For example, with n = 40, L = 200 

and Dµ = 0.4, we observed that DH(10) is equal to zero, which means that on average less 
than 10 percent of the bidders (i.e., fewer than 4 bidders) were mis-allocated in 500 simulated 
samples. However, this percentage increases to 70 percent when Dµ = 0.2. 
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Table 5: Performance of the Classification Estimator with Four Groups: 
(K0 = 4 and unknown) 

n L Dµ K̂ 
0 EAD DH(10) DH(25) DH(50) DH(75) DH(90) 

12 400 0.6 3.932 0.051 0.034 0.034 0 0 0 
12 400 0.4 3.892 0.081 0.054 0.054 0 0 0 
12 400 0.2 3.860 0.105 0.070 0.070 0 0 0 

12 200 0.6 3.908 0.069 0.046 0.046 0 0 0 
12 200 0.4 3.936 0.048 0.032 0.032 0 0 0 
12 200 0.2 3.298 1.045 0.850 0.200 0.048 0 0 

12 100 0.6 3.952 0.036 0.024 0.024 0 0 0 
12 100 0.4 3.880 0.090 0.060 0.060 0 0 0 
12 100 0.2 3.021 1.598 0.870 0.326 0.134 0 0 

40 400 0.6 3.882 0.303 0.062 0.060 0 0 0 
40 400 0.4 3.864 0.340 0.068 0.068 0 0 0 
40 400 0.2 3.258 2.672 0.739 0.314 0 0 0 

40 200 0.6 3.868 0.330 0.066 0.066 0 0 0 
40 200 0.4 3.910 0.231 0.046 0.046 0 0 0 
40 200 0.2 3.024 2.975 0.892 0.548 0.084 0.014 0 

40 100 0.6 3.846 0.391 0.078 0.078 0 0 0 
40 100 0.4 3.790 1.048 0.308 0.208 0.010 0 0 
40 100 0.2 3.006 2.929 0.998 0.764 0.340 0.170 0.014 

Note: n, L, K̂0, Dµ, EAD and DH(100λ) and defined as in Table 3. 

Table 5 reports the case with four groups. Estimates for the number of groups are mostly 
equal to 4, except when Dµ = 0.2. In such cases, the average estimates for K0 can be as low 
as 3.021. However, this underestimation is alleviated when we increase the sample size L. For 
example, when the number of bidders is 12 and the number of markets is 100 and Dµ = 0.2, 
the average estimated number of groups K̂ 

0 is 3.021. However, as the number of markets 
increases to 400, the average estimated number of groups K̂ 

0 becomes 3.952. 
Overall, misclassification arises less often when the number of true groups is smaller. Intu-

itively, this is because when we have fewer groups given the same number of bidders, we can 
use more testable implications to classify the bidders more accurately. This is confirmed by the 
better performance of results in Table 4 than in Table 5. 
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6.2. Two-Step Estimation in a Structural Model 

6.2.1. The Simulation Design 

In this simulation study, we estimate a simple model of a procurement market. Our goal is 
to investigate the impact of classification errors in the first step on the estimation of structural 
parameters in a second step. The population is represented by the set N of providers (bidders). 
Depending on the distribution of private costs, a provider belongs to one of K0 types. Let Nk 

denote the set of providers in N with type k ∈ {1, 2, ..., K0}, and let |Nk| ≡ nk denote its 
cardinality. For a provider i with type τ(i) ∈ {1, 2, ..., K0}, his costs are given by 

ci,l = µτ (i) + �i,l, 

where �i,l follows N(0, σ) with the support [c, c̄].27 

An auction game is structured as follows. First, an auction l is announced. The set of auction 
participants is determined in two steps: (a) two out of K0 groups, τl,1 and τl,2, are chosen at 
random; then (b) n1 and n2 providers are randomly drawn from the corresponding groups Nτl,1 

and Nτl,2 . Then participants draw costs realizations from their corresponding distributions, and 
construct their bids. The participant with the lowest bid wins. The identities of participants, 
their bids and the identity of the winner are reported in the data. 

For the simulations, we consider two specifications, (S1) with K0 = 4, |Nk| = 4 for all 
k = 1, ..., K0, and (S2) with K0 = 4, |Nk| = 10 for all k = 1, ..., K0. For both specifications, we 
set µ = (2, 2.4, 2.8, 3.2) and σ = 0.5. We run the following four experiments with different 
specification and sample sizes: (A) S1, L = 200; (B) S2, L = 200; (C) S1, L = 400; and (D) S2, 
L = 400. We additionally set n1 = 1 and n2 = 1. 

Structural parameters estimated from the simulated data are: K0, τ(.), θ = k=1, σ}.{(µk)
K0 

The estimation consists of two steps. In the first step our classification procedure is imple-
mented. Here, the estimates of the grouping (τ̂(.) and K̂ ) are recovered. In the second 
step, a GMM procedure is used to recover the remaining parameters. The standard errors are 
computed using the analytic expression for the variance-covariance matrix of the estimator’s 
asymptotic distribution. 

We use the following moments are used: for k = 1, ..., K0, 

1. The within-group mean of bids: 
P 

i
n 
=1 E[Bi,l − µB,k(θ; I)]1{τ(i) = k} = 0.P n E[B22. The within-group second moment of bids: i=1 −(µB,k(θ; I)2+σB,k(θ; I)2)]1{τ(i) = i,l 

k} = 0, 

where µB,k(θ; I) and σB,k(θ; I) denote the mean and standard deviation of the equilibrium 
bid distribution for the bidders from group k, the parameter vector θ and the set of auction 
participants summarized by I. 

27For the upper and lower bounds of the cost, we set X X 
c =

1 
(µk − 1.96 × σ), and c̄ =

1 
(µk + 1.96 × σ). 

K0 K0
k k 

We have set the true parameters so that c is above zero. 
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Table 6: Simulation Results from Specifications A and B 

(Specification A: K0 = 4, nk = 4, and L = 200) 

µ1 µ2 µ3 µ4 σ 
Using True Groups 

Rej. Prob. 0.0150 0.0515 0.0523 0.0546 0.0149 
Bias -0.0189 -0.0252 -0.0610 -0.0511 0.0242 
MSE 0.0005 0.0008 0.0035 0.0039 0.0039 

Using Estimated Groups 
Rej. Prob. 0.0148 0.0542 0.0510 0.0485 0.0151 
Bias 0.0059 0.0329 -0.0241 -0.0225 -0.0549 
MSE 0.0041 0.0083 0.0035 0.0027 0.0383 

(Specification B: K0 = 4, nk = 10, and L = 200) 

µ1 µ2 µ3 µ4 σ 
Using True Groups 

Rej. Prob. 0.0120 0.0515 0.0512 0.0514 0.0111 
Bias -0.0211 -0.0233 -0.0621 -0.0622 0.0236 
MSE 0.0005 0.0007 0.0039 0.0039 0.0034 

Using Estimated Groups 
Rej. Prob. 0.0131 0.0550 0.0540 0.0530 0.0160 
Bias -0.0213 -0.0218 -0.0763 -0.0765 0.0211 
MSE 0.0004 0.0015 0.0411 0.0441 0.0023 

Note: nk is the number of the bidders in group k, and L is the number of the markets. The rejection 
probabilities are from t-tests for the individual parameters. The nominal rejection probability is set to 
be 0.05. Among other things, note that the rejection probabilities using the true groups and those 
using the estimated groups are very similar. This shows that the first step estimation error of the 
classification does not play a major role in determining the finite sample performance of the second 
step estimator. 

To compute µB,k(θ0; I) and σB,k(θ0; I) for a given vector of trial parameter values (θ0) and 
given a profile of the types of auction participants, I = (τl,1, τl,2, n1, n2) we simulate the 
equilibrium bidding functions. Specifically, we use the analytical solution for the bidding 
functions when all auction participants belong to the same group and a modified version of the 
numerical method in Marshall, Meurer, Richard, and Stromquist (1994) to solve the system of 
differential equations which define the bidding strategies when multiple groups are present.28 

The bidding functions are then combined with the cost distributions implied by a vector of 
trial parameters, θ0, to obtain the distribution of bids: FB,k(b| θ0, I) = FC,k(β

−1(b)| θ0). We k 

then compute the mean and the standard deviation of thus computed distribution of bids. 

6.2.2. Results 

Tables 6 and 7 report the bias and mean squared errors (MSEs) of two estimators for the 
structural parameters (µk)

K0 , σ. The first is an “infeasible” estimator that uses the knowledge k=1 

1 P28In estimation, we impose the sample version of the support constraint c = max{0, − 1.96 × σ̂),P K k(µk 

c̄ = K k(µk + 1.96 × σ̂). 1 
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Table 7: Simulation Results from Specifications C and D 

(Specification C: K0 = 4, nk = 4, and L = 400) 

µ1 µ2 µ3 µ4 σ 
Using True Groups 

Rej. Prob. 0.0149 0.0500 0.0513 0.0520 0.0149 
Bias -0.0214 -0.0222 -0.0615 -0.0713 0.0237 
MSE 0.0005 0.0007 0.0039 0.0039 0.0006 

Using Estimated Groups 
Rej. Prob. 0.0151 0.0485 0.0506 0.0505 0.0151 
Bias 0.0131 0.0412 -0.0615 -0.0556 -0.0211 
MSE 0.0060 0.0008 0.0053 0.0031 0.0054 

(Specification D: K0 = 4, nk = 10, and L = 400) 

µ1 µ2 µ3 µ4 σ 
Using True Groups 

Rej. Prob. 0.0133 0.0480 0.0510 0.0520 0.0108 
Bias -0.0227 -0.0219 -0.0611 -0.0231 0.0236 
MSE 0.0005 0.0007 0.0039 0.0039 0.0006 

Using Estimated Groups 
Rej. Prob. 0.0126 0.0468 0.0520 0.0520 0.0128 
Bias -0.0229 -0.0123 -0.0761 -0.0361 0.0098 
MSE 0.0093 0.0056 0.0068 0.0061 0.0001 

Note: As in Table 6, nk is the number of the bidders in group k and L the number of the markets and 
the nominal rejection probability is set to be 0.05. As compared with Table 6, the results in Table 7 
show that the role of the estimation error of the estimated group structure is very small. This confirms 
that with a larger number of the markets, our classification method performs better given the same 
number of within-group bidders. 

of the true group structure. The second is the two-step estimator we propose, which requires 
bidder classification in the first step. These two tables also report the rejection probabilities 
from t-tests of individual parameters. 

Table 6 contains the results for a smaller sample size L = 200. It shows that the rejection 
probabilities are close to the nominal rejection rate 0.05, except for parameters µ1 and σ. For 
both parameters, inference turns out to be conservative. However, in terms of MSE and Bias, 
the performance of estimators for these two parameters is not substantially different from 
that for the other parameters. We conclude that the asymptotic inference of the model works 
reasonably well in finite samples. 

Next, we compare the performance of the estimator using the true group structure and the 
two-step version using the estimated group structure. Table 6 suggests the rejection probabili-
ties are mostly similar between the two estimators. There is some minor difference in the MSE 
of some group means. The discrepancy seems more prominent when the size of each group is 
increased from nk = 4 to nk = 10. Nevertheless the impact of first-stage classification errors 
appears to be reasonably small. It is also remarkable that both the infeasible and the two-
step version of the estimators of µ1 and σ are conservative in terms of finite sample rejection 
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probabilities. This is true regardless of whether nk is equal to 4 or 10. Overall, Table 6 shows 
that the classification errors in the first-step do not have any major impact on the finite sample 
performance of the two-step estimator. 

Table 7 reports results for larger samples with L = 400. The performance of the estimators 
improves slightly relative to the case with L = 200. For example, the rejection probabilities in 
the t-test for µ2, µ3, and µ4 are closer to the nominal level 0.05. The rejection probabilities for 
the two sets of estimators are also quite similar. This confirms our conclusion that the classi-
fication errors in the first step do not aggravate the performance of the two-step estimators in 
experiments. 

In summary, it appears that our classification method seems to work quite well in the envi-
ronment of two-step estimators, especially when the size of each group is not too large relative 
to the sample size. 

7. Empirical Application: California Market for Highway 
Procurement 

We apply our methodology to data on highway procurement auctions conducted by the Cal-
ifornia Department of Transportation (CalTrans). Our goal is to demonstrate the performance 
of our method in the empirical setting, and to highlight the consequences of ignoring agent 
unobserved heterogeneity in estimation. 

CalTrans is responsible for the construction and maintenance of roads and highways in 
California. The services for the related projects are procured by means of first-price sealed-bid 
auctions. 

As in other auction markets, the costs of contractors vary across firms and across projects. 
The firms’ costs are private information and are summarized by the distribution from which 
the costs of contractors are drawn. The distribution of costs for a given project may differ 
across contractors on the basis of their observable characteristics (for example, the distance 
from contractor’s location to the project site). However, some of the pertinent characteristics 
may be unobservable to the researcher. 

The most straightforward way to account for possible (unobserved) cost asymmetries is to 
estimate firm-specific cost distributions. This approach, however, is not feasible in most auction 
studies. This is because the primitives of an auction game (cost distributions) are linked to the 
observed auction outcomes (bid distributions) through a set of non-linear bidding strategies 
which have to be obtained by solving a system of differential equations that has a degeneracy 
on the boundary. If the cost asymmetries are defined at the level of an individual firm, the 
estimation would involve solving many different auction games for every parameter vector 
that is evaluated in estimation. 

Such concerns do not arise in non-parametric studies since the bidding strategy and the 
underlying cost distribution could be recovered from the first-order conditions by applying 
them to appropriate bid distributions (see Guerre, Perrigne, and Vuong (2000)). However, 
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this means that estimation has to be implemented conditional on the composition of the set 
of participants which summarizes the competitive structure of an auction known to all market 
participants and is reflected in bidding strategies. Thus, the afore-mentioned procedure is 
likely to be infeasible due to data limitations if the asymmetries are defined at the level of an 
individual firm. 

Recent empirical studies tend to resolve these issues by estimating a parametrized distri-
bution of bids and then using optimal first-order conditions to solve for the distribution of 
costs. However, such an approach is likely to lead to estimation bias since it is difficult to 
capture the impact of the competitive structure on bids through parameterization in the case 
of asymmetric bidders. 

For this application, we rely on an alternative approach which is made possible by the clas-
sification methodology proposed in this paper. Specifically, we structure our estimation in two 
steps. In the first step we apply the classification procedure to allocate regular firms into groups 
characterized by the same cost distribution. This step reduces the number of possible types 
(relative to the case when each firm is a separate type) and hence the computational burden 
of the estimation methodology. In the second step we recover the group-specific distributions 
of costs through a Generalized Method of Moments procedure. 

Recent empirical studies of highway procurement emphasize the importance of taking bid-
ders’ participation decisions into account.29 Specifically, they recognize that some of the 
project-specific factors that influence bidders’ costs may not be observed in the data (unob-
served auction heterogeneity). These factors may drive bidders’ participation and bidding 
decisions, thus, generating endogeneity of the competitive structure of a given auction. We 
take this feature into account in our analysis. 

7.1. Model 

We denote the population of regular firms operating in California procurement market by 
N . Each project l auctioned in this market is summarized by a set of characteristics Xl which 
are observable to a researcher and an unobservable factor Ul. The project is associated with a 
set of potential bidders, Sl. We assume that Sl is independent of the unobserved factor Ul and 
that the factor Ul is distributed according to normal distribution with the mean normalized to 
zero and a standard deviation σU . 

A contractor i that is a potential bidder for project l is characterized by private entry costs, 
κi,l, and the private cost of completing the project, Ci,l. We assume that entry costs vary inde-
pendently across bidders and auctions, are independent of Ul, and are distributed according 
to the exponential distribution with a rate parameter λκ,i,l. The costs of completing the work 
are drawn from a Lognormal distribution with mean µC,i,l and standard deviation σC . The 
mean of the cost distribution depends on project characteristics, the distance between the 
project and the bidder’s locations, Di,l, as well as an unobserved bidder-specific cost factor 

29For example, Hong and Shum (2002) study the evidence of the presence of winner’s curse, Krasnokutskaya and 
Seim (2011) evaluate participation behavior and the impact of disadvantage business enterprise, Li and Zheng 
(2009) evaluate applicability of various models of participation, etc. 
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(invariant across projects) qi which takes discrete values in {q̄  0, q̄  1, ..., q̄  K }. This unobserved 
cost factor captures the difference in cost efficiencies across firms generated perhaps by the 
differences in managerial ability or other factors associated with the firm organization. As in 
our basic set up this cost factor induces partitioning of the population of firms into the groups: 
N = ∪k=1,...,K0 Nk with Nk = {i : qi = q̄  k} and so that τ(i) = k if and only if i ∈ Nk. We also 
distinguish between the bidders who regularly participate in the procurement market (regular 
bidders) and those who only appear in a very small number of auctions (fringe bidders). In 
our model, all fringe bidders are associated with the same fixed level of the unobserved cost 
factor q̄  0. 

Reflecting these features, the mean of the costs distribution and the parameter of the entry 
distribution are given by 

K0X 
µC,i,l = Xlα1 + Di,lα2 + q̄  k1{τ(i) = k} + Ul and 

k=1 

k=KX 
λκ,i,l = Xlγ1 + q̃k1{τ(i) = k}. 

k=1 

Note that the groups capture differences in the contractors’ cost efficiencies related to the 
project work. While entry costs may also vary across groups, there is no reason for the group 
differences in project costs to coincide with the group differences in entry costs. That is why 
we explicitly distinguish between the parameters capturing the former (q̄  k) and the latter (q̃k) 
effects. 

A potential bidder decides whether to enter the auction on the basis of information about the 
set of potential bidders, Sl, and the realization of κi,l. We denote the entry decision (outcome) 
by Ei,l (Ei,l = 1 if enters and Ei,l = 0 otherwise). Potential bidders who decided to participate 
in the auction form a set of active bidders, Al. An active bidder chooses a bid Bi,l on the basis 
of information about the set Ai,l and his private cost Ci,l for completing the project which he 
observes upon entry. 

In line with the existing empirical auction literature, we assume that the observed outcomes 
reflect a type-symmetric pure-strategy Bayesian Nash equilibrium (psBNE). In such an equi-
librium, participants who are ex ante identical in an auction l (i.e. i, j ∈ Sl such that qi = qj , 

and Di,l = Dj,l) adopt the same strategies. Specifically, we define bidders’ type in auction l 
as (d, k) if Di,l = d and qi = q̄  k, where d is a discretized measure of the distance between the 
contractor and the location of the project. 

For briefness we suppress the auction subscript l in notation from now till the end of the 
section. Thus, an equilibrium of an auction game for project l is characterized by a set of 
equilibrium entry and bidding strategies: {σE ( . ; (d, k)), σB( . ; (d, k))}(d, k).For a given type i i 

(d, k), realized cost c and composition of the set of entrants A, the bidding strategy of an 
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entrant maximizes expected profit from bidding. That is, 

σB (c, IA; (d, k)) = argmax π(d, k)(b, c, IA; σ− 
B
i), where � 

π(d, k)(b, c, IA; σ− 
B
i) = (b − c)P i wins | b, IA, “i is type-(d, k)”; σB ,−i 

and σ− 
B
i denotes the profile of the other bidders’ strategies that they would use should they 

become active in a given project and IA summarizes information about the composition of the 
set of entrants; similarly IS below summarizes information about the set of potential bidders.30 

¯A set of participation thresholds {K̄ 
(d,k)(IS )}(d,k) with K(d,k)(IS ) = E[π(d,k) | IS ] characterizes 

the equilibrium entry strategies. In the last expression, the expectation is taken over the 
distribution of Ci and IA conditional on a potential bidder’s information set prior to the entry 
decisions IS (and of course on X and U , which are suppressed in notation). This implies that 
the equilibrium probability of participation of the bidders of type (d, k) is given by 

p(d,k) = Pr(κi,l ≤ E[π(d,k) | IS ]). 

7.2. Estimation Details 

We begin by recovering the group structure of the population consisting of the regular par-
ticipants of procurement market (the number of groups, K0, and the membership function 
τ(.)). After that we use a GMM procedure to estimate the remaining structural parameters of 
the model, 

θ1 = (α1, α2, γ1, γ2, σC , σU , {q̄  k}k=1,..,K0 , {q̃k}k=1,..,K0 ). 

In the first step we use the pairwise comparison indexes derived in the second example of 
Section 3.2 to recover the unobserved group structure. Specifically, in accordance with theR R 
notation used in the paper, we define δ+ ≡ max {rij (b), 0} db; δ− ≡ max {rji(b), 0} db andij ijR 
δij 
0 ≡ |rij (b)|db with rij (b) = Gji(b| d) − Gij (b|d) and Gij (b|d) = Pr(Bi,l ≥ b| Di,l = d, Dj,l = 

d, i ∈ Al, j ∈ Al).31 

We implement classification using the bootstrap testing procedure described previously. We 
recover group structure on the basis of the indexes which aggregate over the values of the dis-
tance d. As a robustness check we also compute groupings on the basis of subsets of distances. 
We find that the results of classification are very similar across these approaches. 

In the second step, we estimate the parameters of the model by a GMM procedure while 
imposing the recovered group structure in estimation (the number of groups, K̂ 

0, and the 
membership function τ̂(.)). Since the participation stage of our game may potentially generate 
multiple equilibria, we do not explicitly solve this part of the game. Instead, we discretize the 

30Specifically, IS,l, and IA,l contain information on the number of potential and active bidders from each (d, k)-
group. 
31We obtain empirical counterparts of these indexes by replacing Gij (b|d) with Ĝ 

ij (b|d) obtained as follows PL 1{Bi,l ≥ b}1{i, j ∈ Al}Kh(Di,l − d)Kh(Dj,l − d)ˆ l=1Gij (b|d) ≡ PL , 
1{i, j ∈ Al}Kh(Di,l − d)Kh(Dj,l − d)l=1 

where Kh(v) = K(v/h)/h for a univariate kernel function K, and h is the bandwidth. 
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support of auction characteristics (Xl, Ul) and treat the probabilities of participation for bid-
¯ders of various (k, d)−types corresponding to these grid values, p(k,d)(xm, um, IS,p), as auxiliary 

parameters. We follow the spirit of Dube, Fox, and Su (2012) by maximizing a moment-based 
objective function subject to the constraints that the optimality of the participation strategies 
is satisfied on the grid of the project characteristics’ values.32 

We consider the following moments: (a) the first and the second moment of bid distribution 
for a given level of d and for a given group of bidders; (b) the covariance between bids and the 
observable project characteristics; (c) the covariance between any two bids submitted in the 
same auction; (d) the expected number of participants in any given auction for every (d, q)-
group; (e) the covariance between the number of participants and the observable project 
characteristics. We search for the set of parameters which minimizes the distance between 
the empirical and theoretical counterparts of these moments subject to constraints described 
below. 

Formally, let µB,k,d(θ1), σB,k,d(θ1) denote the mean and the standard deviation of the distribu-
tion of bids submitted by bidders from group k for the projects which are distance d away when 
the vector of structural parameters takes value θ1; Sl,k,d denote the subset of potential bidders 
for project l who are from group k and are at distance d from project l; and |Sl,k,d| denote the 
number of the bidders in the set Sl,k,d. Then we form moment conditions as follows. 

(a1) E[(Bi,l − µB,k,d(θ1)) × 1{τ(i) = k} × 1{di,l = d}] = 0 

(a2) E[(Bi,l 
2 − (σB,k,d(θ1)

2 + µB,k,d(θ1)
2)) × 1{τ(i) = k} × 1{di,l = d}] = 0 

(b) E[Bi,lXr,l − α1,rσX 
2 ] = 0 where Xr,l is the r-th component of Xr,t 

(c) E[(Bi,l − µB,τ (i),d(θ1))(Bj,l − µB,τ(j),d(θ1)) − σU 
2 ] = 0 

(d) E[1{i ∈ Al}1{τ(i) = k}1{di,l = d} − p(k,d)(Xl, Ul, ISl )|Nl,k,d|] = 0 

(e) E[(1{i ∈ Al}1{τ (i) = k}1{di,l = d} − p(k,d)(Xl, Ul, ISl )|Nl,k,d|)Xl] = 0. 

When computing empirical counterparts of these moments in the second step of our estimation 
procedure we impose the group structure recovered in the first step by replacing τ(i) with τ̂(i). 

In order to construct these moments we need to map the distributions of the bidders’ costs 
summarized by the parameters vector θ1 into the corresponding distributions of bids. For this, 
we solve for equilibrium bidding strategies corresponding to the costs distribution summa-
rized by θ1 using an extension of the algorithm proposed in Marshall, Meurer, Richard, and 
Stromquist (1994). We then combine the computed bidding functions with the distribution 
of costs to compute the moments of the bid distribution. We also use so computed bidding 
strategies to obtain the values of expected profits we use in the participation constraints.33 

32Specifically, for a grid of (Xl, Ul)-values we impose that 
¯ ¯ p(k,d)(xm1 , um2 , IS,p) = Fκ(E[π(k,d)(xm1 , um2 , IS,p; θ1)]). 

This procedure allows us to select participation strategies that are most consistent with the data. 
33When computing the moments, the values of p(k,d)(Xl, Ul, ISl ) between grid points are interpolated using cubic 
spline. 



36 E. KRASNOKUTSKAYA, K. SONG, AND X. TANG 

7.3. Estimation Results 

We implement the analysis using the data for California Highway Procurement projects auc-
tioned between 2002 and 2012. We use data from 1,054 medium-sized projects that involve 
paving and bridge work. Available information on project characteristics includes the engi-
neer’s estimate, the completion deadline, the location of the project, category of work, and 
list of potential bidders. We construct the distance variable to reflect the expected driving dis-
tance between the project location and the closest company plant. The projects in our sample 
are worth $523,000 and last for around three months on average; 38% of these projects are 
partially supported through federal funds. There are 25 firms that participate regularly in this 
market. The market also attracts fringe bidders that enter only very few auctions throughout 
the data. An average auction attracts six regular potential bidders and eight fringe bidders. 
Since only a fraction of potential bidders submits bids, an entry decision plays an important 
role in this market. Finally, the distance to the company location varies quite a bit and is 
around 28 miles on average for regular potential bidders. A table of these statistics can be 
found in the Online Appendix. 

In the first step, we obtain through our classification method the grouping of the bidders 
into eight groups that consist of 2, 3, 8, 3, 2, 3, 2 and 2 bidders respectively.34 The parameter 
estimates obtained in the second stage of our estimation procedure and their standard errors 
are summarized in Table 8. We normalize bids by the engineer’s estimate in the estimation. 
Therefore all the parameters measure the effects relative to project size. 

The first two columns present the estimates which are obtained when the unobserved group 
structure is taken into account in the estimation. The results indicate significant differences 
in bidders’ costs across the groups. Specifically, fringe bidders (the reference group) tend to 
have the highest costs whereas the difference in costs between the group of fringe bidders 
and the groups of regular bidders is comparable in impact to the shortening of the distance 
to the project site by 42.5 (i.e., by 0.051/0.0012), 10.1, 26.67, 48.33, 11.67, 6.67, 7.5, and 
41.67 miles respectively. Additionally, the distance increases project costs (additional 8.33 
miles result in costs which are 1% higher on average);35 bridge projects appear to be about 
1% cheaper on average, the projects which attract federal aid also tend to have costs which 
are on average 4% lower than projects which are financed through local funds. This effect 
probably arises because bidders anticipate a higher degree of scrutiny on these projects and 
thus make more effort to save costs. Unobserved project heterogeneity while non-negligible is 
moderate in size: increasing the value of the unobserved factor from its mean (equal to ‘0’) to 

34We identify two subsets of regular bidders that overlap by two bidders, and two separate non-overlapping 
subsets. These four subsets satisfy the condition of being fully connected (i.e. every pair of bidders from a given 
subset participate together in a large number of auctions). We estimate that the underlying group structure of 
the overlapping subsets consists of three and two groups correspondingly. The bidders that are common to the 
two subsets are estimated to belong to the same group in both cases. To avoid issues associated with such overlap 
we treat these two common bidders as a separate group. The non-overlapping subsets are estimated to consist of 
one group each. This obtains the group structure with eight groups. 
35Recall that the coefficients reflect the impact on costs in terms of the fraction of the engineer’s estimate. The 
distance resulting in 0.01 increase of average costs can thus be comuted as 0.01/0.012. 
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Table 8. Parameter Estimates 

Parameter Std. Error Parameter Std. Error 
The Distribution of Project Costs 

Constant (q̄0) 0.127∗∗∗ (0.0129) 0.113∗∗∗ (0.0119) 
Eng. Estimate -0.0004∗∗∗ (0.0002) -0.0005∗∗∗ (0.0002) 

Duration 0.00026∗ (0.00036) 0.00022∗ (0.00027) 
Distance 0.0012∗∗∗ (0.00022) 0.00086∗∗∗ (0.00019) 
Bridge -0.0092∗∗∗ (0.0018) -0.012∗∗∗ (0.0011) 

Federal Aid -0.043∗∗∗ (0.0103) -0.078∗∗∗ (0.009) 
Regular Bidder -0.035∗∗∗ (0.003) 

q̄1 − q̄0 -0.051∗∗∗ (0.008) 
q̄2 − q̄0 -0.012∗∗∗ (0.005) 
q̄3 − q̄0 -0.032∗∗∗ (0.009) 
q̄4 − q̄0 -0.058∗∗∗ (0.008) 
q̄5 − q̄0 -0.014∗∗∗ (0.007) 
q̄6 − q̄0 -0.008∗∗∗ (0.006) 
q̄7 − q̄0 -0.009∗∗∗ (0.007) 
q̄8 − q̄0 -0.050∗∗∗ (0.006) 
σC 0.087∗∗∗ (0.032) 0.112∗∗∗ (0.022) 
σU 0.021∗∗∗ (0.009) 0.0207∗∗∗ (0.008) 

The Distribution of Entry Costs 
Constant (q̃0) -0.0114∗ (0.0078) -0.0161∗ 0.0091 
Eng. Estimate 0.0055∗∗∗ (0.0016) 0.0051∗∗∗ (0.0012) 

Number of Items 0.0018∗ (0.0011) 0.0011∗∗∗ (0.0005) 
Regular Bidder -0.022 ∗∗∗ (0.004) 

q̃1 − q̃0 -0.019∗∗∗ (0.005) 
q̃2 − q̃0 -0.018∗∗∗ (0.007) 
q̃3 − q̃0 -0.016∗∗∗ (0.007) 
q̃4 − q̃0 -0.024∗∗∗ (0.006) 
q̃5 − q̃0 -0.022∗∗∗ (0.008) 
q̃6 − q̃0 -0.018∗∗∗ (0.006) 
q̃7 − q̃0 -0.017∗∗∗ (0.008) 
q̃8 − q̃0 -0.019∗∗∗ (0.008) 

Note: In the results above the distance is measured in miles. The fringe bidders are the reference 
group; the impact of fringe status on costs is summarized by a constant. The first two columns reflects 
the estimates reflect the specification which allows for the possibility of unobserved bidder 
heterogeneity. The last two columns reflects the specification which imposes that there no unobserved 
bidder heterogeneity is present in the data. 

a value that corresponds to one standard deviation from the mean is equivalent to increasing 
the distance to the project site by 30 miles. The entry costs of regular bidders are significantly 
lower than entry costs of fringe bidders. However, they appear to be quite similar across the 
groups of regular bidders. 

The last two columns of Table 8 show the parameter estimates under the specification when 
the unobserved group structure of the regular bidders is ignored in the estimation. The param-
eter estimates are obtained by the GMM estimation procedure using the same set of moments 
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by imposing that only two groups of sellers are present in the data: fringe and regular bidders. 
Under this specification, the cost reduction due to the federal aid is estimated to be much 
higher (7.8% rather than 4.3%), the impact of the distance is estimated to be lower (the dis-
tance to the project has to be 11.67 miles higher in order to increase the average cost by 1%), 
and the variance of the cost distribution is estimated to be higher. Additionally, the entry costs 
are estimated to be lower relative to the baseline specification. 

The differences between the results obtained under the two specification are primarily 
driven by endogenous participation behavior. The model without unobserved bidder hetero-
geneity treats all the regular bidders as homogeneous. As a result it only rationalizes aggregate 
participation behavior. The model with unobserved bidder heterogeneity takes into account 
differences in the participation behavior of a regular bidder. For example, in the data projects 
receiving federal aid tend to attract regular bidders from groups 1, 4 and 8 more frequently 
relative to bidders from groups 5, 6 and 7. When heterogeneity is ignored, the model has to 
rationalize participation behavior by forcing the costs on such projects to be lower than they 
are in reality to rationalize such observed behavior. Similar reasoning explains the difference 
in the estimated impact of distance under the two specifications. 

Our results thus confirm that regular participants in the highway procurement market are 
characterized by important unobserved cost differences that persist throughout the data. As we 
noted above documenting such cost asymmetries may be important from a purely informative 
point of view. It is also important to correctly measure cost asymmetries from a normative 
point of view. For example, the revenue equivalence of simple auctions breaks down in the 
presence of costs asymmetries. The exact magnitudes of these asymmetries may influence the 
government choice of auction format.36 

8. Conclusion 
This paper makes a number of contributions to the literature. First, for environments with 

agent-specific unobserved heterogeneity which takes values from a discrete finite set we show 
that the underlying group structure associated with the unobserved heterogeneity could be 
identified from pairwise inequality restrictions implied by a theoretical model. Second, we 
demonstrate that such pairwise inequality restrictions exist in a number of settings charac-
terized by strategic interdependence where identification of the primitives of the model with 
unobserved agent heterogeneity would otherwise be far from obvious. Third, we propose a 
computationally feasible method which produces consistent estimates of the ordered group 
structure associated with unobserved heterogeneity. Finally, we apply this method to data 

36For example, the affirmative action programs in government procurement have been largely implemented in 
the form of discriminating auctions. Such auctions favor disadvantaged businesses, which are likely to have 
higher costs. They thus have a potential of increasing government procurement costs. It has been shown in the 
literature (McAfee and McMillan (1989)), however, that if the discrimination factor correctly takes into account 
existing costs asymmetries then such auction may actually lower government costs. Clearly, to optimally choose 
the structure of such an auction the exact information about the costs asymmetries is very important. For an 
extended discussion see Krasnokutskaya and Seim (2011). 
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from California highway procurement auctions to show that unobserved bidder heterogeneity 
plays an important role in this procurement market. 

We believe that the classification method proposed in this paper may prove especially useful 
in settings where the analysis of unobserved agent heterogeneity is complicated by strate-
gic interdependence. To the best of our knowledge this paper offers a novel insight into 
identification and estimation of such models. Specifically, classification could be used as a 
pre-estimation step in the structural studies of many environments where analysis would oth-
erwise be infeasible due to the high computational cost. 

This method is also likely to be useful in the multi-agent settings characterized by agents’ 
sparse commonality. In such environments only a small subset of agents is present in any given 
market. As a result, the conditional probability of an agent choosing a specific action given a 
full set of participants cannot be consistently estimated from the data. Pairwise comparisons 
could be used to recover the group structure which in turn may serve as a basis for data 
aggregation which enables accurate inference. 

Our methodology complements the finite mixture approach in the toolbox of an empirical 
researcher. It offers a straightforward and constructive identification mechanism, combined 
with computational feasibility at a cost, perhaps, of somewhat higher data requirements. The 
latter, however, becomes less of a problem as large datasets are made available to modern 
researchers. In contrast, the finite mixture approach has lower data requirements but requires 
stronger assumptions in order to achieve identification of model primitives and can be more 
computationally costly in settings with strategic interdependence. 
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Appendix A: Mathemathical Proofs 
Proof of Theorem 4.1: Sufficiency is obvious. We focus on necessity. First consider the two 
facts: 

Fact 1: If Gτ does not contain a monotone path of length K0 − 1, τ is not identified. 
Fact 2: A vertex i is identified if and only if there is a monotone path P containing i such that 
its end vertices iH and iL are identified and 

τ(iH ) − τ(iL) = `(P ), 

where `(P ) denotes the length of P . 

By Fact 1, the necessity of Gτ containing a monotone path of length K0 − 1 follows, and Fact 
2 completes the proof of the necessity part of the theorem. 

Now let us prove Fact 1. Suppose that Gτ does not contain a monotone path of length K0 −1. 
Let Nmax be the set of vertices such that for each vertex i in Nmax, all his Gτ -neighbors have 
lower type than the vertex i. Then there is no edge in Gτ which joins any two vertices from the 
set Nmax. Choose a vertex i∗ from Nmax which is an end vertex of a longest monotone path, 
say, with length K − 1 < K0 − 1. This identifies a lower bound for K0 but there is no upper 
bound for K0 that we can obtain from Gτ . Take any τ 0 such that τ 0(i∗) > τ(i∗) and τ 0(i) = τ(i) 

for all i ∈ N \ {i∗}. Then τ 0 is compatible with Gτ and the given comparison indexes, proving 
that τ is not identified from G. 

Let us prove Fact 2. Sufficiency is trivial. Let us focus on necessity. Suppose there is no 
monotone path with identified end vertices which contains i. Then i is not identified. Therefore 
it is necessary that there exists a monotone path with identified end vertices which contains i. 
So it suffices to show that it is necessary that such a monotone path has to have length equal 
to τ(iH ) − τ(iL). Suppose to the contrary that every monotone path P that contains i and has 
identified end vertices iH and iL also satisfies τ(iH ) − τ (iL) > `(P ). Then we will show that i 
is not identified. 

First, assume that there exists a monotone path which contains i but not as one of its end 
vertices. Let i∗ 

H be a lowest type vertex among all the identified vertices each of which is on a 
monotone path that contains i and is of higher type than i. Also, let i∗ 

L be a highest type vertex 
among all the identified vertices each of which is on a monotone path that contains i and is of 
lower type than i. Let P be a monotone path between i∗ 

H and i∗ 
L that passes through i. Then 

by construction, the type difference τ(i∗ 
H ) − τ(i∗ 

L) between the two end vertices is smallest 
among all the monotone paths that go through i. By the condition, we have τ(i∗ 

H ) − τ(i∗ 
L) > 2. 

Therefore, we have multiple different ways to assign τ(i∗ ) − 1, τ(i∗ ) − 2, ..., τ(i∗ ) + 1 to theH H L 

vertex i on the path P . Hence i is not identified. 
Second, assume that all the monotone paths that contain i have i as one of their end vertices. 

Then either all neighbors of i are of higher type than i or all neighbors of i are of lower type 
than i. Suppose that we are in the former case. (The latter case can be dealt with similarly.) 
Let i∗ 

H be a lowest type vertex among all the vertices each of which is on a monotone path that 
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contains i and is of higher type than i. Then by the condition, τ(i∗ 
H ) − τ(i) > 1. Thus we have 

multiple different ways to assign τ(i∗ 
H ) − 1, τ(i∗ 

H ) − 2, ..., τ(i) + 1, τ(i) to the vertex i. Hence i 
is not identified. � 

Throughout the proofs, the asymptotic results are always as L →∞, unless specified other-
wise. Also we write wp → 1 as shorthand for “with probability approaching 1.” 

Proof of Theorem 5.1: Let us first consider the case where K0 = 2. For each i ∈ N , we let 
N(i) = N\{i}, and let N̂ 

1(i) and N̂ 
2(i) be as defined in Step 1 of the two step algorithm. Also, 

we define 

N ∗ 
1 (i) ≡ {j ∈ N(i) : τ(i) > τ(j)} , and 

N ∗ (i) ≡ {j ∈ N(i) : τ(i) < τ(j)} .2 

If i ∈ Nh, we have Nl = N∗(i) and Nh = N\N∗(i). Also, if i ∈ Nl, we have Nl = N\N∗(i) and1 1 2 

Nh = N2 
∗(i). By Assumption 5.1, for any i ∈ Nh, we have � � � � 

P min p̂− 
ij ≤ 0 = o(1/n), and P min p̂+ 

ij ≤ 0 = o(1/n), 
j∈N∗(i) j∈N\N∗(i)1 1 

and hence � � � � 
+ − +P max (p̂ − p̂ij ) < 0 ≥ P max p̂ij < 0 − o(1/n) = 1 − o(1/n),ij

j∈N∗(i) j∈N∗(i)1 1 

as n, L →∞, and � � � � 
− + −P max (p̂ − p̂ ) ≤ 0 ≥ max p̂  ≤ 0 − o(1/n) = 1 − o(1/n),ij ij ij

j∈N\N∗(i) j∈N \N1 
∗(i)1 

as n, L →∞. Therefore, whenever i ∈ Nh, 

ˆP {Nl ⊂ N1(i)} = 1 − o(1/n), and P {Nh ⊂ N\N̂ 
1(i)} = 1 − o(1/n). 

Since (N̂ 
1(i), N\N̂ 

1(i)) and (Nl, Nh) are partitions of N , this also implies that whenever i ∈ Nh, 

ˆP {Nl = N1(i), and Nh = N\N̂ 
1(i)} = 1 − o(1/n), 

and similarly, whenever i ∈ Nl, 

= N\ ˆ ˆP {Nl N2(i), and Nh = N2(i)} = 1 − o(1/n). 

Hence we have for any i ∈ N , r ∈ {1, 2}, n o 
(8.1) P T̂  

r(i) 6= T = o(1/n), 

which implies that n o X n o 
P T̂  

r(i) =6 T for some i ∈ N ≤ P T̂  
r(i) =6 T → 0. 

i∈N 

ˆ ˆ ˆSince i∗ ∈ N and ˆ = T = T2(i
∗), the probability P {δ( ˆT T1(i

∗) or T , T ) > 0} is bounded by 
the right hand side sum. We call such agent i∗ used in the split a pivotal agent. But this sum 
converges to zero, yielding the desired result consistency result when K0 = 2. 
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Now, suppose that K0 is allowed to be greater than 2. Take N [0] = N . For each i ∈ N , 
[1] [0] [0] [1]we obtain two ordered partitions T̂ (i) ≡ (N\N̂ 

2(i), N̂ 
2(i)) ≡ (N̂ (i), N̂ (i)) and T̂ (i) ≡1 1,1 2,1 2 

( ˆ [0] ˆ [0] [1] ˆ [0] [0]
N1(i), N\N̂ 

1(i)) ≡ (N̂ (i), N (i)). Define E (i) to be the event that N (i) = N (i) and1,2 2,2 n,1 1,2 1,2 
[1] [0] [0]define En,2(i) to be event that N̂ 

2,1(i) = N2,1(i), where for each r = 1, ..., K, if i ∈ Nr, 

N2
[0] 
,1(i) = Nr+1 ∪ ... ∪ NK and 

N1
[0] 
,2(i) = N1 ∪ ... ∪ Nr. 

Then by following the same arguments as before, we find that ( )[ � � 
[1] [1](8.2) P E (i) ∪ E (i) → 1.n,1 n,2 

i∈N 

Now, generally, suppose that at Step k − 1 ≤ K, we have obtained the estimated ordered 
[k]
)kpartition (N̂ 

r r=1. Let dk 
∗
−1, = (i∗ 

1, ..., i
∗ 
k−1) denote the vector of pivotal agents chosen so far in 

obtaining the partition and let Dk−1 be the set of subvectors of (1, ..., N) with k−1 entries. Sup-
pose that for Rk ≡ {r1, ..., rj} ⊂ {1, ..., k} and dk−1 ∈ Dk−1, we define the event Ak(Rk, dk−1) to 
be such that d∗ 

k−1 = dk−1 and 
N̂ [k] 

r = Nr for all r ∈ Rk. 

Now assume that we have at this step k − 1 ≤ K,⎧ ⎫ ⎨ [ [ ⎬ 
(8.3) P Ak(Rk, dk−1) → 1.⎩ ⎭ 

dk−1∈Dk−1 Rk ⊂{1,...,k} 

We will show that we can extend this convergence to the next step k. 
N̂ [k−1] ˆWe focus on a given event Ak(Rk, dk−1). Define = N\(∪r∈Rk Nr) and N [k−1] = 

N̂ [k−1]N\(∪r∈Rk Nr). Then in the event Ak(Rk, dk), we also have = N [k−1] by the definition 
of Ak(Rk, dk). If N [k−1] is empty or contains i’s with the same type, the event Ak(Rk, dk) is 
equal to the event Ak({1, ..., k}) with k = K. In other words, Ak(Rk, dk−1) remains the same 
for all choices of Rk and dk−1 that are consistent with this assumption in this case. Hence the 
classification is consistent by (8.3). 

Suppose that N [k−1] contains at least i and j with different types. When restricted to the 
sequence of events Ak(Rk, dk), there exists some p-value p̂ij 

0 with i, j in N̂ [k−1] such that p̂ij 
0 is 

less than or equal to 0 with probability being 1 − o(1/n) by Assumption 5.1, whereas for all 
(i, j) such that i, j ∈ Nr for some r ∈ Rk, p̂0 

ij is greater than 0 with probability being 1 − o(1/n). 
Therefore, the probability that the next split in Step k under event Ak(Rk, dk) is made on a 
group other than N̂ [k−1] is o(1/n). 

We obtain two ordered partitions 
[k] 

(N [k−1]\ ˆ [k−1] [k−1]
Ŝ (i) ≡ N2(i), N̂ 

2(i)) ≡ (N̂ (i), N̂ (i)) and1 1,1 2,1 

[k] [k−1] [k−1]
Ŝ (i) ≡ (N̂ 

1(i), N
[k−1]\N̂ 

1(i)) ≡ (N̂ (i), N̂ (i))2 1,2 2,2 

of the set N [k−1], where N̂ 
1(i) and N̂ 

2(i) are defined as in Step 1 of the split algorithm in 
[k] [k]Section 3.3.1 except that we replace N there by N [k−1]. With Ŝ 
1 (i) and Ŝ 

2 (i) given, we 
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[k] [k] [k−1] [k−1]construct two ordered partitions T̂ (i) and T̂ (i) by replacing N̂ [k−1] with (N̂ (i), N̂ (i))1 2 1,1 2,1 
[k−1] [k−1] [k] [k−1] [k−1]and (N̂ (i), N̂ (i)) respectively. Define EL,1(i) to be the event that N̂ (i) = N (i)1,2 2,2 1,2 1,2 

[k] [k−1] [k−1]and define En,2(i) to be event that N̂ (i) = N (i), where for each r = 1, ..., K, if i ∈ Nr,2,1 2,1 [ [
[k−1] [k−1]

N2,1 (i) = Ns and N1,2 (i) = Ns. 
s>r:s∈Rk s<r:s∈Rk 

Then again by following the same arguments as previously, we find that ( )[ � � 
[k] [k](8.4) P En,1(i) ∪ En,2(i) → 1. 

i∈N 

[k−1] [k−1]Let ik,1 be the pivotal agent used to split N̂ [k−1] into (N̂ 
1,1 (ik,1), N̂ 

2,1 (ik,1)), and let ik,2 be 
[k−1] [k−1]ˆ ˆthe pivotal agent used to split N [k−1] into (N̂ 
1,2 (ik,2), N2,2 (ik,2)), in Step k. In the former 

[k+1] [k−1] [k+1]case, we set N̂ = N̂ (ik,1) and dk = (dk−1, ik,1). In the latter case, we set N̂ = rj+1 2,1 rj+1 

[k−1]
N̂ 

1,2 (ik,2) and dk = (dk−1, ik,2). Then we define 

Rk+1 = Rk ∪ {rj+1} 
[k+1] [k]and rename N̂ 
r = N̂ 

r for all r ∈ Rk. Thus we have obtained the augmented partition 
[k+1]

)k+1(N̂ 
r r=1 . Now we can define Ak+1(Rk+1, dk) similarly as we defined Ak(Rk, dk−1). Then it is 

clear that the convergence in (8.4), combined with (8.3), implies that⎧ ⎫ ⎨ [ [ ⎬ 
P Ak+1(Rk+1, dk) → 1.⎩ ⎭ 

dk∈Dk Rk⊂{1,...,k+1} 

We keep iterating the process until we have k = K at which point the resulting estimated 
ordered partition is consistent as shown before. � 

Lemma A1: Suppose that the conditions of Theorem 5.2 hold.. 
(i) If K ≥ K0, then V̂ (K) = oP (r1,n), as n, L →∞. 

(ii) If K < K0, then for any M > 0, as n, L →∞, 

P {V̂ (K) > g(L)M} → 1. 

Proof: (i) From the proof of Theorem 5.1, for each k = 1, ..., K, n o 
ˆP Nk = Nk → 1. 

(Here Nk = ∅ if K > K0.) Therefore, by Assumption 5.2, we have 
KX1

V̂ (K) = min log p̂ 0 
ij = oP (r1,n). 

K i,j∈N̂ 
kk=1 

Thus (i) follows. 

(ii) Suppose that K < K0. Then for some k = 1, ..., K, and for some i, j ∈ Nk, we have H1
0 
,ij 

true. Since g(L)/r2,n → 0 as n, L → ∞, we take rn ≡ g(L) to find that for this pair (i, j), 
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log p̂ij 
0 /g(L) →P −∞, as n, L →∞. Therefore, it follows that V̂ (K)/g(L) →P ∞ as n, L →∞. 

� 

Proof of Theorem 5.2: Choose K such that K0 < K and write 

Q̂(K0) − Q̂(K) = V̂ (K0) − V̂ (K) + (K0 − K)g(L). 

As for the leading term on the left hand side, we have 

V̂ (K0) − V̂ (K) = oP (r1,n), 

by Lemma A1(i). Since g(L)/r1,n →∞, we find that whenever K > K0, we have n o 
ˆ ˆP Q(K0) < Q(K) → 1. 

And for all K < K0, we have by Lemma A1(ii), for any M > 0, n o 
ˆP V (K) > g(L)M → 1, 

whereas V̂ (K0) = oP (r1,n). Therefore, taking M > K0 − K, we find again that n o 
ˆ ˆP Q(K0) < Q(K) → 1. 

We conclude that P {K̂ = K0} → 1. 
Let us turn to the second statement. Since P {K̂ = K0} → 1, we have 

P {T̂ ˆ 6= T } = P { ̂  6= T } + o(1).K TK0 

That the last probability converges to zero follows precisely by the arguments in the proof of 
Theorem 5.1. � 

Appendix B: Discussion on Assumption 5.1 
Suppose that T s is the test statistic whose distribution function under the null hypothesis is ij,n 

twice continuously differentiable with bounded derivatives and denoted by F s 
ij,n. Assume also 

that the density f s of F s is bounded away from zero uniformly over i, j. A bootstrap dis-ij,n ij,n 

tribution used to compute the critical value is denoted by F̃ s and the asymptotic distribution ij,n 

by Fij, 
s 
∞. Suppose further that 

max sup |F̃  
ij,n 
s (t) − Fij,n 

s (t)| + max sup |Fij, 
s 
∞(t) − Fij,n 

s (t)| = O(L−h1 ), 
ij∈E ij∈Et∈R t∈R 

for some h1 > 0. Now, as for Assumption 5.1(i), note that for E 0 ⊂ E and for each i ∈ N , � � � � 
s L−h1Pn min p̂  ≤ 0 ≤ Pn max Uij ≥ −Mn + 1 ,ij

j∈N :ij∈E 0 j∈N :ij∈E 0 

where Uij = F s (T s ) and Mn is any sequence increasing to infinity. Since Uij ’s follow the ij,n ij,n 

uniform distribution on [0, 1], using the Fréchet-Hoeffding lower bound for a copula, we can 
bound the above probability by � � 

L−h1 L−h11 − max 1 − |E 0(i)|Mn , 0 ≤ 1 − max 1 − nMn , 0 , 
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where |E 0(i)| denotes the number of agents j such that ij ∈ E 0 . Therefore, it suffices that 
L−h1 = o(n−2).37 

As for Assumption 5.1(ii), observe that for E 0 ⊂ E and for each i ∈ N , � � � 
Pn max p̂sij > 0 ≤ n max Pn p̂sij > 0 

j∈N :ij∈E 0 j∈N :ij∈E 0 

≤ n max Pn ij,n(T s + 1}.{F s 
ij,n) > −MnL

−h1 

j∈N :ij∈E 0 

Suppose that along Pn, the statistic T s diverges to infinity in such a way that T s /Lh2 → c >ij,n ij,n 

0, as L → ∞ for some h2 > 0. Let T s,◦ be the test statistic (under the null hypothesis) having ij,n 

the distribution as F s 
ij,n. Then we write the last probability as 

− T s,◦ (T s,◦ (T s,◦ L−h1Pn{F s (T s ) − F s ) + F s ) > −Mn + 1}ij,n ij,n ij,n ij,n ij,n ij,n ij,n + T s,◦ 
ij,n 

{f s (T s,◦ L−h1≤ Pn )cLh2 + o(Lh2 ) + F s ) > −Mn + 1}ij,∞(Tij,n 
s,◦ 

ij,n ij,n 

L−h1≤ Pn{c1Lh2 
ij,n(T s,◦ ) > −Mn+ o(Lh2 ) + F s + 1},ij,n 

for some constant c1 > 0. The last probability becomes one from some large n, L on, as long 
as h2 > 0. 
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