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This web supplement is organized as follows. Section A discusses the existence of pure-

strategy Bayesian Nash Equilibrium (BNE) in the model. Section B presents the proofs for the 

identification results in Krasnokutskaya, Song, and Tang (2017) (henceforth KST2017). These 

include the proofs of Propositions 1, 2 and 3 in KST2017 as well as results for the identification 

of sellers’ costs for entry and service. The section also discusses the support conditions used in 

identification. Section C provides details about how we implement the nonparametric classifi-

cation procedure, and reports its finite sample performance through Monte Carlo simulations. 

Section D provides estimation details including how the moment conditions are constructed for 

estimation in KST2017. This section also presents a generalized version of the expression for the 

conditional quality distribution for transitory sellers (equation (7) in Section 5 of KST2017) used 

in estimation. Section E summarizes the numerical algorithm used to solve for sellers’ bidding 

and participation strategies in a type-specific equilibrium. Section F contains additional empir-

ical results not reported in KST2017. In particular, at the end of the section, we investigate the 

social costs associated with restrictions on the international trade while emphasizing adjustment 

in the sellers’ participation choices. 

A. Existence of a Pure Strategy BNE 

Throughout this section, we condition on the composition of potential sellers INl and suppress it 

in the notation of σθ and τθ (type-symmetric entry and bidding strategies defined in KST2017) 
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for simplicity. Let Nl
p (and Nl

t) denote the set of permanent (and transitory) sellers in Nl. We 

use upper case letters (e.g., Ei,l, �i,l) for random variables, and lower-case letters (e.g., ei,l, εi,l) 

for their realized values. 

Also we suppress auction subscripts l to simplify notation, and write (Ci,l,Ei,l,�i,l, U0,l, αl, 

βl, Nl, Nl
p , Al, Ai,l) as (Ci, Ei, �i, U0, α, β, N, Np, A, Ai), which are considered independent draws 

across auctions reported in the data. In comparison, sellers’ characteristics xi, qi are fixed for 

each permanent seller throughout all the auctions in the data and therefore do not need any 

auction subscript. 

Let Θ denote the type space for seller types θ ≡ (ρi, xi, qi). Recall that ρi ∈ {p, t} depending 
on whether seller i is a permanent type (“p”) or a transitory type (“t”). Let c ≡ (ci)i∈N ≡ (ci, c−i) 

and b ≡ (bi)i∈N = (bi, b−i). For any type-symmetric entry strategy τ = (τθ : θ ∈ Θ), define 

πi(b, ci; τ) ≡ (bi − ci)pi(b; τ) 

where pi(b; τ ) is the probability that an auction participant (active bidder) i wins the auction 

conditional on his bids bi and that the other potential bidders follow entry strategies in τ and 

bid b−i if participating in the second stage. That is, � � � � 
pi(b; τ ) ≡ Pr max U0, max αQj + xj β + �j − bj ≤ αqi + xiβ + �i − bi 

j∈Ai(τ) 

where Ai(τ) ≡ {j ∈ N\{i} : τj (Ej) = 1}, and the probability is with respect to the joint dis-

tribution of (α, β, U0, ε) and E−i. Let Pi(bi; τ, σ) denote the probability that bidder i wins the 

auction by bidding bi when all others follow the strategies prescribed in (τ, σ). By construction, Z 
Pi(bi; τ, σ−i) = pi(bi, σ−i(c−i); τ)dG(c−i) 

where G(c−i) denotes the distribution of C−i (which does not depend on ci because of the assumed 

independence). 

Recall that both pi and Pi are conditional on the composition of potential sellers IN , which is 

suppressed in the notation. It is important to note that conditioning on IN means conditioning 

on (xj )i∈N , (qi)i∈Np and the number of the transitory sellers associated with each possible value 

of observed characteristics. 

Given a profile of type-symmetric entry strategies τ , an active bidder i’s expected payoff 

conditional on its own action and construction cost is: 

Πi(bi, ci; σ−i, τ) ≡ (bi − ci)Pi(bi; τ, σ−i)Z 
= (bi − ci) pi(bi, σ−i(c−i); τ)dG(c−i) Z 
≡ πi(bi, σ−i(c−i), ci; τ)dG(c−i). (1) 
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The first-step in our proof of existence is to draw on results from Athey (2001) and establish the 

following proposition. 

Proposition A1. Suppose that Assumption 1 in KST2017 holds. Then for any profile of 

type-symmetric pure entry strategies τ , there exists a type-symmetric profile of non-decreasing 
(τ) (τ ) (τ )

pure strategies σ(τ) = (σ )i∈N such that for any bidder i with type θ ∈ Θ, σ is given by σ ,i i θ 

where 
(τ) (τ )
σθ (ci) = arg max(bi − ci)Pi(bi; τ, σ−i ) ∀ci. 

bi≥0 

We prove Proposition A1 by showing that the conditions in Corollary 2.1 in Athey (2001) are 

satisfied. 

Lemma A1 (Continuity of Ex Post Payoff) Suppose that Assumption 1 in KST2017 holds. 

For any profile of type-symmetric entry strategies τ , πi(b, ci; τ) is continuous in b for any ci. 

Proof of Lemma A1. Fix a profile of type-symmetric entry strategies τ . We need to show 

that pi(b; τ) is continuous in b. Let 

Ai,θ(τ) = {j ∈ N\{i} : θj = θ and τj (ej ) = 1} 

denote the random set of entrants with type θ = (p, x, q). For each i ∈ N let ai denote a realized 

set of entrants competing with i should i enter. Let ai be partitioned into subsets {ai,θ : θ ∈ Θ}
such that θj = θ for all j ∈ ai,θ. Then X 

ai 
{ } × (b τ) Pr A τ ˜ (b, a τ ) (2) ; ; ;p = = a pi i i i i 

where ˜ (b, a τ) denotes the probability that active bidder i wins the auction conditional;p an i i 

the of the other being the of bids b and construction and theset entrants vector costs ;on a c,iP 
summation is over all the possible sets of entrants from N\{i}. ai 

For example, if ai is such that xj are identical for all j ∈ ai and if i has the lowest quality 

index q̄  1, ⎧⎪⎨ ⎪ 
⎫⎪⎬ ⎪ 

α(ql − q̄  1) + (xl − xi)β + �l − �i ≤ bl − bi ∀l s.t. ql 6= q̄  1 

p̃i(b, ai; τ) = Pr (xj − xi)β + �j − �i ≤ bj − bi ∀j s.t. qj = q̄  1 Ai(τ) = ai ⎩ ⎭
U0 − αq̄  1 − xiβ − �i ≤ −bi 

α(ql − q̄  1) + (xl − xi)β + �l − �i ≤ bl − bi ∀l s.t. ql 6= q̄  1, 
⎧⎪⎨ ⎪ 

⎫⎪⎬ ⎪ = Pr (xj − xi)β + �j − �i ≤ bj − bi ∀j s.t. qj = q̄  1 (3)⎩ ⎭
U0 − αq̄  1 − xiβ − �i ≤ −bi 

where the second equality is due to the independence of entry costs from (α, β, U0, �) and C. The 

probability is with respect to the joint distribution of (α, β, U0, �). This implies that conditioning 

on a realized set of the other entrants ai, the conditional probability p̃i does not depend on τ , 
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and only depends on a subvector of b−i ≡ (bj : j ∈ ai). A similar expression for p̃i(b, ai; τ) can 

be derived for seller i with other types via a symmetric argument. 

Let |ai,θ| denote the cardinality of ai,θ for θ ∈ Θ, which partition ai based on seller types. 

For any realized ai = ∪θ∈Θai,θ and a profile of type-symmetric entry strategies τ , 

Pr{Ai(τ ) = ai} = 
Q 

λθ(τ)
|ai,θ|[1 − λθ(τ)]nθ −|ai,θ |

θ∈Θ 

where λθ(τ) ≡ P{τθ(Ei) = 1}. Note the equality holds because entry costs are independent of 

(α, β, U0, �) and C, and are independent across the bidders. We have also used that Pr{τi(Ei) = 

1} = λθ(τ) for any seller i with type θ in a type-symmetric equilibrium. Hence {Ai,θ(τ) : θ ∈ Θ} 
are independent from C. Under Assumption 1, the right-hand side of (3) must be continuous in 

b for any ai. It then follows from (2) that pi(b; τ) is continuous in b. � 

Lemma A2 (Single-Crossing Property of Interim Payoff) Suppose Assumption 1 in 

KST2017 holds and potential sellers follow a profile of type-symmetric entry strategies τ . For 

each i, Πi(bi, ci; τ, σ) satisfies the (Milgrom-Shannon) single-crossing property of incremental 

returns in (bi, ci) whenever σ consists of non-decreasing pure strategies. 

Proof of Lemma A2. Note that under independence between C and (α, β, U0, �), p̃i(b, ai; τ) 

in (3) does not depend on c, which in turn implies pi(b; τ) also does not depend on c under 

Assumption 1. Thus Z 
Pi(bi; τ, σ) = pi(bi, σ−i(c−i); τ)dG(c−i) Z P 

= 

= 

Pr{Ai(τ) = ai}p̃i(bi, σ−i(c−i), ai)dG(c−i)ai P 
Pr{Ai(τ) = ai} P̃i(bi, ai)ai 

(4) 

where Z 
P̃i(bi, ai) ≡ p̃i(bi, σ−i(c−i), ai)dG(c−i) ( ) 

σj (Cj ) − α(qj − qi) − (xj − xi)β + �i − �j ≥ bi ∀j ∈ ai 
= Pr 

and αqi + xiβ + �i − U0 ≥ bi 

with the probability being with respect to the distribution of (α, β, U0, ε) and C−i. (Recall that 

qi’s are constant parameters anchored to the identity of potential bidders). Under Assumption 

1 in KST2017, Ci is independent from C−i and (α, β, U0, �), and P̃  
i(bi, ai) does not depend on ci. 

Substitute (4) into (1) to get 

P 
Πi(bi, ci; σ−i, τ) = (bi − ci) Pr{Ai(τ) = ai}P̃  

i(bi, ai).ai 
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Thus we can write 

∂2 X ∂ P̃i(bi, ai)
Πi(bi, ci; σ−i, τ ) = − Pr{Ai(τ) = ai} . 

∂bi∂ci ai ∂bi 

Under Assumption 1, ∂P̃  
i(bi, ai)/∂bi ≤ 0. This proves the lemma. � 

Proposition A1 then follows from Lemmas A1 and A2 by applying Corollary 2.1 in Athey 

(2001). It then remains to show that a type-symmetric monotone p.s.BNE (pure strategy 

Bayesian Nash equilibrium) exists in the overall game where entry decisions are endogenous. 

First, notice that under our independence assumptions in Assumption 1, a profile of type-

symmetric monotone pure entry strategy is characterized by a profile of type-specific cutoffs 

t ≡ (tθ : θ ∈ Θ) such that for all i with type θ the entry strategy is τθ(ei) = 1{ei ≤ tθ}. 
In what follows, we replace Πi(., .; τ, σ) with Πi(., .; t, σ) in notation as entry strategies are 

fully characterized by t; and we replace then notation σ(τ) by σ(t) in Proposition A1 to highlight 

the fact that in equilibrium bidding strategies must be related to cutoffs t in the entry stage. 

Next, we show that under additional conditions there exists t such that h � �i 
(t) (t)

t = E Πi σθ (Ci), Ci; σi , t ≡ Ψθ(t) (5) 

for all i with type θ. 

Condition A1. (i) The joint density of (α, β, U0, ε) is bounded above. (ii) For all seller type θ 

and η > 0 and type-symmetric cutoffs t there exists some δ0 > 0 (which may depend on η and t 
(s) (t)

such that |σ (ci) − σ (ci)| ≤ η for all ci and all s with ks − tk ≤ δ0.θ θ 

Part (ii) of the assumption is a high-level condition on the profile of strategies σ(t) that is 

BNE in the bidding stage for a given profile of entry strategy τ . The condition states that if we 

consider σ(t)(ci) as a class of functions in t that are indexed by ci then this class of functions is 

equicontinuous. This condition requires that the changes in seller strategies in the bidding stage 

move continuously with entry thresholds at all possible levels of project costs. We expect this 

condition to hold under mild primitive conditions such as positive low bounds on the density of 

(α, β, U0, ε), C and E. 

In order to illustrate why this condition is most likely to hold in our context, consider a related 

model where the procurement auction in the bidding stage is standard first-price (lowest-price). 

With a smooth distribution of entry costs, the changes in the entry thresholds have continuous 

effects on the distribution of the set of entrants, which is integrated out as the bidders maximize 

their ex ante payoffs. Thus the equilibrium strategies can be shown to vary continuously in entry 

threshold by typical arguments based on the Theorem of Maximum. In our case the presence 

of buyers’ random tastes in (α, β, �, U0) introduces an additional smoothing effect as the sellers 

calculate their ex ante payoffs. As a result we expect Condition A1 to hold under mild, standard 

regularity conditions. 
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Lemma A3. Under Assumption 1 in KST2017 and Condition A1 above, Ψθ(t) is continuous 

in t for all θ ∈ Θ. 

Proof of Lemma A3. By construction Z h i hP � �i 
(t) (t)

Ψθ(t) ≡ σ (ci) − ci Q̃ 
i(ai, t)P̃  

i σ (ci), ai dFθ(ci)θ ai θ 

where Fθ is the cost distribution for a type-θ seller; and Q̃ 
i(ai, t) is short-hand for Pr{Ai(τ ) = ai}

when a profile of type-symmetric monotone pure entry strategies τ are characterized by t. It 

then follows from Condition A1 that for all η > 0 and type-symmetric t, there exists δ0 > 0 such 

that ks − tk ≤ δ0 implies the difference between the integrand evaluated at (ci, s) and at (ci, t) 

has an absolute value smaller than η for all ci. � 

With the support of Ei being closed intervals, the support of the cutoffs t is convex and 

compact. Hence the existence of the type-symmetric monotone pure-strategy BNE in the overall 

game follows from Brower’s Fixed-Point Theorem. 

B. Identification Proofs in KST2017 

Throughout the proof, we suppress the auction subscripts l to simplify notation, and write 

(Ci,l, Ei,l, �i,l, Bi,l, U0,l, αl, βl, Nl, Al, Ai,l, INl , IAl ) as (Ci, Ei, �i, Bi, U0, α, β, N, A, Ai, IN , IA), which 

are considered i.i.d. draws across auctions in the data. Note that sellers’ characteristics xi, qi are 

fixed for each seller throughout all auctions in the data and do not need any auction subscript. 

B1. Proof of Proposition 1 

In what follows, we suppress the dependence of sellers’ strategies and winning probabilities on 

the set of potential bidders N and its composition IN . Partition the set of entrants A according 

A(1) ∪ A(0)to whether a seller is weakly preferred to the outside option or not. That is A = , 

where 

A(1) ≡ {k ∈ A : Uk ≥ U0} and A(0) ≡ A\A(1). 

In general, both A(1) and A(0) contain permanent and transitory sellers with various levels of 

quality and observed characteristics. 

For any pair of permanent potential sellers i, j, let Ai,j denote the support of (A(1), A(0)) 

after excluding i and j. That is, Ai,j ≡ {(a, a0) : a, a0 ⊆ N\{i, j} with a ∩ a0 = ∅}. For any 

(a, a0) ∈ Ai,j , define ( ) 
i ∈ A, j 6∈ A, Bi = b, i, j ∈ N 

Pi,j (b; a, a 0) ≡ Pr i wins 
A(1)\{i} = a, A(0)\{i} = a0 
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for any b ∈ Bi. 

Lemma B1 Suppose Assumptions 1 and 2 in KST2017 hold. Fix a pair of permanent bidders 

(i, j) with xi = xj . 

(a) For any (a, a0) ∈ Ai,j and b ∈ Bi ∩ Bj , ⎧⎪⎨ ⎪ 
⎧⎪⎨ ⎪ 

⎫⎪⎬ ⎪ 
⎫⎪⎬ ⎪ 

≥ 

= 

> 

= 0) Pj,i(b; a, a 0). (6)qj ⇒ Pi,j (b; a, a qi ⎭⎩ ⎩ ⎭≤< 

(b) For some (a, a0) ∈ Ai,j , the two weak inequalities implied in (6) hold strictly with positive 

probability for all b in a subset of Bi ∩ Bj that has positive Lebesgue measure. 

Proof of Lemma B1. Part (a). Recall in our model each seller i ∈ N draws a private 

entry cost Ei independently from FE|xi,qi and makes an entry decision based on Ei and the 

composition of N . As a result, sellers’ entry decisions are independent. Besides, Assumption 1 

in KST2017 implies that in equilibrium sellers’ bidding strategies are functions of their private 

costs for the project and do not depend on the buyer’s preference taste (α, β, �, U0). Given any 

(a, a0) ∈ Ai,j , let E(a, a0) be a shorthand for the event “Us ≥ U0 ∀s ∈ a and Us0 < U0 ∀s0 ∈ a0”. 

Let Δ�s,i ≡ �s − �i, Δxi,s ≡ xi − xs and Δqi,s ≡ qi − qs. Then 

Z ( 
Pr 

−�i ≤ xiβ + αqi − b − u0 and 
) 

α, β, u0, E(a, a 0) (7)Pi,j (b; a, a 0) = 
Δ�s,i − Bs ≤ Δxi,sβ + αΔqi,s − b ∀s ∈ a 

×dF (α, β, u0|E(a, a 0)) . 

The independence between sellers’ private entry costs, project costs and the buyer’s tastes α, β 

and outside option U0 implies that the event that “i ∈ A, j 6∈ A, Bi = b” can be excluded from 

the events conditioned on in the conditional distribution of (α, β, U0) on the right-hand side of 

(7). Furthermore, that the entry decisions are independent from (α, β, U0), � and C, that the 

project costs are independent across the sellers, and that these project costs are independent from 

(α, β, U0) and � imply the event that “i ∈ A, j 6∈ A, Bi = b” can be excluded from the conditioning 

set in the integrand once we condition on α, β, u0 and E(a, a0). By similar arguments, Pj,i(b; a, a0) 

takes a form that is identical to Pi,j in (7), only with i replaced by j. 

By Assumption 1, the joint distribution of �i and (�s, Bs)s∈a is identical to that of �j and 

(�s, Bs)s∈a once conditioned on α, β, u0 and E(a, a0). Besides, the conditional distribution 

F (α, β, u0|E(a, a0)) does not depend on the identity of sellers i and j. It then follows that 

the claim in part (a) of the lemma holds for all pairs of permanent sellers i, j with xi = xj . 

Part (b). Consider a simple case where a = {s}, a0 = {t} where qs = qi and xs = xi but qt 
is unrestricted. This case happens with positive probability under our maintained assumptions 

about the entry stage. Let Ui, Us, Ut denote the payoff for the buyer from sellers i, s, t respectively. 
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By definition, 

Pr {Ui > Us, Us ≥ U0 > Ut | Bi = b, i ∈ A, j 6∈ A, i, j ∈ N}Pi,j (b; a, a 0) = . (8)
Pr {Us ≥ U0 > Ut | Bi = b, i ∈ A, j 6∈ A, i, j ∈ N} 

Under Assumptions 1, the denominator on the right-hand side of (8) does not depend on events 

in the 

conditioning set, and the denominator is Pr {Us ≥ U0 > Ut} and does not depend on the 

identities i or j. 

On the other hand, the numerator, by the law of total probability and the maintained inde-

pendence assumptions, is Z 
Pr {Ui > Us, Us ≥ U0 > Ut | α, β, u0, Bi = b} dF (α, β, u0) 

Bs − �s ≤ xsβ + αqs − u0 , Bt − �t > xtβ + αqt − u0 

�i + Bs( 
( ) 

α, β, u0 dF (α, β, u0) 
Z 
Pr= 

− �s > (xs − xi)β + α(qs − qi) + b )⎛ ⎜⎝ 
⎞ ⎟⎠ Z Bs − �s ≤ xsβ + αqs − u0,

Pr × 
Bs + �i − �s > (xs − xi)β + α(qs − qi) + b dF (α, β, u0) (9)= 

Pr{Bt − �t > xtβ + αqt − u0} 

where the second equality follows from the independence between C, � and (α, β, U0). A similar 

expression holds for Pj,i, only with the subscripts i in (9) replaced by j. 

Without loss of generality, suppose qi > qj . This implies qs −qi = 0 < qs − qj (because qs = qi 
by our supposition). Also, by construction xi − xs = xj − xs = 0. Under Assumption 1, the joint 

distribution of (�i, Bs − �s) is identical to that of (�j , Bs − �s). Furthermore, Bs is independent 

from Bi and (�i, �s, α, β, U0); and both (�i − �s) and (�j − �s) are continuously distributed with 

positive density over a connected support. 

It then follows from Assumption 2 in KST2017 that there exists a subset of Bi ∩ Bj with 

positive Lebesgue measure so that for all b in this subset, there is positive probability that (Bs −b) 
is close enough to 0. Also recall the distribution of α is independent from the sellers’ bids. Hence 

there is positive probability that α is sufficiently small so that for all b in this afore-mentioned 

subset of Bi ∩ Bj , we have Pi,j (b; a, a0) > (<) Pj,i(b; a, a0) whenever qi > (<) qj . � 

Proof of Proposition 1. By definition and the law of total probability, we can write ri,j (b) as: 

X 
(a,a0) 

Pr{i wins | A(1)\{i} = a, A(0)\{i} = a0, Bi = b, i ∈ A, j 6∈ A, i, j ∈ N}× 
. 

Pr{A(1)\{i} = a, A(0)\{i} = a0| Bi = b, i ∈ A, j 6∈ A, i, j ∈ N} 

Under Assumption 1, the first conditional probability in the summand above is Pi,j (b; a, a0). 

Besides, the second conditional probability in the summand does not depend on the event “Bi = 
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bi ” and 

Pr{A(1)\{i} = a, A(0)\{i} = a 0| i ∈ A, j 6∈ A, i, j ∈ N} 

= Pr{A(1)\{j} = a, A(0)\{j} = a 0| j ∈ A, i 6∈ A, i, j ∈ N} 

under the same assumptions. The proposition then follows from Lemma B1. � 

B2. Proofs of Propositions 2 and 3 

Proof of Proposition 2. Consider a pair of permanent sellers i, j with (xi, qi) = (xj , qj ) and 

a composition of other entrants Ia with a ⊂ N\{i, j} which satisfy Assumption 3 for some price 

vector ba. Let b ≡ (bi, bj , ba). Let ϕi,j (a, b, Ia) denote the probability that i wins conditional on 

“{i, j} ∈ A, Bi = bi, Bj = bj and the composition of the other entrants in A is Ia and quotes 

ba”. Under Assumptions 1, 

ϕi,j (a, b, Ia) = Pr {�j − �i ≤ bj − bi, Yi(ba, Ia) − �i ≤ −bi|Ia} . 

Note the event conditional on the right-hand side is not “{i, j} ∈ A, Bi = bi, Bj = bj and the 

composition of the other entrants in A is Ia and quotes ba ” any more. Instead, the right-hand 

side is only conditioning on the composition of the other entrants than i, j. This is because 

sellers’ private entry and project costs and the quality of transitory sellers are independent 

from (U0, α, β, �). In fact ϕi,j is a function of b and Ia only. Also, under these maintained 

assumptions, �i, �j and Yi(ba, Ia) are mutually independent once conditional on ba and Ia. With 

Bj and Bi being independent from (U0, α, β, �), evaluating ϕi,j (a, b, Ia) at different quoted prices 

bi, bj amounts to evaluating a fixed joint distribution of �j − �i and Yi(ba, Ia) − �i conditional on 

Ia and ba at different points on the support. By Assumption 3, the joint distribution of (�j − �i, 

Yi(ba, Ia) − �i) conditional on Ia and ba is identified from ϕi,j over its full support. By the mutual 

independence between �i, �j and Yi(ba, Ia) given Ia and ba and the non-vanishing characteristic 

functions of �i’s, the proposition follows from the Kotlarski’s Theorem (or Theorem 2.1.1 in Rao 

(1992)). 

Next, without loss of generality, consider a pair of permanent sellers i, j such that xi = xj 
and qi > qj . Fix another composition Ia for other entrants a ⊂ N\{i, j} and a bid vector ba 

that satisfy Assumption 3 for such a pair of permanent sellers i, j. By the same argument as 

that used above, the joint distribution of (αΔqj,i + Δ�j,i, Yi(ba, Ia) − �i) conditional on Ia and 

ba is fully identified over its support for the fixed (ba, Ia) under Assumption 3. Because the 

marginal distribution of match components is identified as above, so is the distribution of the 

difference Δ�j,i. With αΔqj,i independent from Δ�j,i, the distribution of αΔqj,i is identified 

from the marginal distribution of αΔqj,i + Δ�j,i (which does not depend on Ia or ba under 

independence conditions in Assumption 1), using the non-vanishingness of the characteristic 
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functions of �j − �i. It then follows that the constant parameter Δqj,i (recall i, j are permanent 

sellers) and the distribution of α are jointly identified up to a scale normalization. � 

Proposition 2 shows the quality difference between all pairs of permanent sellers sharing the 

same observed characteristics is identified. Under the condition that the lowest quality level 

for a permanent seller is the same across groups with different observed characteristics xi, we 

can recover the level of quality for sellers with various observed characteristics up to a location 

normalization that sets the (constant) lowest quality to zero. 

Next, we introduce the additional rank condition to be used in Proposition 3. Suppose 

Assumption 3 holds for a pair of permanent sellers {i, j} with qi =6 qj and xi = xj , and let Ia, ba 

denote a composition for a set of other entrants than i, j and a bid vector associated with this 

set, which satisfy Assumption 3 for such i, j. Let Np (and N t) denote the set of permanent (and 

transitory) potential bidders in an auction. Partition a set a ⊂ N\{i, j} into a set that consists 
of transitory sellers only at ≡ a ∩ N t and one that consists of permanent sellers only ap ≡ a ∩ Np. 

Let Iat denote the composition of at , and let Qat ≡ (Qs : s ∈ at). Let bat ≡ (bs : s ∈ at) denote 

the vector of bids submitted by entrants who are transitory sellers; and likewise define bap . By 

construction, ba ≡ (bap , bat ) and 

ψi(y, α, ba, Ia) ≡ Pr{Yi(ba, Ia) + αqi ≤ y | α, Ia}X 
= Pr{U0 ≤ y|α} λ(qat ; bat , Iat )Λi(y, qa; α, ba, Ia) (10) 

q ta 

where λ(qat ; bat , Iat ) ≡ Pr{Qat = qat |α, bat , Iat } (which does not depend on α under independence 

conditions in Assumption 1) and ( ) 
(xs − xi)β + αqs − bs + �s ≤ y ∀s ∈ ap 

Λi(y, qa; α, ba, Ia) ≡ Pr α, Ia ; (11)
(xs0 − xi)β + αqs0 − bs0 + �s0 ≤ y ∀s0 ∈ at P 

t 1and the summation q t 
is over all possible quality profile for transitory sellers in a . 

a 

In what follows, we fix Ia and bap and suppress them in the notation for ψi, λ and Λi. Likewise, 

we can construct a similar equation for the same y, α with Pr{U0 ≤ y | α} > 0 but different 
˜vector b̃at 6= bat such that (bap , bat ) also satisfy Assumption 3. Taking the ratio of these two 

equations associated with bat and b̃at , and re-arranging terms, we get X X 
ψi(y, α, ̃bat ) λ(qat ; bat )Λi(y, qat ; α, bat ) = ψi(y, α, bat ) λ(qat ; b̃at )Λi(y, qat ; α, ̃bat ), (12) 

q t q ta a 

1The last equality in (10) follows from the law of total probability, the independence between (α, U0) and �, 
0 t 0 0 . 

distribution of U0 given α is independent from Ia is due to the independence between sellers’ entry costs and 
(U0, α); and that λ(qat ; bat , Iat ) is not a function of α is because the price quoted are functions of project costs 
and privately observed quality qat , which independent from α once Iat is controlled for. 

and the fact that for all s ∈ a , Qs is an independent draw from a distribution conditional on xs That the 
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which is an equations in 2K∗ unknown weights, or probability masses, 

{λ(bat ), λ(b̃at )} ≡ {λ(qat ; bat ), λ(qat ; b̃at )}q ,ta

with K∗ being the cardinality of the support of Qat given xat . In addition each group of the K∗ 

weights need to sum to one: X X 
λ(qat ; bat ) = λ(qat ; b̃at ) = 1. (13) 

qat q ta 

We need the follow condition on the support of (U0, α). 

Assumption 4. There exists a set U ≡ {(y(r), α(r)) : r = 1, 2, ..., R} from the joint support of 

(U0, α) with R ≥ 2(K∗ − 1) such that the matrix of coefficients in the linear system of (R + 2) 

equations in {λ(bat ), λ(b̃at )}, which is constructed by stacking (13) with R equations of (12) 

evaluated at the pairs in U , has full rank. 

With (U0, α) continuously distributed, this full rank condition can be expected to hold for a 

set U with positive measure, provided there is sufficient variation in ψi, Λi over the support of 

(U0, α). We also need an extended version of the support condition in Assumption 3 in KST2017. 

Assumption 5. There exists a composition I of permanent sellers such that for some com-

position of the other sellers I 0 and a vector of their bids b0 , the support of the random vector 

((αΔqs,i +Δxs,iβ +Δ�s,i)s∈n\{i}, Yi(b0, I 0) − �i) conditional on (b0, I 0) is a subset of the support of 

(Bj − Bi,−Bi) for an i ∈ n whenever n is a set of permanent sellers that has composition I with 

|n| ≥ dim(β) + 1 and (xs − xi)s∈n\{i} having full rank. The distribution of the random vector 

conditional on (b0, I 0) has a non-vanishing characteristic function. 

Assumption 5 requires that there exists a composition I for a set of permanent sellers such 

that for some composition of the other sellers I 0 and a vector of their bids b0 , the support condition 

similar to part (i) in Assumption 3 holds for some i ∈ a whenever the set of permanent sellers a 

has composition I, with |a| ≥ dim(β) + 1 and (xs − xi)s∈a\{i} being non-singular. 

Proof of Proposition 3. Without loss of generality, consider a composition I for some perma-

nent sellers {i, j} and a composition Ia for other entrants a ⊂ N\{i, j} and an associated bid 

vector ba that satisfy Assumption 5. Then by the same argument in Proposition 2, the distri-

bution of (αΔqj,i + �j − �i, Yi(ba, Ia) − �i) for the given Ia, ba is identified over the full support 

from the impact of independent variation in Bi and Bj on the probability that i wins when 

A = a ∪ {i, j}, Bi = bi, Bj = bj and the other entrants quote ba. 

Next, recover the distribution of (αΔqj,i, Yi(ba, Ia)) given Ia, ba using the distribution of 

(αΔqj,i + �j − �i, Yi(ba, Ia) − �i) given Ia, ba and the distribution of (�j − �i, �i), with the lat-

ter joint distribution identified due to Proposition 2. To see how, note (�j − �i, �i) is independent 
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from (αΔqj,i, Yi(ba, Ia)) for any fixed Ia and ba due to Assumption 1 and the characteristic func-

tion of (�i, �j ) is non-vanishing. With the quality levels qi and qj identified following Proposition 

2, we recover the distribution of Yi(ba, Ia)+αqi conditional on α, Ia, ba using the joint distribution 

of (αΔqj,i, Yi(ba, Ia)) given Ia, ba. This means ψi(y, α, ba, Ia) is identified for all y. 

Evaluate the linear system mentioned in Assumption 4 at the set of other entrants a with 

xs = xi for all s ∈ a. Again, fix Ia, bap and ap (and therefore the quality and characteristics of 

sellers in ap), and suppress them in the notation for ψi, λ and Λi. Then the right-hand side of 

(11) is simplified to 

Pr {�s ≤ y + bs − αqs ∀s ∈ a| α} (14) 

which is identified because the distribution of match components is already recovered as above. 
˜Thus, by evaluating (12) at the same (Ia, bat , bat ) but different values of (α, y) with Pr{U0 ≤ 

y | α} > 0 provides us with the linear system of R + 2 equations in 2K∗ unknown weights 

{λ(bat ), λ(b̃at )}. Under the full rank condition in Assumption 4, {λ(bat ), λ(b̃at )} is identified. Fi-
nally, with the 2K∗ probability masses {λ(bat ), λ(b̃at )} recovered, we can identify the conditional 

distribution FU0|α using the equality in (10). 

Next, without loss of generality, suppose Assumption 5 holds for i ∈ n (where n is a set of 

permanet sellers with the composition I) and a set of transitory sellers a with the composition 

I 0 = Ia and associated bid vectors b0 ≡ ba. Let bn denote the vector of bids from n. Under our 

assumptions, 

Pr {i wins| A = n ∪ a, bn}( ) 
Δ�s,i + αΔqs,i +Δxs,iβ ≤ bs − bi ∀s ∈ n\{i}

= Pr 
Yi(ba, Ia) − �i ≤ −bi 

where as before Yi(ba, Ia) denotes the maximum of U0 −αqi −xiβ and Δxk,iβ +α(Qk −qi)−bk +�k 

for k ∈ a ⊂ Nt. The support condition of the proposition implies the marginal distribution of 

(Δ�s,i + αΔqs,i +Δxs,iβ)s∈n\{i} is identified. With the distribution of �, α and the quality differ-

ences already identified, it follows from the independence between β and (α, U0) that the joint 

distribution of (Δxs,iβ)s∈n\{i} is identified over its full support. With (xs − xi)s∈n\{i} having full-

rank, the distribution of β is identified from that of (Δxs,iβ)s∈n\{i} using Jacobian transformation 

(by multiplying the joint density of (Δxs,iβ)s∈n\{i} with the absolute value of the determinant of 

(xs − xi)s∈n\{i}). � 

If the distribution of β is degenerate at a constant vector, the model is identified under weaker 

restrictions. To see this, recall that the first step in the proof of the second claim in Proposition 

3 is to identify the joint distribution of (Δ�s,i + αΔqs,i + Δxs,iβ)s∈n\{i}. With � independent 

from (α, β) and with the distribution of (Δ�s,i)s∈n\{i} identified, this implies means the joint 

distribution of (αΔqs,i +Δxs,iβ)s∈n\{i} is identified. If β is a constant vector, then there are only 

dim(β)+ |n|− 1 parameters to recover from the continuous distribution of such a (|n|− 1)-vector 
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(αΔqs,i +Δxs,iβ)s∈n\{i}. Recall that {xi : i ∈ n} is a constant vector of observed characteristics 

that do not vary throughout the data, and that the distribution of α is identified in Proposition 

2. Hence we can use the second moments of (αΔqs,i + Δxs,iβ)s∈n\{i} to identify (Δqs,i)s∈n\{i}, 

which in turn can be used to recover β under the rank condition maintained in the proposition. 

Note that this implies that, in order to recover the quality index of each permanent seller when 

β is constant, we may only need to normalize the location of the lowest quality level for sellers 

in any one (as opposed to all) of the groups defined by observed characteristics. 

B3. Identification of Entry and Project Costs 

The identification of the project cost distribution follows from an argument similar to that in 

Guerre, Perrigne and Vuong (2000). Let Gθ(b) ≡ Pr(j wins |j ∈ Al, Bj,l = b), when the type of 

seller j is summarized by θ ≡ (ρ, x, q). 

Proposition 4. Suppose that the conditions of Proposition 3 hold, and that Gθ is differentiable 

with non-zero derivatives over its domain for each θ. Then the distribution of Cj conditional on 

the seller type θ is identified. 

Proof of Proposition 4. For a given seller i with type θ = (p, x, q), define 

Gθ(b) ≡ Pr{i wins |i ∈ A, Bi = b} = Pr {$i ≤ −b} 

where $i denotes the maximum of maxj∈A\{i}[α (Qj − qi) +Δxj,iβ +Δ�j,i − Bj ] and U0 − αqi − 

xiβ−�i. Note the randomness in $i comes from α, β, U0, � and A as well as the bids Bj , j ∈ A\{i}. 
(Note the definition of $i differs from that of Yi(ba, Ia) because the former does not conditional on 

any vector of bids ba or the composition of competing entrants Ia.) Provided sellers’ equilibrium 

bidding strategies are differentiable, the smoothness conditions maintained in Assumptions 1 

imply that Gθ is differentiable almost everywhere. Hence the first-order condition for bidder i 

choosing price bi in equilibrium is: 

(bi − ci) G
0 
θ(bi) + Gθ(bi) = 0. (15) 

Note that the conditional winning probability as a function of bi, Gθ(bi) is identified. Hence so 

is its derivative G0 θ(bi). This then implies that the inverse bidding strategy (and consequently 

the distribution of private project cost Ci which depends on xi, qi but not ρi under Assumption 

1 is identified for sellers with type θ = (p, x, q) as long as G0 θ(bi) =6 0. � 

If the sellers’ equilibrium bidding strategies are invertible and differentiable in their costs, 

Assumption 1 implies that the distribution of equilibrium bids is differentiable almost every-

where. Using a change-of-variable argument in Guerre, Perrigne and Vuong (2000), we identify 

the sellers’ inverse bidding strategies and the distribution of project costs. 
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For identification of the entry cost distribution, we use exogenous variation in an observed 

variable, say, Zl, which does not affect the entry cost distribution but in general enters the seller’s 

ex ante payoff prior to entry decisions. For example, Zl could be the number of sellers in Nl 

which affects sellers’ ex ante payoff due to the competition effect. Alternatively, Zl could be the 

average of observed characteristics x among all sellers that are irrelevant to entry costs. In this 

case, the average observed characteristics may affect ex ante payoff through its correlation with 

project costs. 

Proposition 5. Suppose that the conditions of Proposition 4 hold, and that there exists auction-

level heterogeneity Zl reported in the data such that Zl and El = {Ej,l}j∈Nl are independent. Then 

for each z in the support of Zl, the pθ 
∗(z)-quantile of the entry cost distribution for each seller 

with type θ is identified, where p ∗ 
θ(z) denotes the equilibrium entry probability for a seller of type 

θ when Zl = z. 

Proof of Proposition 5. The equilibrium entry threshold for a seller with type θ (which is 

a cutoff in the support entry signals below which the seller decides to enter), in the presence of 

exogenous project cost shifters Z = z, is characterized by: 

tθ(z) = E [Πi (σθ 
∗ (Ci, Z), Ci, Z; p ∗ , σ ∗ )| Z = z] (16) 

where p ∗ is the vector of type-symmetric equilibrium entry probabilities, which are directly 

identifiable from the data. (There is a slight abuse of notation in that we now write Πi as a 

function of p ∗ as opposed to τ ∗ . Also recall that we are suppressing the dependence on the set 

of potential bidders N and its composition IN in the current section.) The inverse equilibrium 

bidding strategies are recovered as Proposition 4 and the distribution of bidders are identified; 

and the distribution of buyer tastes (α, β, U0, �) is also identified. Hence the right-hand side of 

(16) is identified for all z. The left-hand side by definition is the pθ 
∗(z) quantile of the distribution 

of entry costs for a seller with type θ. 2 � 

In the empirical section, we parametrize the distribution of entry costs and use GMM for 

estimation, exploiting the variation in the observed characteristics of potential entrants as a 

source of exogenous cost shifters. 

B4. Support Conditions 

We discuss how our model generates the price variation in the support condition used in iden-

tification. We do so in the context of a stylized model that abstracts away from observed 

characteristics xi, seller endogenous participation and presence of transitory sellers, but that 

has an allocation rule involving unobserved quality indices and stochastic match components. 

2The proof allows for dependence between Z and IN . For example, Z could be the number of potential 
bidders in an auction, i.e., the cardinality of N . 
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Adding endogenous entry and transitory sellers would complicate the algebra without adding 

much insight. 

Suppose the set of entrants in the stylized model is A = {i, j}, which is known to both partic-

ipants. In this case, the support condition for identifying the distribution of match components 

is reduced to: “there exist i, j with qi = qj such that the support of (Bj − Bi, −Bi) includes that 

of (�j − �i, Ũ 
0 − �i)”, where we let Ũ 

0 denote the difference of outside option U0 and the weighted 

quality index αqi. Let [ε, ε] denote the marginal support of �i. Note that, in a type-symmetric 

equilibrium which we consider here, the support of bids from i, j are identical, and denoted by 

[bi, bi]. 

A set of sufficient conditions for the support restrictions is: “there exist i, j with qi = qj 
s.t. b > ε − u0 and b < ε − u0,” which can be satisfied if both (a) b > ε − u0 and (b) 

b − b > (u0 − u0) + (ε − ε) hold. Condition (a) holds provided b ≥ ci > ε − u0, where ci is 

the supreme of the support of private costs for i and j. Condition (b) essentially requires the 

support of bids to be large relative to that of outside utility and match components. Intuitively, 

(b) also holds when the support of sellers’ private costs is sufficiently large. We now provide an 

argument for this intuition. 

The idea is to show that the bidding strategy is continuous in the length of the support of 

match component ε − ε and the support of outside option. Under type-symmetric pure-strategy 

BNE the bidders’ strategies solve the maximization problem: � � 
σi(c) ≡ arg max(b − c) Pr Ũ 

0 − �i ≤ −b Pr (−Bj + �j − �i ≤ −b) (17) 
b 

The second probability in (17) represents i’s belief, which is formed from i’s knowledge of the 

distribution of private costs, and the distribution of quality indexes in the population of sellers. 

Suppose �i are i.i.d. uniform over [ε, ε]. Applying the law of total probability, we can write 

the objective function for seller i with costs c as Z ��Z � �ε̄  ε̄  1 − FBj (b − Δεi,j ) FŨ0 
(−b + εi)

(b − c) dεj dεi. (18) 
ε ε ε̄  − ε ε̄  − ε 

≡ εr −εChanging variables between εr and τr ε̄−ε for r = i, j, we can write (18) as 

Z �Z �1 1 � � 
(b − c) FŨ0 

(ε − b + δτi) 1 − FBj (b − δΔτi,j ) dτj dτi (19) 
0 0 

where δ ≡ ε̄  − ε is the length of support of match components. Note (19) is continuous in 

both δ and the length of support for Ũ 
0. It then follows from an application of the Theorem of 

Maximum that the support of bids is continuous in the size of the support of match component 

and outside options. Provided private costs vary sufficiently, the support of bids in a standard 

auction model with no match components (i.e. � is degenerate at 0) and no outside option 
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is an interval with non-degenerate interior. It follows from the implication of the Theorem of 
˜Maximum that condition (b) holds whenever the support of � and U0 is small enough. By 

the same token, we can provide similar structural justifications for the support conditions for 

recovering quality levels using i, j with qi 6= qj , as long as variation in private costs and quality 

differences are sufficiently large relative to that of buyers’ tastes in (α, �, Ũ 
0). In the current 

example, adding transitory sellers would not require any qualitative change in the argument for 

the support conditions. 

C. Details of the Classification Procedure 

This section provides the details of the nonparametric classification methodology. A complete 

treatment of this methodology and formal results are found in Krasnokutskaya, Song, and Tang 

(2016). 

C1. Estimation of Classifications with Known Number of Groups 

We consider the case where Xi takes values from a finite set {x1, ..., xm}. Thus the set of the 
¯ permanent sellers can be partitioned into groups, Nx, x = x1, ..., xm, so that for each x, and for 

¯ any i, j ∈ Nx, xi = xj = x. The analysis in this section is performed conditional on x. For 
¯brevity, we omit conditioning on x in the exposition below, so that we simply write Np instead 

of N̄ 
x. Define K0 to be the number of distinct quality levels among the permanent sellers. 

For ease of exposition, we first present the case with the number of quality levels K0 equal to 

2 so that qi ∈ {q̄  h, q̄  l} for a pair of unknown numbers q̄  h and q̄  l. We explain how the algorithm 
¯ ¯generalizes to the case with K0 > 2 later. Let Nh ⊂ Np be the collection of high quality sellers 

¯ ¯within group λ and Nl ⊂ Np be the collection of low quality sellers within group λ. Our object 

of interest is the following ordered group structure 

¯T = (N̄ 
h, Nl) 

of N̄ p. We estimate T in three steps. First, for each i ∈ N̄p, we estimate two ordered partitions: 

one partition consists of the group of the sellers with higher or equal quality than that of i 
¯ ¯ ¯(denoted by N1(i)) and the rest (denoted by Np \ N1(i)), and the other partition consists of 

¯the group of sellers with lower or equal quality than that of i (denoted by N2(i)) and the rest. 

Second, among the two ordered partitions, we choose the one that is mostly likely to coincide 
¯with (N̄ 

h, Nl). Third, we choose i such that the estimated partition associated with this i is 

most strongly supported by the data. 

Suppose that we have obtained the bootstrap p-values p̂+ 
ij , p̂

− 
ij , and p̂0 

ij as explained in the 

main text of the paper. Then we recover the group structure in three steps as follows. 
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Step 1: Define 

ˆ ¯N1(i) = {j ∈ Np\{i} : p̂+ 
ij < p̂−} andij 

ˆ ¯N2(i) = {j ∈ Np\{i} : p̂+ 
ij > p̂−}.ij 

N̄ pStep 2: For each i ∈ , we define3 

X1 + s1(i) = log p̂ and 
|N̂ 
1(i)| 

ij 

j∈N̂1(i) X1 
s2(i) = log p̂ − 

ij, |N̂ 
2(i)| 

j∈N̂2(i) 

and let ( 
s1(i), if i ∈ N̄ p\N̂ 

1(i) 
s(i) = , 

s2(i), otherwise 

where |N̂ 
2(i)| and |N̂ 

1(i)| denote the cardinalities of the sets N̂ 
1(i) and N̂ 

2(i). For each index i, we 

have two classifications, (N̂ 
1(i), N̄ p\N̂ 

1(i)) or (N̄p\N̂ 
2(i), N̂ 

2(i)). The first classification regards 

i as high type and the second classification regards i as low type. The index s(i) measures the 

degree of misclassification caused by each of the two cases. When most agents are correctly 

classified, s(i) becomes severely negative. 

Step 3: We choose i∗ that minimizes s(i) over i ∈ N̄ p, i.e., 

i ∗ = argmini∈N̄ p s(i). (20) 

Now we take ( 
(N̄ p\N̂ 

2(i
∗), N̂ 

2(i
∗)), if s1(i∗) ≥ s2(i∗)

( ˆ ˆNl, Nh) = 
¯(N̂ 

1(i
∗), Np\N̂ 

1(i
∗)), if s1(i∗) < s2(i

∗). 

We take the estimator of T as 

T̂ = (N̂ 
l, N̂ 

h). 

The quantity s(i) indicates the weakness of the likelihood that i is classified into her right 

quality group. Then we choose i∗ that minimizes s(i) over i ∈ N̄ , and let N̂ 
h = N̂ 

h(i
∗) and 

N̂ 
l = N̂ 

l(i
∗). We take Ĉ = (N̂ 

h(i
∗), N̂ 

l(i
∗)) as an estimated classification of players into two 

quality groups. 

The generalization of the procedure to the case of K0 > 2 with K0 known can proceed as 
¯ ˆ ˆfollows. First, we split N into Nh and Nl using the algorithm for K0 = 2. Then we find a 

+ − 03Alternatively, one could replace p̂ij in the definition of s1(i) and p̂ij in the definition of s2(i) by p̂ij . The 
consistency results of this paper are not affected by this modification. 
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minimum value (denoted by p̂h) of log p̂ij 
0 among the pairs (i, j) such that i =6 j, and i, j ∈ N̂ 

h, 

and a minimum value (denoted by p̂l) of log p̂0 among the pairs (i, j) such that i =6 j, andij 

ˆ ˆ ˆ ˆi, j ∈ Nl. If p̂h < p̂l, we split Nh into Nhh and Nhl using the same algorithm for K0 = 2, and 
ˆ ˆ ˆotherwise, we split Nl into Nlh and Nll using the same algorithm for K0 = 2. We repeat the 

ˆ ˆprocedure. For example, suppose that we have classifications N1, ..., Nk−1 obtained. For each 

r = 1, ..., k − 1, we compute the minimum value (say, p̂r) of log p̂ij 
0 among the pairs (i, j) such 

ˆ ˆthat i 6= j and i, j ∈ Nr, and then select its minimum (say, p̂r ∗ ) over r = 1, ..., k −1. We split Nr ∗ 

ˆ ˆinto Nr ∗h and Nr ∗l using the algorithm for K0 = 2 to obtain a classification of S into k groups. 

We continue until the groups become as many as K0. 

C2. Selection of the Number of Groups 

The methodology outlined above assumes that we know the exact number of groups. To accom-

modate the situation with real life data without knowledge of the number of the groups, we offer 

a method of consistent selection of the number of groups. We suggest that the number of groups 

should be selected to minimize the criterion function that balances a measure of goodness-of-

fit that captures a misspecification bias versus a penalty term that penalizes overfitting. The 

goodness-of-fit measure is based on the variance test approach. 

Given an estimated classification N̄ p = ∪K
k=1N̂

 
k with K groups, let 

KX1
V̂ (K) = min log p̂ 0 ,

K i,j∈N̂k 
ij 

k=1 

for each k = 1, ..., K. √ 
Suppose that K0 is the true number of groups. Let g(L) → ∞ be such that g(L)/ L → 0 

as L →∞. Then, define 
Q̂(K) ≡ V̂ (K) + Kg(L). 

We select K as follows: 
ˆ ˆK = argmin1≤K Q(K). 

The idea of this selection is based on the following intuition. For simplicity, let us assume that 

|N̄ p| is fixed and L increases to infinity. (Krasnokutskaya, Song, and Tang (2016) considered a 

more general case where |N̄ p| is allowed to increase with L at a slow speed.) First, V̂ (K) = OP (1), 

as L → ∞, if K ≥ K0, because there is no misspecification bias in this case. The limit OP (1) 

measures the asymptotic behavior of the goodness-of-fit of the model when the classification 

is weakly finer than the true classification. Since Kg(L) → ∞ as L → ∞, the minimization 
ˆof Q(K) over K leans toward a lower choice of K that is closer to K0. On the other hand, 

if the classification is strictly coarser than the true classification, i.e., K < K0, the quantity 

V̂ (K) diverges at a rate faster than g(L), as L → ∞, due to misspecification. In this case, the 

minimization of Q̂(K) over K excludes K such that K < K0 for large samples. Thus we obtain 
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ˆthe consistency of K under regularity conditions. Details in a more general set-up are found in 

Krasnokutskaya, Song, and Tang (2016). 

C3. Details of Implementation 

Here we give details of the choice of the kernel function, bandwidths and the penalization scheme 

in nonparametric classification. In the empirical analysis, we used a triweight kernel function: 

K(u) = 1{|u| ≤ 1}(35/32)(1 − u2)3 . The bandwidth selection followed the usual Silverman’s rule 

of thumb. The bootstrap Monte Carlo number used to construct the bootstrap p-values was 200. 

Finally, as for the penalization scheme, we have chosen simply: 

Kg(L) = K log log L. 

Our simulation studies unreported here confirm that this choice of penalty scheme works well in 

various simulation designs. 

C4. Confidence Sets for Quality Classifications 

Suppose that we have K0 groups and the set of permanent bidders N has size n. Since we can 

estimate K0 consistently, we assume we know it. We fix k = 1, ..., K0 and construct a confidence 

set for the k-th quality group. In other words, we would like to construct a random set Ĉ  
k ⊂ N̄p 

such that 

liminfL→∞P {N̄ 
k ⊂ Ĉ  

k} ≥ 1 − α, 

¯where Nk is the set of permanent bidders with quality q̄  k. For this, We need to devise a way to 

approximate the finite sample probabilities like P {N̄ 
k ⊂ Ĉk}. Since we do not know the cross-

sectional dependence structure among the sellers, we use a bootstrap procedure that preserves 

this dependence structure from the original sample. The remaining issue is to determine the 

space in which the random set Ĉ  
k ⊂ N̄ p can take values in. It is computationally infeasible to 

consider all possible such sets. Instead, we proceed as follows. First we estimate N̂ 
k as prescribed 

τ 0 ˆabove and also obtain îj , the test statistic defined in the main text. Given the estimate Nk, we 

construct a sequence of sets as follows: 

Step 1: Find i1 ∈ N̄ p\N̂ 
k that minimizes min τ̂i 

0 
1,j , and construct Ĉ  

k(1) = N̂ 
k ∪ {i1}.j∈N̂k 

Step 2: Find i2 ∈ N̄ p\Ĉ  
k(1) that minimizes minj∈ ˆ τ̂i 

0 
2,j , and construct Ĉ  

k(2) = Ĉ 
k(1) ∪ {i2}.Ck(1) 

... 

Step m: Find im ∈ N̄ p\Ĉ  
k(m − 1) that minimizes min τ̂ 0 and construct Ĉ  

k(m) = j∈Ĉk(m−1) im,j 

Ĉk(m − 1) ∪ {im}. 

Repeat Step m up to n = |N̄ p|. 

N̂ ∗ C∗Now, for each bootstrap iteration s = 1, ..., B, we construct the sets and { ̂ (m)}k,s k,s 

following the steps described above but using the bootstrap sample. (Note that this bootstrap 
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sample should be drawn independently of the bootstrap sample used to construct bootstrap 

p-values p̂ij in the classification.) 

Then, we compute the following: 

BX n o1 ˆ C∗ π̂k(m) ≡ 1 Nk ⊂ ˆ k,s(m) . B 
s=1 

Ĉ∗Note that the sequence of sets k,s(m) increases in m. Hence the number π̂k(m) should also 

increase in m. An (1 − α)%-level confidence set is given by Ĉ  
k 
∗(m) with 1 ≤ m ≤ n such that 

π̂k(m − 1) < 1 − α ≤ π̂k(m). 

C∗ N̄ pNote that such m always exists, because ˆ k,s(n) = . 

C5. Finite Sample Performance: Monte Carlo Simulations 

Here we explore properties of our classification algorithm in simulation analysis. 

We choose the distributions of project and entry costs to be the same across quality levels and 

given by truncated normals with N(1.5, 0.22) and N(0.08, 0.022) correspondingly. The bidders 

are assumed to be heterogeneous with respect to quality only. Buyers’ tastes, therefore, are 

represented by the distributions of α and �. We fix the distribution of α to be truncated normal 

N(0.4, 0.22) with support [0, 1]. The distribution of � is also chosen to be truncated normal 

with mean 0 and variance σ� 
2 . We vary σ� in experiments below to explore the sensitivity of 

our methodology to the noise in buyers’ tastes. We truncate the support of epsilon at [−σ�, σ�]. 
Further, we assume that the distribution of the outside option coincides with the cost distribution 

of high-quality bidders. Finally, we assume that the set of suppliers consists of 30 programmers 

and is split equally between high- and low-quality suppliers. 

We use the same numerical algorithm as in the main paper to solve for participation and 

bidding strategies of our game. The data are generated through repetition of the following steps: 

1. At each round, 10 randomly selected bidders from the set above are declared to be potential 

bidders. 

2. For each potential bidder we draw an entry and project cost. We, then, apply participation 

and bidding strategies to these draws to determine whether a potential bidder enters the 

set of active participants and if he does what bids he submits. 

3. Next, we take draws from the distributions of α, �, and of the outside option. The winner 

of the project is determined by evaluating submitted bids using the realizations of the 

outside option and of buyer’s tastes. 
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4. The data record the set of potential bidders with their qualities, outcomes of participation 

and entry decisions as well as the buyer’s choice. 

Table 1: Results of Simulation Study 

Probability of Correct Classification 
L = 300 L = 200 L = 100 

dd σ� qH qL qH qL qH qL 

0.3 0.2σc 0.9773 0.9901 0.9613 0.9547 0.9314 0.9013 
0.3 0.5σc 0.9645 0.9858 0.9477 0.9512 0.9223 0.8998 
0.3 1.5σc 0.9619 0.9782 0.9457 0.9401 0.9207 0.8941 
0.1 0.2σc 0.9632 0.9774 0.9329 0.9503 0.9164 0.8904 
0.1 0.5σc 0.9551 0.9743 0.9263 0.9421 0.9034 0.8815 
0.1 1.5σc 0.9518 0.9701 0.9227 0.9397 0.8927 0.8623 

This table reports results of the simulation study of the sensitivity of the classification procedure to the quality 

differences, the magnitude of the preference noise, and the data set size. The latter is measured in the average 

number of bids per supplier. The difference in quality levels is measured relative to the project costs spread, 
qH −qLi.e., dq = . The variance of the preference noise is measured relative to the project cost variance, i.e.,c̄−c 

σ� = d�σc. 

We use the simulated data to investigate the sensitivity of our methodology to the magnitude 

of the quality differences, the noise in buyer’s preferences, and the number of available observa-

tions. For the first two experiments we tie the quality differences and the noise magnitude to 

the variance in the private project costs. That is, we consider (a) high-quality differences with 

Δq = 0.3(c̄ − c) and (b) low-quality differences with Δq = 0.1(c̄ − c). Similarly, we consider (c) 

low preference noise with σ� = 0.2σc, (d) medium preference noise with σ� = 0.5σc, (e) high pref-

erence noise with σ� = 1.2σc. Finally, we explore how the performance of our procedure changes 

with sample size. Our procedure is performed at the individual level, therefore, we explore the 

performance of our procedure as a function of the average number of bids per supplier (L). 

We run the simulation experiments as follows. For every set of parameters, we apply our 

procedure to 500 data sets simulated according to steps (1)-(4) described above. We then 

compute for every supplier the fraction of the data sets in which his type was correctly recovered. 

We report the average of these fractions across bidders of the same quality level in Table 1. 

The results of the simulation analysis show that the classification procedure performs quite 

well. In particular, it is not very sensitive to the magnitude of the preference noise. We would 

expect the preference noise to impede the recovery of the quality level since it disguises the 

link between the probability of winning and the quality of participant. It would be natural to 

expect that the procedure should impose higher data requirements in the presence of more noise. 

However, the variation in prices successfully compensates for the noise in buyers’ preferences at 

least for moderate levels of noise. 
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As expected, the performance of the procedure does depend on the importance of the quality 

differences. The estimation is more precise when quality differences are large and grows less 

precise as quality differences diminish. Finally, the procedure is sensitive to the size of the 

data set. As the number of bids drops from 300 bids per supplier to 100 bids per supplier the 

probability of correct classification drops from 0.96 to 0.92 for high-quality suppliers and from 

0.98 to 0.89 for low-quality suppliers. The classification of low-quality suppliers is affected to a 

larger degree since due to the lower probability of participation, the number of bids they submit 

is substantially below the average. 

D. Details on the Estimation Procedures 

D1. A Representation Result 

In this section, we derive a generalized version of the representation in (7) in the main text which 

is used for constructing part of the moment conditions in the estimation step. For each project 

l, recall that Nl = Nl
p ∪ Nl

t denotes the set of potential bidders for project l, where Nl
p denotes 

the set of potential permanent bidders and Nl
t the set of potential transitory bidders. Similarly, 

Al = Ap
l ∪ At

l denotes the set of active bidders for projects l, where A
p
l and Al

t denote the sets of 

permanent and transitory active bidders respectively. (From here on, we suppress the auction 

index l from notation for simplicity.) 
¯ ¯Recall that the sets Np and N t denote the total set of permanent sellers and transitory sellers. 

As in the main text, we write A, Ap, At , etc. to denote the random set of entrants, and a,ap,at , 
t ¯ etc., to denote their particular realizations. For each set a = ap ∪ a with ap ⊂ N̄ p and at ⊂ N t , 

we recall the definitions of the compositions, Ia in Section 5.2.2. 

When collecting individual observations to the project level we find it convenient to arrange 

observations in a certain order. More specifically, the observations for permanent and transitory 

sellers are allocated into separate vectors. Within each vector we enumerate observations for 

actual entrants first then for non-entrants. Then within the set of actual entrants, we order the 

observations for permanent sellers according to (x, q)-characteristics in the order of 

(x̄1, q̄  1(x̄1)), ..., (x̄1, q̄  K(x̄1)(x̄1)), ..., (x̄m, q̄  K(x̄m)(x̄m)) 

and then for transitory sellers according to x-characteristics in the order of x, ...,¯ x̄ m. We order 

observations similarly for the set of non-entrants as well. Thus we maintain the order of individual 

bids as described above so that it is easy to match individual bids to seller characteristics using 

only information contained in I = (IA, IN ), i.e., the information on the sizes of (x, q)-groups of 

the potential and active permanent sellers and the sizes of x-groups of the potential and active 

transitory sellers in auction l. Indeed, since the bids are submitted by active sellers, the relevant 

part of I is IAp and IAt . Let us denote a vector of bids by b = [bp0, bt0]0 , where bp and bt are 
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shorthand for bap and bat , i.e., vectors of bids submitted by active permanent and transitory 

sellers respectively with their j-th entries denoted by bj
t and bj

p . If IAp reports that Ap contains 

two bidders from group (x̄1, q̄  1(x̄1)) and three bidders from group (x̄2, q̄  1(x̄2)) then we know that 

bids bp 
1 and b2 

p are submitted by bidders from group (x̄1, q̄  1(x̄1)) and bids b3 
p, bp 

4, b5 
p are submitted 

by sellers from group (x̄2, q̄  1(x̄2)). 

Recall that Qi denotes the random quality of transitory seller i, and write 

QA = (Qi)i∈A and Qa = (Qi)i∈a. 

Similarly, for a nonstochastic vector q = (qi) of numbers qi, we write qA = (qi)i∈A and qa = 

(qi)i∈a. To simplify notation, we let 

|aYt| 

ω(qa; Iat ) ≡ Pr(Qi = qi|xi), 
i=1 

where at denotes the realized set of active transitory bidders, and Pr(Qi = qi|xi) denotes the 
probability of transitory bidder i’s quality being qi when his characteristic is xi. This latter 

probability is a model primitive. We also let 

|aYt| 

g(bt; qa, Iat ) ≡ ω(qa; Iat ) f(bi|Qi = qi, I) Pr(i ∈ At|Qi = qi, I). 
i=1 

Here Pr(i ∈ At|Qi = qi, I) is the conditional probability of a transitory bidder entering the 

auction when his quality is qi. Note that g(bt; qa, Iat ) depends on IN though we suppress it from 

notation for simplicity. Let Pr(QA = qA|b, I) denote the conditional probability of QA = qA given 

the bid vector b and composition I. (Note that this probability depends on A only through I.) 

Our representation result characterizes this conditional probability in terms of g(bt; qa, Iat )’s. 

Proposition 2. Suppose that Assumptions 1-3 hold. Then, 

g(bt; qA, IAt )
Pr(QA = qA|b, I) = P . 

g(bt; q0 , IAt )0q ∈QA A
A 

Proof: First, note that by the Bayes Rule, we can write 

fb(b|QA = qA, I) Pr(QA = qA|I)
Pr(QA = qA|b, I) = (21)

fb(b|I) 
fb(b

t|QA = qA, I) Pr(QA = qA|I) 
= . 

fb(bt|I) 

The second equality holds because the bids of permanent sellers are independent of bids and 
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qualities of transitory sellers, i.e., fb(bp|QA = qA, I) = fb(bp|I). 
Notice that btj ’s are independent across j’s conditional on QA = qA and I, and that out of 

IAt only xj
t matters for the distribution of bids that could be submitted by a transitory seller j. 

Therefore, Y|At| Y|At| 

fb(b
t|QA = qA, I) = fb(b

t
j |QA = qA, I) = fb(bj

t |Qj = qj , I). (22) 
j=1 j=1 

The last equality holds because the transitory seller knows his quality but not the qualities of 

his transitory competitors. 

On the other hand, applying the law of total probability we obtain X 
fb(b

t|I) = fb(b
t|QA = qA, I) Pr(QA = qA|I) (23) 

qA∈QA ⎛ ⎞ Y|At|X ⎝= fb(b
t |Qj = qj , I)⎠Pr(QA = qA|I).j 

qA∈QA j=1 

We will use this expression later, after we deal with Pr(QA = qA|I). 
¯First, we write IA = IAp ∪ IAt and let IA be a realized set of IA. Then notice that 

¯ ¯Pr(IAp = IAp , IAt = IAt |QA = qA, IN ) Pr(QA = qA|IN )¯Pr(QA = qA|IN , IA = IA) = (24)¯ ¯Pr(IAp = IAp , IAt = IAt |IN ) 
¯Pr(IAt = IAt , QA = qA|IN ) 

= P . 
Pr(IAt = Ī  

At , QA = q̃A|IN )q̃A∈QA 

¯ ¯The second equality holds because the events IAp = IAp and IAt = IAt are independent condi-
¯tional on QA = qA, IN , and the event IAp = IAp is independent of QA = qA conditional on IN . 

¯We write Pr(IAt = IAt , QA = qA|IN ) as X 
¯Pr(IAt = IAt , QA = qA, and QN\A = qN\A|IN ) (25) 

qN\A∈QN\AX 
¯ = Pr(IAt = IAt , QN = [qA; qN\A]|IN ) 

qN\A∈QN\AX 
¯ = Pr(IAt = IAt |QN = [qA; qN\A], IN ) Pr(QN = [qA; qN\A]|IN ). 

qN\A∈QN\A 

As for the summands in the last expression, we define 

p A(qi) = Pr(i ∈ At|Qi = qi, IN ) andi 

p N\A(qi) = Pr(i ∈ N t \ At|Qi = qi, IN ),i 

where qi denotes the i-th entry of qN . Thus pi
A(qi) > 0 only when i ∈ At and similarly pi

N\A
(qi) > 



25 

0 only when i ∈ N t \ At . Rewrite ⎛⎝ |aYt| 
A 
i (qi) 

⎛⎝ ⎞⎠ |YNt| 
⎞⎠N\A¯Pr(IAt = = q, IN ) = (qi)p p .iIAt |QN 

i=1 i=|at|+1 

This is because participation decisions of transitory sellers do not depend on the qualities of 

their transitory competitors since the qualities of transitory sellers are only privately known. On 

the other hand, we write 

|YNt| |YNt| 

Pr(QN = q|IN ) = Pr(Qi = qi|IN ) = Pr(Qi = qi|x t),i 
i=1 i=1 

because potential bidders are randomly drawn from the population characterized by a given 

vector x and from the whole structure IN only the information about xti is relevant in this 

ĪAt , QA = qA|IN ) asprobability. Combining this, we write Pr(IAt = ⎛⎝ ⎛⎝ ⎞⎠ ⎞⎠|YNt| |aYt| |YNt| 
N\AA 

i (qi)Pr(Qi = qi|x ti) (qi) (26)p pi 
i=1 

|aYt| 
⎛⎝ 

i=1 i=|at|+1⎛⎝ ⎞⎠ t 
i) 

⎞⎠|YNt| 
N \AA t 

i (qi) Pr(Qi i)= qi|x = qi|x(qi) Pr(Qi = p p .i 
i=1 i=|at|+1 

Applying this result to the denominator of (24), we find that the numerator and the denominator 

have a common factor: 
|YNt| 

p N\A(qi) Pr(Qi = qi|x t).i i 

i=|at|+1 

After canceling out this factor, we conclude that ⎛⎝ ⎞⎠Y|At|Y|At| 
p A 
i (qi) ω(qA; IAt )A t(qi) Pr(Qi = qA,i|x )pi i ⎛⎝ 

i=1 Y|At| 
i=1 ⎞⎠ Pr(QA = qA|I) = (27)= ,Y|At|X X 

A t 
i) 

Aq̃i|xi (q̃i) Pr(Qi (q̃i) ω(q̃A; IAt )p = pi 
q̃A i=1 q̃A i=1 

recalling the definition of ω(qa; Iat ). Now, plugging this expression into (23), we can write 

X Q|At| fb(b
t |Qj = qj , I)pi

A(qi)j=1 j
fb(b

t|I) = P ω(qA; IAt ) Q|At|ω(q̃A; IAt ) pA(q̃i)qA∈QA q̃A j=1 i 

. (28) 

Thus we plug (22), (28) and (27) into (21) to obtain the desired result. � 
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D2. Basic Moment Restrictions 

For the choice of gj ’s, we use functions that vary with the active sellers’ (x, q)-group memberships 
¯ ¯and their composition IA’s. For each auction l such that IAl = IA for a given composition IA 

¯and have a winning seller j in (x, q)-group, we take gj (Bl, IA) as follows. (Here, we let Al,x,q be 

the set of active sellers in auction l in (x, q)-group and Al,x that in x-group. Then for each (x, q) 
¯and (x0, q0) and for a given composition IA, we consider three types of gj ’s (except for constant 

1)) as follows. 

(1) Moments involving a single winning bid: 

¯ gj (Bl, IAl ) = Bj,l1{IAl = IA}1{j ∈ Al,x,q}. 

(2) Moments involving a winning bid and another bid: X 
¯ gj (Bl, IAl ) = (Bj,l − Bi,l)1{IAl = IA}1{j ∈ Al,x,q}. 

0i∈Al,x0,q

(3) Moments involving two permanent sellers’ bids and one transitory seller’s bid: X X 
¯ gj (Bl, IAl ) = (Bj,l − Bi,l)Bh,l1{IAl = IA}. 

i∈Al,x,q h∈Al,x 

We also use moments in (i) with Bj,l replaced by B2 
j,l, and in (2) with (Bj,1 − Bi,l) replaced by 

(Bj,1 − Bi,l)
2 and by (Bj,1 − Bi,l)Bj,l, and in (3) with (Bj,l − Bi,l)Bh,l replaced by Bj Bh,l, Bj 

2Bh,l, 

Bj xh and Bj 
2xh. In the actual implementation, we re-weight all the moments by the frequency 

with which relevant observations appear in the data. 

D3. Additional Restrictions 

We also use additional restrictions that stem from restrictions on transitory sellers’ bid distri-

butions, transitory sellers’ participation probabilities, and restrictions that come from expected 

profit conditions. 

(a) The restriction associated with transitory sellers’ bid distribution: 

|aYt|X1 
f(bat |I) = ω(qa; Iat ) f(bi|Qi = qi, I) Pr(i ∈ At|Qi = qi, I), (29)

J 0q ∈Qa i=1a 

where 

|aYt|X 
J = ω(qa; Iat ) Pr(i ∈ At|Qi = qi, I). 

q ∈Qa i=10 
a 
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Moment conditions associated with this restriction relate the empirical moments of f(bat |I) to 
the theoretical moments based on the restriction (29). 

(b) The restriction associated with the transitory sellers’ participation probability: 

¯Pr(IAt IAt |IN )⎛⎝ 
(30)= ⎛⎝ ⎞⎠ ⎞⎠X |aYt| 

= p 
|YNt| 

N\AA t 
i (qi) Pr(Qi i) 

t 
i)= qi|x (qi) Pr(Qi = qi|xp .i 

qA∈QA i=1 i=|at|+1 

This restriction is based on (26) in the proof of Proposition 2. Moment conditions associated with 

this restriction relate the transitory sellers’ empirical probability of participation and expected 

x-characteristics of entrants conditional on I to their theoretical counterpart using (30). 

(c) The restriction related to the expected profit condition. This restriction summarizes optimal 

participation behavior. It is summarized by the threshold strategy where potential bidders with 

entry cost draws below the ex-ante expected profit participate in the auctions and those with 

higher draws stay out. This implies that in equilibrium: for each qt ∈ Qx and θj = (t, xj , qt), 

Pr(j ∈ At|θ = θj , IN ) = FE (E[Π(θj , IN )]), 

where FE (.) is the distribution function of entry costs E. 

D4. Estimation of the Sellers’ Cost Distribution 

We estimate the distributions of the seller’s costs conditional on the seller’s attributes by com-

bining the bid distributions of permanent sellers with the corresponding inverse bid functions 
¯for a given composition of the set of potential bidders IN : 

F̂  
C (c|x, q) = ˆ (ξ̂−1 (c; ¯ = ¯Gp,x,q p,x,q IN )|INl IN ), 

where ξ̂−1 (c; Ī  
N ) denotes the inverse of the estimated inverse bid function of a permanent sellerp,x,q 

in group (x, q).4 Recall that the distribution of costs depends only on sellers’ attributes (both 

observable and unobservable), (x, q), not on whether the seller is permanent or transitory. On 

the other hand, the sellers’ bidding strategy and thus the distribution of bids depends on his 

full type θ = (ρ, x, q), ρ ∈ {p, t} which is reflected in the expression above. Notice that we 

are using the distributions of bids and inverse bid functions associated with permanent sellers. 

The estimated inverse bid function, ξ̂  
p,x,q(b; Ī  

N ), is derived from the first order condition of the 

4We implement kernel smoothing over Ī  
N when estimating Ĝ 

p,x,q(.|INl = Ī  
N ) or P̂ (j wins | Bj,l = b, INl = 

¯ ∂ ˆ ¯ ¯IN ), P (j wins |Bj,l = b, INl = IN ) and Pr(i is active|θ, INl = IN ).∂b 
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corresponding permanent seller’s optimization problem: for a permanent seller i in group (x, q), 

ˆ ¯P (j wins | Bj,l = b, INl = IN )
ξ̂  
p,x,q(b, Ī  

N ) = b − ,
∂ ˆ ¯P (j wins |Bj,l = b, INl = IN )∂b 

where θj = (p, x, q). 

We assess the magnitude of the costs of entering the auction using the conditions derived from 

the optimality of the permanent sellers’ participation behavior. In the model, the participation 

probability satisfies the following equation 

¯FE (Π(θ, Ī  
N )|x, q) = Pr(j is active|θ, INl = IN ), (31) 

where FE (.|x, q) is the distribution function of the entry costs and Π(θ, Ī  
N ) the ex-ante expected 

profit of a seller with type θ. 

We assume that the distribution of entry costs is given by the truncated normal distribution 

(truncated at zero) with seller-type-specific mean and standard deviation. We estimate the 

parameters of these distributions using a minimum distance estimation procedure based on the 

restrictions in equation (31) for various (x, q)-groups of permanent sellers and for time periods 

characterized by the high/low presence of potential bidders from different (x, q)-groups. The 
¯probability Pr(i is active|θ, INl = IN ) can be directly identified from the data. As for the expected 

profits conditional on entry, we compute them from the estimated distributions of bids and costs 

and the sellers’ beliefs about their competitors’ participation strategies approximated by the 

participation behavior observed in the data. 

E. Details of the Numerical Algorithm 

Here we summarize the numerical algorithm used to solve for a type-specific equilibrium bidding 

and participation strategies {σk 
∗ , pk 

∗ }k=1,...,K . 5 It combines insights from projection methods6and 

the numerical approach developed in Marshall, Meurer, Richard, and Stromquist (1994). To 

simplify the presentation we summarize the method for the case when (a) all sellers are perma-

nent; (b) α and U0 are independent. Further, note that sellers’ strategies depend on vector IN 

summarizing the number of potential sellers by group. We suppress this dependence below in 

the interest of clarity of exposition. 

Recall that the entry threshold is set so that it is equal to the expected profit from entry 

which realizes if competitors enter the auction with probabilities {p ∗ } and everybody follows k 

5Note that participation strategies are summarized by entry thresholds t ∗ 
k, k = 1, .., K so that realized proba-

∗bilities of entry are given by p = GE (t ∗), k = 1, .., K. We describe the algorithm in terms of the probabilities ofk k 
entry rather than thresholds. However, the entry thresholds can always be recovered from probabilities of entry. 

6See, for example, Bajari (2001). 
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equilibrium bidding functions to construct bids. Hence 

p ∗ 
k = G(π̄k), and π̄ k = E [Πk (σk(C), C; p̄  ∗ , σ ∗ )] . 

The numerical algorithm consists of two loops. The outside loop implements an iterative 

procedure which solves for p̄∗ such that equation (32) is satisfied. The inside loop computes 

for a given vector p̄  the optimal bidding functions which are then used in conjunction with the 

vector p̄  to compute expected profit from entry. The iterative procedure in the outside loop is 

fairly standard whereas the procedure for computing bidding strategies is specifically developed 

for this setting. That is why from here on we focus on the inside loop which computes bidding 

strategies. We suppress the dependence of Pr(A) on p̄  from notation for simplicity. 

1. Seller chooses bidding and strategy to maximize the following objective function: 

P 
(b − ci) A Pr(U0 ≤ αqκ(i) − b + �i and αqκ(j) − Bj + �j ≤ αqκ(i) − b + �i ∀ j ∈ A) Pr(A) 

which can be re-written as Z ZX 
(b − ci) FU0 (qκ(i) − αb + �i) Z A α �i Y 
× F�(Δi,j q − α(b − σκ(j)(cj )) + �i)dFκ(j)(cj )dF�(�i)dFα(α) Pr(A). 

cjj 6=i 

Here κ(i) denotes the quality group of seller i. Summation is over all possible sets of 

entrants, A, and Pr(A) reflects the probability that a given set of entrants is realized. 

2. For the derivation simplicity we re-write sellers’ strategies in terms of ‘offers’, ωi = µαqκ(i) − 

bi that are functions of seller’s surplus, si = µαqκ(i) − ci. That is, seller’s strategy is now 

given by γk : Sk → R. This is just a simple re-parametrization of the seller’s problem 

which now becomes " Z ZX 
(si − ωi) FU0 (ωi + α0qκ(i) + �i) 

A α �i #ZY 
× F�(ωi − γκ(j)(sj ) + α0(qκ(i) − qκ(j)) + �i)dFκ(j)(sj )dF�i (�i)dFα(α0) Pr(A), 

sjj 

where α0 = α − µα. 

3. Then, the first order conditions for this problem are given by X 
(J1,A + J2,A) Pr(A) = 0, 

A 
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where Z Z 
J1,A = − FU0 (ωi + α0qκ(i) + �i) 

α0 �iZY 
× F�(ωi − γκ(j)(sj ) + α0Δi,j q + �i)dFκ(j)(sj )dF�i (�i)dFα0 (α0) 

sjj (Z Z 
J2,A = (si − ωi) fU0 (ωi + α0qκ(i) + �i), 

α0 �iZY 
× F�(ωi − γκ(j)(sj ) + α0Δij q + �i)dFκ(j)(sj ) 

sjj 

L ZX 
+ FU0 (ωi + α0qκ(i) + �i) f�(ωi − γκ(j1)(sj1 ) + α0Δij q + �i)dFκ(j1)(sj1 ) 

j1=1 !) sj1 ZY 
× F�(ωi − γκ(j)(sj ) + α0Δij q + �i)dFκ(j)(sj ) dF�i (�i)dFα(α0). 

sj1j 6=j1 

4. Following Marshall, Meurer, Richard, and Stromquist (1994) we divide the support of Sk 

into small intervals. Further, we approximate each of the γk(.) functions by a polynomial 

of (sk − s̃l ) where s̃l is a centroid of l0s interval on the support of Sk. Specifically, we k k P∞ (l) 
)passume that γk(s) = a (s − s̃l on interval l. We also use their technique for p=0 k,p k 

representation of the nonlinear function of a bidding strategy in the form of a polynomial 

of (s − s̃k
l ) (see non-uniform case). We use spline approximation of the estimated densities 

to obtain coefficients in the polynomial expansion of the outside functions. The exact 

expression of the polynomial expansion of the first order conditions is 12 pages long and 

is available from the authors upon request. 

5. The polynomial expansion of first order conditions discussed in point (4) is summarized by 

a set of coefficients in front of the polynomial terms. To obtain n−th order approximation 

of the offer function we set the first n coefficients of the first order conditions expansion 

to zero and solve for a set of {a(l) } coefficients that satisfy this restriction. This part ofk,p 

our algorithm is borrowed from the projection methods. We deviate from the algorithm in 

Marshall, Meurer, Richard, and Stromquist (1994) at this point because the expressions 

for the coefficients in a first order conditions representation are non-linear functions of 

{a(l) } and thus we are unable to obtain an iterative expression similar to that in Marshall, k,p 

Meurer, Richard, and Stromquist (1994). 

6. The set of coefficients is obtained for a given set of starting points (boundary conditions). 

Once the set of coefficients is obtained we compute approximation error associated with a 

solution obtained under such starting point. Unlike a standard auction model the multi-

attribute auction model does not have a singularity on either end because of � and integra-
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tion over �. On the other hand, we do not solve for the coefficients so that the first order 

condition holds exactly (or arbitrary close). For this reason we do not target an objective 

function which reflects the fit of numerical solution at the boundary. Instead, we compute 

an error for each subinterval and then average it over the intervals. We incorporate this 

error into an iterative mechanism which searches for an optimal boundary condition. The 

search stops once the targeted precision is reached. In this our approach resembles the 

projection method. 

7. We have verified that this algorithm converges to a vector of equilibrium bidding functions 

in the case when all the relevant distributions are uniform. 
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F. Additional Empirical Results 

F1. Estimated Quality Structure 

In Table 2, we report the estimated quality structure for each given number of the groups. 

Table 2: Estimated Quality Structure for a Given Number of Groups 

Number of 
Groups K = 1 K = 2 K = 3 K = 4 K = 5 K = 6 

1 52 45 33 2 2 2 
2 0 7 12 31 26 24 
3 0 0 7 12 5 2 
4 0 0 0 7 12 5 
5 0 0 0 0 7 12 
6 0 0 0 0 0 7 

V̄ 9.21 2.61 1.77 0.85 0.73 0.31 
Q(K) 10.03 4.22 4.11 4.24 4.81 5.22 

This table shows the estimated quality group structures for the various numbers of quality groups for Eastern 

European suppliers with the medium levels of average reputation score. Rows 1-6 record the number of suppliers 

estimated to belong to a respective group. Rows 7 and 8 record the value of the p − value component of 

the criterion function and the value of the criterion function. The results are based on the penalty function 

Kg(L) = K log log L. Results indicate that the number of groups most supported by the data is equal to three. 
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Table 3: Number of Observations by Group 

Country 
Group 

Reputation 
Score 

North America Low 
North America Medium 
North America High 
Eastern Europe Low 
Eastern Europe Medium 
Eastern Europe High 

South and Eastern Asia Low 
South and Eastern Asia Medium 
South and Eastern Asia High 

Number of Observations 
(across pairs of sellers) 
smallest average 
122 511.7 
149 393.7 
131 240.6 
175 403.5 
137 344.7 
133 252.7 
110 647.7 
167 547.8 
155 258.2 

This table reports the number of observations available for the use in the classification algorithm. Specifically, 

a row corresponds to a cell defined by values of observable seller characteristics. The first column reports the 

smallest number of observations across pairs of sellers in a given cell that can be used to construct the value of 

the index for one of sellers in a pair; the second column reports the average number of such observations for a 

given cell. 
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F2. Robustness Analysis of Classification Results 

In this section we verify robustness of our results to some assumptions of the model. 

Unobserved Auction Heterogeneity. In our model, the distribution of buyers’ utility weights 

and the distribution of competitors’ costs are invariant (from sellers point of view) across projects 

conditional on projects’ observable characteristics. A researcher may be concerned that in the 

data for a given project sellers may have access to additional information about either of these 

objects, i.e. the empirical environment may be characterized by unobserved auction heterogene-

ity. Here, we first discuss how such unobserved heterogeneity may matter for our classification 

procedure. Then, we explain some of the robustness analyses we performed in order to reassure 

the reader about these concerns. 

Let us consider the case when sellers have access to additional information (unavailable 

to the researcher) about buyers’ utility weights for a specific project while the distribution 

of sellers’ costs remains free from unobserved project heterogeneity. Notice that the index in 

Proposition 1 which establishes quality rankings between sellers i and j by comparing their 

performance in two sets of auctions: for seller i we use auctions where seller i participates but 

seller j does not and for seller j we use auction where seller j participates but i does not. 

If unobserved heterogeneity is present then sellers may select into participation on the basis 

of the project unobserved heterogeneity. This would impact quality ranking in in two ways: 

(a) the distribution of buyer utility weights in the set of auctions where i participates may be 

different from the distribution of utility weights in the set of auctions where j participates; (b) 

due to selection into participation the distribution over sets of competitors in auctions where i 

participates may be different from the distribution over the sets of competitors in the auctions 

where j participates. In contrast, if sellers have additional information (unobserved by the 

researcher) about the competitors’ costs but the distribution of buyers’ utility weights does not 

vary across auctions in unobserved (to the researcher) way then the issue in (a) no longer arises. 

However, it is still possible that sellers’ participation decisions may vary across realizations of 

unobserved heterogeneity in which case the distributions over the sets of competitors would 

differ. 

To verify robustness of our results to ‘no unobserved heterogeneity’ assumption we re-estimate 

a quality group structure while comparing permanent sellers under a varying set of circumstances. 

First, (1) we compare sellers i and j using data for the projects where they both belong to a 

subset of potential sellers who contacted the buyer but may not have submitted a bid; further (2) 

we re-estimate classifications using variously defined subsets of the original dataset, i.e. imposing 

higher degree of homogeneity in terms of size and duration. In the first exercise we would expect 

to observe a lower degree of selectivity into participation relative to the benchmark case. In the 

second case, we use different subsets of projects so that the underlying distribution of unobserved 

heterogeneity if it is present would differ across these subsets. We would expect the estimation 

results to differ across specifications and to be different from our benchmark specification if 
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unobserved project heterogeneity affects this environment to an important degree. 

We find that quality group structures estimated under these specifications are very similar to 

the estimates we obtain under our benchmark specification. The difference between the estimated 

group structures across the specifications is always under 3% of the total number of permanent 

sellers. The confidence intervals are somewhat larger under alternative specifications. This is 

not surprising since the classification procedure in these cases is based on a much lower number 

of auctions. These results indicate that unobserved project-level heterogeneity, even if present, 

is unlikely to be large. This is perhaps not surprising given that we observe many important 

parameters of the project and we have access to the professional assessment of the project size. 

Fixed Seller Quality. In the interest of tractability we also assume that the seller’s quality 

is constant for all projects that share the same observable characteristics. Next, we verify 

robustness of our results to this assumption. Recall that in order to improve the power of our 

test we aggregate the test statistics over the interval of prices that belong to the intersection 

of the supports of the distributions of bids submitted by sellers i and j. To implement the 

robustness check we split the interval of bids we used in the original classification procedure 

into two sub-intervals and then re-do the classification for each sub-interval. We find that the 

estimated group structures are basically the same, with the difference among the three estimates 

being under 5% of the number of permanent sellers. These findings alleviate our concerns about 

the potential variation in sellers’ unobserved quality across projects. Indeed, if such project-

specific variation in seller’s quality were important, we would expect that the seller would be 

more likely to be classified as high quality in the auctions where he submits high bids. However, 

we do not find any substantial evidence of such regularity. 
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F3. Auxiliary Parameters in Baseline Model 

Tables 4, 5 and 6 report parameters of the estimated distributions of bids and probabilities of 

participation for permanent and transitory sellers in the case of our benchmark model. We esti-

mate that the number of reputation scores and an average reputation score matter for transitory 

bidders in a statistically significant way. The results show how these variables impact transitory 

sellers’ prices (bids). For example, having no reputation scores bears a negative premium of close 

to 8% relative to the price charged by a seller with more than six scores. On the other hand, 

having a positive but small number of scores erodes this negative premium to 4% or 3%. The 

average reputation score does not appear to be important when the number of scores is really 

small. However, the difference between 9 points and 10 is rewarded with a 5% premium if the 

number of scores is moderate. This is comparable to the 7% premium documented above for the 

case of a long-run average reputation score that corresponds to the large number of scores. 

Table 4: Participation Decision and Bid Distribution (Baseline Model) 

I(T) II(T) I(P) II(P) 
Mean 

Constant 

No Ratings 

0 < Ratings ≤ 3 

3 < Ratings ≤ 6 

0.552∗∗ 

(0.009) 

-0.083∗∗ 

(0.025) 

-0.043∗∗ 

(0.006) 

-0.021∗ 

(0.011) 

-2.105∗∗ 

(0.019) 

-0.33∗ 

(0.018) 

0.005 
(0.021) 

0.005 
(0.009) 

0.585∗∗ 

(0.052) 
-2.173∗∗ 

(0.009) 

Number of Ratings 0.0071 
(0.063) 

0.003 
(0.007) 

Average Score 1 

Average Score 2 

-0.005 
(0.005) 

0.050∗∗ 

(0.002) 

-0.004 
(0.011) 

0.011∗∗ 

(0.003) 

This table reports the effects of the covariates and the group premiums on sellers’ bid distribution and partic-

ipation decisions for the specification 2 presented in the paper. Columns I(T), II(T), and I(P), II(P) report 

estimated coefficients for the bid distribution and probability of participation of the transitory and permanent 

sellers respectively. “Average Score 1” and “Average Score 2” denote interactions of the current average score 

variable with the indicators for 0 ≤ Ratings ≤ 3 and 3 ≤ Ratings. The stars, ∗∗, indicate that a coefficient is 

significant at the 95% significance level. 
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Table 5: Participation Decision and Bid Distribution (Baseline Model) 

Score Q I(T) II(T) I(P) II(P) 
Mean, Quality Groups Fixed Effect 

North America Low 1 -0.218∗∗ 

(0.023) 
0.231∗∗ 

(0.021) 
-0.307∗∗ 

(0.046) 
0.031 
(0.027) 

North America Low 2 -0.173∗∗ 

(0.018) 
-0.042 
(0.022) 

-0.271∗∗ 

(0.044) 
-0.053∗∗ 

(0.025) 

North America Medium 2 -0.038∗∗ 

(0.022) 
-0.139∗∗ 

(0.023) 
-0.062 
(0.046) 

-0.105∗∗ 

(0.026) 

North America High 1 -0.173∗∗ 

(0.012) 
0.134∗∗ 

(0.023) 
-0.214∗∗ 

(0.041) 
0.165∗∗ 

(0.017) 

North America High 2 -0.108∗∗ 

(0.021) 
-0.265∗∗ 

(0.031) 
-0.166∗∗ 

(0.039) 
-0.193∗∗ 

(0.031) 

Eastern Europe Low 1 -0.026∗∗ 

(0.017) 
0.232∗∗ 

(0.021) 
-0.083∗ 

(0.043) 
0.205∗∗ 

(0.017) 

Eastern Europe Low 2 -0.062∗ 

(0.022) 
-0.194∗∗ 

(0.013) 
-0.176∗∗ 

(0.038) 
-0.108∗∗ 

(0.021) 

Eastern Europe Medium 1 -0.199∗∗ 

(0.035) 
0.034∗∗ 

(0.015) 
-0.246∗∗ 

(0.044) 
0.013 
(0.012) 

Eastern Europe Medium 2 -0.192∗∗ 

(0.024) 
-0.245∗∗ 

(0.021) 
-0.226∗∗ 

(0.048) 
-0.198∗∗ 

(0.022) 

Eastern Europe Medium 3 -0.128∗∗ 

(0.032)) 
-0.257∗∗ 

(0.017)) 
-0.167∗∗ 

(0.051) 
-0.232∗∗ 

(0.029) 

Eastern Europe High 1 -0.191∗∗ 

(0.024) 
-0.131∗∗ 

(0.023) 
-0.248∗∗ 

(0.038) 
-0.257 
(0.034) 

Eastern Europe High 2 -0.178∗∗ 

(0.043) 
-0.091∗∗ 

(0.031) 
-0.249∗∗ 

(0.051) 
-0.099∗∗ 

(0.012) 

Eastern Europe High 3 -0.132∗∗ 

(0.022) 
-0.221∗∗ 

(0.011) 
-0.172∗∗ 

(0.038) 
-0.206∗∗ 

(0.029) 

South-East Asia Low 1 -0.004 
(0.034) 

0.251∗∗ 

(0.012) 
0.086∗∗ 

(0.043) 
0.288∗∗ 

(0.023) 

South-East Asia Low 2 -0.246∗∗ 

(0.034) 
-0.231∗∗ 

(0.012) 
-0.226∗∗ 

(0.041) 
-0.204∗∗ 

(0.021) 

South-East Asia Low 3 -0.359∗∗ 

(0.044) 
-0.075∗∗ 

(0.011) 
-0.434∗∗ 

(0.043) 
-0.051 
(0.033) 

South-East Asia Medium 1 -0.108∗ 

(0.063) 
-0.075∗∗ 

(0.021) 
-0.196∗∗ 

(0.044) 
-0.117∗∗ 

(0.017) 

South-East Asia Medium 2 -0.183∗∗ 

(0.028) 
-0.071∗∗ 

(0.031) 
-0.231∗∗ 

(0.038) 
0.033∗∗ 

(0.010)) 

South-East Asia Medium 3 -0.253∗∗ 

(0.035) 
-0.074∗∗ 

(0.023) 
-0.374∗∗ 

(0.045) 
-0.059∗∗ 

(0.027) 

South-East Asia High 1 -0.112∗∗ 

(0.037) 
-0.195∗∗ 

(0.011) 
-0.178∗∗ 

(0.038) 
-0.105∗∗ 

(0.012) 

South-East Asia High 2 -0.095∗∗ 

(0.024) 
-0.299∗∗ 

(0.014) 
-0.065∗∗ 

(0.053) 
-0.281∗∗ 

(0.034) 

Std Error 0.207∗∗ 

(0.009) 
0.238∗∗ 

(0.011) 

This table reports the effects of the covariates and the group premiums on sellers’ bid distribution and partic-

ipation decisions for the specification 2 presented in the paper. Columns I(T), II(T), and I(P), II(P) report 

estimated coefficients for the bid distribution and probability of participation of the transitory and permanent 

sellers respectively. The stars, ∗∗, indicate that a coefficient is significant at the 95% significance level. 
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Figure 1: Assumption on the Distribution of Bids 
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This figure verifies suitability of the parametric assumption about the distribution of bids used in estimation. 

In order to construct this plot we purge the bids of permanent sellers of the observable variation (sellers’ country 

groups, reputation score group, quality group, the number of potential sellers by group). Then we construct a 

nonparametric density of the residuals from this regression. We plot the density of bid residuals jointly with the 

distribution of normal density with appropriate standard deviation and zero mean. 
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Table 6: Participation Decision and Bid Distributions: Competitive Effects (Baseline Model) 

Score Q I(T) II(T) I(P) II(P) 
Mean 

North America low 1 0.021 
(0.017) 

0.021 
(0.013) 

0.003 
(0.002) 

0.011∗∗ 

(0.005) 

North America low 2 0.011 
(0.012) 

0.015 
(0.012) 

-0.005 
(0.003) 

0.011∗∗ 

(0.004) 

North America 

North America 

medium 

medium 

1 

2 

-0.023∗∗ 

(0.011) 

-0.015∗ 

(0.008) 

-0.089∗∗ 

(0.011) 

-0.031∗∗ 

(0.015) 

-0.002 
(0.002) 

-0.004∗∗ 

(0.002) 

-0.004 
(0.004) 

-0.007∗ 

(0.003) 

North America high 1 0.052 
(0.031) 

0.001 
(0.0078) 

-0.007∗∗ 

(0.002) 
-0.012∗∗ 

(0.003) 

North America high 2 -0.026∗∗ 

(0.012) 
-0.085∗∗ 

(0.021) 
-0.008∗∗ 

(0.003) 
-0.016∗∗ 

(0.004) 

Eastern Europe low 1 -0.005 
(0.011) 

0.001 
(0.007) 

-0.001 
(0.002) 

0.002 
(0.005) 

Eastern Europe low 2 -0.007∗∗ 

(0.002) 
-0.025∗∗ 

(0.012) 
-0.005∗ 

(0.0026) 
-0.009∗∗ 

(0.0026) 

Eastern Europe medium 1 -0.005 
(0.003) 

-0.007 
(0.004) 

-0.003∗ 

(0.001) 
-0.007∗∗ 

(0.002) 

Eastern Europe medium 2 0.034 
(0.031) 

0.016 
(0.012) 

0.002 
(0.004) 

0.001 
(0.003) 

Eastern Europe medium 3 -0.021∗∗ 

(0.011) 
-0.016 
(0.015) 

0.001 
(0.002) 

-0.004 
(0.004) 

Eastern Europe high 1 -0.011 
(0.012) 

-0.012 
(0.017) 

-0.002 
(0.003) 

-0.003 
(0.005) 

Eastern Europe high 2 0.008 
(0.005) 

0.007 
(0.004) 

0.001 
(0.005) 

0.003 
(0.002) 

Eastern Europe high 3 -0.007 
(0.004) 

-0.011 
(0.019) 

0.002 
(0.003) 

-0.0001 
(0.003) 

South-East Asia low 1 0.001 
(0.011) 

-0.017∗ 

(0.003) 
-0.002∗ 

(0.001) 
-0.001 
(0.001) 

South-East Asia low 2 -0.003 
(0.004) 

-0.004 
(0.008) 

-0.008∗∗ 

(0.003) 
-0.019∗∗ 

(0.002) 

South-East Asia low 2 -0.023∗∗ 

(0.011) 
-0.026∗∗ 

(0.011) 
-0.001 
(0.002) 

0.001 
(0.003) 

South-East Asia medium 1 -0.011 
(0.012) 

-0.013 
(0.011) 

-0.004 
(0.003) 

-0.001 
(0.005) 

South-East Asia medium 2 -0.003 
(0.011) 

-0.002 
(0.011) 

-0.002 
(0.002) 

-0.004∗∗ 

(0.001) 

South-East Asia medium 3 0.023 
(0.033) 

0.015 
(0.014) 

-0.001 
(0.002) 

0.007 
(0.005) 

South-East Asia high 1 -0.004 
(0.003) 

-0.007 
(0.004) 

-0.002∗ 

(0.001) 
0.001 
(0.001) 

South-East Asia high 2 -0.024∗∗ 

(0.012) 
-0.039∗∗ 

(0.018) 
-0.004∗ 

(0.002) 
-0.007∗∗ 

(0.003) 

This table reports the coefficients summarizing the impact of the various potential competitors on sellers’ bid 

distribution and participation decisions. Columns I(T), II(T), and I(P), II(P) report estimated coefficients for 

the bid distribution and the probability of participation of transitory and permanent sellers respectively. The 

results are based on the data set consisting 11, 300 projects. The stars, ∗∗, indicate that a coefficient is significant 

at the 95% significance level. 
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F4. Alternative Specifications 

The estimates for the auxiliary objects are available from the authors upon request. 

Transitory sellers are an important feature of our setting that potentially introduces method-

ological challenges. That is why we estimate several specifications that differ in their treatment 

of transitory sellers. The results of estimation for these specifications are reported below. 

Specification one is the most general of out of all the specifications we consider in the paper. It 

allows the distributions of transitory and permanent sellers’ qualities potentially to be different. 

Under this specification the frequencies of different quality groups in the population of transitory 

sellers are estimated from the data. The second specification maintains the ‘no unobserved 

heterogeneity’ assumption for transitory sellers. 

We first compare specifications one to our baseline specification. Tables 7 and 8 report 

the parameters estimated in the second step of our estimation procedure. Table 7 reports the 

frequencies for the population of transitory sellers estimated in the second step of the first 

specification and compares them to the frequency distribution of quality groups in the population 

of permanent sellers estimated in the first step. The results in Table 7 suggest that the two 

frequency distributions are very similar, with the transitory sellers’ distribution allocating a 

slightly larger probability mass to the higher quality cells. 

Tables 8 and 9 show the estimated parameters of the distribution of buyers’ weights. The 

results for specifications one are reported in column one of these tables. The estimated coefficients 

are similar to those we obtain under the baseline specification. This specification tends to 

have somewhat larger standard errors in comparison to baseline specification. It is perhaps not 

surprising since specification one is substantially more challenging to estimate within the context 

of our model. Its performance could possibly be strengthened if the model also described the 

mechanism by which a seller becomes permanent or transitory. We, however, leave investigation 

of this issue for a separate project. 

We perform a further robustness check of our approach with specification two. The estimated 

coefficients for this specification are reported in column two of Tables 8 and 9. They differ from 

baseline specification and those for specification one in several important dimensions. First, the 

estimated variance of � is much higher under this specification. In addition, the estimated quality 

levels are less dispersed, with high quality levels being substantially lower. In some cases, we 

estimate quality levels that are not statistically distinct for different quality groups of permanent 

sellers. These differences reflect an attempt by specification three to rationalize buyers’ choices 

that allocate projects to transitory sellers when permanent sellers with comparable prices are 

available. Despite this, specification two lags behind baseline specification and specification one 

in predicting the probability that a project will be allocated to a transitory seller: the predicted 

probability for specification two is 0.73, whereas baseline specification and specification one 

get very close to the probability in the data (0.38) with predicted probabilities 0.36 and 0.32 

respectively. On the basis of these results we conclude that the assumption of the buyer not 
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being informed about the qualities of transitory sellers does not appear to be consistent with the 

data. 

Table 7: Estimated Quality Distributions of Transitory Sellers 

Country Average Permanent Sellers Transitory Sellers 
Group Score Q = L Q = M Q = H Q = L Q = M Q = H 
North America low 0.33 0.67 0.37∗∗ 0.63∗∗∗ 

(0.19) (0.23) 
North America medium 0.31 0.69 0.26 0.74∗∗∗ 

(0.21) (0.19) 
North America high 0.71 0.29 0.65∗∗∗ 0.45∗∗∗ 

(0.24) (0.21) 
Eastern Europe low 0.33 0.67 0.35∗∗∗ 0.65∗∗∗ 

(0.12 ) (0.19) 
Eastern Europe medium 0.63 0.23 0.13 0.51∗∗∗ 0.28∗∗∗ 0.21∗∗∗ 

(0.04) (0.11) (0.05) 
Eastern Europe high 0.07 0.78 0.14 0.12 0.70∗∗∗ 0.17∗∗∗ 

(0.11 ) (0.03) (0.03) 
East Asia low 0.68 0.20 0.12 0.63∗∗∗ 0.24∗∗∗ 0.13 

(0.17) (0.05) (0.11 ) 
East Asia medium 0.09 0.80 0.11 0.12 0.75∗∗∗ 0.13∗∗ 

(0.09 ) (0.12 ) (0.07 ) 
East Asia high 0.86 0.14 0.78∗∗∗ 0.22∗∗∗ 

(0.21 ) (0.04) 

This table compares the estimated distribution of transitory sellers’ qualities (far right panel) to the distribution 

of permanent sellers’ qualities as implied by the group structure recovered through the classification procedure 

(see table 4). In this table (∗∗∗) indicates that the estimated parameter is statistically significant at the 95% 

significance level. 
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Table 8: Buyers’ Tastes and Quality levels (Alternative Specifications) 

Variable Specification 1 Specification 2 

log(σ�) 

log(σα) 

µU0 

log(σU0 ) 

σα,U0 

-0.732∗∗ 

(0.223) 

-1.028∗∗ 

(0.211) 

-2.213∗∗ 

(0.332) 

-0.246∗ 

(0.131) 

0.149 
(0.092) 

-0.228∗ 

(0.192) 

-1.865∗∗ 

(0.033) 

-1.113∗∗ 

(0.009) 

0.136∗ 

(0.072) 

-0.052 
(0.037) 

The quality level for South and East Asia, low score, Q = 1, is normalized to be equal to zero. The columns in the 

table show the estimated coefficients and corresponding standard errors for several specifications: specification 

(1) corresponds to the case when the distribution of transitory sellers’ qualities is estimated, whereas specification 

(2) corresponds to the robustness check where we assume that the buyer is not informed about transitory sellers’ 

qualities and thus treats them as homogeneous conditional on observable characteristics. The stars, ∗∗, indicate 

that a coefficient is significant at the 95% significance level. 
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Table 9: Buyers’ Tastes and Quality levels (Alternative Specifications) 

Score Quality 
Variable Group Group Specification 1 Specification 2 

Estimated Quality Levels 

North America low 1 0.062 
(0.081) 

-0.021∗∗ 

(0.009) 

North America low 2 0.399∗∗ 

(0.065) 
0.298∗∗ 

(0.006) 

North America medium 1 0.001 
(0.023) 

-0.013 
(0.008) 

North America medium 2 0.412∗∗ 

(0.057) 
0.235∗∗ 

(0.011) 

North America high 1 0.003 
(0.032) 

-0.019∗∗ 

(0.009) 

North America high 2 0.488∗∗ 

(0.071) 
0.261∗∗ 

(0.010) 

Eastern Europe low 1 0.112 
(0.102) 

0.116∗∗ 

(0.012) 

Eastern Europe low 2 0.703∗∗ 

(0.012) 
0.322∗∗ 

(0.002) 

Eastern Europe medium 1 0.111 
(0.104) 

-0.031∗∗ 

(0.016) 

Eastern Europe medium 2 0.385∗∗ 

(0.031) 
0.123∗∗ 

(0.004) 

Eastern Europe medium 3 0.781∗∗ 

(0.035) 
0.345∗∗ 

(0.001) 

Eastern Europe high 1 0.001 
(0.031) 

-0.032∗∗ 

(0.004) 

Eastern Europe high 2 0.289∗∗ 

(0.047) 
0.129∗∗ 

(0.005) 

Eastern Europe high 3 0.789∗∗ 

(0.069) 
0.351∗∗ 

(0.004) 

South and East Asia low 1 0.000 0.000 

South and East Asia low 2 0.108∗∗ 

(0.043) 
0.154∗∗ 

(0.025) 

South and East Asia low 3 0.512∗∗ 

(0.034) 
0.178∗∗ 

(0.024) 

South and East Asia medium 1 0.001 
(0.101) 

-0.001 
(0.004) 

South and East Asia medium 2 0.201∗∗ 

(0.059) 
0.064∗∗ 

(0.005) 

South and East Asia medium 3 0.535∗∗ 

(0.042) 
0.297∗∗ 

(0.003) 

South and East Asia high 1 0.067 
(0.041) 

0.068∗∗ 

(0.002) 

South and East Asia high 2 0.586∗∗ 

(0.012) 
0.301∗∗ 

(0.005) 

Pr(transitory seller wins) 0.41 0.23 

The quality level for South and East Asia, low score, Q = 1, is normalized to be equal to zero. Specification (1) 

corresponds to the case when the distribution of transitory sellers’ qualities is estimated, whereas specification 

(2) corresponds to the robustness check where we assume that the buyer is not informed about transitory sellers’ 

qualities and thus treats them as homogeneous conditional on observable characteristics. 
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F5. Bidding Functions and the Distribution of Sellers’ Costs 

Figure 2: Bid Functions 
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The figure shows the equilibrium bidding strategies of permanent sellers recovered from the first order conditions 

of bidders’ optimization program. The convexity at the upper end of the costs’ support arises due to presence of 

stochastic component in buyers’ tastes. 
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Table 10: Project Costs Distributions (Permanent Sellers) 

Country Score Quality Mean Standard Deviation 
Group Group Group Estimate Std.Error Estimate Std.Error 
North America Low 1 1.239 (0.013) 0.053 (0.006) 
North America Low 2 1.275 (0.012) 0.087 (0.005) 
North America Medium 1 1.627 (0.012) 0.039 (0.005) 
North America Medium 2 1.551 (0.010) 0.073 (0.004) 
North America High 1 1.165 (0.011) 0.053 (0.006) 
North America High 2 1.535 (0.013) 0.099 (0.004) 
Eastern Europe Low 1 1.169 (0.011) 0.037 (0.005) 
Eastern Europe Low 2 1.328 (0.010) 0.079 (0.004) 
Eastern Europe Medium 1 1.576 (0.012) 0.119 (0.005) 
Eastern Europe Medium 2 1.202 (0.009) 0.062 (0.002) 
Eastern Europe Medium 3 1.331 (0.009) 0.101 (0.003) 
Eastern Europe High 1 1.575 (0.011) 0.119 (0.004) 
Eastern Europe High 2 0.981 (0.008) 0.048 (0.002) 
Eastern Europe High 3 1.354 (0.009) 0.089 (0.002) 
South and East Asia Low 1 1.621 (0.010) 0.056 (0.005) 
South and East Asia Low 2 1.119 (0.011) 0.051 (0.002) 
South and East Asia Low 3 1.317 (0.011) 0.169 (0.004) 
South and East Asia Medium 1 1.609 (0.008) 0.107 (0.002) 
South and East Asia Medium 2 1.289 (0.009) 0.121 (0.003) 
South and East Asia Medium 3 1.255 (0.009) 0.124 (0.003) 
South and East Asia High 1 1.074 (0.008) 0.036 (0.002) 
South and East Asia High 2 1.235 (0.008) 0.047 (0.002) 

This table summarizes the means and standard errors of the estimated distributions of permanent sellers’ project 

costs. 
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Table 11: Entry Cost Distribution (Permanent Sellers) 

Country Score Quality Mean Standard Deviation 
Group Group Group Estimate Std.Error Estimate Std.Error 
North America Low 1 0.081 (0.035) 0.054 (0.022) 
North America Low 2 0.074 (0.041) 0.055 (0.024) 
North America Medium 1 0.072 (0.045) 0.050 (0.021) 
North America Medium 2 0.073 (0.033) 0.057 (0.029) 
North America High 1 0.083 (0.029) 0.058 (0.029) 
North America High 2 0.082 (0.025) 0.059 (0.021) 
Eastern Europe Low 1 0.112 (0.033) 0.072 (0.034) 
Eastern Europe Low 2 0.113 (0.038) 0.067 (0.029) 
Eastern Europe Medium 1 0.103 (0.034) 0.068 (0.031) 
Eastern Europe Medium 2 0.104 (0.021) 0.065 (0.029) 
Eastern Europe Medium 3 0.101 (0.027) 0.064 (0.023) 
Eastern Europe High 1 0.104 (0.021) 0.075 (0.034) 
Eastern Europe High 2 0.103 (0.013) 0.073 (0.032) 
Eastern Europe High 3 0.105 (0.023) 0.076 (0.034) 
South and East Asia Low 1 0.107 (0.043) 0.067 (0.033) 
South and East Asia Low 2 0.118 (0.026) 0.065 (0.036) 
South and East Asia Low 3 0.117 (0.034) 0.063 (0.033) 
South and East Asia Medium 1 0.091 (0.025) 0.059 (0.023) 
South and East Asia Medium 2 0.096 (0.023) 0.061 (0.029) 
South and East Asia Medium 3 0.097 (0.017) 0.060 (0.029) 
South and East Asia High 1 0.104 (0.013) 0.064 (0.033) 
South and East Asia High 2 0.112 (0.021) 0.062 (0.031) 

This table summarizes the means and standard errors of the estimated distributions of permanent sellers’ entry 

costs. 

F6. Participation and Impact of International Trade 

In this section we investigate the social cost associated with restrictions on the international trade 

while emphasizing adjustment in the sellers’ participation choices. Specifically, we contrast the 

market outcomes arising in the auction environment with those that would realize if allocation 

decisions were implemented by a social planner.7 We consider two scenarios: (a) the unrestricted 

match of a buyer to a seller where a social planner has full information about potential bidders’ 

costs and qualities as well as about the realization of the buyer’s utility coefficients; (b) an 

allocation mechanism where a social planner has to pay entry fee in order to learn the sellers’ 

costs but he is fully informed about the sellers’ qualities and the realization of the buyer’s utility 

coefficients. 

Let us begin by describing the details of these experiments. In experiment (a) a social planner 

7We are grateful to one of the referees for suggesting this exercise. 
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chooses the best match for a given buyer among the set of potential bidders associated with his 

project.8 In experiment (b) the social planner observes the entry costs of the potential bidders 

at the time when he decides for which sellers the entry costs should be paid in order to uncover 

their project costs; after that he observes the project costs of the chosen “entrants”. 

As in the auction analysis we assume that all potential bidders are permanent and hold the 

total number of potential bidders fixed at the level observed in the data. Again, the variety 

of the sellers available to the buyers is restricted by replacing the quality levels and the cost 

distributions of the foreign sellers with those of the US sellers conditional on the average score 

group and quality rank. The medium quality sellers are relabeled as either low or high quality 

so that the original ratio between the sizes of these groups remains constant. 

Since the social planner observes the buyer’s preferences (αl and �j,l) and because the com-

position of the set of potential bidders varies across projects, all seller groups receive a non-zero 

share of projects. In the experiment (a), we measure social welfare delivered by matching seller 

j to buyer l as 

w(qj , Cj,l; αl, �l) = ũj,l + (Bj,l − Cj,l), 

where ũj,l = −µU0 + αlqj − Bj,l + �j,l. Here ũj,l reflects buyer l utility from seller j relative to 

the mean of the outside option. The social planner chooses a seller j0 from the set of potential 

bidders associated with project l, Nl, so that social welfare for a given project is maximized: 

j0 = arg maxj∈Nl w(qj, Cj,l; αl, �l). Then, we define 

¯ ˜W (Nl, Cl; αl, �l) = uj0,l + (Bj0,l − Cj0,l), 

where C̄ 
l denoted the vector of project costs of the sellers in Nl. The average per project welfare 

in this market is given by 

P R R
¯ ¯W = 

C̄ W (Nl, Cl) Pr(Nl).Nl α,� Cl; αl, �l)dFα,�(αl, �l)dFC ( ¯ 

In the experiment (b), the social welfare for project l is modified as follows 

P¯ ¯W (Al, CAl , ENl ; αl, �l) = ũj0,l + (Bj0,l − Cj0,l) − j∈Al 
Ej,l, 

where Al is a subset of potential bidders for whom the social planner chooses to pay the entry 

fee in order to learn their project cost realizations; {Ej,l}j∈Al is the vector of entry costs for this 

8We do not restrict the set of potential sellers in any way except to allow it to be sufficiently large. Such 
approach is without a loss of generality. Indeed, in the data the number of sellers who are allocated to the projects 
in any given week is only a small subset of the sellers who submit messages to the buyers (potential bidders). 
Therefore, a surplus of potential bidders exists which, theoretically, is available for the social planner to draw on 
in order to decide on the allocation for a given project. Further, in the analysis with the entry costs only the 
number of potential bidders selected to draw project costs but not their fraction is important. 
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Table 12: Further Analysis on the Impact of International Trade 

All US Sellers Low and High 
Groups Only Quality Only 

Social planner: Free match 

Total Surplus 1.190 1.179 1.186 
Share of outside option 0.003 0.003 0.003 
Number of sellers 20 20 20 

Social planner: Costly Participation 

Total Surplus before Entry Costs 
Social Welfare net of Entry Costs 
Share of outside option 
Number of sellers 
Composition of sellers 

1.063 
0.859 
0.005 
8.88 

high quality 
(0.88,5,3) 

1.048 
0.872 
0.006 
8 

high quality 
(8,0,0) 

1.036 
0.858 
0.006 
9.2 

high quality 
(0,4,4.2) 

Auction 

Buyer Surplus 
Social Welfare net of Entry Costs 
Share of outside option 
Number of sellers 

0.746 0.565 0.771 
0.777 0.605 0.798 
0.043 0.148 0.040 
3.813 2.151 4.104 

This table reports the results of a counterfactual analysis investigating the allocation decisions in this market 

from social planner’s point of view. The analysis emphasizes the importance of participation effects which here 

are interpreted as the number and composition of the sellers that the social planner chooses to consider. The 

results for the auction allocations are reported for comparison in the bottom panel of the table. The first column 

presents the results for the baseline setting where all quality groups are present. The second column presents 

the outcomes from the setting where foreign potential bidders are replaced by the US potential bidders while 

preserving the sellers’ quality ranks (medium-quality is replaced by high- and low-quality preserving original 

shares of these quality levels in population). The last column is included for comparison purposes. It reports 

the results for the intermediate step where medium-quality potential bidders are replaced by high- and medium-

quality potential bidders without changing the seller’s country of origin. The composition of the sellers shown in 

the brackets refers to the average number of the sellers by the country of origin listing the US first, then Eastern 

Europe and South and East Asia last. Buyer and social surpluses are measured relative to the expected value of 

the outside option. 

subset of potential bidders; j0 is defined as before (j0 = arg maxj∈Nl w(qj, Cj,l; αl, �l)); and Al is 

chosen to maximize the expected welfare for this project with the expectation taken with respect 

to the distribution of the project costs for the sellers in Al: R 
Al = arg maxA⊂Nl C̄ 

A 
W (A, C̄ 

A; αl, �l)dFC (C̄ 
A). 

Notice that in both experiments there is no need to compute prices because they drop out from 
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the welfare expression. 

Table 12 summarizes the results of this analysis. As can be easily seen, the unrestricted social 

planner achieves the highest social surplus before the entry costs. The social planner subject to 

the entry costs achieves the second highest level of surplus whereas the auction setting delivers the 

lowest welfare. In the first case the social welfare is high because the planner has an opportunity 

to choose among a large number of sellers. His decision thus reflects the optimum based on a 

large number of random draws. In case (b) and in the auction environment, the set of alternatives 

available to the buyer is substantially reduced since adding an alternative to the choice set is 

costly. The social planner in case (b) performs better than the auction mechanism because he is 

able to fully internalize the benefit to the buyer’s welfare from a given cost draw. In the auction 

environment this social benefit is ignored since sellers base their participation decisions only on 

private profitability. Additionally, prices (and profitability) which endogenously decline in the 

number of participants further limit entry in the auction environment. Thus, the auction setting 

is characterized by insufficient entry from the social point of view. 

Internalizing the benefits from additional participation helps the social planner to limit the 

losses associated with the reduction in the variety of seller types. Indeed, under scenario (a), 

the loss is minimal (1.1%) since the ability to optimize over the cost draws within quality group 

compensates for the less desirable group-level characteristics of the available seller groups. Under 

counterfactual scenario (b), the social planner is actually able to achieve higher social surplus 

after entry costs under reduced variety relative to the baseline case (the surplus before the entry 

cost is higher in the baseline case). This outcome arises because the US sellers have lower entry 

costs than the sellers from other countries. As a result under scenario (b) the welfare is improved 

by 1.3% in contrast to 32% reduction which is realized in the auction market. 
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