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In many procurement auctions, the bidders’ unobserved costs depend both on a common shock and 
on idiosyncratic private information. Assuming a multiplicative structure, I derive suffcient conditions 
under which the model is identifed and propose a non-parametric estimation procedure that results in uni-
formly consistent estimators of the cost components’ distributions. The estimation procedure is applied 
to data from Michigan highway procurement auctions. Private information is estimated to account for 
34% of the variation in bidders’ costs. It is shown that accounting for unobserved auction heterogeneity 
has important implications for the evaluation of the distribution of rents, effciency, and optimal auction 
design. 
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1. INTRODUCTION 

A researcher analysing choices of an economic agent often cannot observe some of the inputs 
that went into the agent’s decision problem. Such missing information is typically referred to 
as unobserved heterogeneity, and addressing it is important in many empirical applications. For 
example, labour and macroeconomists face this issue when they analyse the decision to go to 
college since individual’s costs or return to education are only imperfectly measured in the data. 
The same problem arises in the empirical analysis of auctions with private information. For ex-
ample, the results of an empirical evaluation of the distribution of rents, effciency, or an optimal 
design of an auction mechanism depend on the researcher’s ability to uncover the distribution 
of bidders’ private information, and the auction literature has long emphasized that unobserved 
variation in the distribution of bidders’ private information is likely present in many environ-
ments. Several methods have been proposed in the literature to control for unobserved auction 
heterogeneity. However, it remained unclear whether private information can be separated from 
unobserved auction heterogeneity on the basis of auction data. 

In a frst-price auction environment where bidder valuations are known to them but are 
their private information, a growing literature started by Laffont, Ossard and Vuong (1995) and 
Guerre, Perrigne and Vuong (2000) uses the equilibrium relationship between bids and valua-
tions to uncover the distribution of private information. The identifcation power of the methods 
proposed by this literature crucially relies on the fact that, after controlling for observed auction 
characteristics, the remaining variation in bids is generated by variation in private information. 
More specifcally, these methods cannot be directly applied in an environment where a part of 

293 



“rdq004” — 2011/1/7 — 12:52 — page 294 — #2

294 REVIEW OF ECONOMIC STUDIES 

the variation in bids may be generated by systematic differences in auctions that are known to 
bidders but unobserved by the researcher. 

This paper studies the frst-price auction environment with private information and unob-
served auction heterogeneity. It uses insights from a multifactor measurement error literature to 
develop a non-parametric estimation method to recover distributions of private information and 
unobserved auction heterogeneity from submitted bids. It also establishes suffcient conditions 
under which these distributions are identifed and shows uniform consistency of the estimators. 
The estimation method is applied to data from Michigan highway procurement auctions to quan-
tify the importance of private information in this market and to demonstrate the implication of 
unobserved auction heterogeneity for the evaluation of the distribution of rents, effciency, and 
optimal mechanism design. 

I assume that an environment with unobserved auction heterogeneity with n bidders can be 
characterized by a set of (n + 1) factors. One of the factors, a common cost component, repre-
sents information about cost attributes that are available to all bidders. Part of this information 
may not be observed by the researcher. Other factors, individual cost components, refect cost 
attributes privately observed by each bidder. A bidder’s costs are given by the product of the com-
mon cost component and this bidder’s individual cost component. This cost structure implies that 
the distribution of costs may vary across projects even after all project characteristics known to 
the researcher are held constant. I allow bidders to be asymmetric, so that the distribution of the 
individual cost component may vary with the observable bidder characteristics. 

The unobserved part of the common component (unobserved auction heterogeneity) gener-
ates dependence between bids submitted in the same auction. This dependence can be used to 
recover the distributions of the unobserved auction heterogeneity and individual bid components. 
In particular, I show that the distributions of components are identifed from the joint distribu-
tion of two arbitrary bids submitted in the same auction when the individual cost components 
are independently distributed across bidders and are independent from the common component. 
Further, the distributions of individual bid components are used to uncover the distributions of 
individual cost components. The identifcation argument suggests a number of tests that can be 
performed to verify whether assumptions of the multifactor model are satisfed in the data. The 
paper also demonstrates that the set of bid distributions that can be rationalized by affliated 
private values (APV), another informational environment that induces dependence in bids sub-
mitted in the same auction, is distinct from the set of bid distributions that can be rationalized by 
the model with unobserved auction heterogeneity. It proposes a test that can be used in practice 
to distinguish between these environments. 

The estimation procedure proposed in the paper follows the steps of the identifcation ar-
gument. The Monte Carlo simulations confrm that the estimation procedure performs well in 
samples of moderate size. 

I use data from Michigan highway procurement auctions to quantify the importance of ac-
counting for unobserved auction heterogeneity. I estimate the distributions of private informa-
tion and unobserved auction heterogeneity using the estimation procedure described earlier in 
the paper. I test the assumptions of the model and fnd that they are strongly supported by the 
data. The results of the estimation suggest that variation in private information accounts for 
only 34.4% of the bid variation. While comparing these results to the results obtained under 
alternative assumptions of independent private values (IPV) and APV, I fnd that the bid strate-
gies recovered under alternative assumptions tend to overestimate the markup over bidders’ cost 
relative to the estimates obtained under the assumption of unobserved auction heterogeneity. I 
also fnd that the distributions of bidders’ costs recovered under alternative assumptions tend to 
have lower means and higher variances compared to the estimates obtained under unobserved 
heterogeneity. In particular, I fnd that the average markup estimated under the unobserved 
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heterogeneity assumption is 8.4%, whereas the average markup is 14% for the APV assumption 
and 19% for the IPV assumption. The variance of the estimated costs distribution is 18% and 
22% higher under these alternative assumptions relative to the variance of the costs distribution 
estimated under unobserved auction heterogeneity. 

I use three sets of estimates to derive an optimal reserve price that minimizes procurement 
costs. I fnd that the reserve price chosen on the basis of IPV or APV estimates leads to signif-
icantly higher costs of procurement than the reserve price chosen on the basis of the estimates 
that account for the presence of unobserved auction heterogeneity. This result holds both in the 
case where the reserve price is derived as a function of a specifc realization of unobserved het-
erogeneity and in the case where a single reserve price is chosen in such a way as to minimize 
the average cost of procurement where the average is computed with respect to the distribution 
of unobserved heterogeneity. In the latter case, the average cost of the procurement is about 9%– 
19% lower than the average cost achieved when the reserve price based on either IPV or APV 
estimates is used. 

This paper contributes to the literature on the estimation of auction models that aims to 
uncover the distribution of bidders’ private information from the submitted bids. In particular, 
Donald and Paarsch (1993, 1996) and Laffont, Ossard and Vuong (1995) develop parametric 
methods to recover the distribution of costs from the observed distribution of bids. Elyakime 
et al. (1994, 1997) propose a non-parametric method to estimate the distribution of costs. Guerre, 
Perrigne and Vuong (2000) study identifcation of the frst-price auction model with symmet-
ric bidders and propose a uniformly consistent estimation procedure. Li, Perrigne and Vuong 
(2000, 2002) extend the result to the APV and the conditionally IPV models. Campo, Perrigne 
and Vuong (2003) prove identifcation and develop a uniformly consistent estimation procedure 
for frst-price auctions with asymmetric bidders and APV. These papers rely on the assump-
tion of no unobserved auction heterogeneity, i.e. they explicitly use a one-to-one mapping be-
tween the distribution of bidders’ costs and the distribution of observed bids that arises in such 
environments. 

The paper by Li, Perrigne and Vuong (2000), LPV hereafter, also uses the methods of mul-
tifactor measurement error analysis. LPV consider the model with conditionally IPV. They as-
sume that variation in bids is generated by variation in observable factors and private information 
only, so that their model does not allow for unobserved auction heterogeneity. The innovation 
in LPV is to allow for bidders’ costs to be composed of common and individual factors. Thus, 
the structure of costs is similar to the one in my paper. However, unlike the environment with 
unobserved auction heterogeneity studied in my paper, in LPV the common factor is part of 
the private information of the bidder. Moreover, the bidder himself does not observe the re-
alization of the common factor separately from the entire realization of his costs (his private 
information). He only knows the draw of his private information that is composed of com-
mon and individual factors. This implies that standard methods (that do not distinguish between 
common and individual factors) are still fully applicable in this environment. Having estimated 
the distribution of private information, LPV apply the multifactor decomposition, a result from 
a measurement error literature, in order to understand correlation patterns in bidders’ private 
information. 

The few papers that address the issue of unobserved auction heterogeneity include Campo, 
Perrigne and Vuong (2003), Bajari and Ye (2003), Haile, Hong and Shum (2003), Hong and 
Shum (2002), Athey and Haile (2000), and Chakraborty and Deltas (1998). The frst two papers 
rely on the assumption that the number of bidders can serve as a suffcient statistic for the unob-
served auction heterogeneity. Haile, Hong and Shum (2003) appeal to the instrumental variables 
approach to control for the variation generated by unobserved factors. More recently, Guerre, 
Perrigne and Vuong (2009) build on this methodology to identify the model with unobserved 
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heterogeneity based on exclusion restrictions derived from bidders’ endogenous participation. 
Hong and Shum (2002) account for unobserved auction heterogeneity by modelling the median 
of the bid distribution as a normal random variable with a mean that depends on the number of 
bidders. Athey and Haile (2000) study identifcation of auction models with unobserved auc-
tion heterogeneity in the context of second-price and English auctions. Chakraborty and Deltas 
(1998) assume that the distribution of bidders’ valuations belongs to a two-parameter distribu-
tion family. They use this assumption to derive small-sample estimates for the corresponding 
parameters of the auction-specifc valuation distributions. The estimates are later regressed on 
observable auction characteristics to determine the percentage of values variation that is due to 
unobserved auction heterogeneity. 

Highway procurement auctions have been extensively studied in the literature. Porter and 
Zona (1993) fnd evidence of collusion in Long Island highway procurement auctions. Bajari 
and Ye (2003) reject the hypothesis of collusive behaviour in procurement auctions conducted in 
Minnesota, North Dakota, and South Dakota. Jofre-Bonet and Pesendorfer (2003) fnd evidence 
of capacity constraints in California highway procurement auctions. Hong and Shum (2002) 
fnd some evidence of common values in bidders’ costs in the case of New Jersey highway 
construction auctions. Bajari and Tadelis (2001) and Bajari, Houghton and Tadelis (2004) study 
the implications of the incompleteness of procurement contracts. 

The paper proceeds as follows. Section 2 describes the model. Section 3 discusses iden-
tifcation and testable implications of the model. Section 4 details the estimation procedure 
and summarizes results of the simulation study. Section 5 presents results of estimation and 
Section 6 concludes. 

2. THE MODEL 

This section describes the frst-price auction model under unobserved auction heterogeneity and 
summarizes properties of the equilibrium bidding strategies. 

The seller offers a single project for sale to m bidders. Bidder i ’s cost is equal to the product 
of two components: one is common and known to all bidders; the other is individual and the 
private information of frm i . Both the common and the individual cost components are random 
variables, and they are denoted by the capital letters Y and X, respectively. The small letters y 
and x denote realizations of the common component and the vector of individual components. 
The two random variables (Y , X) are distributed on [y, y] × [x,x]m , y > 0, x > 0, according to 
the probability distribution function F , 

Pr(Y ≤ y0, X ≤ x0) = F(y0, x0). 

2.1. Asymmetries between bidders 

I assume that there are two groups of bidders: m1 bidders are from Group 1 and m2 bidders, 
m2 = (m −m1), are from Group 2. Thus, the vector of independent cost components is given by � � 
X = X11, . . . , X1m1 , X2(m1+1), . . . , X2m . The model and all the results can easily be extended 
to the case of m groups. I focus on the case of two groups for the sake of expositional clarity. 
Groups are defned from the observable characteristics of bidders. 

Assumptions (D1)–(D4) are maintained throughout the paper. 

(D1) Y and X j ’s are mutually independent and distributed according to 

jY =m1 j =mY 
F(y0, x10, . . . , xm0) = FY (y0) FX1 (xj 0) FX2 (xj 0), 

j =1 j =m1+1 
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where FY , FX1, and FX2 are marginal distribution functions of Y , X1 j , and X2 j , re-
spectively. The supports of FY and FXk are given by S(FY ) = [y, y], y > 0, y ≤ y; 
S(Fk ) = [x, x], 0 < x < ∞, x ≤ x, for k {1,2}. 

(D2) The probability density functions of the individual cost components, fX1 and fX2, are 
continuously differentiable and strictly positive on the interior of (x, x). 

(D3) E X1 j = 1. 
(D4) The number of bidders is common knowledge. There is no binding reservation price. 

Assumption (D2) ensures the existence and uniqueness of equilibrium.1 The identifcation 
result relies on assumptions (D1) and (D3). In particular, assumption (D3) is used to fx the 
scale of one of the cost components.2 (D4) summarizes miscellaneous assumptions about the 
auction environment. 

The auction environment can be described as a collection of auction games indexed by the 
different values of the common component. An auction game corresponding to the common 
component equal to y, y [y, y], is analysed below. 

The cost realization of bidder i is equal to xi × y, where xi is the realization of the individual 
cost component. The information set of bidder i is given by Pyi = {y,xi | xi [x, x]}. A bidding 
strategy of bidder i is a real-valued function defned on [x, x] 

βyi : [x, x] → [0,∞]. 

I use a small Greek letter β with subscript yi to denote the strategy of bidder i as a function 
of the individual cost components and a small Roman letter b to denote the value of this function 
at a particular realization x. 

2.2. Expected proft 

The proft realization of bidder i , πyi (bi ,b−i ,xi ), equals (bi −xi × y) if bidder i wins the project 
and zero if he loses. The symbol bi denotes the bid submitted by bidder i , and the symbol b−i 
denotes the vector of bids submitted by bidders other than i . At the time of bidding, bidder i 
knows y and xi but not b−i . The bidder who submits the lowest bid wins the project. The interim 
expected proft of bidder i is given by 

E[πyi | Xi = xi ,Y = y] = (bi − xi × y)× Pr(bi ≤ bj , j = i | Xi = xi ,Y = y). 

A Bayesian Nash equilibrium is then characterized by a vector of functions βy = {βy1, . . . , 
βym } such that byi = βyi (xi ) maximizes E[π i | X = xi ,Y = y], when bj = βy j (xj ), j = i , 
j = 1, . . . ,m; for every i = 1, . . . ,m and for every realization of Xi . 

McAdams (2003) and others establish that, under assumptions (D1)–(D2), a vector of equi-
librium bidding strategies βy = {βy1, . . . ,βym } exists and is unique. The strategies are strictly 
monotone and differentiable. 

Next, I characterize a simple property of the equilibrium bidding strategies. 

Proposition 1. If (α1(∙), . . . ,αm (∙)) is a vector of equilibrium bidding strategies in the game 
with y = 1, then the vector of equilibrium bidding strategies in the game with y, y [y, y], is 
given by βy = {βy1, . . . ,βym } such that βyi (xi ) = yαi (xi ), i = 1, . . . ,m. 

1. These conditions are not necessary for the existence of the equilibrium. They are convenient because they 
guarantee good properties of the estimators proposed later in the paper. 

2. There are several assumptions that would serve the same purpose, e.g. E[Y ] = 1 is one of them. My choice of 
normalization is motivated by application. 
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The proposition3 shows that the bid function is multiplicatively separable into a common and 
an individual bid component, where the individual bid component is given by αi (∙). The proof of 
this proposition is based on the comparison of the two sets of frst-order conditions and follows 
immediately from the assumption that costs are multiplicatively separable and that the common 
component is known to all bidders. 

Next, I characterize the necessary frst-order conditions for the set of equilibrium strategies 
when y = 1. Note that αi (∙) denotes a strategy of bidder i as a function of the individual cost 
component and ai the value of this function for a particular realization of Xi . The equilibrium 
inverse individual bid function for a group k bidders is denoted by ξk. Since the function αk(∙) 
is strictly monotone and differentiable, the function ξk (∙) is well defned and differentiable. 

The probability of winning in this game can be expressed as 
�� ��(mk(i )−1) �� ��m−k(i )Pr(aj ≥ ai , j = i ) = 1 − FXk(i ) (ξk(i )(ai )) 1 − FX−k(i ) (ξ−k(i )(ai )) . 

Here k(i ) denotes bidder i ’s group and “−k(i )” denotes the complementary group. The neces-
sary frst-order conditions are then given by 

1 fXk(i ) (ξk(i )(a))ξk(i )(a) fX−k(i ) (ξ−k(i )(a))ξ−k(i )(a) 
= (mk(i ) − 1) + m−k(i ) . (1) 

a − ξk(i )(a) 1 − FXk(i ) (ξk(i )(a)) 1 − FX−k(i ) (ξ−k(i )(a)) 

Here ξk (∙) denotes the derivative of ξk (∙). 
Equation (1) characterizes the equilibrium inverse individual bid function when y = 1. It 

describes the trade-off the bidder faces when choosing a bid: an increase in the markup over the 
cost may lead to a higher ex post proft if bidder i wins, but it reduces the probability of winning. 
The bid a is chosen in such a way that the marginal effects of an infnitesimal change in a bid on 
the winner’s proft and the probability of winning sum to zero. 

The next section uses properties of the equilibrium bidding functions to show how the prim-
itives of the frst-price auction model can be recovered from the submitted bids in the presence 
of unobserved auction heterogeneity. 

3. IDENTIFICATION AND TESTABLE IMPLICATIONS 

The frst part of this section formulates an identifcation problem and provides conditions un-
der which a frst-price auction model with unobserved auction heterogeneity is identifed. The 
second part describes the restrictions this model imposes on the data. The third part discusses 
possible extensions. 

3.1. Identifcation 

I assume that the econometrician has access to bid data, based on n independent draws from 
the joint distribution of (Y, X). The observable data are in the form {bi j }, where i denotes the 
identity of the bidder, i = 1, . . . ,m, and j denotes the project, j = 1, . . . ,n. If the data represent 
equilibrium outcomes of the model with unobserved auction heterogeneity, then 

bi j = βyj k(i )(xi j ) (2) 

(i.e. bi j is a value of bidder i ’s equilibrium bidding strategy corresponding to yj evaluated at the 
point xi j ). 

3. This property for the case of symmetric bidders and additive cost components is established in Haile, Hong 
and Shum (2003). Proposition 1, as well as the rest of the analysis in the paper, holds for additive cost components. 
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As was shown in the previous section, bi j depends on the realizations of the common and 
individual components as well as on the joint distribution of the individual cost components. 
This section examines what properties of available data guarantee that there exists a unique 
triple {{xi j }, FY , FX } that satisfes equation (2), i.e. under what conditions the model from a 
previous section is identifed. 

Guerre, Perrigne and Vuong (2000) obtain an identifcation result by transforming the frst-
order conditions for optimal bids to express a bidder’s cost as an explicit function of the submit-
ted bid, the bid probability density function, and the bid distribution function. Under unobserved 
auction heterogeneity, the necessary frst-order condition yields an expression for xi j ∙ yj as a 
function of bi j and the conditional bid probability density function and the conditional bid dis-
tribution function conditional on Y = yj . The econometrician does not observe the realization 
of Y and, consequently, does not know the conditional distribution of bids for Y = yj . Hence, it 
is not possible to establish identifcation based on the above frst-order conditions. 

The idea of my approach is to focus on the joint distributions of bids submitted in the same 
auction instead of the marginal bid distributions in order to identify the model with unobserved 
auction heterogeneity. 

I use Bi to denote the random variable that describes the bid of bidder i of group k(i ) with dis-
tribution function G Bk(i ) (∙) and the associated probability density function gBk(i ) (∙); bi j denotes 
the realization of this variable in auction j . The econometrician observes the joint distribution � � 
function of Bi1 , . . . , Bil for all subsets (i1, . . . , i l ) of (1, . . . ,m).4 

Proposition 1 establishes that 

bi j = yj ai j , 

where ai j is a hypothetical bid that would have been submitted by bidder i if y were equal 
to one. I use Ai to denote the random variable with realizations equal to ai j . The associated 
distribution function is denoted by G Ak(i ) (∙) with the probability density function gAk(i ) (∙). Note 
that the econometrician does not observe yj and neither, therefore, ai j . The distribution of Ai is 
latent. 

The identifcation result is established in two steps. First, it is shown that the probability 
density function of Y can be uniquely determined from the joint distribution of two bids that 
share the same cost component. Further, it is shown that the probability density function of Ak 
can also be uniquely determined if the joint distribution is for two bids such that at least one 
of them corresponds to a bidder of group k. Second, monotonicity of the inverse bid function 
is used to establish identifcation of the cumulative density functions FX1 and FX2 from the 
distributions of the individual bid components, GA1 and GA2. 

The following theorem is the main result of this section. It formulates suffcient identifcation 
conditions for the model with unobserved heterogeneity. 

Theorem 1. If conditions (D1)–(D4) are satisfed, then the probability density function� � 
fY (∙) is identifed from the joint distribution of Bi1 , Bi2 , where (i1, i2) is any pair such that � � 
i1, i2 {1, . . . ,m}. Further, fXk (∙) is identifed from the joint distribution of Bi1 , Bi2 if either 
k(i1) = k or k(i2) = k or both. 

Theorem 1 states that the distribution functions of cost components fXk (∙) and fY (∙) are 
identifed. The proof of this theorem consists of two steps and is given in Appendix A. In the frst 

4. In fact, it is not necessary to observe the joint distribution for all subsets. For details, see the formulation of 
Theorem 1. 
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step, a statistical result by Kotlarski (1966)5 is applied to the log-transformed random variables 
Bi1 and Bi2 given by � � � � 

log Bi1 = log(Y ) + log Ai1 ,
� � � � 

log Bi2 = log(Y ) + log Ai2 . 

Kotlarski’s result is based on the fact that the characteristic function of the sum of two indepen-
dent random variables is equal to the product of the characteristic functions of these variables. � � � � 
This property allows us to fnd the characteristic functions of log(Y ), log Ai1 , and log Ai2� � � � �� 
from the joint characteristic function of log Bi1 , log Bi2 . Let (∙, ∙) and 1(∙, ∙) denote the � � � � �� 
joint characteristic function of log Bi1 , log Bi2 and the partial derivative of this characteris-
tic function with respect to the frst component, respectively. Also, let log(Y )(∙) and log(Ak )(t) 
denote the characteristic functions of log(Y ) and log(Ak ). Then, 

�Z t � 
1(0,u2) 

log(Y )(t) = exp du2 − i t E [log(A1)] , 
0 (0,u2) 

(t,0) 
log(A1)(t) = , (3) 

logY (t) 
(0,t) 

log(A2)(t) = . 
logY (t) 

Equations (3) show that the characteristic functions of log(Y ) and log(Ak ) are uniquely deter-
mined once E[log(A1)] is fxed. It is convenient to start with normalization E[log(A1)] = 0 and 
then adjust recovered random variables Y , A1, A2 to achieve normalization in (D3). Since there 
is a one-to-one correspondence between the set of characteristic functions and the set of proba-
bility density functions, the probability density functions of Y , Ai1, Ai2 can be uniquely deduced � � � � 
from the characteristic functions of log(Y ), log Ai1 , and log Ai2 since log(∙) is a strictly in-
creasing function and αk (∙) (0,∞), k = 1,2. Note that the marginal distribution of a single bid 
per auction may not allow us to identify the distribution functions of Y , Ai1, Ai2 because there 
is no unique decomposition of the sum (or product) into its components. The second step in 
the proof establishes that the distributions of the individual cost components are identifed with 
(possibly) asymmetric bidders and IPV. It is similar to the argument given in Laffont and Vuong 
(1996). Once the distribution of X1, FX1 that corresponds to E[log(A1)] = 0 is identifed, and 
given that expectation of such X1 is equal to e1, then eX1 = X1 , Xe2 = X2 , Ye= e1Y with Fe (x) = X1� � e1 e1 

xFX1 (e1x), FXe2 
(x) = FX2 (e1x), FYe(x) = FY are unique random variables that correspond to e1 

normalization in (D3). 
A related question concerns identifcation of specifc realizations xi j and yj corresponding 

to a particular bid bi j . In this case, the answer is negative: xi j and yj cannot be separately 
identifed. The reason is that we cannot solve for (m + 1) unknown {y: {ai j }i =1,...,m } from m 
equations constructed on the basis of m bids submitted in a given auction. 

Theorem 1 establishes that identifcation of the model with unobserved auction heterogeneity 
crucially relies on the assumption of independence of individual components across bidders and 
from the common cost component. Next, we show how the validity of these assumptions can be 
evaluated within a framework of the model with unobserved auction heterogeneity. 

3.2. Testable implications 
� � � � 

Note that instead of log Bi1 and log Bi2 , Kotlarski’s result can be applied to the variables 
� Bi1 

� � Bi2 
� � Bi1 

� � � � � � Bi2 
� � � � � 

log and log since log = log Ai1 − log Ai3 and log = log Ai2 − log Ai3 .Bi3 Bi3 Bi3 Bi3 

5. See Rao (1992). 
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� � � � � � 

Here log Ai3 plays the role of a common component, whereas log Ai1 and log Ai2 remain 
individual components. If the individual cost components Xi1, Xi2, and Xi3 are independently� � � � � � 
distributed, then so are log Ai1 , log Ai2 , and log Ai3 . The characteristic functions of these 

� � Bi1 
� � Bi2 

�� 
variables can be computed using the joint characteristic function of log , log , whichBi3 Bi3 

I denote by (∙, ∙), according to a formula similar to equation (3).6 Specifcally, 
�Z t � 

1(0,u2) � � ���(−t) = exp du2 − i t E log Ai1 ,
log Ai3 0 (0,u2) 

(t,0)� �(t) = .
log Ai1 

� �(−t)
log Ai3 

Two observations can be made at this point. First, if Bi 1 and Bi 3 are submitted by bidders of 
the same group and the assumption about independence of individual components holds, then 

� �(t) and � �(t) should be equal.7 
log Ai3 log Ai1 

Second, I have relied only on the functional form and the independence of the individual 
cost components assumptions to obtain � �(∙). The assumption of the independence of Y

log Aik 
and X then implies that � �(∙) and � �(∙) have to coincide with the functions given 

log Ai3 log Ai1� � �� 
by equation (3) under normalization E log Ai1 = 0.8 These observations are summarized by 
conditions (W1) and (W2). 

(W1) For any triple (i1, i2, i3) such that {i1 = 1, . . . ,m1 and i3 = 1, . . . ,m1}, or { i1 = m1 + 
1, . . . ,m and i3 = m1 + 1, . . . ,m}, and i k = i l for any k, l {1,2,3}, k = l , 

� �(t) = � �(t)
log Ai1 log Ai3 

� � �� 
for every t [−∞,∞] under normalization E log Ai1 = 0.9 

(W2) For any triple (i1, i2, i3) such that i k = i l for any k, l {1,2,3}, k = l , 

� �(t) = � �(t)
log Aik log Aik 

� � �� 
for every t [−∞,∞] under normalization E log Ai1 = 0. 
Independence of individual cost components further implies condition (W3). 

(W3) For any quadruple (i1, i2, i3, i4) {1, . . . ,m} such that i k = i l for any k, l {1,2,3,4}, 
Bi1 Bi3k = l , and are independently distributed. Bi2 Bi4 

Proposition 2 describes the implications of the independence assumptions. 

6. The symbol 1(∙, ∙) denotes the partial derivative of (∙, ∙) with respect to the frst argument. 
7. Functions � �(t) and � �(t) can potentially differ by a multiplicative factor due to normalization. 

log Ai1 
log Ai3

Please read the proof of Proposition 2 for careful analysis of this detail. 
8. Please read the proof of Proposition 2 for a careful treatment of normalization. 
9. A similar relationship can be used to test for the presence of asymmetries. In particular, if bidders are symmet-

ric, then we should have 
� �(t) = � �(t)

log Ai1 
log Ai3 

for i1 {1, . . . ,m1} and i3 {m1 + 1, . . . ,m}. 
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Proposition 2. Let bidder i ’s cost for the project j be given by ci j = xi j y j . 

1. If the individual cost components are independent, then (W1) has to be satisfed. 
2. If the individual cost components are independent, then (W3) has to be satisfed. 
3. Further, if Y is independent of X, then W2 holds. 

Note that (W1) and (W2) apply to samples with m ≥ 3, whereas statement (W3) applies only 
to the samples with m ≥ 4. The proof of Proposition 2 is given in Appendix A. 

More generally, conditions below describe a set of joint restrictions imposed on the data by 
all the assumptions of the model with unobserved auction heterogeneity. 

(W4) For every pair (i l , i p), i l , i p = 1, . . . ,m, the functions log(Y )(∙), log Ail 

�(∙), and 

� �(∙) given by equation (3) represent characteristic functions of real-valued vari-
log Ai p 

ables. In particular, the random variables that correspond to � �(∙) and � �(∙)
log Ail log Ai p 

should have the same support. 
(W5) The characteristic function log(Y )(∙) does not depend on the pair of (i l , i p), i l , i p = 

� �(∙) = � � �(∙) =1, . . . ,m, which is used to derive it, and �(∙) and
log Ail log Air log Ai p�(∙) for (i r , iq ) such that k(i r ) = k(i l ) and k(iq ) = k(i p).log Aiq 

(W6) The inverse bid functions 
� �� � 
1 − G Ak (a) 1 − GA−k (a)

ξk (a) = a − � � � � , k = 1,2, 
(mk −1)gAk (a) 1 − GA−k (a) + m−kgA−k (a) 1 − G Ak (a) 

are strictly increasing in a.10 

Proposition 3 establishes necessary conditions for the model with unobserved auction het-
erogeneity to be rationalizable11 by a given data set. 

Proposition 3. If a model with unobserved heterogeneity generated the data, then condi-
tions (W4)–(W6) must hold. 

3.3. Distinguishing from the model with APV 

Unobserved auction heterogeneity induces dependence between bids submitted in the same auc-
tion. Within the private values framework, a similar regularity pertains to models with APV. 
Interestingly, it can be shown that the set of bid distributions that can be rationalized by a model 
with APV does not coincide with the set that can be rationalized by a model with unobserved 
auction heterogeneity. 

Indeed, bids generated by a model with unobserved auction heterogeneity are conditionally 
independent. On the other hand, the distributions of bids generated by models with APV are 
affliated. The results related to de Finetti theorem12 establish that the set of affliated distribu-
tions is larger than the set of conditionally independent distributions. Therefore, there must exist 
bid distributions with dependent bids that could not be generated by a model with unobserved 
auction heterogeneity. 

10. This testable implication of equilibrium bidding was frst pointed out by Guerre, Perrigne and Vuong (2000) 
in the context of the frst-price auction with symmetric IPV and without unobserved auction heterogeneity. 

11. A model is rationalizable by a given data set if it could have been generated by this model. 
12. Kingman (1978) or Kendall (1967) provides a useful discussion of these issues. 



“rdq004” — 2011/1/7 — 12:52 — page 303 — #11

�

� �

�

KRASNOKUTSKAYA UNOBSERVED AUCTION HETEROGENEITY 303 

Further, it is possible to construct a test that distinguishes the APV setting from the unob-
served auction heterogeneity setting in the data. As noted above, under unobserved heterogene-
ity, for every quadruple of bids submitted in the same auction, the pairwise ratios involving 
distinct bids are independent. This property, however, does not hold for a large class of bid 
distributions generated by models with APV. The proof of this statement is given in the Tech-
nical Appendix posted on the website of the Review of Economic Studies. The pairwise ratio 
independence may hold for a small set of affliated distributions (the details are in the Tech-
nical Appendix). Therefore, this test has no power against some alternatives. The Technical 
Appendix also provides several examples of widely used affliated distributions that fail the 
property of pairwise ratios independence. Among others, it considers a truncated multivariate 
normal distribution and shows that it fails the test for a large set of parameter values. 

4. ESTIMATION 

This section describes the estimation method and derives properties of the estimators. Some 
practical issues related to the estimation procedure are discussed in Sections A.2 and A.3. 

4.1. Estimation method 
=mjThe econometrician has data for n0 auctions. For each auction j , (mj , {bi j }

i 
,zj ) are ob-i =1 

served, where mj is the number of bidders in the auction j , with mj 1 bidders of Group 1 and 
=mjmj 2 bidders of Group 2; {bi j }

i 
is a vector of bids submitted in the auction j ; and zj is ai =1 

vector of auction characteristics. The estimation procedure is described for the case of discrete 
covariates. It can be extended to the case of continuous zj .13 

The estimates are obtained conditional on the number of bidders, mj = m0, m1 j = m01, 
and zj = z0. Let n denote the number of auctions that satisfy these restrictions. The estimation 
procedure closely follows the identifcation argument described in the proof of Theorem 1. It 
consists of the following steps.14 

� � 
1. The log transformation of bid data is performed to obtain L Bil j = log Bil j and L Bi p j = � � 

log Bi p j , where i l = 1, . . . ,m01 and i p = m01 + 1, . . . ,m0.� � 
2. The joint characteristic function of an arbitrary pair L Bil , L Bi p is estimated by 

nX X1 1 � � 
b n(t1, t2) = exp i t1 ∙ L Bil j + i t2 ∙ L Bi p jm01m02 n 

1≤l≤m01,m01+1≤p≤m0 j =1 

and the derivative of (∙, ∙) with respect to the frst argument, 1(∙, ∙), by 

nX X1 1 � � 
b1,n(t1, t2) = i L Bil j exp i t1 ∙ L Bil j + i t2 ∙ L Bl p j . 

m01m02 n 
1≤l≤m01, m01+1≤p≤m0 j =1 

I average over all possible pairs to enhance effciency. 

13. Estimation in the case of continuous zj requires smoothing over zj . 
14. The method is described for the data set where bids submitted by bidders from both groups are present. It can 

be easily modifed for the case where the distributions of individual cost components for different groups have to be 
recovered from different data subsets. To restore the normalization assumed in this paper, the characteristic function of� � � � � ��� 
the log of the individual bid component for Group 2 in Step 3 should be multiplied by exp E log Bi p − log Bil , 
i l = 1, . . . ,m01 and i p = m01 + 1, . . . ,m0. 



“rdq004” — 2011/1/7 — 12:52 — page 304 — #12

�
�

�

�
�

�

�
�

�

�

�

� �

� �
�

�

304 REVIEW OF ECONOMIC STUDIES 

3. The characteristic functions of the log of individual bid components L Ak , k = 1,2, and 
the log of the common cost component LY are estimated as 

�Z t �b1,n(0,u2)bLY,n(t) = exp du2 − i t E [log(A1)] ,
bn(0,u2)0 

bn(t,0)bL A1,n(t) = ,
bLY,n(t) 

b n(0,t)bL A2,n(t) = .
bLY,n(t) 

I frst use the normalization E[log(A1)] = 0. 
4. The inversion formula is used to estimate densities egL Ak , k = 1,2, and egLY . 

Z T1 
egL Ak ,n(u1) = exp(−i tu1)bL Ak ,n(t)dt,

2π −T 
Z T1 efLY,n(u2) = exp(−i tu2)bLY,n(t)dt 

2π −T 

for u1 [log(a), log(a)] and u2 [log(y), log(y)], where T is a smoothing parameter. 
5. The densities of Ak and Y are obtained as 

egL Ak ,n(log(a)) 
egAk ,n(a) = , 

a 
efLY,n(log(y))efY,n(y) = , 

y 

for a [a,a] and y [y, y].15 

6. The individual inverse bid function at a point a [a,a] is estimated as 
� � � � 
1 − GeA1,n(a) ∙ 1 − GeA2,n(a)

bξk,n(a) = a − � � � � , 
(mk −1) ∙egAk ,n(a) ∙ 1 − GeA−k ,n(a) +m−k ∙egA−k ,n(a) ∙ 1 − GeAk ,n(a) 

where Z a 
eG Ak ,n(a) = egAk ,n(z)dz 

ban 
1 

and ba1 is an estimate of the lower bound of the support of gAk (.) which corresponds to the n 
normalization E[log(A1)] = 0 (see Section A.2 for discussion of the support estimation). 

7. The individual bid function for a group k at a point x [x, x] is estimated as 

−1bak,n(x) =bξk,n (x) = a such that bξk,n(a) = x. 

8. The cumulative distribution function of the individual cost component is estimated by 
substituting the corresponding estimated bid function into the estimated cumulative distri-
bution function of the individual bid component 

−1eFXk ,n(x) = GeAk ,n(bξk,n (x)). 

15. Horowitz and Markatou (1996) suggest using a bias correction technique in this setting to obtain better results 
in small samples. 



“rdq004” — 2011/1/7 — 12:52 — page 305 — #13

�

�

� � �

�

�
� � �

�

KRASNOKUTSKAYA UNOBSERVED AUCTION HETEROGENEITY 305 
R x9. To arrive at the normalization in (D3), compute e1 = Eb[X1] = xd FeX1,n and then 

� � x 

perform the following adjustments: bfY,n(y) = 1 fY,n
y and Fbe (x) = FeXk ,n(e1x).e 

e1 e1 Xk ,n 
10. I have also constructed an estimate of the total cost density function 

Z � �y 1 cbfCk ,n(c) = bfXk ,n bfY,n(y)dy 
y y y 

for c [x ∙ y,x ∙ y]. 
11. An expected inverse bid function16 is estimated as 

Z � �y 
bϑk,n(b) = y ∙bξk,n

b bfY,n(y | b)dy. 
y y 

Here bfY,n(y | b) is given by 

bfY,n (y)bfY,n(y | b) = b 
R ̃b bfY,n (y)dy b 

b̃h i 
b bif y 
˜ 
, 

b 
and bfY,n(y | b) = 0, otherwise.˜b 

4.2. Properties of the estimator 

This subsection shows that the estimation procedure yields uniformly consistent estimators of the 
relevant distributions. This result is derived under the following restrictions on the tail behaviour 
of characteristic functions. 

(D5) The characteristic functions LY (∙) and L Ak (∙) are ordinary smooth17 with > 1. 

This property holds, e.g. when cumulative probability functions of cost components admit up 
to R, R > 1, continuous derivatives on the support interior such that M of them, 1 ≤ M ≤ R, can 
be continuously extended to the real line. The uniform consistency of bid component estimators 
is used to establish the uniform consistency of the cumulative distribution function estimator for 
the individual cost component. 

Proposition 4 summarizes properties of the estimator. 

Proposition 4. If conditions (D1)–(D5) are satisfed, then FbY (∙) and FbXk (∙) are uniformly 
consistent estimators of FY (∙) and FXk (∙), k = 1,2, respectively. 

The proof of Proposition 4 is given in Appendix A. Confdence intervals for the estimates 
are obtained through a bootstrap procedure. 

16. I use bfY (y | b) because some values of y are not consistent with a given b due to fnite supports of Y and Xk . 
17. Following Fan (1991), 

Defnition 1 The distribution of random variable Z is ordinary-smooth of order if its characteristic function 

z (t) satisfes 

d0|t |− ≤ | z (t)| ≤ d1|t |− 

as t → ∞ for some positive constants d0, d1, and . 
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4.3. Monte Carlo study 

In this section, I present and discuss the results from the simulation study, which analyses the 
performance of the estimator in small samples. 

The simulated data sets are generated as follows. The cost of bidder i is set to be equal 
to the product of common and individual cost components, ci = yxi . The data are generated 
using random draws from distributions that are similar in shape to the estimated distributions of 
cost components. To create a typical data set describing n procurement auctions with k1 and k2 
bidders from Groups 1 and 2 correspondingly, I take k1 × n and k2 × n independent draws from 
the distributions of the individual cost component for Groups 1 and 2 and combine them with n 
draws from the distribution of the common cost component such that 

{ci j ,ci j = y j xi j , i = 1, . . . ,k1 +k2; j = 1, . . . ,n} 

is a matrix of simulated costs. The matrix of associated bids is calculated according to the equi-
librium bid functions. 

I set the value of k1 = 2 and k2 = 2 similar to the confguration in the data and consider the 
data sets of progressively smaller sizes with n = 250,200, and 150. Therefore, individual cost 
components are estimates using 500, 400, and 300 bids, respectively. 

The results of this study are summarized in Figures 1, 2, and 3. Figure 1 presents results for 
the common component, while Figures 2 and 3 describe the performance of the estimators for 
the cumulative distribution and probability density functions of individual components. These 
fgures depict the original distributions of the individual and common cost components used to 
generate the simulated data as well as the 5% and 95% quantiles of the estimators. 

Figures 1, 2, and 3 demonstrate that estimators perform well except for the smallest data set 
where the quantile range becomes quite wide and does not contain small parts of the underlying 
distribution functions. 

5. MICHIGAN HIGHWAY PROCUREMENT AUCTIONS 

This section describes characteristics of the Michigan highway procurement auctions. 
Sections 5.1 and 5.2 present the data and report some descriptive statistics. Section 5.2 also 
presents the results of specifcation tests. Section 5.3 describes the estimation results for the 
model with unobserved auction heterogeneity, compares them to the estimates obtained under 
the assumption of IPV and APV, performs reserve price analysis under alternative specifcations, 
and summarizes the tests’ outcomes for the assumptions of the model with unobserved auction 
heterogeneity. 

5.1. Market description 

The Michigan Department of Transportation (DoT) is responsible for construction and mainte-
nance of most roads within Michigan. The DoT identifes work that has to be done and allocates 
it to companies in the form of projects through a frst-price sealed bid auction. The project usu-
ally involves a small number of tasks, such as resurfacing, replacing the base, or flling in cracks. 

Letting process. The DoT advertises projects 4–10 weeks prior to the letting date. Adver-
tisement usually consists of a short description of the project, including the location, completion 
time, and a short list of the tasks involved. Companies interested in the project can obtain a 
detailed description from the DoT. 
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FIGURE 1 
This fgure demonstrates the performance of the estimation procedure in the simulation study. Solid lines depict the 

density of the unobserved auction heterogeneity component used to generate data. The dotted lines show 5% and 95% 

pointwise quantiles of the estimated distributions. The fgures correspond to simulated data sets that include, respectively, 

(clockwise) 250, 200, and 150 auctions with two bidders from each group per auction 

Estimated cost. The DoT constructs a cost estimate for every project that is based on 
the engineer’s assessment of the work required to perform each task and prices derived from 
the winning bids for similar projects let in the past. The costs are then adjusted through a price 
defator. 

Federal law requires that the winning bid should be lower than 110% of the engineer’s esti-
mate. If a state decides to accept a bid that is higher than this threshold, it has to justify this action 
in writing. In this case, the engineer’s estimate has to be revised and verifed for any possible 
mistake. In my data set, I observe a number of bids higher than 110% of the engineer’s estimate. 
On multiple occasions, the winning bid is higher than this threshold. These facts suggest that 
bidders consider the probability of an event when this restriction comes into effect to be rather 
small. The assumption of no reserve price is justifed in this environment. 
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FIGURE 2 
This fgure demonstrates the performance of the estimation procedure in the simulation study. The solid lines depict 

the cumulative distribution functions (on the left) and the probability density functions (on the right) for the individual 

cost component of the regular bidders used to generate data. The dotted lines show 5% and 95% pointwise quantiles of 

the estimated distributions. The fgures correspond to simulated data sets that include, respectively, 250, 200, and 150 

auctions with two bidders from each group per auction 
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FIGURE 3 
This fgure demonstrates the performance of the estimation procedure in the simulation study. The solid lines depict 

the cumulative distribution functions (on the left) and the probability density functions (on the right) for the individual 

cost component of fringe bidders used to generate data. The dotted lines show 5% and 95% pointwise quantiles of 

the estimated distributions. The fgures correspond to simulated data sets that include, respectively, 250, 200, and 150 

auctions with two bidders from each group per auction 

Number of bidders. It is unclear if the auction participants have a good idea about the 
number of their competitors. The existing literature on highway procurement auctions tends to 
argue that this is a small market where participants are well informed about each other and can 
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accurately predict the identities of auction participants.18 I follow this tradition and assume that 
the number of actual bidders is known to auction participants. 

5.2. Descriptive statistics 

I use data for the highway procurement auctions held by the Michigan DoT between February 
1997 and December 2003. In particular, I focus on highway maintenance projects with bitumi-
nous resurfacing as the main task. The data set consists of a total of 3947 projects. My informa-
tion includes the letting date, the completion time, the location, the tasks involved, the identity 
of all the bidders, their bids, and an engineer’s estimate. 

My choice of the projects’ type is motivated by two objectives. First, I want to ensure that 
the auction environment is characterized by private rather than common values. Second, I am 
looking for an environment that is likely to have unobserved auction heterogeneity. Highway 
maintenance projects are usually precisely specifed and relatively simple. It is likely that bid-
ders can predict their own costs for the project quite well. The existing variation in bids is, 
therefore, associated with variation in costs across frms, which is consistent with the private 
values environment. This variation is generated by differences in opportunity costs and input 
prices faced by different frms. Further, although highway maintenance projects are rather sim-
ple, their costs can be substantially affected by local conditions such as elevation and curvature 
of the road, traffc intensity, and age and quality of the existing surface. Information about these 
features may not be available to the researcher. On the other hand, frms’ representatives usually 
travel to the project site and, therefore, are likely to collect this information and incorporate it 
into their bids. Hence, I expect to fnd unobserved auction heterogeneity. 

The paving companies participating in the maintenance auctions mostly differ by their size 
(employment, number of locations). The differences in size may imply cost differences if 
economies of scale are present. For example, larger companies are likely to own their equipment 
instead of renting it, which may reduce cost. Since size is observable to all market participants, 
it is important to allow for the possibility that market participants have different beliefs about the 
distribution of costs for groups of companies that differ by size. Therefore, I allow for asymme-
tries between bidders. In particular, I distinguish between two types of bidders: regular (large) 
bidders and fringe bidders. The set of regular bidders is defned to include companies that con-
sistently won at least $10 million in projects during each year in my data set and have at least 
100 employees.19 

In my data, the number of bidders per project varies between 1 and 11. More than 85% of 
projects attracted between two and six bidders, with the mean number of bidders equaling 3.4 
and a standard deviation of 1.3. About 75% of the projects have an engineer’s estimate ranging 
between $100,000 and $1,000,000; 5% are below $100,000; and 20% are above $1,000,000. 

Table 1 provides summary statistics of several important variables by the number of bidders. 
It shows that the mean of the engineer’s estimate does not change signifcantly across groups of 
projects that attracted different numbers of bidders. The tabulation of the winning bid indicates 
that the difference between the engineer’s estimate and the winning bid is positive and that it 
increases with the number of bidders. An important statistic of the data is “money left on the 
table” as represented by the difference between the lowest and second-to-lowest bid normalized 
by the engineer’s estimate. This variable is usually taken to indicate the extent of uncertainty 
present in the market. “Money left on the table” is, on average, equal to 7% of the engineer’s 

18. See, e.g. Bajari and Ye (2003). 
19. This defnition is consistent with the industry defnition of the large bidder. For example, California DoT uses 

this defnition to determine which companies should qualify for the favourable treatment awarded to small bidders. 



“rdq004” — 2011/1/7 — 12:52 — page 311 — #19

KRASNOKUTSKAYA UNOBSERVED AUCTION HETEROGENEITY 311 

TABLE 1 
Descriptive statistics 

Number of bidders Overall 1 2 3 4 5 6 

Number of observations 
Engineer’s estimate (’00000) 

Mean 
Standard deviation 

Winning bid (hdrds. th.) 
Mean 
Standard deviation 

Money left on the table 
Mean 
Standard deviation 

Number of regular bidders 
Mean 
Standard deviation 

3947 

1∙175 
4∙660 

1∙175 
4∙660 

1∙175 
4∙660 

1∙175 
1∙175 

71 

12∙80 
2∙35 

11∙10 
2∙32 

0∙07 
0∙05 

1∙92 
1∙06 

673 

10∙27 
1∙41 

10∙00 
1∙50 

0∙11 
0∙08 

1∙43 
0∙62 

1126 

12∙60 
3∙02 

11∙80 
2∙89 

0∙08 
0∙06 

1∙65 
0∙72 

1026 

13∙90 
2∙26 

12∙90 
2∙25 

0∙07 
0∙06 

2∙07 
0∙98 

365 

12∙90 
1∙79 

11∙80 
1∙66 

0∙05 
0∙05 

2∙16 
1∙21 

192 

16∙40 
3∙39 

15∙20 
3∙35 

0∙04 
0∙04 

2∙29 
1∙32 

estimate and decreases with the number of bidders. The magnitude of the “money left on the 
table” variable is similar to the fndings of other studies.20 It indicates that cost uncertainty may 
be substantial. Table 1 also shows that the number of regular bidders is usually between 1 and 3 
and increases only slightly with the total number of bidders. 

Next, I explore if there is scope for unobserved auction heterogeneity in my data. I imple-
ment the specifcation tests outlined in Section 3.4. More specifcally, I test for (1) conditional 
independence of a pair of bids submitted in the same auction (H0: IPV vs. H1: unobserved 
auction heterogeneity) and (2) conditional independence of two ratios of bids using four differ-
ent bids submitted in the same auction (H0: unobserved auction heterogeneity vs. H1: APV). I 
condition on a linear index of observable auction characteristics such as the engineer’s estimate 
and time to complete the project (duration), type of highway, year and month dummies, district 
dummies, and total number of tasks. The index is estimated through an Ordinary Least Squares 
regression. The tests are performed conditional on the main task of the project and the number 
of bidders. The testing procedure I use is explained in Appendix A. For bituminous resurfacing 
projects with four regular bidders, the p-value for the frst test statistics is equal to 0.03 and 
the p-value for the second test statistics is 0.52.21 Therefore, the null hypothesis of IPV can be 
rejected against the alternative of unobserved auction heterogeneity at the 5% signifcance level. 
At the same time, the null hypothesis of unobserved auction heterogeneity cannot be rejected 
against the alternative of APV. 

I interpret the correlation between bids submitted in the same auction as evidence of unob-
served auction heterogeneity. It is possible, however, that the correlation between bids is gen-
erated through some other mechanism. For example, it may arise if the auction environment 
has common values features. It may also arise if participating companies are systematically en-
gaged in collusive behaviour. I deal with the frst issue by restricting my attention to maintenance 
projects that are unlikely to have any project-related uncertainty that could lead to a common val-
ues effect. It is much harder to reject a possibility of collusion since all the tests proposed in the 
literature depend on the particular collusion scheme employed. I use the test proposed by Porter 

20. See, e.g. Jofre-Bonet and Pesendorfer (2003). 
21. The data set for which test is performed consists of 370 auctions with an engineer’s estimate between $350,000 

and $750,000. The coeffcients of the linear index are reported in Table 2. 



“rdq004” — 2011/1/7 — 12:52 — page 312 — #20

312 REVIEW OF ECONOMIC STUDIES 

TABLE 2 
Regression results 

Variables Test Estimation 
subsample subsample 

Constant 0∙375 0∙327 
(0∙010) (0∙012) 

Engineer’s estimate 0∙8413 0∙8113 
(0∙028) (0∙025) 

Duration 0∙0011 0∙0015 
(0∙0013) (0∙0011) 

Tasks 0∙0014 0∙0012 
(0∙0007) (0∙0009) 

(Nregular, Nfringe) (4,0) (2,2) 
Number of projects 370 226 

R2 33% 17% 

and Zona (1993), which is based on the assumption that if there is a collusion scheme, then 
only the winning bid corresponds to a real cost realization and all other bids are “phony”, i.e. 
unsubstantiated by any cost realization. I use a procedure described in Athey and Haile (2002) to 
recover the distribution of regular and fringe bids from the distribution of the winning bid. I then 
compare these distributions to the ones estimated from the losing bids. Distributions estimated 
through these two procedures appear to be similar, which gives me confdence that the data do 
not refect the outcome of collusive behaviour. 

Thus, I fnd evidence in favour of unobserved auction heterogeneity in Michigan high-
way procurement auctions. I estimate the distributions of cost components using the estimation 
method outlined in Section 4 to evaluate the relative importance of different cost components. 

5.3. Estimation results 

The estimation results presented below correspond to the set of projects with an engineer’s es-
timate between $300,000 and $580,000 and the time to completion between 3 and 6 months 
that attracted two regular and two fringe bidders. This set consists of 226 projects. The results 
for different values of engineer’s estimate, duration, and the number of bidders are qualitatively 
similar. 

I use projects that are quite similar in estimation. However, the data set still contains some 
residual variation in observable auction characteristics. I use a homogenization procedure to 
eliminate the variation in observable factors. To arrive at homogenized bids, I estimate the mean 
of log(bid) as a linear function of observable characteristics, eliminate the estimated mean from 
the bids, and use the residuals in the estimation; I add the estimated mean back in when eval-
uating the importance of private information and for comparison to alternative models.22 The 
mean of log(bid) is assumed to be a linear function of the engineer’s estimate, duration, type of 
highway, year and month dummies, district dummies, and total number of tasks. 

In the estimation, the mean of the regular type is normalized to be equal to one. Figure 4 
presents estimated distributions of the unobserved auction heterogeneity component and indi-
vidual cost components. The common cost component is a product of the common observable 

22. Effectively, I assume that ci j = exp(zj α)y j xi j . Here zj denotes the vector of project j ’s observable charac-
teristics. The homogenization procedure is used by Haile, Hong and Shum (2003) and Bajari, Houghton and Tadelis 
(2004). The coeffcients of the observable “scaling factor” are reported in Table 2. 
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FIGURE 4 
This fgure depicts the estimated densities of the unobserved auction heterogeneity component and the common cost 

component as well as the estimated cumulative distribution functions (on the left) and the probability density functions 

(on the right) of the individual cost components. The dotted lines show pointwise 95% confdence intervals estimated 

through a bootstrap procedure 

component (extracted through homogenization procedure) and unobserved heterogeneity com-
ponent. The recovered distribution of the unobserved heterogeneity component has a mean of 
0.98 and a standard deviation of 0.204, whereas the mean and standard deviation of the common 
component are equal to $392,000 and $78,890, respectively. The recovered distributions of indi-
vidual components for regular and fringe groups are similar. The individual cost component of 
the fringe type has a higher mean but lower variance than the individual cost component of the 
regular type. The mean of the fringe type distribution is 1.06. Standard deviations of the regular 
and fringe type distributions are 0.14 and 0.13, respectively. I also perform a test of the equality 
of individual cost component distributions.23 The distribution of the test statistic is computed 

23. I do not have access to random samples drawn from these distributions, which is a standard requirement in 
most statistical procedures testing for the equality of two distributions (e.g. Kolmogorov–Smirnov tests). Therefore, I 
perform this test as a test for the equality of two functions. The description of the test procedure is given in Appendix A. 
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both through subsampling24 and bootstrap procedures. The p-value of the test statistic is 0.69. 
Therefore, I can formally reject equality at the 10% signifcance level. 

5.3.1. Variance decomposition. Recall that bidder i ’s cost for project j is given by 
ci j = yj × xi j . A Taylor approximation applied to C(∙, ∙) as a function of X and Y allows us 
to approximate the variance of C in the following way: 

Var(c) (EY )2Var(X) + (E X)2Var(Y ). 

If (EY )2Var(X) and (E X)2Var(Y ) are taken to represent parts of the cost variation generated by 
the variation in the individual cost and unobserved heterogeneity components, respectively, then 
it can be calculated that the individual cost component accounts for almost 31% of variation in 
the homogenized costs.25,26,27 

5.3.2. Markups over the bidders’ costs. The estimated inverse bid functions are used 
a−xto compute markups over the bidders’ costs. The normalized markup, b−c = , x = ξ(a),c x 

ranges from 0.1% to 25% and, on average, is equal to 8.4% for the regular bidder. Markups for 
the fringe type bidders range between 0.1% and 18% and, on average, are equal to 6.1%. 

5.3.3. Ineffcient outcomes. When bidders are asymmetric, it is possible that the project 
is not awarded to the lowest cost bidder, i.e. the auction outcome is not effcient. To compute the 
probability of such an event for the selected set of projects, I use the estimated distributions of 
cost components to create a pseudo-sample of bidders’ costs for a set of 250 auctions with three 
bidders each. Then, for each cost draw, I calculate the bid value from the estimated bid function. 
Finally, the fraction of the auctions in which the lowest bid does not correspond to the lowest 
cost is computed. This exercise is repeated 1000 times. I fnd that the estimated probability of 
an ineffcient outcome is, on average, equal to 5% with a 95% quantile range given by [3.6, 6.2]. 
This corresponds to an estimated 2% increase in the cost of the procurement; the 95% quantile 
range is given by [1.3, 2.8]. 

5.3.4. Comparison to alternative auction models. Figure 5 compares the average bid 
function estimated under the assumption of unobserved auction heterogeneity to the bid function 
recovered under the APV and IPV assumptions, respectively.28 Both the IPV and APV proce-
dures estimate the total costs that are substantially lower than the average costs estimated under 
the unobserved auction heterogeneity assumptions for both regular and fringe bidders. In par-
ticular, the model with unobserved auction heterogeneity implies an average markup over the 

24. This procedure is valid since the rate of the convergence of estimators is known; see Politis, Romano and Wolf 
(1999). 

25. Note that this decomposition does not depend on the choice of a mean normalization. 
26. The exact expression for the variance of costs is given by 

Var(c) = (EY )2Var(X) + (E X)2Var(Y ) + Var(X)Var(Y ). (4) 

The term (EY )2Var(X) accounts for 31.3% of Var(c) computed according to the formula above. 
27. Variance decomposition can also be performed for the total costs, ci j = exp(zj α)y j xi j . It can be calculated 

that (E[exp(Zα)Y ])2Var(X) accounts for 34.4% of the variation in total costs. 
28. I follow the methodology described in Guerre, Perrigne and Vuong (2000) and Li, Perrigne and Vuong (2002) 

for the estimation under IPV and APV assumptions correspondingly. 
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FIGURE 5 
This fgure compares expected bid functions estimated from the model with unobserved heterogeneity and alternative 

models (with APV and IPV). In each case, the lowest line shown is the diagonal. The dark solid lines correspond to the 

expected bid function estimated from the model with unobserved heterogeneity and the expected bid function estimated 

under the alternative model. In each case, a lower line corresponds to the bid function estimated from the model with 

unobserved heterogeneity. The fgure also shows pointwise 95% confdence intervals estimated through a bootstrap 

procedure 

bidders’ costs to be 8.4% (6.1% for fringe bidders), whereas the model with APV predicts a 
markup of 14% (12.2%) and the model with IPV predicts a markup of 19% (16.5%). In each 
case, confdence intervals for the IPV and APV estimates intersect the confdence interval con-
structed under the unobserved heterogeneity assumption only for a very small part near the upper 
end of the support. 

Figure 6 compares the average density function of the cost distribution estimated under the 
assumption of unobserved auction heterogeneity to the cost density functions recovered under 
APV and IPV assumptions. The estimated density function for the IPV and APV models are 
fatter relative to the density function estimated under the assumption of unobserved auction 
heterogeneity. In both cases, confdence intervals for the IPV and APV estimates intersect the 
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FIGURE 6 
This fgure compares the expected density of the total costs estimated from the model with unobserved heterogeneity 

and alternative models (with APV and IPV). The solid lines correspond to the expected densities. In each case, a tighter 

distribution corresponds to the density estimated from the model with unobserved heterogeneity. The fgure also shows 

pointwise 95% confdence intervals estimated through a bootstrap procedure 

confdence interval constructed under the assumption of unobserved auction heterogeneity only 
for a very small part of the support. The variance of the cost distribution estimated under the 
assumption of unobserved auction heterogeneity is about 18% lower than the variance of the 
cost distribution estimated under the assumption of APV and 22% lower than the variance of the 
cost distribution estimated under the assumption of IPV. 

Reserve price. I use the results of estimation to compute the optimal reserve price in the 
environment with unobserved auction heterogeneity. I compare the performance of this reserve 
price and of reserve prices derived from the estimates based on alternative assumptions. To 
avoid theoretical complications unrelated to the subject of this paper, I restrict my attention to 
the symmetric case in this section. 

The government chooses a reserve price to minimize the expected cost of procurement, which 
consists of two parts: the expected cost of not allocating the job today and the expected cost at 
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which work can be completed today given the reserve price r . Let us denote the frst component 
c0. It represents the sum of the cost of waiting another period and the expected cost at which the 
project can be completed in the future. I do not have data on the magnitude of c0. Therefore, I 
consider a range of possible values for c0 and derive an optimal reserve price for each of them. 

I compute a reserve price under four assumptions: (a) unobserved auction heterogeneity 
(realization of unobserved heterogeneity is known to the government); (b) unobserved auction 
heterogeneity (realization of unobserved heterogeneity is unknown to the government); (c) IPV; 
and (d) APV. In (b) the reserve price is derived to minimize the average cost of procurement, 
where the average is taken with respect to the distribution of unobserved auction heterogeneity. 
While assumption (a) describes the benchmark case, it may not be implementable in practice if 
the government does not know the realization of unobserved auction heterogeneity. In this case, 
the reserve price derived in (b) can be used. I compare the performance of these four reserve 
prices on the basis of an average cost of procurement29 achieved for a given reserve price. To 
perform these computations, I use the results of the estimation for regular bidders only. 

The results of the analysis are summarized in Table 4. The table records for every reserve 
price candidate (1) an average probability with which a bid is submitted; (2) the average cost 
of procurement as a percent of c0; and (3) the average cost of procurement as a percent of the 
benchmark expected costs. 

The results of the computation show that the reserve price computed from the cost distri-
bution estimated under the IPV or APV assumption fares considerably worse in comparison to 
the benchmark case and to the reserve price derived from the average cost function in (b). In 
particular, the average expected cost achieved through the reserve price based on IPV estimates 
is 9%–20% of c0 higher than the benchmark cost, whereas the reserve price derived in (b) is 
only about 1% of c0 higher. The results are even more drastic if we express expected costs as a 
percent of benchmark costs. Then the reserve price in (b) produces still only a 1%–2% increase 
in costs relative to the benchmark case, whereas the IPV reserve price leads to a 10%–35% in-
crease in costs. The disparity is smallest when c0 is very close to the mean cost, which is not 
very likely to happen in reality. In realistic cases of c0 equal to at least 150% of the mean costs, 
the gain from using the cost distribution estimated under the assumption of unobserved hetero-
geneity constitutes at least 16% of the benchmark costs. This is a signifcant effect, especially 
since the bidders’ markup in this environment constitutes only about 6%–8% of the costs. The 
discrepancy is much higher when the reserve price is derived on the basis of APV estimates. 
Also, IPV and APV results imply a lower than optimal probability to submit a bid. 

Evaluating assumptions of the model. The identifcation and estimation of the model 
with unobserved auction heterogeneity relies on the assumption that individual cost components 
are independent from each other and from the common cost component. Proposition 2 from the 
identifcation section allows us to evaluate the validity of these assumptions in the data. 

Part (2) of Proposition 2 suggests a test of independence of individual components. Imple-
mentation of this test is discussed in Section 5.2 The results of the test are reported in Table 3. 
They strongly suggest that the null hypothesis cannot be rejected. 

Part (3) of Proposition 2 allows us to test the assumption that the common component is 
independent from the individual components. This test is performed as a test of the equality of 
two functions. Both functions are estimated from the data. The testing procedure is described in 
Appendix A. The p-value of the test statistic is 0.81. The null hypothesis, therefore, cannot be 
rejected at any reasonable signifcance level. 

29. The average is taken with respect to the distribution of the unobserved auction heterogeneity. 
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TABLE 3 
Results of testing procedures 

Test p-Value 

Bi1 
Bi31. Conditional independence 0∙52Bi2 
Bi4 

2. Xi Y Bootstrap 0∙81 
Subsampling 0∙75 

3. Xi X j Bootstrap 0∙43 
Subsampling 0∙63 

TABLE 4 
Reserve price 

Medium projects: engineer’s estimate = 4∙0(’00,000) 
Unobserved 

Heterogeneity 

Unobserved 
Heterogeneity, 

Expected ipv apv 

1. 

2. 

Probability of submitting a bid 
(expected) 
Expected cost of procurement 

c0 = 5 0∙29 
(0∙26,0∙31) 

85∙2 

0∙28 
(0∙25,0∙31) 

86∙5 

0∙07 
(0∙05,0∙09) 

93∙5 

0∙03 
(0∙02,0∙06) 

96∙8 

3. 
(as % of c0) 
Expected cost of procurement 

(83, 87) (85, 88) 
101∙4 

(91, 95) 
109∙7 

(95, 98) 
113∙6 

(as % of unh) 
1. 

2. 

3. 

Probability of submitting a bid 
(expected) 
Expected cost of procurement 
(as % of c0) 
Expected cost of procurement 

c0 = 7 0∙45 
(0∙43,0∙46) 

72∙1 
(71∙2,73∙5) 

0∙42 
(0∙40,0∙43) 

73∙2 
(72∙3,75∙1) 

101∙6 

0∙20 
(0∙18,0∙21) 

83∙9 
(81∙2,84∙7) 

116∙4 

0∙04 
(0∙03,0∙05) 

95∙4 
(94∙3,96∙2) 

132∙4 
(as % of unh) 

1. Probability of submitting a bid c0 = 10 0∙58 0∙55 0∙20 0∙037 
(expected) (0∙56,0∙59) (0∙54,0∙56) (0∙18,0∙21) (0∙03,0∙04) 

2. Expected cost of procurement 58∙1 59∙1 78∙7 94∙7 
(as % of c0) (56∙2,59∙5) (57∙8,60∙1) (76∙5,79∙7) (94∙0,95∙6) 

3. Expected cost of procurement 101∙6 135∙5 163∙0 
(as % of unh) 

I have also performed the test from part (1) of Proposition 2 following the same procedure 
as above. The p-value of the test statistic is 0.63. It is, therefore, in line with the results of the 
tests presented earlier. 

Robustness check. The model of bidding behaviour that I take to the data assumes that 
frms’ bidding decisions are independent across auctions. This assumption may be violated if 
bidders’ decisions are affected by dynamic considerations. In particular, when a company is ca-
pacity constrained, it has to take into account the effect of winning the project today on its ability 
to explore proftable opportunities tomorrow. If dynamic links between auctions are substantial 
in magnitude, our estimates of the characteristic function of the joint distribution of two bids 
submitted in the same auction may be biased, which in turn would lead to biased estimates for 
the distributions of cost components. To evaluate the effect of dynamic links on the performance 
of the estimation procedure, I re-estimate the model for the subset of projects such that all reg-
ular frms bidding for the projects in this subset have their backlog variable between 30% and 
75% of the maximum of the backlog variable for the frms observed in the data. Even though 
this exercise substantially reduces the number of available projects and, therefore, leads to less 
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precise estimates, they imply similar results for the variance decomposition and the biases from 
misspecifcation. 

6. CONCLUSION 

This paper proposes a non-parametric procedure to recover the distribution of bidders’ private 
information when unobserved auction heterogeneity is present. It derives suffcient conditions 
under which the model is identifed and shows that the estimation procedure produces uni-
formly consistent estimators of the distributions in question. The paper describes a number 
of testable restrictions implied by the model with unobserved heterogeneity. It also provides 
guidance on the practical implementation of the testing procedures that correspond to these 
restrictions. 

This methodology is applied to the data for highway maintenance projects collected by 
Michigan DoT. For this data set, private information is estimated to explain only about 34.4% 
of the variation in a project’s costs. This estimate is obtained while conditioning on the number 
of bidders, on the type of the project as defned by the main task, and on the size and duration 
bracket. Results of the estimation reveal that the estimation procedures that account for unob-
served auction heterogeneity tend to estimate higher average costs, lower variance of the cost 
distribution, and lower markups relative to the estimates obtained under the assumption of IPV 
or APV. Additionally, the reserve price chosen on the basis of IPV or APV estimates leads to 
signifcantly higher costs of procurement than the reserve price chosen on the basis of the esti-
mates for the unobserved auction heterogeneity model. This result holds both in the case where 
the reserve price is derived as a function of a specifc realization of unobserved heterogeneity 
and in the case where a single reserve price is chosen in such a way as to minimize the average 
cost of procurement where the average is taken with respect to the distribution of unobserved 
heterogeneity. In the latter case, the average cost of the procurement is 9%–19% lower than the 
average cost achieved when the reserve price based on either IPV or APV estimates is used. 

The methodology in this paper is developed for the case where a bidder’s cost of completing 
the project equals the product of the common cost component and the individual cost component. 
A somewhat more general model that allows for the common component to have distinct effects 
on the mean and variance of the cost distribution is analysed in Krasnokutskaya (2009). 

APPENDIX A 

A.1. Proofs of theoretical results 

Proof of Proposition 1. The vector of equilibrium strategies in the game with y = 1 satisfes the system of 
differential equations 

−1 −11 (mk − 1) fXk (αk1 (a)) m−k fXk (αk1 (a)) 
= � � + � � (A.1)

−1 −1 −1 −1a − x 1 − FXk (αk1 (a)) αk1(αk1 (a)) 1 − FXk (αk1 (a)) αk1(αk1 (a)) 

with boundary conditions (a) αk (x) = x and (b) there exists d0 [x, x] such that αk (x) = d0. 
Defne (β1y ,β2y ), βky : [yx, yx] → (0,∞) such that 

� � 
z 

βky (z) = yαk , 
y 

βky (yx) = yx, (A.2) 

βky (yx) = yd0. 

Substituting equations (A.2) into equation (A.1) obtains that β1y and β2y satisfy the frst-order conditions for the game 
indexed by y. They also satisfy corresponding boundary conditions by defnition. Therefore, a vector (β1y ,β2y ) consti-
tutes the set of equilibrium functions. 
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Proof of Theorem 1. (a) I start by establishing a statistical result that I use to prove Theorem 1. Namely, 

Lemma A1. Let X be a random variable with the probability density function f (∙) and support [x, x], then the 
characteristic function of variable X,ϕX (t), is non-vanishing, i.e. for every T > 0 there is t such that |t | > T and 
ϕX (t) = 0. 

R x i tx f (x)dx toProof. The idea of a proof is to consider the extension of the characteristic function ϕX (t) = e 
R x 

xthe complex domain. In particular, I consider function eϕX (∙) defned as ϕeX (z) = eizx f (x)dx at an arbitrary complex x 
point z. It is straightforward to show that eϕX (∙) is an entire function, i.e. it is infnitely complex differentiable at every 
fnite point of the complex plane. Therefore, it can only be equal to zero in a countable number of points. Thus, the 
number of points where ϕX (t) is equal to zero cannot be more than countable, which means that ϕX (t) is non-vanishing. 

Finally, eϕX (∙) is an entire function because 
Z x 

(k) i zx f (x)dx.eϕ (z) = (i x)keX 
x 

(k)Note that for every k, eϕ (z) is well defned due to the boundedness of the X’s support. That concludes the proof X 
of Lemma A1. 

(b) Random variables Y , Ai , log(Y ), and log(Ai ) have bounded supports and, therefore, have non-vanishing char-
acteristic functions. The identifcation result follows from a theorem by Kotlarski (1966)30 and results established by 
Laffont and Vuong (1996) as described in Section 3.1. 

� � 
Proof of Proposition 2. (1) If Xik ’s are independent, then so are log Xik . The structure of the bidder’s cost, 

� Bi1 
� � � � � � Bi2 

� � � � � 
ci = yxi , implies that log = log Ai1 − log Ai3 and log = log Ai2 − log Ai3 . Then, by Kotlarski (1966)Bi3 

Bi3� � 
theorem, the characteristic function of log Ai3 is given by 

�Z t � 
1(0,u2) � � ��� �(−t) = exp du2 − i t E log Ai1log Ai3 0 (0,u2) 

� � 
and the characteristic function of log Ai1 by 

(t,0)� �(t) = . (A.3)
log Ai1 

� �(−t)
log Ai3 

If bidders i1 and i3 are from the same group, then the characteristic functions of log(Ai1 ) and log(Ai3 ) should be the 
same up to a multiplicative factor determined by the difference in means induced by normalization. Let us consider 

� � �� � Bi2 
� � � 

normalization E log Ai1 = 0. Then, equation (A.3) implies that log and −log Ai3 should have the same mean. Bi3� � Bi1 
�� � � �� � � �� 

However, k(i1) = k( i3) therefore E log = 0. This implies that E log Ai3 = E log Ai1 = 0, and hence Bi3 

� �(t) = � �(t).
log Ai1 

log Ai3 

(2) The proof follows from the property of independent variables: if the random variables Z1 and Z2 are indepen-
dent, then so are f (Z1) and f (Z2), for any function f (∙). 

(3) If Y and Xi ’s are independent, the cost structure is given by ci j = y j xi j , then Kotlarski (1966) theorem applied � � � � �� � � 
to log Bi1 , log Bi2 implies that the characteristic function of log Ai1 is given by the function �(t) defned

log Ai1� � Bi1 
� � Bi2 

�� 
by equation (3). Kotlarski (1966) theorem applied to log , log implies that the characteristic function of Bi3 

Bi3� � � � �� 
log Ai1 is given by � �(t) defned by equation (4). Thus, under normalization E log Ai1 = 0, the following 

log Ai1
equality has to hold: 

� �(t) = � �(t).
log Ai1 

log Ai1 

A similar relationship holds for i3. This is obvious if i1 and i3 belong to the same group. If they do not, then we have to 
make sure that normalization does not induce a shift of a random variable, which corresponds to � �(t) relative 

log Ai3 

30. See Rao (1992). 
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to the random variable, which corresponds to � �(t). It is easy to see, however, that the former represents a
log Ai3 � � �� � � �� 

characteristic function of a random variable with a mean equal to E log Bi3 − E log Bi1 . The same is true of the 
latter. 

Proof of Proposition 3. The “only-if”direction is a straightforward corollary of the identifcation argument and 
the properties of the bidding strategies. 

A.2. Estimation 

I start by describing how the supports of the distributions of the individual bid and the common cost components can be 
estimated. Then, I proceed to the proof of Proposition 4. 

Estimation of the support bounds. Strictly speaking, bounds of the support are recovered during the inversion 
procedure when the density function of the distribution in question is computed. According to the inversion formula, the 
density function recovered from the theoretical characteristic function should approach zero as the smoothing parameter 
T approaches infnity at every point outside of the support. Therefore, the upper and lower bounds of the support are, 
respectively, defned as lower and upper limits of the points where the density function is equal to zero. In estimation, 
the density function recovered from the estimated characteristic function does not, in general, equal zero outside of the 
support. An econometrician, therefore, has to choose cut-off points that correspond to suffciently low values of the 
estimated density function. Unfortunately, econometric theory does not provide us with guidelines on how to choose 
such cut-off points which is why I use a different approach in this paper. I estimate bounds of the supports for the 
distributions of interest using restrictions imposed by the model with unobserved auction heterogeneity. If the data are 
generated by the model with unobserved auction heterogeneity, then this approach leads to consistent estimators of the 
support bounds. The proof of this statement and the derivation of the rate of convergence are given together with the 
proof of Proposition 6. Below I describe a procedure to estimate the support bounds of the distributions of the individual 
bid and the common cost components. 

Denote the support of the log of the common component by [y, y] and the supports of the log of the indi-
vidual bid components by [a,a]. Then the support of the log of bids for Group 1 is given by [a + y,a + y] and 
the support of the differences in the log of bids is given by [a − a,a − a]. Additionally, I start with the normal-
ization E[log(A1)] = 0. Since the bounds of the supports can be estimated as [min(log(b1l j )),max(log(b1l j ))] and 
[min(log(b1l j ) − log(b1 pj )),max(log(b1l j ) − log(b1 pj ))], I arrive at the system of equations 

min(log(b1l j )) = ba +by ,n n 

max(log(b1l j )) = an +byn,b 

b 
Z b

max(log(b1l j ) − log(b1pj )) = an −ban, 

an 
abgL A,n (a)da = 0. 

ban 

Therefore, I have a system of four equations in four unknowns. The population counterpart of this system is 

a + y = log(b), 

a + y = log(b), 

a − a = log(b1) − log(b2), 
Z a 

agL A(a)da = 0. 
a 

It is straightforward to establish that this system has a solution and that this solution is unique. First, note that y, y, and 
a can be expressed as functions of a: 

y = b − a, 

y = b − b1 − b2 − a, 

a = b1 − b2 + a. 

R U3+aLet us denote U1 = b, U2 = b, U3 = b1 − b2, then a = U3 +a and a agL A(a)da = 0. Second, let us establish 
R U3+athat −U3 ≤ a ≤ 0. Indeed, since gL A(a) ≥ 0 and ahL A(a)da = 0, it must follow that a ≤ 0 and a ≥ 0 or a ≥aR U3+z−U3. Third, it is easy to show that f (z) = agL A(a)da is strictly increasing on (−U3,0) since gL A(∙) is positive z 
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on the interior of the log(A) support. Indeed, f (z) = (U3 + z)gL A(U3 + z) − zgL A(z) > 0. If z < a, then zgL A(z) = 0; 
at the same time, 0 < U3 +z ≤ U3 +a = a and, therefore, (U3 +z)gL A(U3 +z) > 0. The argument is similar when z > a. 
We have two cases when z = a: (a) gL A(a) ≥ gL A(a) and (b) gL A(a) < gL A(a). In (a), f (z) > 0 follows immediately. 
In (b), we have agL A(a) − agL A(a) > (a − a)gL A(a) ≥ 0. Finally, f (−U3) < 0, whereas f (0) > 0. Therefore, theR U3+asolution to agL A(a)da = 0 must exist and be unique. a 

Proof of Proposition 5. The proof consists of several steps. 

(1) First, I establish that the distribution function and the probability density functions of the individual bid compo-
nents inherit properties of the distribution function and the probability density functions of the individual cost 
component. Namely, 

Lemma A2. Given D1 − D5, the distribution functions G Ak (∙) satisfy the following: 
� � 

(i) Their supports S G Ak are given by [a,a] with a = x �and a�> 0; 
(ii) G Ak is continuously differentiable on the interior of S ;� � G Ak 

(iii) For every closed subset of the interior of S G Ak , there exists cg > 0 such that gAk (a) ≥ cg > 0 on 
this subset. � � 

(iv) For every closed subset of the interior of S G Ak , there exists cG > 0 such that 1 − G Ak (a) ≥ cG > 0 
on this subset. 

Proof. The point (i) is established in Section 2. To show that the points (ii), (iii), and (iv) hold, I use the 
relationship between the distribution functions of the individual bid components and the distribution functions 
of the individual cost components. Namely, 

G Ak (a) = FXk (ξk (a)), 

where ξk (∙) is the inverse individual bid function of the bidder of group k. Then, 

gAk (a) = G Ak 
(a) = fXk (ξk (a))ξk (a). 

� � 
From (D2): fXk (∙) is continuously differentiable and for every closed subset of S GAk , there exists c f > 0 such 
that fXk (∙) ≥ c f ; from equilibrium characterization: ξk (∙) is continuously differentiable and strictly increasing � � � � 
on S GAk ; therefore, for every closed subset of S GAk , there exists c0 > 0 such that |ξk (∙)| ≥ c0. This implies 
(ii) and (iii), where cg is equal to the product of corresponding c f and c0. Finally, (iii) implies that G Ak (a) < 1� � 
for any closed subset of S GAk , which obtains (iv). 

(2) If the probability density functions of the cost components are ordinarily smooth of order > 1, then Theo-
rems 3.1–3.2 in Li and Vuong (1998) apply; these theorems establish the uniform consistency of the frst-stage 
estimators. In particular, they establish that 

� � −(2 −1) 

y 
sup | bfLY,n(y) − fLY (y)| = O 
S(HLY ) 

n 

log logn 

2(2+5 ) 
, 

� � −(2 −1) 

a 

sup b (a)� � gL Ak ,n (a) − gL Ak 
S GL Ak 

= O 
n 

log logn 

2(2+6 ) 
. 

Since, 

fY (y) = 
fLY (log(y)) 

, 
y 

bfY,n (y) = 
bfLY,n(log(y)) 

, 
y 

f Ak (a) = 
fL Ak (log(a)) 

, 
a 

bf Ak ,n(a) = 
bfL Ak ,n (log(a)) 

a 
and a [a,a], a > x > 0, then 

� � −(2 −1) 

y 
sup | bfY,n(y) − fY (y)| = O 
S(HY ) 

n 

log logn 

2(2+5 ) 
, 

� � −(2 −1) 

a 

sup� � 
S G Ak 

bgAk ,n (a) − gAk (a) = O 
n 

log logn 

2(2+6 ) 
. 
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(3) Next, I establish the uniform convergence of the individual bid function following the logic of Proposition 3 and 
Theorem 3 of Guerre, Perrigne and Vuong (2000). 

(a) First, I derive the rate of convergence for the support bounds a and a. Recall that the bounds of supports have been� � 
derived in several steps. First, supports of the distributions of L B1i and L B1i1 − L B1i2 have been estimated as 

b[min(log(b1l j )),max(log(b1l j ))] = [Ub1,n ,U2,n], 

b[min(log(b1l j ) − log(b1 pj )),max(log(b1l j ) − log(b1 pj ))] = [−Ub3,n ,U3,n]. 

These are maximum likelihood estimators for the support bounds of corresponding densities. We know that they 
converge to the true value of the support bounds at the rate of n. 

!2 !2Z b Z bU3,n +z U3,n 
Qbn (z) = abgL A1,n (a)da = abgL A1,n (a + z)da + z . 

z 0 

�R U3 
�2The usual results for extremum estimators apply. Note that Qbn → (a + z)da + z at the same rate0 agL A1 

as bgL A1,n converges to gL A1.31 Let us denote this rate by dn. All the standard conditions for the convergence of 
extremum estimators hold; therefore, ba converges to a uniformly at the rate dn. Since, ban, by , and byn are linear n n 
combinations of Ub1,n ,Ub2,n,Ub3,n , and ba , they converge uniformly to a, y, y correspondingly at the rate dn . Then 

1bounds of supports for Ak are estimated as ba1 = exp(ba ) and ba = exp(ban ), respectively. The smoothness of the n n n 
exponential function ensures the consistency of these estimators. The delta method can be used to show that the 
rate of convergence remains equal to dn . 

(b) The rate of convergence for bgAk ,n (∙) is established in Li and Vuong (1998). Recall that here we denote it dn . 
Now, we derive a rate of convergence for GbAk ,n . The estimator for G Ak is defned as 

Z a 
GbAk ,n (a) = bgAk ,n (a)da. 

ban 

To establish consistency we consider 

Z Zak a � � 
bG Ak ,n(a) − G Ak (a) ≤ bgAk ,n (a)da + bgAk ,n (a) − gAk (a) da . 

bak,n ak 

Since gAk is a continuous function with bounded support, according to Lemma 6.1(ii), then gAk is a bounded 
function. For large enough n, bgAk ,n is also bounded a.s. due to the uniform convergence of bgAk ,n to gAk . Then, 
part (b) implies that the frst summand converges to zero at the rate dn. The second summand also converges to 
zero at the rate dn since support of gAk is bounded. Therefore, GbAk ,n converges to G Ak at the rate dn . 

(c) Next, I prove the uniform consistency of the estimator for the individual inverse bid function. The following 
argument holds for every closed subset of (a,a). Note that for every a (a,a), corresponding bξk,n (a) is fnite. 
It follows immediately since bgAk ,n (a) and 1 − GbAk ,n (a) are positive on the interior of the support. Note that � � 
bgAk ,n (a) ≥ cg > 0 and 1−GbAk ,n (a) ≥ cG > 0 for some cg and cG since bgAk ,n and GbAk ,n uniformly converge 
to gAk and G Ak , respectively, and (iii) and (iv) of Lemma 6.1. Let us denote 

� � � � 
1 − GA1 (a) ∙ 1 − GA2 (a) 

ξk (a) = � � � � , 
(mk − 1) ∙ gAk (a) ∙ 1 − GA−k (a) + m−k ∙ gA−k (a) ∙ 1 − G Ak (a) 

� � � � 
1 − GbA1,n(a) ∙ 1 − GbA2,n (a)

bξk,n (a) = � � � � , 
(mk − 1) ∙bgAk ,n (a) ∙ 1 − GbA−k ,n(a) + m−k ∙bgA−k ,n (a) ∙ 1 − GbAk ,n (a) 

� � � � 
ζk (a) = (mk − 1) ∙ gAk (a) ∙ 1 − GA−k (a) + m−k ∙ gA−k (a) ∙ 1 − G Ak (a) , 

� � � � 
bζk,n (a) = (mk − 1) ∙bgAk ,n (a) ∙ 1 − GbA−k ,n (a) + m−k ∙bgA−k ,n (a) ∙ 1 − GbAk ,n(a) , 

� �� � 
εk (a) = 1 − G Ak (a) ∙ 1 − GA−k (a) , 

� �� � 
bεk,n (a) = 1 − GbAk ,n (a) ∙ 1 − GbA−k ,n(a) . 

31. See Li and Vuong (1998) for an appropriate rate of convergence. 
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Then, 
1

|bξk,n (a) − ξk (a)| ≤ |bεk,n(a)ζk (a) − εk (a)bζk,n (a)|, C1 = (mk + m−k − 1)cgcG , 
C2 

1 
1

|bξk,n (a) − ξk (a)| ≤ (|bεk,n (a) − εk (a)| ∙ |ζk (a)|+ |bζk,n (a) − ζk (a)| ∙ |εk (a)|), 
C2 

1 

e ecC1 G 
2 

|bξk,n (a) − ξk (a)| ≤ |bεk,n(a) − εk (a)|+ |bζk,n (a) − ζk (a)|, 
C2 C2 

1 1 

� � � � 
where Ce1 = (m1 + m2 − 1)ecgecG , ecg = maxa S(Ak ) gAk (a) , and ecG = maxa S(Ak ) 1 − G Ak (a) . The con-
stants ecg , and ecG are well defned because gAk (∙) and G Ak (∙) are continuous functions and S(Ak ) is a compact 
set. 
Pointwise application of the delta method and uniform convergence of bgAk ,n and GbAk ,n to gAk and G Ak 
correspondingly allows us to conclude that 

|bεk,n (a) − εk (a)| = O(dn ), a.s. 

|bζk,n (a) − ζk (a)| = O(dn), a.s. 

|bξk,n (a) − ξk (a)| = O(dn ), a.s.. 

(d) Next, I establish the uniform convergence of the individual bid function estimator. For a given x (x, x), let us 
denote by a0 = αk (x) and by an = bαk,n(x). Here, a0 is some number from (a,a) and an is a random variable 
with realizations in (a,a) for large n. For every realization of an , there is a number a such that 

ξk (a0) − ξk (an ) = ξk (an )(a0 − an ), an [a0,an ], 

since ξk (∙) is continuously differentiable on the compact. Let us also denote by an a random variable with 
realizations as above. Note that if a0,an always belong to the interior of S(Ak ), then an also always belongs to 
the interior of S(Ak ). Since ξk (∙) is strictly increasing on the compact, then ξk (an ) ≥ cξ > 0, and therefore, 

1 
a0 − an ≤ ξk (a0) − ξk (an ) . 

cξ 

On the other hand, 
ξk (a0) − ξk (an ) =bξk,n (an ) − ξk (an ). 

Since, as I have shown above, bξk,n converges uniformly to ξk , then 

ξk (a0) − ξk (an ) = bξk,n (an ) − ξk (an ) = O(dn ) a.s. 

and 
a0 − an = bαk,n (x) − αk (x) = O(dn ) a.s.. 

(e) Finally, I establish the uniform convergence of FbXk ,n (x). 

GbAk ,n (bαk,n(x)) − G Ak (αk (x)) ≤ GbAk ,n (bαk,n (x)) − G Ak (bαk,n (x)) + G Ak (bαk,n (x)) − G Ak (αk (x)) . 

Uniform convergence of GbAk ,n and bαk,n (x) and continuous differentiability of G Ak (∙) obtain GbAk ,n(bαk,n(x)) − 
G Ak (αk (x)) = O(dn ) a.s. 

Practical issues. As noted by Diggle and Hall (1993) and Li, Perrigne and Vuong (2000), the estimators for bfLY (∙) 
and bgL A(∙), which are obtained by truncated inverse Fourier transformation, may have fuctuating tails.32 This feature 
can be alleviated by adding a damping factor to the integrals in bfLY (∙) and bgL A(∙). Following Diggle and Hall (1993) 
and Li, Perrigne and Vuong (2000), I introduce a damping factor defned as 

( )|t |
1 − , if | t | ≤ TdT (t) = T . 

0, otherwise 

32. Li, Perrigne and Vuong (2000) encountered this problem as well and dealt with it in a similar way. 
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Thus, the estimators are generalized to 

Z T1 
bgL A(a) = dT (t)exp(−i ta)bL A(t)dt,

2π −T 
Z T1bfLY (y) = dT (t)exp(−i t y)bLY (t)dt. 

2π −T 

The smoothing parameter T should be chosen to diverge slowly as n → ∞, so as to ensure the uniform consistency 
of the estimators. However, the actual choice of T in fnite samples has not yet been addressed in the literature. I choose 
T through a data-driven criterion. In particular, I use the bid data to obtain estimates of the means and variances for 
distributions33,34 of LY and L A, bμLY , bμL A1 = 0,bμL A2, bσ 2 σ2 ,bσ2 . These estimates are then used to choose LY , bL A1 L A2 
a value of T . Specifcally, I try different values of T and obtain estimates of fLY (∙) and gL A(∙). From each estimated 
density I compute the means and variances eμLY , eμL A1 ,μeL A2, eσ2 σ 2 ,eσ2 , respectively. This gives goodness-of-LY , eL A1 L A2 
ft criterion |bμLY − μeLY |

2 +|bσLY −eσLY |
2 for LY and similarly for L Ak . The value of T that I choose minimizes the 

sum of these errors in a percentage of bσ 2 σ 2 
LY and b . In the estimation, the optimal T equals 50. L Ak 

Finally, similar to Horowitz and Markatou (1996), I fnd that the bias correction technique described in their paper 
improves the performance of the estimator in small samples. 

A.3. Summary of testing procedures 

Point (a) describes the procedure to test the conditional independence of Z1 and Z2 conditional on linear index variable 
X; point (b) outlines the procedure I use to test the equality of two functions. 

(a) Test of conditional independence.35 The conditioning variable is assumed to be given by a single index of the 
observable covariates, λθ (X). The test statistic is based on the monotonic transform of λθ (X), U = F0(λθ (X)), 
and Rosenblatt’s transforms36 of Z1 and Z2, 

eZ1 = GZ1|U (Z1 | U ), 

eZ2 = GZ2|U (Z2 | U ). 

Here, X denotes the vector of project characteristics, θ is a vector of parameters, and F0(∙) is the cumulative distribution 
function of λθ (X). The hypothesis tested is 

� � 
H0: Pr Ge (z1 | λ(X), eZ2) = Ge (z1), z1 [0,1] = 1 orZ1 Z1 

H0: Pr(E[1(eZ1 ≤ z1) | λ(X), eZ2] = E[eZ1 ≤ z1], z1 [0,1]) = 1. 

The test statistic is given by 
TbK S,n = sup |bϑn(r )|, 

r S 

where 

i =nX 
b e eϑn (r ) = √

1
1(Ubi ≤ u)(1(bZ1i ≤ z1) − z1)(1(bZ2i ≤ z2) − z2), r = (u,z1, z2), with 

n 
i =1 

b bb e eUi = Fb n,bθ,i (λbθ (X)), Z1i = GbZ1|U,i (Z1 | Ubi ), Z2i = GbZ2|U,i (Z2 | Ubi ), 

bwhere Fb n,bθ,i (∙), GZ1|U,i (∙ | ∙), and GbZ2|U,i (∙ | ∙) denote the empirical distribution function of {λbθ (Xi )}i =1,...,n and 
kernel estimators of GZ1|U,i (∙ | ∙) and GZ2|U,i (∙ | ∙). All three objects are estimated with the omission of the i -th data 
point. The test statistic above converges to a Gaussian process as n → ∞. For more details, see Song (2009). I compute 
the distribution of the test statistics via a wild bootstrap procedure. 

33. Note that the estimation is performed under the assumption E[log(A1)] = 0. The distributions are later adjusted 
to satisfy normalization in (D3). 

34. The estimates for the frst two moments of the distributions of LY , L A1, and L A2 can be obtained as fol-� � � � 
log log � � 

P P 
i1≤m1 

bi1 m1<i2≤m bi2lows: b = , b 0, b = −b σ 2 = bσ 2 +bσ 2 −bσ2 /2,μLY n×m1 
μL A = μL A2 n×(m−m1) μLY , bLY L B1 L B2 L B1−L B2 

bσ 2 = b −bLY , and b = σ2 σ 2σ2 σ 2 σ2 b −bL A1 L B1 L A2 L B2 LY . 

35. This test is developed in Song (2009). An alternative approach to this test is presented in Su and White (2008). 
36. See Rosenblatt (1952). 
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(a) Test of the equality of two functions. The null hypothesis is 

H0: f1(t) = f2(t) vs. 

H1: f1(t) = f2(t). 

The test statistic is defned as 
i =NX 

Tbn = d2( bf1,n(ti ) − bf2,n (ti ))
2,n 

i =1 

where {ti }i =1,...,N is a fnite set of points from the real line. The asymptotic distribution of this test statistic is 
unknown. Therefore, it is not clear whether a bootstrap procedure can be used to compute the distribution of the 
test statistic. Instead, a subsampling procedure can be used since the rate of convergence is known.37 To ensure 
the power of the test, I use re-centred test statistics following Hall and Horowitz (1996): 

i =NX eTbn = d2( bf0,b(ti ) − bf0,n (ti ))
2,n 

i =1 

where bf0,b = bf1,b − bf2,b is computed from a simulated sample and bf0,n = bf1,n − bf2,n is computed from the data. 
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