
Appendix (Not for Publication) 

A.1 Empirical Model: Specification, Estimation, and Identification 

Details 

A.1.1 Summary of the Empirical Model 

At the time of announcement, a procurement project is characterized by a set of observable 

characteristics (xj , zj ) and unobserved characteristic uj where (xj , uj ) and zj denote characteris-

tics that affect the distributions of project cost, Fc
k(.|xj , uj ), and the distribution of entry costs, 

Gk(.|zj ), respectively. After the project is announced, firms identify themselves as potential d 

bidders. Denote the numbers of potential bidders for project j by (N1j , N2j ). 

Each potential bidder i observes (xj , uj , zj , N1j, N2j ) and his private entry cost realiza-

tion, dij . On the basis of this information, a potential bidder makes the participation decison, 

Iij (dij , xj , uj , zj , N1j , N2j ), where Iij = 1 if bidder i participates in the auction for project j and 

Iij = 0 otherwise. This participation strategy is characterized by a group-specific cut-off point on 

the support of the entry cost distribution, Dk(xj, uj , zj , N1j , N2j ). The equilibrium participation 

strategy is consistent with bidders’ beliefs about the likelihood of their competitors’ participation 

in the auction (and the observed participation probabilities): 

Z 
pk(xj , uj , zj , N1j , N2j ) = Iij (dij , xj , uj , zj , N1, N2)dGk

d(dij |zj ). 

After participation decisions are made, the numbers of actual bidders, (n1j , n2j ), are 

realized. Conditional on (xj, uj , zj , N1j , N2j ) the number of actual bidders, nkj , is distributed 

according to a binomial distribution with a probability of success of pk(xj , uj , zj , N1j , N2j ) and 

Nkj trials. 

Participating firms invest into discovering their project costs, cij, and prepare their 

bids, bij = βk(i)(cij |n1j , n2j , F 1(.|xj , uj ), F 2(.|xj , uj )), to be submitted to the auctioneer. Herec c 

βk(.|n1j, n2j , Fc 
1, Fc 

2) denotes the bidding strategy used by firms of group k in the auction for 

project j. The distribution of bids submitted for a project characterized by (xj , uj , n1j , n2j ) is 

given by 

F k(b|xj , uj , n1j , n2j ) = F k(β−1(b|xj , uj , n1j , n2j )|xj , uj ).b c k 

A.1.2 Assumptions 

In this section, we list the assumptions that we impose on bidders’ project and entry cost 

distributions that give rise to the empirical model in the paper. We assume that bidders’ project 
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costs satisfy the following assumptions: 

(A-1) cij = c̃ij uj , where c̃ij denotes the firm-specific component of bidders’ costs and uj the un-

observed project heterogeneity component that is observed by all bidders, but unobserved 

by the econometrician. 

˜Assumption (A-1) implies that βk(i)(cij |xj , uj , n1j , n2j ) = uj βk(i)(c̃ij |xj , n1j , n2j ) where βk(.|.) and 

β̃  
k(.|.) denote the group-k bidding strategies associated with an arbitrary uj and with uj = 1, 

˜respectively. Thus, bij = bij uj and ln(bij ) = ln(b̃ij ) + ln(uj ). 

(A-2) The log of the unobserved heterogeneity component is distributed according to a normal 

distribution. The conditional expectation and variance of ln(uj ) are E[ln(uj )|xj , zj , N1j , N2j ] = 

0 and Var(ln(uj )|xj , zj , N1j , N2j ) = σ2 .u 

(A-3) c̃ij are mutually independent conditionally on (xj , N1j , N2j ) and independent of the un-

observed project heterogeneity component, uj : 

Fc̃|x,u(c̃1j , ..., c̃N1j +N2j ,j |xj , uj ) = 
N1j N2j 

= Fc̃|x(c̃1j , ..., c̃N1j +N2j ,j |xj) = 
Y 

Fc̃
1(c̃ij |xj ) 

Y 
Fc̃

2(c̃ij |xj ) 
i=1 i=1 

for every (c̃1j , ..., c̃N1j +N2j ,j ) that are points of continuity for F˜
1(.|xj ) and Fc 

2(.|xj ).c ˜ 

(A-4) The log of the firm-specific bid component is distributed according to a normal distribu-

tion. The conditional expectation and variance of ln(b̃ij ) are given by: 

E[ln(b̃ij )|xj , n1j , n2j ] = [xj , n1j , n2j ]
0αk(i) 

Var[ln(b̃ij )|xj , n1j , n2j ] = (exp(y 0 ηk(i)))
2 

j 

Here, yj includes some of [xj , n1j , n2j ] and, possibly, their squares. 

Further, we assume that bidders’ entry costs satisfy the following assumptions: 

(A-5) Entry costs dij are distributed according to a normal distribution left-truncated at 0 

with mean E[dij |zj ] = zj 
0 γk and a constant group-specific standard deviation σk

G . The 

conditional expectation and variance of dij are given by: 

E[dij |xj , zj , N1j , N2j ] = z 0 γk(i)j 

Var[dij |xj , zj , N1j , N2j ] = σ2 
k(i). 
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(A-6) Entry costs dij are private information to firm i and are mutually independent condition-

ally on (xj , zj , N1j , N2j ) and independent of the unobserved project heterogeneity compo-

nent, uj : 

Gd|x,z,N1,N2 (d1j , ..., dN1+N2,j |xj , zj , N1j , N2j , uj ) = 
N1j N2jY 

G1(dij |xj, zj , N1j , N2j ) 
Y 

G2(dij |xj , zj , N1j , N2j ). 
i=1 i=1 

A.1.3 Entry equilibrium and conditional distribution of uj 

Recall that a potential bidder i’s participation strategy is characterized by a group-specific 

cut-off point on the support of the entry cost distribution, Dk(xj , uj , zj , N1j , N2j ), resulting 

in equilibrium participation beliefs of pk(xj , uj , zj , N1j , N2j ). Assumption (A-6) implies that 

conditional on (xj , uj , zj , N1j , N2j ), the number of actual bidders is distributed according to the 

product of two binomial distributions with probabilities of success given by pk(xj , uj , zj , N1j, N2j ) 

and Nkj trials, k = 1, 2: 

Pr(n1j = k1, n2j = k2|xj , uj , zj, N1j , N2j ) = 

Ck1 Ck2 p1(·)k1 (1 − p1(·))N1j −k1 p2(·)k2 (1 − p2(·))N2j −k2 ,N1j N2j 

where CN
k denotes the binomial coefficient of choosing k bidders out of N potential competitors, 

N !/(k!(N − k)!). 

An important and immediate consequence of the endogenously determined numbers of 

bidders, (n1j , n2j ), is that 

h(uj |n1j , n2j ) 6= h(uj ) 

since the joint distribution of (n1j , n2j ) depends on u. Specifically, 

P̃ (uj , n1j , n2j )
hu(uj |n1j , n2j ) = = 

P̃ (n1j , n2j ) 
˜P

N1j ,N2j 
P (n1j , n2j |N1j , N2j , uj )hu(uj|N1j , N2j ) 

= 
˜

R P
N1j ,N2j 

P (n1j , n2j |N1j , N2j , uj )hu(uj |N1j, N2j )du 

˜P
N1j ,N2j 

P (n1j , n2j |N1j , N2j , uj )hu(uj) 
.

˜
R P

N1j ,N2j 
P (n1j , n2j |N1j , N2j , uj )hu(uj )du 

Here, P̃ (uj , n1j , n2j ) denotes the joint probability of (uj , n1j , n2j ) and P̃ (n1j , n2j |N1j , N2j , uj ) 

is the probability of (n1j , n2j) conditional on (N1j , N2j , uj ). 
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A.1.4 Moment Conditions: Bid Distribution 

In this section we use assumptions (A-1) through (A-4) to derive moment conditions to estimate 

the parameters of the bid distribution. 

First Order Moments. Assumptions (A-1) and (A-4) imply that 

ln(b̃ij ) = [xj , n1j , n2j ]
0αk(i) + εij 

where E[εij |xj , n1j , n2j ] = 0, and 

ln(bij ) = [xj , n1j , n2j ]
0αk(i) + ln(uj ) + εij . 

Then 

m1 =E[xj 
0 (ln(bij ) − [xj , n1j , n2j ]

0αk(i))] = 

Ex,n1,n2 [E[xj 
0 (ln(bij ) − [xj , n1j , n2j ]

0αk(i))|xj , n1j , n2j ]] = 

Ex,n1,n2 [E[x 0 (ln(uj ) + εij )|xj , n1j , n2j ]] = j 

Ex[x 0 j E[ln(uj )|xj ]] + Ex,n1,n2 [x 0 j E[εij |xj, n1, n2]] = 0. 

An empirical counterpart of this moment condition is 

1 XJ Xn1j +n2j 0 m̂ 1 = [xj (ln(bij ) − [xj , n1j, n2j ]
0αk(i))].PJ (n1j + n2j ) j=1 i=1 

j=1 

Next, 

m2 =E[nkj (ln(bij ) − [xj , n1j , n2j ]
0αk(i))] = 

Ex,n1,n2 [E[nkj (ln(bij ) − [xj , n1j , n2j ]
0αk(i))|xj , n1j , n2j ]] = 

Ex,n1,n2 [E[nkj (ln(uj ) + εij )|xj , n1j , n2j ]] = 

Ex,n1,n2 [E[nkj ln(uj )|xj , n1j , n2j ] + E[nkj εij |xj , n1j , n2j ]] = 

Ex,N1,N2 [E[nkj ln(uj)|xj , N1j , N2j ]] = 
Nkj N−kj Z Z X X 

nk ln(uj ) Pr(nk, n−k|xj , uj , Nkj , N−kj )h(u)du dFx,Nk,N−k (xj , Nkj , N−kj ). 
nk =1 n−k=1 

Here, we use the notation −k to denote the opposite group, that is −k = 1 if k = 2 and −k = 2 

if k = 1. The last term arises because of the dependence of the distributions of the number of 

bidders on the realization of unobserved project heterogeneity. 
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An empirical counterpart of this moment condition is 

1 XJ Xn1j +n2j 
m̂ 2 = PJ (n1j + n2j) j=1 i=1 

¡
nkj (ln(bij ) − [xj , n1j , n2j ]

0αk(i)) 
j=1 

Nkj N−kj 
1 Xns − 

X X 
nk ln(us) Pr(nk, n−k|xj , us, Nkj , N−kj )

¢
, 

ns s=1 
nk=1 n−k=1 

where we let us denote a draw from the unconditional distribution of u, h(u). 

Second Order Moments. Let i1 and i2 indicate two bidders from groups k(i1) and k(i2). 

Then 

m3 =E[(ln(bi1j ) − ln(bi2j ))
2] = 

Ex,n1,n2 [E[(εi1j )
2|xj , n1, n2]] + Ex,n1,n2 [E[(εi2j )

2|xj , n1, n2]]+ 

Ex,n1,n2 [([xj , n1j , n2j ]
0(αk(i1) − αk(i2)))

2] = 

Ex,n1,n2 [(exp(yj 
0 ηk(i1)))

2 + (exp(yj 
0 ηk(i2)))

2] + Ex,n1,n2 [([xj , n1j , n2j ]
0(αk(i1) − αk(i2)))

2] 

This simplifies to 2E[(exp(yj 
0 ηk(i1)))

2] if k(i1) = k(i2). Further, letting xjl denote an element of 

xj , we have that 

m4 =E[xjl(ln(bi1j ) − ln(bi2j ))
2] = 

Ex,n1,n2 [E[xjl(εi1j − εi2j )
2|xj , n1, n2]] + Ex,n1,n2 [xjl([xj , n1j , n2j ]

0(αk(i1) − αk(i2)))
2] = 

Ex,n1,n2 [xjlE[(εi1j )
2 + (εi2j )

2|xj , n1, n2]] + Ex,n1,n2 [xjl([xj , n1j , n2j ]
0(αk(i1) − αk(i2)))

2] = 

Ex,n1,n2 [xjl((exp(yj 
0 ηk(i1)))

2 + (exp(yj 
0 ηk(i2)))

2)] + Ex,n1,n2 [xjl([xj , n1j , n2j ]
0(αk(i1) − αk(i2)))

2], 

which again simplifies to 2E[xjl(exp(yj 
0 ηk(i1)))

2] if k(i1) = k(i2). 

The empirical counterparts of these two moment conditions are given by: 

2 XJ Xnj Xnj 0 m̂ 3 =PJ nj (nj + 1) j=1 i1=1 i2=i1 

¡
(ln(bi1j ) − ln(bi2j ))

2 − (exp(y ηk(i1)))
2 

j 
j=1 

0− (exp(yj ηk(i2)))
2 − ([xj , n1j , n2j ]

0(αk(i1) − αk(i2)))
2
¢ 

2 
m̂ 4 = 

XJ Xnj Xnj 
³ 
xjl(ln(bi1j ) − ln(bi2j ))

2 

j=1 i2=i1
PJ

j=1 nj (nj + 1) i1=1 

0 0− xjl((exp(yj ηk(i1)))
2 + (exp(yj ηk(i2)))

2) − xjl([xj , n1j , n2j ]
0(αk(i1) − αk(i2)))

2 ́
 
, 

with nj = n1j + n2j . 

m̂ 3 and m̂ 4 specify an empirical moment condition for every parameter of the variance of 

b̃ and, therefore, allow us to identify and consistently estimate all parameters ηk. 

v 



Finally, to estimate the variance of the unobserved heterogeneity component, σu 
2 , two 

possible moment conditions could be exploited. First, note that 

m5a =E[(ln(bij ) − [xj , n1j , n2j ]
0αk(i))

2] = 

Ex,n1,n2 [E[(ln(uj ) + εij )
2|xj , n1, n2]] = 

Ex,n1,n2 [E[(ln(uj ))
2|xj , n1, n2] + E[(εij )

2|xj , n1, n2]] = 

σu 
2 + Ex,n1,n2 [(exp(yj 

0 ηk(i)))
2]. 

Additionally, if k(i1) 6= k(i2): 

m5b =E[(ln(bi1j ) − [xj, n1j , n2j ]
0αk(i1))(ln(bi2j ) − [xj , n1j , n2j ]

0αk(i2))] = 

Ex,n1,n2 [E[(ln(uj ) + εi1j )(ln(uj ) + εi2j )|xj , n1, n2]] = 

Ex,n1,n2 [E[(ln(uj ))
2|xj , n1, n2] + E[εi1j εi2j |xj , n1, n2]] = σu 

2 . 

The empirical counterparts of these moment conditions are given by 

1 XJ Xn1j +n2j 0ˆ = 
¡
(ln(bij ) − [xj , n1j , n2j ]

0αk(i))
2 − σ2 − (exp(yj ηk(i)))

2
¢

m5a uPJ (n1j + n2j ) j=1 i=1 
j=1 

1 XJ Xnj Xnj 
m̂ 5b = I(k(i1) =6 k(i2))PJ

j=1 

Pn
i1 

j 

=1 

Pn
i2 

j 

=i1+1 I(k(i1) 6= k(i2)) j=1 i1=1 i2=i1+1 

´³¡ 
ln(bi1j ) − [xj , n1j , n2j ]

0αk(i1)

¢¡ 
ln(bi2j ) − [xj , n1j , n2j ]

0αk(i2)

¢ − σ2 .u 

where I(·) denotes an indicator function. For simplicity, we rely on condition m̂ 5a to estimate 

the variance of u. 

Higher Order Moments. We exploit the properties of the normal distributions of ln(uj ) and 

εij to add higher-order moment conditions. For a normally distributed random variable X with 

mean µ and standard deviation σ, the centered moment of order p is given by: 

E[(X − µ)p] = I(p is even)(p − 1)!!σp, 

where 
p! 

(p − 1)!! = p−2 p−2 
if p is even. 

2 !2 
2 
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Applied to our setting, we have for p = 3, ..., P that 

m5+p−2 =E[(ln(bij ) − [xj , n1j , n2j ]
0αk(i))

p] = 

Ex,n1,n2 [E[(ln(uj ) + εij )
p|xj , n1, n2]] = 

Ex,n1,n2 [E[
Xp 

Cp
t ln(uj )

tεij
p−t]] = 

t=0 

Ex,n1,n2 [
Xp 

Cp
tE[ln(uj )

t]E[εij
p−t]] = 

t=0 Xp 
Ct 0 

pI(t is even)I((p − t) is even)(t − 1)!!(p − t − 1)!!σu
t Ex,n1,n2 [(exp(yjηk(i)))

p−t]. 
t=0 

The empirical counterparts of moments m5+p−2 are given by 

1 XJ Xn1j +n2j 
m̂ 5+p−2 = 

³¡ 
ln(bij ) − [xj , n1j , n2j ]

0αk(i)

¢p−PJ j=1 i=1 
j=1(n1j + n2j) Xp 

CtI(t is even)I((p − t) is even)(t − 1)!!(p − t − 1)!!σt 0 ηk(i))
¢p−t ́

 

t=0 p

¡ 
exp(yu j 

A.1.5 Moments: Cost of Entry Distribution 

In deriving the second set of moment conditions, we rely on the properties of the binomial 

distribution of the numbers of small and large bidders, conditional on observed and unobserved 

project characteristics and the numbers of potential bidders, N1j and N2j . 

We exploit that 

E[nkj |xj , zj , uj , N1j , N2j ] = pk(xj , zj , uj, N1j , N2j )Nkj 

E[n 2 |xj , zj , uj , N1j , N2j ] = pk(xj , zj , uj, N1j , N2j )(1 − pk(xj , zj , uj , N1j , N2j ))Nkj kj 

+ Nkj 
2 p 2 

k(xj , zj , uj , N1j , N2j ), 

where pk(xj , zj , uj , N1j , N2j ) denotes the group-specific equilibrium probabilities of participation. 

We derive separate moments for bidder groups, k, and project size categories, sizej . In our 

empirical specification, we consider three size categories with sizej = {small,medium,large}. 

kl 

Z Z 
m =E[nkj |sizej = l] = pk(xj, zj , uj , N1j , N2j )Nkj h(u)du dF (xj , zj, N1j , N2j |sizej = l)6+P −2 

kl 2 

Z Z 
m =E[n |sizej = l] = (pk(xj , zj , uj , N1j , N2j )(1 − pk(xj , zj , uj , N1j , N2j ))Nkj +7+P −2 kj 

N2 
k 
2 (xj , zj , uj , N1j, N2j )) h(u)du dF (xj , zj , N1j , N2j |sizej = l).kj p 
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The empirical counterparts to these moment conditions are given by 

1 1 Xns
kl 

XJ ´ 
m̂ = I(sizej pk(xj , zj , us, N1j , N2j )Nkj 6+P −2 = l) 

³ 
nkj −P

j
J 
=1 I(sizej = l) j=1 ns s=1 

1 1 Xns
kl 

XJ 
2 m̂ = I(sizej = l) 

³ 
n − 

¡
pk(xj , zj , us, N1j , N2j )(1−7+P −2 kj P

j
J 
=1 I(sizej = l) j=1 ns s=1 

2 pk(xj , zj , us, N1j , N2j))Nkj + pk(xj , zj , us, N1j , N2j )Nkj 
2 
¢´ 

. 

Higher Order Moments. We further include third and fourth order moments of the binomial 

distribution of nk. These are given by: 

kl 3 

Z Z 
2 2 m8+P −2 =E[nkj |sizej = l] = (Nkj pk(1 − 3pk + 3Nkj pk + 2pk − 3Nkj pk+ 

+ N2 2 
kj pk)) h(u)du dF (xj , zj , N1j , N2j |sizej = l) 

kl 4 

Z Z 
2 2 m =E[nkj |sizej = l] = (Nkj pk(1 − 7pk + 7Nkj pk + 12pk − 18Nkjp9+P −2 k+ 

2 3 3 3 3+ 6N2 − 6p + 11Nkj p − 6N2 
k + N3 )) h(u)du dF (xj , zj , N1j , N2j |sizej = l).kj pk k k kj p kj pk 

The empirical counterparts to these moment conditions are given by 

kl 1 XJ 
3 1 Xns 

m̂ = I(sizej = l) 
³ 
n − 

¡
Nkj pk(1 − 3pk+8+P −2 kj PJ

j=1 I(sizej = l) j=1 ns s=1 

2 2 2+ 3Nkj pk + 2pk − 3Nkj pk + Nkj 
2 pk)

¢´ 

1 1 Xns
kl 

XJ 
4 m̂ = I(sizej = l) 

³ 
n − 

¡
Nkj pk(1 − 7pk+9+P −2 kj P

j
J 
=1 I(sizej = l) j=1 ns s=1 

2 2 2 3 3 3 37Nkj pk + 12pk − 18Nkj pk + 6Nkj 
2 pk − 6pk + 11Nkj pk − 6Nkj 

2 pk + Nkj 
3 pk)

¢´ 
. 

A.1.6 Econometric identification of the project cost distribution 

In this section, we derive three properties of the joint distributions of the firm-specific cost 

and bid components. They form the basis for the nonparametric identification of Fc̃|x(.) in the 

presence of unobserved heterogeneity given our model with endogeneous entry. The properties 

imply that the results in Krasnokutskaya (2009a) can be applied in this environment. 

First, recall that in our model potential bidders do not observe the realizations of their 

firm-specific cost component when deciding whether to participate in the market. Therefore, the 

following property holds. 

Property 1. There is no selection into participation on the firm-specific cost com-

ponent. That is, firm-specific cost components are independent of the numbers of 
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bidders conditional on project characteristics: 

Fc̃|x,u,n1,n2 (c̃1j , .., c̃N1j +N2j ,j |xj, uj , n1j , n2j ) = Fc̃|x,u(c̃1j , .., c̃N1j +N2j ,j |xj , uj ). 

At the time when bids are constructed, all participants learn the numbers of actual 

bidders by group, (n1j , n2j), and incorporate them into the bids. As a result, firm-specific bid 

components depend on (n1j , n2j ). Property 1, together with assumption (A-3), implies: 

Property 2. Individual bid components are mutually independent conditionally on 

(xj , n1j, n2j ): 

n1j +n2j 

Fb̃|x,n1,n2 
(b̃1j , .., ̃bn1j +n2j |xj , n1j , n2j ) = 

Y 
Fb̃|x,n1,n2 

(b̃ij |xj , n1j , n2j ) 
i=1 

Proof: 

˜Fb̃|x,n1,n2 
(b̃1j , .., b(n1+n2)j |xj , n1j , n2j ) = 

Fc̃|x,n1,n2 

³ 
β̃−1 (b1j |xj , n1j , n2j ), ..., β̃

−1 (b(n1+n2)j |xj , n1j , n2j ) 
¯̄
¯xj , n1j , n2j 

´ 
= k(1) k(n1+n2) 

β−1 β̃−1Fc̃|x 

³ 
˜ 
k(1)(b1j |xj , n1j , n2j ), ..., (b(n1+n2)j |xj , n1j , n2j ) 

¯̄
¯xj 

´ 
= k(n1+n2) 

n1 n2Y 
F˜

1 
³ 
β̃−1(bij |xj , n1j , n2j )

¯̄
xj 

´ Y 
Fc̃

2 
|x 

³ 
β̃−1(bij |xj , n1j , n2j )

¯̄
xj 

´ 
= c|x 1 2 

i=1 i=1 
n1 n2 

F 1 F 2
Y 

˜ (b̃ij |xj , n1j , n2j ) 
Y 

˜ (b̃ij |xj , n1j , n2j ).b|x,n1,n2 b|x,n1,n2 
i=1 i=1 

End of Proof 

Here, the first and last equalities hold due to the monotonicity of the firm-specific bidding 
˜function βk(.|x, n1, n2), while Property 1 implies the second equality because of the lack of 

selection on project cost among entrants. Finally, assumption (A-3) of mutual independence of 

individual cost components implies the third equality. 

Assumptions (A-1), which implies that the firm-specific bidding function β̃  
k(.|x, n1, n2) 

does not depend on u, and (A-3), together with the monotonicity of β̃  
k(.|x, n1, n2), yield 

Property 3. Individual bid components are independent of the unobserved auction 

heterogeneity component conditionally on (x, n1, n2): 

˜Fb̃|x,n1,n2,u(b̃1j , ..., ̃bn1+n2,j |xj , n1j, n2j , uj ) = Fb̃|x,n1,n2 
(b̃1j , ..., b(n1+n2)j |xj , n1j , n2j ) 
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Proof: 

Fb̃|x,n1,n2,u(b̃1j , ..., ̃b(n1+n2)j |xj , n1j , n2j , uj ) = ³ 
β̃−1 (˜ β̃−1 (˜ 

´ 
=Fc̃|x,n1,n2,u k(1) b1j |xj , n1j , n2j ), ..., b(n1+n2)j |xj , n1j , n2j ) 

¯̄
¯xj , n1j , n2j , ujk(n1+n2) ³ 

β̃−1 (˜ β̃−1 (˜ 
´ 

=Fc̃|x k(1) b1j |xj , n1j , n2j ), ..., b(n1+n2)j |xj , n1j , n2j ) 
¯̄
¯xjk(n1+n2) 

˜Fb̃|x,n1,n2 
(b̃1j , ..., b(n1+n2)j |xj , n1j , n2j ). 

End of proof. 

A.1.7 Econometric identification of the entry cost distribution 

This section studies the nonparametric identification of the distribution of entry costs, G(.|z), 

in the presence of unobserved project heterogeneity assuming that H(.) and F (.|x) are iden-

tified. The full identification proof is developed in Krasnokutskaya (2009b). We summarize 

the argument here for completeness. We focus on the case of symmetric bidders to simplify 

exposition. 

We assume that xj = [x1j , x2j ] such that the variables in x2j are part of zj whereas the 

variables in x1j are not. In this section we always condition on zj and, therefore, suppress (zj , x2j ) 

going forward. 

We employ the following notations. We denote bidder i’s expected profit conditional on 

x1, the number of bidders, n, and u by 

Z
uπ0(x1, n) = u (β̃(c̃) − c̃)(1 − F (c̃|x1))

n−1f(c̃|x1)dc̃  

We assemble profit levels that realize for every possible number of competitors of bidder i, 

nc = 0, ..., N if there are N + 1 potential bidders, into the vector 

uπ0(x1) = (uπ0(x1, 1), uπ0(x1, 2), ..., uπ0(x1, N + 1)). 

It is possible to show that under fairly natural assumptions, 

π0(x1, 1) > π0(x1, 2) > ... > π0(x1, N + 1). 

Here we just assume that. 

If p is an individual bidder’s probability of entering the market, then the vector of prob-

abilities for the number of competitors participating in the auction is given by: 

pN = ((1 − p)N , CN 
1 p(1 − p)N−1 , ..., p N ). 
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where Ck
N again denotes the binomial coefficient of choosing k bidders out of N potential com-

petitors, N !/(k!(N − k)!). 

We denote the ex-ante expected profit of an individual potential bidder from participating 

by 

0 uπ̄ 0(x1, p) = up π0(x1).N 

where the firm integrates out the number of competitors using its beliefs over their participation. 

The entry threshold that determines the marginal entrant is then given by: 

D(x1, u, p) = 

⎧
⎪⎨ 

⎪⎩ 

uπ̄0(x1, p) ¯d ≤ uπ̄0(x1, p) ≤ d 

d uπ̄0(x1, p) ≤ d 

d̄ d̄ ≤ uπ̄0(x1, p), 

and p is a solution to 

p = G(D(x1, u, p)), 

making it a function of x1 and u, p(x1, u). Finally, the probability of entry at x1 is given by 

Z 
p(x1) = p(x1, u)h(u)du. 

We proceed under the following assumptions: 

(B-1) There exists at least one variable x1 that affects bidders’ project costs but not their entry 

costs. 

¯(B-2) The distribution of entry costs has a bounded support, supp(G(.|z)) = [d(z), d(z)]. 

(B-3) The distribution of unobserved heterogeneity has a bounded support, supp(H(.)) = [u, ū]. 

We make assumptions (B-2) and (B-3) to simplify exposition; they can be relaxed. 

(B-5) For every r such that d ≤ r ≤ d there exist x and x ¯ 1, 1) r andthat satisfy uπ0(x 

(B-4) The expected profit, uπ0(x1, n), is continuous in x1. 

Assumption (B-4) can be obtained easily with minimal assumptions 

transparency reasons, we choose to state it here as an assumption. 

on the primitives. For 

∗ ∗∗ ∗ = 1 1 

¯ 1 , N + 1) = r.uπ0(x ∗∗ 

(B-6) G(.) is an absolutely continuous distribution. 
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The condition (B − 5) is essentially a “full support” type of condition. The proof in the case of 

a discrete distribution follows very similar steps. 

We begin by establishing that the ex-ante expected profit, uπ̄ 0(x1, p), declines in p, before 

turning to the proof of identification of G(.). 

Proposition 1. Ex-ante expected profit is strictly decreasing in the individual 

probability of participation. 

Proof: 

Here we show that π̄ 0(x1, p) is decreasing in p. From this, Proposition 1 follows immediately. 

N−1 

π̄ 0(p) = (1 − p)N π0(1) + p N π0(N + 1) + 
X 

CN
k p n(1 − p)N −nπ0(n + 1) 

n=1 

Then 

π̄ 0 
0 (p) = −N(1 − p)N −1π0(1) + NpN−1π0(N + 1) 

N−1 

Cn+ 
X 

N (np n−1(1 − p)N −n − (N − n)p n(1 − p)N−1−n)π0(n + 1) 
n=1 

First, we transform the terms in the sum. 

N−1 

Cn
X 

N np n−1(1 − p)N−nπ0(n + 1) = 
n=1 

N−2 

N 
X 

CN
l 
−1p l(1 − p)N−1−lπ0(l + 2), 

l=0 

where we perform the change of variables l = n − 1. Similarly, 

N−1X 
CN

n (N − n)p n(1 − p)N −1−nπ0(n + 1) = 
n=1 

N−1 

CnN 
X 

N−1p n(1 − p)N−1−nπ0(n + 1). 
n=1 

Substituting the transformed expressions into π̄ 0 
0 (p) results in: 

π0¯ 0(p) = N 
³ 
(1 − p)N−1π0(2) − (1 − p)N−1π0(1)+ 

p N−1π0(N + 1) − p N−1π0(N)+ 
N−1 

C l
X 

N−1p l(1 − p)N−1−l(π0(l + 2) − π0(l + 1)) 
´ 
. 

l=1 
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Since we assume that π0(x1, 1) > π0(x1, 2) > ... > π0(x1, N + 1), it follows that π̄ 0 
0 (p) < 0. 

End of Proof 

Note that the boundary of the support of G(.) can be identified as follows: 

d = ūπ̄ 0(x1
0 , 0) 

d̄ = uπ̄ 0(x1
1 , 1), 

where x1
0 is the smallest x1 such that there is entry into the market and x1

1 is the smallest x1 

such that all potential entrants enter. 

Next, we establish main result of this section. Consider the following problem: 

Z 
p(x1) = G(D(x1, u))h(u)du for all x1 

such that 

¯D(x1, u) = uπ̄ 0(x1, G(D(x1, u))) when d ≤ uπ̄ 0(x1, G(D(x1, u))) ≤ d. 

If data are generated by the model described in our paper, then the distribution of entry costs 

G(.) satisfies the restrictions imposed by this problem and thus solves it for every x1. The result 

below shows that G(.) is the only solution to this problem. 

Theorem 1. The cumulative distribution function G(.) is identified. 

Proof: 

Suppose that there exist two solutions G1(.) and G2(.) such that G1(d) 6= G2(d) for some 

d. Since the distributions are continuous, there exists for each point d0 with G1(d
0) =6 G2(d

0) an 

open interval around d0 such that for every point in this interval G1 6= G2. Since the supports of 

G1 and G2 are bounded, there is a finite number of such intervals.28 Finally, notice that within 

each of the open intervals either G1 < G2 or G1 > G2 by the continuity of the distributions. 

It is then possible to find such an open subset with unequal distributions closest to the 

low end of the support. Let us denote it by (da, db). Two distinct cases are possible; case 1: 

da = d and case 2: da 6= d. First consider case 1. 

Case 1. Without loss of generality assume that G1(d) > G2(d) on (d, db). Consider a point 

d1 ∈ (d, db). 

(a) There exists a point x1 
∗ such that ūπ̄ 0(x1 

∗, G1(d1)) = d1. 

This follows from Property 1 that uπ̄ 0(x1, p) is decreasing in p, which implies that 

ūπ̄ 0(x1, G1(d1)) > ūπ̄ 0(x1, 1). 

28Indeed, it is possible to choose a closed interval inside each of these open sets. Since the support is bounded, 
the collection of these closed intervals is compact. The original open intervals create a countable open cover of 
this set. Therefore, there is a finite subset of this cover that still covers the compact set. From the construction 
of the compact set, it is clear that the original open cover is finite. 
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Notice also that π̄ 0(x1, 1) = π(x1, N + 1). Assumption (B-5) implies that there exist x0 1 such 

that uπ¯ (x0 1, N + 1) ≥ d1 and, therefore, ūπ̄ 0(x0 1, G1(d1)) ≥ d1. Similarly, 

ū¯ u¯ ¯π0(x1, G1(d1)) ≤ ¯π0(x1, 0) = uπ(x1, 1) 

00 00 00and there exists x such that ¯ 1 , 1) ≤ d1 and, therefore, ūπ̄ 0(x1 , G1(d1)) ≤ d1. By continuity 1 uπ(x 

of π̄ 0(., G1(d1)) in x1, there thus exists x ∗ 
1 such that π̄ 0(x ∗ 

1, G1(d1)) = d1. 

(b) There exists d2 such that ūπ̄ 0(x1 
∗, G2(d2)) = d2. 

Indeed, as before, 

ū¯ 1 
∗ , G2(d)) > ¯ 1 

∗ , 1) > dπ0(x uπ0(x 

since 

d < d1 = ūπ̄ 0(x1 
∗ , G1(d1)) < ¯ 1 

∗ , 1).uπ0(x 

Similarly, 
∗ ∗ ∗ ū¯ 1, G2(d)) < ¯ 1, N + 1) < ūπ̄ 0(x1π0(x uπ0(x , G1(d1)) = d1 < d. 

Since the ex-ante expected profit, ūπ̄ 0(x1 
∗, G2(d)), is continuous in d, there exists d2 ∈ [d, d] 

such that ūπ̄ 0(x ∗ 
1, G2(d2)) = d2. 

(c) The following holds: d2 > d1 and G2(d2) < G1(d1). 

This follows again from the ex-ante expected profit, ūπ̄ 0(x1 
∗ , p), being decreasing in p, 

which implies 

ūπ̄ 0(x1 
∗ , G2(d1)) > ūπ̄ 0(x1 

∗ , G1(d1)) = d1. 

Therefore, d1 6= d2. Moreover, for any d < d1: 

ūπ̄ 0(x ∗ 
1, G2(d)) > ūπ̄ 0(x ∗ 

1, G1(d1)) = d1 > d. 

Thus, d2 > d1. Further, 

π̄ 0(x1 
∗ , G1(d1)) = d1/ū 

π̄ 0(x1 
∗ , G2(d2)) = d2/u.¯ 

Therefore, π̄ 0(x1 
∗, G1(d1)) < π̄ 0(x1 

∗, G2(d2)). This implies that G1(d1) > G2(d2) since the ex-ante 

expected profit is decreasing in the probability of participation. 
∗ ∗ ∗(d) Define u ∗ = d/π(x1, 1). Then for all u ∈ [u , u], D(u, x ∗ 

1, Gi) exists with D(u, x1, G1) < 
∗ ∗ ∗D(u, x1, G2), while G1(D(u, x1, G1)) > G2(D(u, x1, G2)). 

Indeed, for an arbitrary u ∈ (u ∗ , u]: 

∗ ∗ ∗ uπ̄ 0(x1, Gi(d)) = uπ0(x1, 1) > u ∗ π0(x1, 1) = d. 
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Similarly, 

∗ ∗ ∗ ∗ uπ̄ 0(x1, Gi(d)) = uπ0(x1, N + 1) < ¯ 1, N + 1) < ¯π0(x1, G1(d1)) = d1 < d.uπ0(x u¯ 

Therefore, by continuity of the ex-ante profit, interior solutions, d < D(u, x1 
∗, Gi) < d, exist 

∗ ∗ ∗for every u ∈ (u , u] whereas D(u , x1, Gi) = d by definition. Finally, point (c) implies that 
∗ ∗ ∗G1(D(u, x1, G1)) > G2(D(u, x1, G2)) for u ∈ (u , u]. 

(e) Finally, 

u 
∗ 

Z 
∗ p1(x1, G1) = G1(D(u, x1, G1))h(u)du 

∗ u 
u 

∗ 

Z 
∗ p2(x1, G2) = G2(D(u, x1, G2))h(u)du. 

∗ u 

Therefore, p1(x ∗ 
1, G1) > p2(x ∗ 

1, G2). Thus, both distributions cannot be consistent with 

the data. 

Case 2. Now consider da =6 d. Since (da, db) is an open interval closest to d with G1 > G2, 

G1(da) = G2(da), but G1(d) > G2(d) for d ∈ (da, db). Choose d1 ∈ (da, db). Find x ∗ 
1 such that 

the solution of ūπ̄ 0(x1 
∗, G1(d1)) = d1. After that the steps are the same as in Case 1. 

End of proof. 
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A.2 Further discussion of the optimal policy results for project 1 

The government’s cost-minimizing policy for projects such as sample projects 1 and 5 is to choose 

a sufficiently high large-firm discount rate such that small firms respond by not participating in 

the auction. Here we provide further details on the intuition behind this result, using sample 

project 1 as an example. 

First note that for this project, the marginal effect of large-firm entry on the cost of 

procurement is higher than that of small-firm entry. Table A-1 considers the effects on the cost 

of procurement from a marginal change in the probability of participation. We compare the 

response in the government’s cost to increasing each type’s probability of participation by 1 

percentage point above its equilibrium participation probability. For discounts of 0%, 10% to 

small bidders, and 10% to large bidders, the government’s cost responds more to increases in 

large rather than small-firm participation. 

Figure A-1 illustrates similar responses conditioning on particular combinations of bid-

ders, suggesting that the marginal effect of an additional large bidder on the cost of procurement 

is higher than that of a small bidder. For example, moving from the cost profile corresponding 

to one large and one small bidder to the one with two large bidders and one small bidder entails 

uniformly a larger decline in cost than a move to the profile with two small bidders and one 

large bidder. The larger marginal effect of large-firm participation on the cost of procurement 

suggests then that the government benefits when the presence of large participants increases. 

Note that these are out-of-equilibrium exercises. 

Figures 1 and 2 document similar effects for equilibria associated with different discount 

levels. Thus, the middle panel of Figure 2 shows that the large-firm probability of participation 

increases (while the small-firm probability of participation decreases) with the discount level 

given to large bidders. This effect is accompanied by a decrease in the government’s cost of 

procurement (top panel of Figures 1 and 2). Thus, in equilibrium, the government cost decreases 

as the large-firm presence increases even though the small-firm presence (and the total number 

of bidders) decreases at the same time. 

The desired high levels of large-firm participation, plg, may not be attainable in the 

unconstrained equilibrium. In Figure A-2 below, we illustrate the participation equilibrium in 

the absence of intervention (δ = 0) using optimal participation schedules for the two groups of 

bidders. The optimal participation schedule shows the proportion of bidders by group k who 

optimally choose to participate for a given level of participation by the other group of bidders, 

p−k. 

Recall that equilibrium participation decisions in our model are determined by the relative 

sizes of the ex-ante expected variable profits and entry costs. To sustain a large-firm probability 

of participation of plg in equilibrium, each large participant needs to earn ex-ante variable profit 

of at least G− 
lg 

1(plg). The remaining two panels in Figure A-2 display these ex-ante variable profit 
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levels earned under each best-response participation strategy by small (middle panel) and large 

(bottom panel) firms. 

The top panel suggests that for high large-firm participation, e. g. plg = 0.95, to reflect 

optimal participation behavior in the unconstrained equilibrium, small-firm participation needs 

to be very low (psm = 0.10). However, at a level of plg = 0.95 it is optimal for small firms to 

participate at a higher level (psm = 0.25) than needed to sustain plg = 0.95. Therefore, such high 

plg-levels do not occur in the unconstrained equilibrium. The small-bidder level of participation 

that is optimal is still quite low, however, reflecting the entry by small firms with very low entry 

costs only. 

In the unconstrained equilibrium, the large-firm participation probability is limited to 

plg = 0.894 (see Table A-1 and top panel of Figure A-2), with associated expected profit of 0.368. 

The middle panel of Figure A-2 suggests that given this equilibrium large-firm participation, the 

expected ex-ante variable profit levels earned by small firms are only 0.140, consistent with the 

low amount of entry of only psm = 0.315 we see from this group in equilibrium. At this level 

of small-firm entry, large firms do not earn sufficient variable profit to sustain additional entry 

beyond plg = 0.894. Thus, the presence of even a small amount of small-firm entry is sufficient 

to deter additional large-firm entry. 

For increased large-firm participation to be an equilibrium outcome, the group’s expected 

profit needs to rise. Since the expected price (bid) declines as plg increases, these profit gains 

have to be achieved through increases in the probability of winning. A bid discount artificially 

increases the benefitting group’s probability of winning and thus enables the desired increases 

in large-firm profitability and participation. 

Small firms, which have much higher project cost in this example than large firms, have 

to bid aggressively even without a bid discount, as suggested by the level and flatness of their 

expected profit profile under optimal participation. In response to a large-firm discount and the 

associated further reduction in their probability of winning, small firms choose increasingly not 

to enter. This does not, however, yield price increases in this particular example because of the 

substantial presence of large firms in the market that counters the incentives generated by the 

discount to bid less aggressively. Figure 2 illustrates these equilibrium responses to the discount. 

Note also that project 1 is characterized by both strong differences in the groups’ cost 

distributions and a tightness difference in the markets for small and large bidders, with Nsmall = 2 

and Nlarge = 3. Figure A-2 reflects the net effect of these cost differences and market tightness 

differences. The market tightness effect manifests itself in the following properties of the plotted 

schedules: 

1. The large-firm optimal participation schedule is flatter than the small-firm optimal partic-

ipation schedule. 

2. Full participation of large bidders is never achieved. Even with psm = 0, plg = 0.97, 
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corresponding to 2.91 bidders. At the same time psm is close to 1, or the equivalent of two 

bidders, for plg as low as plg = 0.2. 

3. The profit schedule for small firms (middle panel of Figure A-2) is steeper than that for 

large firms (bottom panel) since a 1 percentage point increase in the proportion of large 

participants corresponds to an increase by 0.03 bidders, instead of an increase by 0.02 small 

bidders as in the case of the large-firm profit schedule. 

4. The small-firm variable profit given optimal participation at plg = 0 is much higher than 

the large-firm variable profit given optimal participation at psm = 0. 

These effects disappear when we equalize market tightness across groups of bidders as in 

Figure A-3 where we replot the optimal participation schedule and associated expected profit 

levels for the case where Nsmall = Nlarge = 2. 

To summarize, the discount allows the government to artificially increase the large-firm 

probability of winning, thereby increasing large bidders’ profitability and inducing higher entry 

by large bidders. Under the firms’ cost structures for project 1, this lowers the price paid by the 

government. 
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Table A-1: Marginal Effect of Entry by Group on Expected Cost 

to the Government, Sample Project 1 

Change, 
Entry Prob. Entry Prob. Small Prob. 

δsmall δlarge psmall plarge Δpsmall Δplarge Gov’t cost of Winning 

No discount 
(1) 0 0 0.315 0.894 4.858 0.118 
(2) 0 0 0.325 0.894 0.01 0 4.857 0.118 
(3) 0 0 0.315 0.904 0 0.01 4.853 0.115 

10% discount to small firms 
(1) 0.1 0 0.418 0.857 4.893 0.179 
(2) 0.1 0 0.428 0.857 0.01 0 4.893 0.179 
(3) 0.1 0 0.418 0.867 0 0.01 4.889 0.175 

10% discount to large firms 
(1) 0 0.1 0.234 0.919 4.835 0.076 
(2) 0 0.1 0.244 0.919 0.01 0 4.834 0.076 
(3) 0 0.1 0.234 0.929 0 0.01 4.830 0.073 

Note: Case (1) depicts equilibrium probabilities of entry, cost to the government, and the small-firm probability 
of winning for project 1 under the chosen discount level. Cases (2) and (3) consider the impact of increasing the 
probability of entry for small and large firms by 1 percentage point above the equilibrium, respectively. 
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A-1: Expected Cost under Fixed and Endogenous Participation, Sample Project 1 
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Figure 

Note: the figure compares the relationship between discount levels and the cost to the government under alter-
native assumptions on the competitive environment. We depict in gray profiles that arise when regardless of 
discount, we hold the number of bidders fixed at one of six possible bidder combinations that could arise with 2 
small and 3 large potential entrants. We depict in black the profile under endogenous entry. It is steeper than 
the other profiles, reflecting that as the discount increases, it becomes more likely that the number of bidders is 
composed of a larger number of small bidders and a lower number of large bidders obtain. These competitive 
environments correspond to the higher gray profiles. 
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A-2: Equilibrium under No Bid Discount, Project 1 
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Profit under small−firm best response participation strategy
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Figure 

Note: the top panel depicts the optimal participation schedules for the two groups of bidders when δ = 0. An 
optimal participation schedule reflects the proportion of bidders from group k who optimally choose to participate 
for a given level of participation by the other group, p−k. The bottom two panels show the expected variable 
profit from participation excluding bid preparation costs associated with optimal participation level for a given 
level of participation by the other group, p−k. 
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Equilibrium under No Bid Discount, Project 1, Nsmall Nlarge 2 
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Profit under small−firm best response participation strategy
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Figure A-3: = = 

Note: this figure replicates the analysis in Figure A-2, but changes the number of potential large entrants to be 
the same as potential small entry by setting Nsmall = Nlarge = 2. 
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A.3 Additional Figures and Tables 

Table A-2: Comparison of Entry Probabilities, Estimation and Simulation Analysis 

Entry Probabilities 
Estimation Simulation 

Small Large Small Large 
Project type Firms Firms Firms Firms 
Small, rural, rd repair / bridge 0.7287 0.5909 0.7377 0.6211 
Medium, rural, rd repair / bridge 0.7164 0.5429 0.7018 0.5795 
Large, rural, rd repair / bridge 0.6643 0.5492 0.6487 0.5816 
Small, urban, rd repair / bridge 0.6196 0.5617 0.6277 0.5924 
Medium, urban, rd repair / bridge 0.5590 0.5726 0.5818 0.5996 
Large, urban, rd repair / bridge 0.5373 0.5875 0.5624 0.6110 
Small, rural, other work 0.5422 0.5546 0.5636 0.5850 
Medium, rural, other work 0.5442 0.5409 0.5630 0.5688 
Small, urban, other work 0.5362 0.5434 0.5591 0.5730 
Medium, urban, other work 0.5223 0.5559 0.5503 0.5810 
Large, urban, other work 0.5220 0.5621 0.5507 0.5858 

Note: the table compares predicted probabilities of entry generated by our simulation routine with δ = 0.05 and 
by the estimation procedure. The small discrepancy in the predicted probabilities of entry arises because in the 
simulation routine, we have to trim the support of the project cost distribution to ensure that the density is 
sufficiently far away from zero. 
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Figure A-4: Predicted and Actual Bid Residuals 
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Cost and Entry under Alternative Subsidy Levels, Sample Project 3 
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Figure A-5: Expected 

Note: the panels display the cost to the government and entry as a function of the subsidy to large bidders, 
holding the subsidy for small bidders fixed at the cost-minimizing tax level. Negative subsidy levels correspond 
to taxes. The expected winning bid reflects the following interplay of participation and bidding decisions. For 
subsidy levels below -0.85, only small firms are in the market and pay their optimal subsidy, resulting in a constant 
winning bid. As the tax charged to large bidders starts declining, large bidders begin entering the market and 
initially replace small bidders. For this particular project, large bidders are less efficient, pushing up the winning 
bid. Once taxes fall below -0.8, entering large bidders more than displace non-participating small firms, resulting 
in an overall increase in the number of bidders. This causes the winning bid to begin declining again. 
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