Review of Economic Studies (20118, 293-327 doi: 10.1093/restud/rdq004
The Author 2011. Published by Oxford University Press on behalf of
The Review of Economic Studies Limited.

|dentification and Estimation of
Auction Models with Unobserved
Heterogeneity

ELENA KRASNOKUTSKAYA
University of Pennsylvania

First version received JanuaB005; final version accepted Janu&910 (Eds.)

In many procurement auctions, the bidders’ unobserved costs depend both on a common shock and
on idiosyncratic private information. Assuming a multiplicative structure, | derive sufficient conditions
under which the model is identified and propose a non-parametric estimation procedure that results in uni-
formly consistent estimators of the cost components’ distributions. The estimation procedure is applied
to data from Michigan highway procurement auctions. Private information is estimated to account for
34% of the variation in bidders’ costs. It is shown that accounting for unobserved auction heterogeneity
has important implications for the evaluation of the distribution of rents, efficiency, and optimal auction
design.
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1. INTRODUCTION

A researcher analysing choices of an economic agent often cannot observe some of the inputs
that went into the agent’s decision problem. Such missing information is typically referred to
as unobserved heterogeneity, and addressing it is important in many empirical applications. For
example, labour and macroeconomists face this issue when they analyse the decision to go to
college since individual’s costs or return to education are only imperfectly measured in the data.
The same problem arises in the empirical analysis of auctions with private information. For ex-
ample, the results of an empirical evaluation of the distribution of rents, efficiency, or an optimal
design of an auction mechanism depend on the researcher’s ability to uncover the distribution
of bidders’ private information, and the auction literature has long emphasized that unobserved
variation in the distribution of bidders’ private information is likely present in many environ-
ments. Several methods have been proposed in the literature to control for unobserved auction
heterogeneity. However, it remained unclear whether private information can be separated from
unobserved auction heterogeneity on the basis of auction data.

In a first-price auction environment where bidder valuations are known to them but are
their private information, a growing literature started.jfont, Ossard and Vuond995) and
Guerre, Perrigne and Vuorfg000) uses the equilibrium relationship between bids and valua-
tions to uncover the distribution of private information. The identification power of the methods
proposed by this literature crucially relies on the fact that, after controlling for observed auction
characteristics, the remaining variation in bids is generated by variation in private information.
More specifically, these methods cannot be directly applied in an environment where a part of
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the variation in bids may be generated by systematic differences in auctions that are known to
bidders but unobserved by the researcher.

This paper studies the first-price auction environment with private information and unob-
served auction heterogeneity. It uses insights from a multifactor measurement error literature to
develop a non-parametric estimation method to recover distributions of private information and
unobserved auction heterogeneity from submitted bids. It also establishes sufficient conditions
under which these distributions are identified and shows uniform consistency of the estimators.
The estimation method is applied to data from Michigan highway procurement auctions to quan-
tify the importance of private information in this market and to demonstrate the implication of
unobserved auction heterogeneity for the evaluation of the distribution of rents, efficiency, and
optimal mechanism design.

| assume that an environment with unobserved auction heterogeneity biittiers can be
characterized by a set 6f + 1) factors. One of the factors, a common cost component, repre-
sents information about cost attributes that are available to all bidders. Part of this information
may not be observed by the researcher. Other factors, individual cost components, reflect cost
attributes privately observed by each bidder. A bidder’s costs are given by the product of the com-
mon cost component and this bidder’s individual cost component. This cost structure implies that
the distribution of costs may vary across projects even after all project characteristics known to
the researcher are held constant. | allow bidders to be asymmetric, so that the distribution of the
individual cost component may vary with the observable bidder characteristics.

The unobserved part of the common component (unobserved auction heterogeneity) gener
ates dependence between bids submitted in the same auction. This dependence can be used to
recover the distributions of the unobserved auction heterogeneity and individual bid components.
In particular, 1 show that the distributions of components are identified from the joint distribu-
tion of two arbitrary bids submitted in the same auction when the individual cost components
are independently distributed across bidders and are independent from the common component.
Further, the distributions of individual bid components are used to uncover the distributions of
individual cost components. The identification argument suggests a number of tests that can be
performed to verify whether assumptions of the multifactor model are satisfied in the data. The
paper also demonstrates that the set of bid distributions that can be rationalized by affiliated
private values (APV), another informational environment that induces dependence in bids sub-
mitted in the same auction, is distinct from the set of bid distributions that can be rationalized by
the model with unobserved auction heterogeneity. It proposes a test that can be used in practice
to distinguish between these environments.

The estimation procedure proposed in the paper follows the steps of the identification ar
gument. The Monte Carlo simulations confirm that the estimation procedure performs well in
samples of moderate size.

| use data from Michigan highway procurement auctions to quantify the importance of ac-
counting for unobserved auction heterogeneity. | estimate the distributions of private informa-
tion and unobserved auction heterogeneity using the estimation procedure described earlier in
the paper. | test the assumptions of the model and find that they are strongly supported by the
data. The results of the estimation suggest that variation in private information accounts for
only 34.4% of the bid variation. While comparing these results to the results obtained under
alternative assumptions of independent private values (IPV) and APV, | find that the bid strate-
gies recovered under alternative assumptions tend to overestimate the markup over bidders’ cost
relative to the estimates obtained under the assumption of unobserved auction heterogeneity. |
also find that the distributions of bidders’ costs recovered under alternative assumptions tend to
have lower means and higher variances compared to the estimates obtained under unobserved
heterogeneity. In particular, 1 find that the average markup estimated under the unobserved
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heterogeneity assumption is 8.4%, whereas the average markup is 14% for the APV assumption
and 19% for the IPV assumption. The variance of the estimated costs distribution is 18% and

22% higher under these alternative assumptions relative to the variance of the costs distribution
estimated under unobserved auction heterogeneity.

| use three sets of estimates to derive an optimal reserve price that minimizes procurement
costs. | find that the reserve price chosen on the basis of IPV or APV estimates leads to signif-
icantly higher costs of procurement than the reserve price chosen on the basis of the estimates
that account for the presence of unobserved auction heterogeneity. This result holds both in the
case where the reserve price is derived as a function of a specific realization of unobserved het-
erogeneity and in the case where a single reserve price is chosen in such a way as to minimize
the average cost of procurement where the average is computed with respect to the distribution
of unobserved heterogeneity. In the latter case, the average cost of the procurement is about 9%—
19% lower than the average cost achieved when the reserve price based on either IPV or APV
estimates is used.

This paper contributes to the literature on the estimation of auction models that aims to
uncover the distribution of bidders’ private information from the submitted bids. In particular,
Donald and Paarsdf1993,1996) andLaffont, Ossard and Vuon@995) develop parametric
methods to recover the distribution of costs from the observed distribution oEbid&ime
etal.(1994,1997) propose a non-parametric method to estimate the distribution ofZostse,
Perrigne and Vuon¢000) study identification of the first-price auction model with symmet-
ric bidders and propose a uniformly consistent estimation proceddurerrigne and Vuong
(2000,2002) extend the result to the APV and the conditionally IPV mo@elsi\po, Perrigne
and Vuong(2003) prove identification and develop a uniformly consistent estimation procedure
for first-price auctions with asymmetric bidders and APV. These papers rely on the assump-
tion of no unobserved auction heterogeneigythey explicitly use a one-to-one mapping be-
tween the distribution of bidders’ costs and the distribution of observed bids that arises in such
environments.

The paper by.i, Perrigne and Vuon@000), LPV hereafter, also uses the methods of mul-
tifactor measurement error analysis. LPV consider the model with conditionally IPV. They as-
sume that variation in bids is generated by variation in observable factors and private information
only, so that their model does not allow for unobserved auction heterogeneity. The innovation
in LPV is to allow for bidders’ costs to be composed of common and individual factors. Thus,
the structure of costs is similar to the one in my paper. However, unlike the environment with
unobserved auction heterogeneity studied in my paper, in LPV the common factor is part of
the private information of the bidder. Moreover, the bidder himself does not observe the re-
alization of the common factor separately from the entire realization of his costs (his private
information). He only knows the draw of his private information that is composed of com-
mon and individual factors. This implies that standard methods (that do not distinguish between
common and individual factors) are still fully applicable in this environment. Having estimated
the distribution of private information, LPV apply the multifactor decomposition, a result from
a measurement error literature, in order to understand correlation patterns in bidders’ private
information.

The few papers that address the issue of unobserved auction heterogeneityGaohpde
Perrigne and Vuon@003), Bajari and Ye(2003), Haile, Hong and Shur(2003), Hong and
Shum(2002),Athey and Hail§2000), andChakraborty and Deltg4998). The first two papers
rely on the assumption that the number of bidders can serve as a sufficient statistic for the unob-
served auction heterogeneitiaile, Hong and Shurf2003) appeal to the instrumental variables
approach to control for the variation generated by unobserved factors. More regantig,
Perrigne and Vuon@009) build on this methodology to identify the model with unobserved
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heterogeneity based on exclusion restrictions derived from bidders’ endogenous participation.
Hong and Shun(2002) account for unobserved auction heterogeneity by modelling the median
of the bid distribution as a normal random variable with a mean that depends on the number of
bidders.Athey and Haile(2000) study identification of auction models with unobserved auc-
tion heterogeneity in the context of second-price and English audftbagraborty and Deltas
(1998) assume that the distribution of bidders’ valuations belongs to a two-parameter distribu-
tion family. They use this assumption to derive small-sample estimates for the corresponding
parameters of the auction-specific valuation distributions. The estimates are later regressed on
observable auction characteristics to determine the percentage of values variation that is due to
unobserved auction heterogeneity.

Highway procurement auctions have been extensively studied in the liteRouter. and
Zona(1993) find evidence of collusion in Long Island highway procurement aucBajei
and Ye(2003) reject the hypothesis of collusive behaviour in procurement auctions conducted in
Minnesota, North Dakota, and South Dakdi@re-Bonet and Pesendor{@003) find evidence
of capacity constraints in California highway procurement auctidoag and Shunf2002)
find some evidence of common values in bidders’ costs in the case of New Jersey highway
construction auction®ajari and Tadeli$2001) andBajari, Houghton and Tadel{2004) study
the implications of the incompleteness of procurement contracts.

The paper proceeds as follows. Sectibdescribes the model. Secti@ndiscusses iden-
tification and testable implications of the model. Secdodetails the estimation procedure
and summarizes results of the simulation study. Seé&ipresents results of estimation and
Section 6 concludes.

2. THE MODEL

This section describes the first-price auction model under unobserved auction heterogeneity and
summarizes properties of the equilibrium bidding strategies.

The seller offers a single project for salertdidders. Bidder’s cost is equal to the product
of two components: one is common and known to all bidders; the other is individual and the
private information of firm. Both the common and the individual cost components are random
variables, and they are denoted by the capital leftensd X, respectively. The small letteys
andx denote realizations of the common component and the vector of individual components.
The two random variableg¥’, X) are distributed ony], ¥] x [x,X]™, y > 0, x > 0, according to
the probability distribution functiof, - -

Pr(Y < yo, X < Xo) = F (o, Xo).

2.1. Asymmetries between bidders

| assume that there are two groups of biddersbidders are from Group 1 ama, bidders,
my = (m—my), are from Group 2. Thus, the vector of independent cost components is given by
X = (X11, .., X1mgs X2@my+1)s - -5 X2m)e(:he model and all the results can easily be extended
to the case ofn groups. | focus on thel case of two groups for the sake of expositional clarity.
Groups are defined from the observable characteristics of bidders.

Assumptions D1)—(D4) are maintained throughout the paper.

(D1) Y andX;j’s are mutually independent and distributed according to

j=my

j=m
F (Y0, X10, - - -, Xm0) = Fy (Yo) H(Fxl(xjo) [1{ Fx.j0),

j=1 j=mp X1
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where Fy, Fx,, and Fx, are marginal distribution functions of, X1j, and Xy;, re-
spectively. The supports dfy and Fx, are given byS(Fy) =[y,y], y> 0, y <Y;
S(F) =[x,X],0 < x <00, x <X, fork {1,2}. o a

(D2) The probability density functions of the individual cost componefyts,and fx,, are
continuously differentiable and strictly positive on the interiongij.

(D3) EXgj =1.

(D4) The number of bidders is common knowledge. There is no binding reservation price.

Assumption(D>) ensures the existence and uniqueness of equilibriiie identification
result relies on assumptiot®1) and (D3). In particular, assumptiofD3) is used to fix the
scale of one of the cost componehi®,) summarizes miscellaneous assumptions about the
auction environment.

The auction environment can be described as a collection of auction games indexed by the
different values of the common component. An auction game corresponding to the common
component equal tg, y  [Y,V], is analysed below.

The cost realization of biddeis equal ta; x y, wherex; is the realization of the individual
cost component. The information set of bididisrgiven byPy; = {y, X | xi [X,X]}. A bidding
strategy of bidder is a real-valued function defined on K]

Byi: [x,X] — [0, c0].

| use a small Greek lettgrwith subscriptyi to denote the strategy of biddess a function
of the individual cost components and a small Roman lettedenote the value of this function
at a particular realizatiox.

2.2. Expected profit

The profit realization of biddeér zyi (b, b_i, xi ), equalgb; —x; x y) if bidderi wins the project
and zero if he loses. The symltpldenotes the bid submitted by biddeand the symbdb_;
denotes the vector of bids submitted by bidders otherithAnhthe time of bidding, bidder
knowsy andx; but notb_;. The bidder who submits the lowest bid wins the project. The interim
expected profit of bidderis given by

E[ﬂyi | Xi =Xi,Y=y] = (b — X xy) xPr Sbj, =i Xi=x,Y=Y).

A Bayesian Nash equilibrium is then characterized by a vector of fungtjoasfy1, ...,
Pym} such thatby; = fyi(xi) maximizesE[zi | X = Xi, Y = y], whenbj = fyj(xj), j =1,
j=1,...,m; for everyi =1,...,mand for every realization oX;.

McAdams(2003) and others establish that, under assumptDs-(D>), a vector of equi-
librium bidding strategiegy = {fy1, ..., fym} exists and is unique. The strategies are strictly
monotone and differentiable.

Next, | characterize a simple property of the equilibrium bidding strategies.

Proposition 1. If (a1(+),...,am()) is a vector of equilibrium bidding strategies in the game
with y= 1, then the vector of equilibrium bidding strategies in the game with yyyy], is
given by § = {fy1,..., fym} such that gi(xj) = yai (X)), i =1,...,m.

1. These conditions are not necessary for the existence of the equilibrium. They are convenient because they
guarantee good properties of the estimators proposed later in the paper.

2. There are several assumptions that would serve the same pergo&Y] = 1 is one of them. My choice of
normalization is motivated by application.
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The propositiof shows that the bid function is multiplicatively separable into a common and
an individual bid component, where the individual bid component is given(hy The proof of
this proposition is based on the comparison of the two sets of first-order conditions and follows
immediately from the assumption that costs are multiplicatively separable and that the common
component is known to all bidders.

Next, | characterize the necessary first-order conditions for the set of equilibrium strategies
wheny = 1. Note thatz; (-) denotes a strategy of biddeas a function of the individual cost
component and; the value of this function for a particular realizationXgf The equilibrium
inverse individual bid function for a grolgpbidders is denoted b¥. Since the functioak(-)
is strictly monotone and differentiable, the functiQy) is well defined and differentiable.

The probability of winning in this game can be expressed as

Praj >a, j=i)= [(g_ Fxyq, Gy @)))] ™0™ [(ﬁ- FX ) Ekiy @) ] "0

Herek(i) denotes biddeirs §roup and “k(i)” denotes th
sary first-order conditions are then given by

1 ka(i)(ik(i)(a))gk(i)(a) fX_k(i)(é‘—k(i)(a))ér_k(i)(a)
—_— = h—1 —k(i .
aan@ O @ T T B Ca @)

Here §(-) denotes the derivative &f(-).

Equation {) characterizes the equilibrium inverse individual bid function wypenl. It
describes the trade-off the bidder faces when choosing a bid: an increase in the markup over the
cost may lead to a highex posprofit if bidderi wins, but it reduces the probability of winning.

The bida is chosen in such a way that the marginal effects of an infinitesimal change in a bid on
the winner’s profit and the probability of winning sum to zero.

The next section uses properties of the equilibrium bidding functions to show how the prim-
itives of the first-price auction model can be recovered from the submitted bids in the presence
of unobserved auction heterogeneity.

complementary group. The neces-

@)

3. IDENTIFICATION AND TESTABLE IMPLICATIONS

The first part of this section formulates an identification problem and provides conditions un-
der which a first-price auction model with unobserved auction heterogeneity is identified. The
second part describes the restrictions this model imposes on the data. The third part discusses
possible extensions.

3.1. Identification

| assume that the econometrician has access to bid data, baseddependent draws from
the joint distribution of(Y, X). The observable data are in the fotm }, wherei denotes the
identity of the bidden, =1, ...,m, andj denotes the project,=1,...,n. If the data represent
equilibrium outcomes of the model with unobserved auction heterogeneity, then

bij = By;ki) (Xij) 2
(i.e.jj is a value of biddeirs equilibrium bidding strategy correspondingyjoevaluated at the

pointx;;).

3. This property for the case of symmetric bidders and additive cost components is establishiéz] iHong
and Shum (2003). Proposition 1, as well as the rest of the analysis in the paper, holds for additive cost components.
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As was shown in the previous sectidi), depends on the realizations of the common and
individual components as well as on the joint distribution of the individual cost components.
This section examines what properties of available data guarantee that there exists a unique
triple {{xij}, Fy, Fx} that satisfies equatior2), i.e. under what conditions the model from a
previous section is identified.

Guerre, Perrigne and Vuorfg000) obtain an identification result by transforming the first-
order conditions for optimal bids to express a bidder’s cost as an explicit function of the submit-
ted bid, the bid probability density function, and the bid distribution function. Under unobserved
auction heterogeneity, the necessary first-order condition yields an expressign jpras a
function ofbj; and the conditional bid probability density function and the conditional bid dis-
tribution function conditional ofY = y;. The econometrician does not observe the realization
of Y and, consequently, does not know the conditional distribution of bids#oy;. Hence, it
is not possible to establish identification based on the above first-order conditions.

The idea of my approach is to focus on the joint distributions of bids submitted in the same
auction instead of the marginal bid distributions in order to identify the model with unobserved
auction heterogeneity.

| useB; to denote the random variable that describes the bid of hidfigroupk (i) with dis-
tribution functionGg,;, () and the associated probability density functigp,, (-); bij denotes
the realization of this variable in auctign The econometrician observes the joint distribution
function of (B, ..., Bj,) for all subsetsis,...,i;) of (1,...,m).?

Proposition 1 estabfshes that

bij = yjaij,

whereg;j is a hypothetical bid that would have been submitted by biddey were equal
to one. | useA; to denote the random variable with realizations equaljtoThe associated
distribution function is denoted 6§, (-) with the probability density functioga,, (-). Note
that the econometrician does not obsefvand neither, therefore;;. The distribution o4 is
latent.

The identification result is established in two steps. First, it is shown that the probability
density function ofY can be uniquely determined from the joint distribution of two bids that
share the same cost component. Further, it is shown that the probability density funggion of
can also be uniquely determined if the joint distribution is for two bids such that at least one
of them corresponds to a bidder of grdugsecond, monotonicity of the inverse bid function
is used to establish identification of the cumulative density functiggsand Fx, from the
distributions of the individual bid componen®&,, andG a,.

The following theorem is the main result of this section. It formulates sufficient identification
conditions for the model with unobserved heterogeneity.

Theorem 1. If conditions(D1)—(D4) are satisfied, then the probability density function
fy(-) is identified from the joint distribution oif ilBBiz) where(i1,i2) is any pair such that
i1,iz {1,...,m}. Further, f (-) is identified from the ()int distribution ¢f ilBBiz)(f either
k(i1) =k or k(i2) = k or both.

Theorem 1 states that the distribution functions of cost comporigpts and fy(-) are
identified. The proof of this theorem consists of two steps and is given in Appendix A. In the first

4. In fact, it is not necessary to observe the joint distribution for all subsets. For details, see the formulation of
Theorem 1.
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step, a statistical result t§otlarski (1966Y is applied to the log-transformed random variables
Bi, andB;, given by

log(Bi,) = log(Y) +log(Ai,)

log(B,) ¥ log(Y) + log(Ai,)

Kotlarski’s result is based on the fact tat the characterisljc function of the sum of two indepen-
dent random variables is equal to the product of the characteristic functions of these variables.
This property allows us to find the characteristic functions o(M;ugIog(Ail) and lodAj,)

from the joint characteristic function ¢f |¢g og(Bi,)) Let ,)and 1({,-) denote th

joint characteristic function df Ic(gs.l og(Bi,){ And the artlal derlvatlve ofYhis charactekis-

tic function with respect to the first ¢ ponent respectively. Also,iigty)(-) and jog(a,)(t)

denote the characteristic functions offgg and log@x). Then,

log(y) () = exp(/ %duz —it E[Iog(Al)])(

,U2)
0
log(a) () = m, 3
(O
log(Az) (1) = oy ©

Equations (3) show that the characteristic functions oMpgfd log@x) are uniquely deter
mined onceE[log(Ay)] is fixed. It is convenient to start with normalizatiBfiog(A;1)] =0 and
then adjust recovered random variabte#\;, Az to achieve normalization ifD3). Since there
is a one-to-one correspondence between the set of characteristic functions and the set of proba-
bility density functions, the probability density functionsyofA;,, Ai, can be uniquely deduced
from the characteristic functions of 10, |09(Ai1)€md Iongiz)Qince log() is a strictly in-
creasing function angk(-) (0,00), k=1,2. Note that the margkal distribution of a single bid
per auction may not allow us to identify the distribution function¥,ofy,, A, because there
is no unique decomposition of the sum (or product) into its components. The second step in
the proof establishes that the distributions of the individual cost components are identified with
(possibly) asymmetric bidders and IPV. It is similar to the argument giMeaffiont and Vuong
(1996). Once the distribution of1, Fx, that corresponds tE[log(Al)] = 0 is identified, and
given that expectation of sueh is equal tce;, thenX; = )fa Xo = E Y =g Y with Fg, (X) =
Fx,(€1%), Fg, (X) = Fx,(€1x), Fg(x) = Fy(é)fre unique random variables that cor(espond to
normalization in D3).
A related question concerns identificatiort of specific realizatignandy; corresponding
to a particular bidyj. In this case, the answer is negativg: andy; cannot be separately
identified. The reason is that we cannot solve(fios- 1) unknown{y: {ajj }i—1
equations constructed on the basis dfids submitted in a given auction.
Theorem 1 establishes that identification of the model with unobserved auction heterogeneity
crucially relies on the assumption of independence of individual components across bidders and
from the common cost component. Next, we show how the validity of these assumptions can be
evaluated within a framework of the model with unobserved auction heterogeneity.

,,,,

3.2. Testable implications

Note that mstead of Ic(@.l nd IogiBI2 Kotlarskls result can be applied to the variables

log( i3)andlog( smcel% Iog i) —log(Ai,) ndlog(é log( AI2 Iog(A.3)(

5. See Rao (1992).
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individual coiponents. If the individual cost componeXits Xi,, and X, are indepgendently
distributed, then so are 104;,), Iog(Aiz{(and lod Ai,) {The characteristic function$ of these

variables can be computed using the jojnt characterkstic functipn ¢ig glog( )) which
| denote by (-, -), according to a formula similar to equati@).{ Spe f|caIIy,

Here Iog{Ai3)€Iays the role of a common component, whereabAQy and Iog{Aiz)Fgemain

R e
( (t,0)
og(a,) TV

Two observations can be made at this point. Fir&;,ifand Bj3 are submitted by bidders of

the same group and the assumption about independence of individual components holds, then
|og(Ai3)(t) and Iog(Ail)(t) should be equd.

Second, | have relied only on the functional form and the independence of the individual
cost components assumptions to obta]igg(A_ (-). The assumption of the independencé of

and X then implies that Iog(Ai )(-) and (-) have to coincide with the functions given
3

log(A )()—

IOg(Ail)
by equation ) under normalizatiof [ Jog (A;,) | £ 0.8 These observations are summarized by
conditions W;) and W>).

(Wy) For any triple(iy,iz,i3) such thafii =1,...,m; andiz=1,...,my}, or{ig =my +
1,....mandiz=mg+1,...,m}, andix =i, foranyk,| {1,2,3}, k=I,

Iog(Ail) (t) = Iog(Ais) (t)

for everyt [—oo0, 00] under normalizatior [ Jog (A,)] £ 0.°
(Wo) For any triple(i1,i2,i3) such thaty =i forany k1 {1,R,3}, k=1,

Iog(Aik) (t) = Iog(Aik) (t)

for everyt [—o0, co] under normalizatiorE[ jog (A, )] £ O.
Independence of individual cost components further {mplies conditigh

(W3) For any quadrupleil,iz,ig,u) {1,...,m} suth thatk =i, for anyk,| {1,2,3,4},
k=I, and '3 are mdependently distributed.

Proposition 2 describes the implications of the independence assumptions.

6. The symbol 1(-,-) denotes the partial derivative of(-, -) with respect to the first argument.

7. Functions log (A )(t) and Iog(A, )(t) can potentially differ by a multiplicative factor due to normalization.
Please read the proof of I3r0p05|t|0n 2 for %areful analysis of this detail.

8. Please read the proof of Proposition 2 for a careful treatment of normalization.

9. A similar relationship can be used to test for the presence of asymmetries. In particular, if bidders are symmet-
ric, then we should have

tog(a,) ® = tog(a,)

foriz {1,...,mp}andiz {m1+1,....,m}.



302 REVIEW OF ECONOMIC STUDIES

Proposition 2. Let bidder i’s cost for the project j be given by e xij y;.

1. If the individual cost components are independent, (ién has to be satisfied.
2. If the individual cost components are independent, (¢ has to be satisfied.
3. Further, if Y is independent of X, thern Wblds.

Note that(W1) and(W>) apply to samples witm > 3, whereas statemetil/s) applies only
to the samples with m 4. The proof of Proposition 2 is given in Appendix A.

More generally, conditions below describe a set of joint restrictions imposed on the data by
all the assumptions of the model with unobserved auction heterogeneity.

(Wy) For every pair(ij,ip), ij,ip = 1,...,m, the functions ogcy)(-), )(-), and

Iog( i

|og( A )(«) given by equation3) represent characteristic functions of feal-valued vari-
'p

ables. In particular, the random variables that corresponqoéf)Ail)(J and |og(Aip)(')
should have the same support.
(Ws) The characteristic function oqv)(-) does not depend on the pair @f,ip), ij,ip =

1,...,m, which is used to derive it, andIog A )= jog( _r)(-) and oa((A )(.) =
(Ws) The |€\(}erse bid functions
&(@=a (1=Cn@)(F=Ca @) k=1.2,

 (M—1)ga (@) (1-Ga, (a))tﬁ m_iga_, @ (1~ Ga (@)’

are strictly increasing ia.1°
Proposition 3 establishes necessary conditions for the model with unobserved auction het-
erogeneity to be rationalizableby a given data set.

Proposition 3. If a model with unobserved heterogeneity generated the data, then condi-
tions Wj)—(Wg) must hold.

3.3. Distinguishing from the model with APV

Unobserved auction heterogeneity induces dependence between bids submitted in the same auc-
tion. Within the private values framework, a similar regularity pertains to models with APV.
Interestingly, it can be shown that the set of bid distributions that can be rationalized by a model
with APV does not coincide with the set that can be rationalized by a model with unobserved
auction heterogeneity.

Indeed, bids generated by a model with unobserved auction heterogeneity are conditionally
independent. On the other hand, the distributions of bids generated by models with APV are
affiliated. The results related to de Finetti thedreastablish that the set of affiliated distribu-
tions is larger than the set of conditionally independent distributions. Therefore, there must exist
bid distributions with dependent bids that could not be generated by a model with unobserved
auction heterogeneity.

10. This testable implication of equilibrium bidding was first pointed ouGhgrre, Perrigne and Vuortg000)
in the context of the first-price auction with symmetric IPV and without unobserved auction heterogeneity.

11. A model is rationalizable by a given data set if it could have been generated by this model.

12. Kingman (1978) or Kendall (1967) provides a useful discussion of these issues.
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Further, it is possible to construct a test that distinguishes the APV setting from the unob-
served auction heterogeneity setting in the data. As noted above, under unobserved heterogene-
ity, for every quadruple of bids submitted in the same auction, the pairwise ratios involving
distinct bids are independent. This property, however, does not hold for a large class of bid
distributions generated by models with APV. The proof of this statement is given in the Tech-
nical Appendix posted on the website of Review of Economic StudieBhe pairwise ratio
independence may hold for a small set of affiliated distributions (the details are in the Tech-
nical Appendix). Therefore, this test has no power against some alternatives. The Technical
Appendix also provides several examples of widely used affiliated distributions that fail the
property of pairwise ratios independence. Among others, it considers a truncated multivariate
normal distribution and shows that it fails the test for a large set of parameter values.

4. ESTIMATION

This section describes the estimation method and derives properties of the estimators. Some
practical issues related to the estimation procedure are discussed in Sections A.2 and A.3.

4.1. Estimation method

The econometrician has data foy auctions. For each auctign (mj, {bj; }:sz,Zj) are ob-
served, wheren; is the number of bidders in the auctipnwith mj; bidders of Group 1 and

mj2 bidders of Group 2{bj; }ZT‘ is a vector of bids submitted in the auctipnandz; is a
vector of auction characteristics. The estimation procedure is described for the case of discrete
covariates. It can be extended to the case of contirgjdds

The estimates are obtained conditional on the number of bidders, mg, myj = mpy,
andz; = z. Letn denote the number of auctions that satisfy these restrictions. The estimation
procedure closely follows the identification argument described in the proof of Theorem 1. It
consists of the following steg$.

1. The log transformation of bid data is performed to obta#); = log(B; j) AndLB;,j =
log(Bi,j){whereij =1,...,moy andip = moz+1,...,mo.
2. The jointkcharacteristic function of an arbitrary p@irB; , L Bip)(s estimated by

t1,t2) =
mMo1m
01702 1 <) <oy, mor+1<p<mg ' j=1

1 . :
Z ﬁzexp(ltl-LBi”'+|t2-LBipj)(
and the derivative of (-, -) with respect to the first argumenty (., -), by

Tt to) =

Mop1M,
01702 1 ) <oy, mor+1<p<my  j=1

1. _ :
Z - E ILBiljeXp(It1-LBi|j+It2-LB|pj)(
| average over all possible pairs to enhance efficiency.

13. Estimation in the case of continuazjsrequires smoothing ove .

14. The method is described for the data set where bids submitted by bidders from both groups are present. It can
be easily modified for the case where the distributions of individual cost components for different groups have to be
recovered from different data subsets. To restore the normalization assumed in this paper, the characteristic function of
the log of the individual bid component for Group 2 in Step 3 should be multiplied lﬁE[abqg(Bip)( log (B, )])(

il =1,...,mpgandip =mpy+1,...,mo.
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3. The characteristic functions of the log of individual bid componkm$g, k = 1,2, and
the log of the common cost componént are estimated as

T lyn®) = exp(/( Md Up — itE[|09(A1)]),

“h(0,u)
N (t = An 1
Laun(®) Lv,n(t)
~ T 0,1)
Lan(t) == .
>0 v.n(D)

| first use the normalizatioB[log(A1)] = 0.
4. The inversion formula is used to estimate densgieg, k= 1,2, andg_v.

_ 1 . ~
OLAn(U) = 2—/ exp(—itug) Lan(t)dt,
T J\T

_ 1 R
fvn(U2) = 5 / exptitt) Lva(hdt

forup [log(@),log@]and v [log(y),log(y)], whereT is a smoothing parameter.
5. The densities oBA¢ andY are obtained as

gLA.n(log@))

gAk,n(a) = a
~ fLyn(
Fon(y) = LY, (yOQ(Y)),

fora [aalandy [y,y].*°
6. The individual inverse bid function at a poat [a, 3] is estimated as

_ (r— §A1,n(a)) : ()-/— éAz,n(a))/ _
(M= 1)-Gacn(@) - (L Gayn(@) (km_k Gank@) - (1= Gaun(@)’

&n@=a

where
GAk,n(a) = /(ngk,n(Z)dz

and’gﬁ is an estimate of the lower bound of the suppogQf.) which corresponds to the
normalizationE[log(A1)] = O (see Section A.2 for discussion of the support estimation).
7. The individual bid function for a groupat a pointx  [x,X] is estimated as

An(X) :Zk",}(x) = a such thaty n(a) = x.

8. The cumulative distribution function of the individual cost component is estimated by
substituting the corresponding estimated bid function into the estimated cumulative distri-
bution function of the individual bid component

Fxin(¥) = Gan(Gr(X)).

15. Horowitz and Markato1996) suggest using a bias correction technique in this setting to obtain better results
in small samples.
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9. To arrive at the normalization ifD3), computee; = E[Xl] = fixd |Exl,n and then

perform the following adjustmentsy n(y) = e fy. (&)fpnd Fz, (%) = Fx,.n(e@1x).
10. | have also constructed an estimate of the tota(:ost ensity%‘un tion

. 1 o~ c\ ~
fee,n(C) = /(/9 Tx,n (9) fyn(y)dy
forc [x-y,X-Y].

11. An expected inverse bid functithis estimated as

~ o b\ ~
Jien(b) = /( Y& ()—/) Rn(y | bdy.

Here fy.n(y | b) is given by

Nn(y | b) = o —

lloy

f f;(,n(y)dy
ify [%’ E](’md fy.n(y | b) =0, otherwise.

4.2. Properties of the estimator

This subsection shows that the estimation procedure yields uniformly consistent estimators of the
relevant distributions. This result is derived under the following restrictions on the tail behaviour
of characteristic functions.

(Ds) The characteristic functions_y(-) and | a,(-) are ordinary smootff with > 1.

This property holdss.g.when cumulative probability functions of cost components admit up
to R, R> 1, continuous derivatives on the support interior suchithaf them, 1< M < R, can
be continuously extended to the real line. The uniform consistency of bid component estimators
is used to establish the uniform consistency of the cumulative distribution function estimator for
the individual cost component.

Proposition 4 summarizes properties of the estimator.

Proposition 4. If conditions(D1)—(Ds) are satisfied, therTﬁ) and /%(k(.) are uniformly
consistent estimators ofyk) and Fx, (), k= 1,2, respectively.

The proof of Proposition 4 is given in Appendix A. Confidence intervals for the estimates
are obtained through a bootstrap procedure.

16. I use ﬁ((y | b) because some valuesyére not consistent with a giverdbe to finite supports &f and Xi.
17. Following Fan(1991),

Definition 1  The distribution of random variab®is ordinary-smooth of order if its characteristic function
2(t) satisfies
dolt]™ <[ z() <dqjt|™

as t— oo for some positive constands, di, and .
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4.3. Monte Carlo study

In this section, | present and discuss the results from the simulation study, which analyses the
performance of the estimator in small samples.

The simulated data sets are generated as follows. The cost of biddegt to be equal
to the product of common and individual cost componeants; yx . The data are generated
using random draws from distributions that are similar in shape to the estimated distributions of
cost components. To create a typical data set descriingcurement auctions with andkz
bidders from Groups 1 and 2 correspondingly, | take n andkz x n independent draws from
the distributions of the individual cost component for Groups 1 and 2 and combine them with
draws from the distribution of the common cost component such that

{Gj.cij =yjxj,i=1,...,ki+kz; j =1,...,n}

is a matrix of simulated costs. The matrix of associated bids is calculated according to the equi-
librium bid functions.

| set the value of; = 2 andko = 2 similar to the configuration in the data and consider the
data sets of progressively smaller sizes with 250,200, and 150. Therefore, individual cost
components are estimates using 500, 400, and 300 bids, respectively.

The results of this study are summarized in Figlir@s and3. Figurel presents results for
the common component, while Figurdand3 describe the performance of the estimators for
the cumulative distribution and probability density functions of individual components. These
figures depict the original distributions of the individual and common cost components used to
generate the simulated data as well as the 5% and 95% quantiles of the estimators.

Figuresl, 2, and3 demonstrate that estimators perform well except for the smallest data set
where the quantile range becomes quite wide and does not contain small parts of the underlying
distribution functions.

5. MICHIGAN HIGHWAY PROCUREMENT AUCTIONS

This section describes characteristics of the Michigan highway procurement auctions.
Sections5.1 and 5.2 present the data and report some descriptive statistics. SBQiafso
presents the results of specification tests. Se&iBmlescribes the estimation results for the
model with unobserved auction heterogeneity, compares them to the estimates obtained under
the assumption of IPV and APV, performs reserve price analysis under alternative specifications,
and summarizes the tests’ outcomes for the assumptions of the model with unobserved auction
heterogeneity.

5.1. Market description

The Michigan Department of Transportation (DoT) is responsible for construction and mainte-

nance of most roads within Michigan. The DoT identifies work that has to be done and allocates
it to companies in the form of projects through a first-price sealed bid auction. The project usu-
ally involves a small number of tasks, such as resurfacing, replacing the base, or filling in cracks.

Letting process. The DoT advertises projects 4—-10 weeks prior to the letting date.-Adver
tisement usually consists of a short description of the project, including the location, completion
time, and a short list of the tasks involved. Companies interested in the project can obtain a
detailed description from the DoT.
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FIGURE 1
This figure demonstrates the performance of the estimation procedure in the simulation study. Solid lines depict the
density of the unobserved auction heterogeneity component used to generate data. The dotted lines show 5% and 95%
pointwise quantiles of the estimated distributions. The figures correspond to simulated data sets that include, respectively,
(clockwise) 250, 200, and 150 auctions with two bidders from each group per auction

Estimated cost. The DoT constructs a cost estimate for every project that is based on
the engineer’'s assessment of the work required to perform each task and prices derived from
the winning bids for similar projects let in the past. The costs are then adjusted through a price
deflator.

Federal law requires that the winning bid should be lower than 110% of the engineer’s esti-
mate. If a state decides to accept a bid that is higher than this threshold, it has to justify this action
in writing. In this case, the engineer’s estimate has to be revised and verified for any possible
mistake. In my data set, | observe a number of bids higher than 110% of the engineer’s estimate.
On multiple occasions, the winning bid is higher than this threshold. These facts suggest that
bidders consider the probability of an event when this restriction comes into effect to be rather
small. The assumption of no reserve price is justified in this environment.
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This figure demonstrates the performance of the estimation procedure in the simulation study. The solid lines depict
the cumulative distribution functions (on the left) and the probability density functions (on the right) for the individual
cost component of the regular bidders used to generate data. The dotted lines show 5% and 95% pointwise quantiles of
the estimated distributions. The figures correspond to simulated data sets that include, respectively, 250, 200, and 150

auctions with two bidders from each group per auction
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This figure demonstrates the performance of the estimation procedure in the simulation study. The solid lines depict
the cumulative distribution functions (on the left) and the probability density functions (on the right) for the individual
cost component of fringe bidders used to generate data. The dotted lines show 5% and 95% pointwise quantiles of
the estimated distributions. The figures correspond to simulated data sets that include, respectively, 250, 200, and 150
auctions with two bidders from each group per auction

Number of bidders. It is unclear if the auction participants have a good idea about the
number of their competitors. The existing literature on highway procurement auctions tends to
argue that this is a small market where participants are well informed about each other and can
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accurately predict the identities of auction participafitsfollow this tradition and assume that
the number of actual bidders is known to auction participants.

5.2. Descriptive statistics

| use data for the highway procurement auctions held by the Michigan DoT between February
1997 and December 2003. In particular, | focus on highway maintenance projects with bitumi-
nous resurfacing as the main task. The data set consists of a total of 3947 projects. My informa-
tion includes the letting date, the completion time, the location, the tasks involved, the identity
of all the bidders, their bids, and an engineer’s estimate.

My choice of the projects’ type is motivated by two objectives. First, | want to ensure that
the auction environment is characterized by private rather than common values. Second, | am
looking for an environment that is likely to have unobserved auction heterogeneity. Highway
maintenance projects are usually precisely specified and relatively simple. It is likely that bid-
ders can predict their own costs for the project quite well. The existing variation in bids is,
therefore, associated with variation in costs across firms, which is consistent with the private
values environment. This variation is generated by differences in opportunity costs and input
prices faced by different firms. Further, although highway maintenance projects are rather sim-
ple, their costs can be substantially affected by local conditions such as elevation and curvature
of the road, traffic intensity, and age and quality of the existing surface. Information about these
features may not be available to the researcher. On the other hand, firms’ representatives usually
travel to the project site and, therefore, are likely to collect this information and incorporate it
into their bids. Hence, | expect to find unobserved auction heterogeneity.

The paving companies participating in the maintenance auctions mostly differ by their size
(employment, number of locations). The differences in size may imply cost differences if
economies of scale are present. For example, larger companies are likely to own their equipment
instead of renting it, which may reduce cost. Since size is observable to all market participants,
it is important to allow for the possibility that market participants have different beliefs about the
distribution of costs for groups of companies that differ by size. Therefore, | allow for asymme-
tries between bidders. In particular, | distinguish between two types of bidders: regular (large)
bidders and fringe bidders. The set of regular bidders is defined to include companies that con-
sistently won at least $10 million in projects during each year in my data set and have at least
100 employee¥?

In my data, the number of bidders per project varies between 1 and 11. More than 85% of
projects attracted between two and six bidders, with the mean number of bidders equaling 3.4
and a standard deviation of 1.3. About 75% of the projects have an engineer’s estimate ranging
between $100,000 and $1,000,000; 5% are below $100,000; and 20% are above $1,000,000.

Tablel provides summary statistics of several important variables by the number of bidders.

It shows that the mean of the engineer’s estimate does not change significantly across groups of
projects that attracted different numbers of bidders. The tabulation of the winning bid indicates
that the difference between the engineer’s estimate and the winning bid is positive and that it
increases with the number of bidders. An important statistic of the data is “money left on the
table” as represented by the difference between the lowest and second-to-lowest bid normalized
by the engineer’s estimate. This variable is usually taken to indicate the extent of uncertainty
present in the market. “Money left on the table” is, on average, equal to 7% of the engineer’s

18. See, e.gBajari and Yg2003).
19. This definition is consistent with the industry definition of the large bidder. For example, California DoT uses
this definition to determine which companies should qualify for the favourable treatment awarded to small bidders.
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TABLE 1
Descriptive statistics

Number of bidders Overall 1 2 3 4 5 6
Number of observations 3947 71 673 1126 1026 365 192
Engineer’s estimate ('00000)

Mean 1175 1280 1027 1260 1390 1290 1640

Standard deviation 4660 235 141 3.02 226 1.79 3-39
Winning bid (hdrds. th.)

Mean 1.175 1110 1000 1180 1290 1180 1520

Standard deviation 4.660 2.32 150 2.89 2.25 1.66 335
Money left on the table

Mean 1175 0.07 011 0-08 0-07 0-05 0-04

Standard deviation 4660 0-05 0-08 0-06 0-06 0-05 0-04
Number of regular bidders

Mean 1.175 1.92 143 165 2.07 216 2.29

Standard deviation 1.175 1.06 0-62 0.72 0-98 121 1.32

estimate and decreases with the number of bidders. The magnitude of the “money left on the
table” variable is similar to the findings of other studfek.indicates that cost uncertainty may

be substantial. Tabtealso shows that the number of regular bidders is usually between 1 and 3
and increases only slightly with the total number of bidders.

Next, | explore if there is scope for unobserved auction heterogeneity in my data. | imple-
ment the specification tests outlined in Section 3.4. More specifically, | test for (1) conditional
independence of a pair of bids submitted in the same audtignIPV vs. H;: unobserved
auction heterogeneity) and (2) conditional independence of two ratios of bids using four differ
ent bids submitted in the same auctibly:(unobserved auction heterogeneity Mg: APV). |
condition on a linear index of observable auction characteristics such as the engineer’s estimate
and time to complete the project (duration), type of highway, year and month dummies, district
dummies, and total number of tasks. The index is estimated through an Ordinary Least Squares
regression. The tests are performed conditional on the main task of the project and the number
of bidders. The testing procedure | use is explained in Appendix A. For bituminous resurfacing
projects with four regular bidders, thevalue for the first test statistics is equal to 0.03 and
the p-value for the second test statistics is 5Zherefore, the null hypothesis of IPV can be
rejected against the alternative of unobserved auction heterogeneity at the 5% significance level.
At the same time, the null hypothesis of unobserved auction heterogeneity cannot be rejected
against the alternative of APV.

| interpret the correlation between bids submitted in the same auction as evidence of unob-
served auction heterogeneity. It is possible, however, that the correlation between bids is gen-
erated through some other mechanism. For example, it may arise if the auction environment
has common values features. It may also arise if participating companies are systematically en-
gaged in collusive behaviour. | deal with the first issue by restricting my attention to maintenance
projects that are unlikely to have any project-related uncertainty that could lead to a common val-
ues effect. It is much harder to reject a possibility of collusion since all the tests proposed in the
literature depend on the particular collusion scheme employed. | use the test progesedrby

20. See, e.gJofre-Bonet and Pesendor{@003).
21. The data set for which test is performed consists of 370 auctions with an engineer’s estimate between $350,000
and $750,000. The coefficients of the linear index are reported inZable
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TABLE 2
Regression results

Variables Test Estimation
subsample subsample
Constant 0-375 0-327
(0-010) (0-012)
Engineer’s estimate 0-8413 0-8113
(0-028) (0-025)
Duration 0-0011 0-0015
(0-0013) (0-0011)
Tasks 0-0014 0-0012
(0-0007) (0-0009)
(Nregulara Nfringe) (4,0) (2,2)
Number of projects 370 226
R? 33% 17%

and Zona(1993), which is based on the assumption that if there is a collusion scheme, then
only the winning bid corresponds to a real cost realization and all other bids are “pteany”,
unsubstantiated by any cost realization. | use a procedure descritbdyrand Hailg€2002) to
recover the distribution of regular and fringe bids from the distribution of the winning bid. | then
compare these distributions to the ones estimated from the losing bids. Distributions estimated
through these two procedures appear to be similar, which gives me confidence that the data do
not reflect the outcome of collusive behaviour.

Thus, | find evidence in favour of unobserved auction heterogeneity in Michigan high-
way procurement auctions. | estimate the distributions of cost components using the estimation
method outlined in Section 4 to evaluate the relative importance of different cost components.

5.3. Estimation results

The estimation results presented below correspond to the set of projects with an engineer’s es-
timate between $300,000 and $580,000 and the time to completion between 3 and 6 months
that attracted two regular and two fringe bidders. This set consists of 226 projects. The results
for different values of engineer’s estimate, duration, and the number of bidders are qualitatively
similar.

| use projects that are quite similar in estimation. However, the data set still contains some
residual variation in observable auction characteristics. | use a homogenization procedure to
eliminate the variation in observable factors. To arrive at homogenized bids, | estimate the mean
of log(bid) as a linear function of observable characteristics, eliminate the estimated mean from
the bids, and use the residuals in the estimation; | add the estimated mean back in when eval-
uating the importance of private information and for comparison to alternative modéis.
mean of log(bid) is assumed to be a linear function of the engineer’s estimate, duration, type of
highway, year and month dummies, district dummies, and total number of tasks.

In the estimation, the mean of the regular type is normalized to be equal to one 4Figure
presents estimated distributions of the unobserved auction heterogeneity component and indi-
vidual cost components. The common cost component is a product of the common observable

22. Effectively, | assume that; = exp(zja)y;Xj. Herez; denotes the vector of projeft observable charac-
teristics. The homogenization procedure is usetiéye, Hong and Shur(003) andBajari, Houghton and Tadelis
(2004). The coefficients of the observable “scaling factor” are reported inZiable
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This figure depicts the estimated densities of the unobserved auction heterogeneity component and the common cost

component as well as the estimated cumulative distribution functions (on the left) and the probability density functions

(on the right) of the individual cost components. The dotted lines show pointwise 95% confidence intervals estimated
through a bootstrap procedure

component (extracted through homogenization procedure) and unobserved heterogeneity com-
ponent. The recovered distribution of the unobserved heterogeneity component has a mean of
0.98and a standard deviation aR04, whereas the mean and standard deviation of the common
component are equal to $392,000 and $78,890, respectively. The recovered distributions of indi-
vidual components for regular and fringe groups are similar. The individual cost component of
the fringe type has a higher mean but lower variance than the individual cost component of the
regular type. The mean of the fringe type distribution@ 1Standard deviations of the regular

and fringe type distributions arel@d and 013, respectively. | also perform a test of the equality

of individual cost component distributioA$The distribution of the test statistic is computed

23. | do not have access to random samples drawn from these distributions, which is a standard requirement in
most statistical procedures testing for the equality of two distribut@&agskolmogorov—Smirnov tests). Therefore, |
perform this test as a test for the equality of two functions. The description of the test procedure is given in Appendix A.
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both through subsamplifand bootstrap procedures. Thevalue of the test statistic iS6®.
Therefore, | can formally reject equality at the 10% significance level.

5.3.1. Variance decomposition. Recall that biddei’s cost for projectj is given by
Cij =Yj x Xij. A Taylor approximation applied tG8(-,-) as a function ofX andY allows us
to approximate the variance Gfin the following way:

Var(c) (EY)?Var(X) + (E X)?Var(Y).

If (EY)2Var(X) and(E X)?Var(Y) are taken to represent parts of the cost variation generated by
the variation in the individual cost and unobserved heterogeneity components, respectively, then
it can be calculated that the individual cost component accounts for almost 31% of variation in
the homogenized cost&.26.27

5.3.2. Markups over the bidders’ costs. The estimated inverse bid functions are used
to compute markups over the bidders’ costs. The normalized ma?'g&p; a;xx X = £&(a),
ranges from 0.1% to 25% and, on average, is equal to 8.4% for the regular bidder. Markups for
the fringe type bidders range between 0.1% and 18% and, on average, are equal to 6.1%.

5.3.3. Inefficient outcomes. When bidders are asymmetric, it is possible that the project
is not awarded to the lowest cost bidder.the auction outcome is not efficient. To compute the
probability of such an event for the selected set of projects, | use the estimated distributions of
cost components to create a pseudo-sample of bidders’ costs for a set of 250 auctions with three
bidders each. Then, for each cost draw, | calculate the bid value from the estimated bid function.
Finally, the fraction of the auctions in which the lowest bid does not correspond to the lowest
cost is computed. This exercise is repeated 1000 times. | find that the estimated probability of
an inefficient outcome is, on average, equal to 5% with a 95% quantile range given by [3.6, 6.2].
This corresponds to an estimated 2% increase in the cost of the procurement; the 95% quantile
range is given by [1.3, 2.8].

5.3.4. Comparison to alternative auction models. Figure5 compares the average bid
function estimated under the assumption of unobserved auction heterogeneity to the bid function
recovered under the APV and IPV assumptions, respectf/@gth the IPV and APV proce-
dures estimate the total costs that are substantially lower than the average costs estimated under
the unobserved auction heterogeneity assumptions for both regular and fringe bidders. In par
ticular, the model with unobserved auction heterogeneity implies an average markup over the

24. This procedure is valid since the rate of the convergence of estimators is knoReoljtteeRomano and Wolf
(1999).

25. Note that this decomposition does not depend on the choice of a mean normalization.

26. The exact expression for the variance of costs is given by

Var(c) = (EY)2Var(X) + (E X)2Var(Y) + Var(X)Var(Y). 4

The term(E Y)2Var(X) accounts for 3B% of Vaic) computed according to the formula above.

27. Variance decomposition can also be performed for the total cpsts,exp(zja)y;xjj- It can be calculated
that(E[exp(Za)Y])ZVar(X) accounts for 341% of the variation in total costs.

28. | follow the methodology described Guerre, Perrigne and Vuorfg000) and.i, Perrigne and Vuon{2002)
for the estimation under IPV and APV assumptions correspondingly.
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Regular Bidders Fringe Bidders
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This figure compares expected bid functions estimated from the model with unobserved heterogeneity and alternative

models (with APV and IPV). In each case, the lowest line shown is the diagonal. The dark solid lines correspond to the

expected bid function estimated from the model with unobserved heterogeneity and the expected bid function estimated

under the alternative model. In each case, a lower line corresponds to the bid function estimated from the model with

unobserved heterogeneity. The figure also shows pointwise 95% confidence intervals estimated through a bootstrap
procedure

bidders’ costs to be 8.4% (6.1% for fringe bidders), whereas the model with APV predicts a
markup of 14% (12.2%) and the model with IPV predicts a markup of 19% (16.5%). In each
case, confidence intervals for the IPV and APV estimates intersect the confidence interval con-
structed under the unobserved heterogeneity assumption only for a very small part near the upper
end of the support.

Figure6 compares the average density function of the cost distribution estimated under the
assumption of unobserved auction heterogeneity to the cost density functions recovered under
APV and IPV assumptions. The estimated density function for the IPV and APV models are
flatter relative to the density function estimated under the assumption of unobserved auction
heterogeneity. In both cases, confidence intervals for the IPV and APV estimates intersect the
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Fringe Bidders
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This figure compares the expected density of the total costs estimated from the model with unobserved heterogeneity

and alternative models (with APV and IPV). The solid lines correspond to the expected densities. In each case, a tighter

distribution corresponds to the density estimated from the model with unobserved heterogeneity. The figure also shows
pointwise 95% confidence intervals estimated through a bootstrap procedure

confidence interval constructed under the assumption of unobserved auction heterogeneity only
for a very small part of the support. The variance of the cost distribution estimated under the

assumption of unobserved auction heterogeneity is about 18% lower than the variance of the
cost distribution estimated under the assumption of APV and 22% lower than the variance of the

cost distribution estimated under the assumption of IPV.

Reserve price. | use the results of estimation to compute the optimal reserve price in the
environment with unobserved auction heterogeneity. | compare the performance of this reserve
price and of reserve prices derived from the estimates based on alternative assumptions. To
avoid theoretical complications unrelated to the subject of this paper, | restrict my attention to

the symmetric case in this section.
The government chooses a reserve price to minimize the expected cost of procurement, which

consists of two parts: the expected cost of not allocating the job today and the expected cost at
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which work can be completed today given the reserve pricet us denote the first component

Co. It represents the sum of the cost of waiting another period and the expected cost at which the
project can be completed in the future. | do not have data on the magnitydd loérefore, |
consider a range of possible values fpand derive an optimal reserve price for each of them.

| compute a reserve price under four assumptions: (a) unobserved auction heterogeneity
(realization of unobserved heterogeneity is known to the government); (b) unobserved auction
heterogeneity (realization of unobserved heterogeneity is unknown to the government); (c) IPV;
and (d) APV. In (b) the reserve price is derived to minimize the average cost of procurement,
where the average is taken with respect to the distribution of unobserved auction heterogeneity.
While assumption (a) describes the benchmark case, it may not be implementable in practice if
the government does not know the realization of unobserved auction heterogeneity. In this case,
the reserve price derived in (b) can be used. | compare the performance of these four reserve
prices on the basis of an average cost of procuréfhachieved for a given reserve price. To
perform these computations, | use the results of the estimation for regular bidders only.

The results of the analysis are summarized in TéblEhe table records for every reserve
price candidat€l) an average probability with which a bid is submitté);the average cost
of procurement as a percentagf and(3) the average cost of procurement as a percent of the
benchmark expected costs.

The results of the computation show that the reserve price computed from the cost distri-
bution estimated under the IPV or APV assumption fares considerably worse in comparison to
the benchmark case and to the reserve price derived from the average cost function in (b). In
particular, the average expected cost achieved through the reserve price based on IPV estimates
is 9%—-20% ofcy higher than the benchmark cost, whereas the reserve price derived in (b) is
only about 1% ofg higher. The results are even more drastic if we express expected costs as a
percent of benchmark costs. Then the reserve price in (b) produces still only a 1%—-2% increase
in costs relative to the benchmark case, whereas the IPV reserve price leads to a 10%—-35% in-
crease in costs. The disparity is smallest whgels very close to the mean cost, which is not
very likely to happen in reality. In realistic casesg®équal to at least 150% of the mean costs,
the gain from using the cost distribution estimated under the assumption of unobserved hetero-
geneity constitutes at least 16% of the benchmark costs. This is a significant effect, especially
since the bidders’ markup in this environment constitutes only about 6%—-8% of the costs. The
discrepancy is much higher when the reserve price is derived on the basis of APV estimates.
Also, IPV and APV results imply a lower than optimal probability to submit a bid.

Evaluating assumptions of the model. The identification and estimation of the model
with unobserved auction heterogeneity relies on the assumption that individual cost components
are independent from each other and from the common cost component. Proposition 2 from the
identification section allows us to evaluate the validity of these assumptions in the data.

Part(2) of Proposition 2 suggests a test of independence of individual components. Imple-
mentation of this test is discussed in SecBdhThe results of the test are reported in Table
They strongly suggest that the null hypothesis cannot be rejected.

Part (3) of Proposition 2 allows us to test the assumption that the common component is
independent from the individual components. This test is performed as a test of the equality of
two functions. Both functions are estimated from the data. The testing procedure is described in
Appendix A. Thep-value of the test statistic is 0.81. The null hypothesis, therefore, cannot be
rejected at any reasonable significance level.

29. The average is taken with respect to the distribution of the unobserved auction heterogeneity.
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TABLE 3
Results of testing procedures
Test p-Value
1. % % Conditional independence  -32
12 4
2. XY Bootstrap 081
Subsampling 0-75
3. X X Bootstrap 043
Subsampling 0-63
TABLE 4
Reserveprice
Unobserved
Unobserved Heterogeneity,
Medium projects: engineer’s estimate 8(#0,000) Heterogeneity  Expected ipv apv
1. Probability of submitting a bid cp=5 0-29 0-28 0-07 0-03
(expected) (0-26,0-31) (0-25,0-31)  (0-05,0-09) (0-02,0-06)
2. Expected cost of procurement 852 865 935 968
(as % of g) (83, 87) (85, 88) (91, 95) (95, 98)
3. Expected cost of procurement 1014 1097 1136
(as % of unh)
1. Probability of submitting a bid co=7 0-45 042 0-20 0-04
(expected) (0-43,0-46) (0-40,043)  (0-18,0-21) (0-03,0-05)
2. Expected cost of procurement 721 732 839 954
(as % of g) (712,735) (723,751)  (812,847) (943,962)
3. Expected cost of procurement 1016 1164 1324
(as % of unh)
1. Probability of submitting a bid ¢y =10 058 055 020 0037
(expected) (0-56,0-59) (0-54,0-56) (0-18,0-21) (0-03,0-04)
2. Expected cost of procurement 581 591 787 947
(as % of g) (56-2,595) (578,601) (765,79-7)  (940,956)
3. Expected cost of procurement 1016 13556 1630

(as % of unh)

| have also performed the test from p@rt of Proposition 2 following the same procedure
as above. The-value of the test statistic is 0.63. It is, therefore, in line with the results of the
tests presented earlier.

Robustness check. The model of bidding behaviour that | take to the data assumes that
firms’ bidding decisions are independent across auctions. This assumption may be violated if
bidders’ decisions are affected by dynamic considerations. In particular, when a company is ca-
pacity constrained, it has to take into account the effect of winning the project today on its ability
to explore profitable opportunities tomorrow. If dynamic links between auctions are substantial
in magnitude, our estimates of the characteristic function of the joint distribution of two bids
submitted in the same auction may be biased, which in turn would lead to biased estimates for
the distributions of cost components. To evaluate the effect of dynamic links on the performance
of the estimation procedure, | re-estimate the model for the subset of projects such that all reg-
ular firms bidding for the projects in this subset have their backlog variable between 30% and
75% of the maximum of the backlog variable for the firms observed in the data. Even though
this exercise substantially reduces the number of available projects and, therefore, leads to less
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precise estimates, they imply similar results for the variance decomposition and the biases from
misspecification.

6. CONCLUSION

This paper proposes a non-parametric procedure to recover the distribution of bidders’ private
information when unobserved auction heterogeneity is present. It derives sufficient conditions

under which the model is identified and shows that the estimation procedure produces uni-
formly consistent estimators of the distributions in question. The paper describes a number
of testable restrictions implied by the model with unobserved heterogeneity. It also provides

guidance on the practical implementation of the testing procedures that correspond to these
restrictions.

This methodology is applied to the data for highway maintenance projects collected by
Michigan DoT. For this data set, private information is estimated to explain only about 34.4%
of the variation in a project’s costs. This estimate is obtained while conditioning on the number
of bidders, on the type of the project as defined by the main task, and on the size and duration
bracket. Results of the estimation reveal that the estimation procedures that account for unob-
served auction heterogeneity tend to estimate higher average costs, lower variance of the cost
distribution, and lower markups relative to the estimates obtained under the assumption of IPV
or APV. Additionally, the reserve price chosen on the basis of IPV or APV estimates leads to
significantly higher costs of procurement than the reserve price chosen on the basis of the esti-
mates for the unobserved auction heterogeneity model. This result holds both in the case where
the reserve price is derived as a function of a specific realization of unobserved heterogeneity
and in the case where a single reserve price is chosen in such a way as to minimize the average
cost of procurement where the average is taken with respect to the distribution of unobserved
heterogeneity. In the latter case, the average cost of the procurement is 9%—19% lower than the
average cost achieved when the reserve price based on either IPV or APV estimates is used.

The methodology in this paper is developed for the case where a bidder’s cost of completing
the project equals the product of the common cost component and the individual cost component.
A somewhat more general model that allows for the common component to have distinct effects
on the mean and variance of the cost distribution is analys@éamokutskaya (2009).

APPENDIX A

A.1. Proofs of theoretical results

Proof of Proposition 1. The vector of equilibrium strategies in the game witk 1 satisfies the system of
differential equations

1 M Digeg@ M fx, (@) A1)

a—x <1—ka<ak‘f<a»)(kl<ak‘f<a» <1—ka<ak‘f<a>>>(k1<ak‘f<a»

with boundary conditions (a)(X) = X and (b) tkere existgd [x, X] such that g(x)}= dp.
Define (Ay. f2y), fry: [yX. yX] = (0,00) such that

Pry(2) = yok (;)(

Pry(yxX) =YX, (A2)

Pry(¥YX) = ydo.
Substituting equations (A.2) into equation (A.1) obtains fagtand 8,y satisfy the first-order conditions for the game
indexed byy. They also satisfy corresponding boundary conditions by definition. Therefore, a(ggtgy) consti-
tutes the set of equilibrium functions.
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Proof of Theorem 1. (a) | start by establishing a statistical result that | use to prove Theorem 1. Namely,

Lemma Al. Let X be a random variable with the probability density functi¢gn dnd suppor{x, X], then the
characteristic function of variable X (t), is hon-vanishing, i.e. for every ¥ 0 there is t such thaft| > T and
px () =0.

Proof. The idea of a proof is to consider the extension of the characteristic fupgtion= fieitx f(x)dx to

the complex domain. In particular, | consider funcfio(-) defined agx () = | &2% f (x)dx at an &rbitrary complex
point z. It is straightforward to show thaty () is an entire function,e. it is infifiitely complex differentiable at every
finite point of the complex plane. Therefore, it can only be equal to zero in a countable number of points. Thus, the
number of points whergy (t) is equal to zero cannot be more than countable, which meagsttiais non-vanishing.
Finally, 9 (-) is an entire function because

i@ = /((ix)keizxf(x)dx.

Note that for everk, (Zgi() (2) is well defined due to the boundedness offfeesupport. That concludes the proof
of Lemma Al.

(b) Random variable¥, A;, log(Y), and logA;) have bounded supports and, therefore, have non-vanishing char
acteristic functions. The identification result follows from a theorerkdtiarski (1966)30 and results established by
Laffont and Vuond1996) as described in Sectidri.

Proof of Proposition 2. (1) If X;,'s are independent, then so are([hg()()The structure of the bidder’s cost,

¢ = yx, implies that log :;)glog(Ail)—log(Ai3LCnd lod :i)CIog(Aiz)( g(Ais)(Then, byKotlarski (1966)

theorem, the characteristic finction of (@gs)(s givey by

- 1(0,up) . )
oa() Y= ex"(/( Ty DS (C'l)])(
and the characteristic function of (o@l)()y

t.0

() = T D (a3

If biddersi; andiz are from the same group, then the characteristic functions @%lpgand logA;;) should be the
same up to a multiplicative factor determined by the difference in means induced by normalization. Let us consider

normalizationE[Iog(Ail)]f 0. Then, equationA(3) implies that log :2 )g(andlog(Ai3)§hould have the same mean.
3
eforeE[Iog(&)]( 0. This implies thak[lo Ai3)]( E[lo (A.l)]( 0, and hence

Iog(Ail)(t): Iog(AiS)(t)'

(2) The proof follows from the property of independent variables: if the random variapbesd Z, are indepen-
dent, then so aré(Zy) and f (Z), for any functionf (-).
(3)If Y andX;'s are independent, the cost structure is giveq jpy- YjXij , thenKotlarski(1966) theorem applied

to (log(Bj, ) og(Biz))(mplies that the characteristic function of (@g, ) 5 given by the function log(f )(t) defined
i1
by equation\§). Kotlarski (1966) theorem applied tdog( :1) log( :2 ) (implies that the charact(ristic function of
3 3
log(Ai,) fs given by log(A )(t) defined by equatiord]. Thus, under ndimalizatidB[log(A;, )] & O, the following
i
equality Yas to hold: !

Howeverk(i1) =k(i3) th

Iog(Ail)(t): Iog(Ail)(t)'

A similar relationship holds fdg. This is obvious if; andi3 belong to the same group. If they do not, then we have to
make sure that normalization does not induce a shift of a random variable, which correqug&j&_to) (t) relative
i3

30. See Rao (1992).
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to the random variable, which corresponds ligg(Ai (). It is easy to see, however, that the former represents a

3
characteristic function of a random variable with a mean eqLﬁ[Iﬂy(BiS)]( E[Iog(Bil)](The same is true of the
latter.

Proof of Proposition 3. The “only-if’direction is a straightforward corollary of the identification argument and
the properties of the bidding strategies.

A.2. Estimation

| start by describing how the supports of the distributions of the individual bid and the common cost components can be
estimated. Then, | proceed to the proof of Proposition 4.

Estimation of the support bounds. Strictly speaking, bounds of the support are recovered during the inversion
procedure when the density function of the distribution in question is computed. According to the inversion formula, the
density function recovered from the theoretical characteristic function should approach zero as the smoothing parameter
T approaches infinity at every point outside of the support. Therefore, the upper and lower bounds of the support are,
respectively, defined as lower and upper limits of the points where the density function is equal to zero. In estimation,
the density function recovered from the estimated characteristic function does not, in general, equal zero outside of the
support. An econometrician, therefore, has to choose cut-off points that correspond to sufficiently low values of the
estimated density function. Unfortunately, econometric theory does not provide us with guidelines on how to choose
such cut-off points which is why | use a different approach in this paper. | estimate bounds of the supports for the
distributions of interest using restrictions imposed by the model with unobserved auction heterogeneity. If the data are
generated by the model with unobserved auction heterogeneity, then this approach leads to consistent estimators of the
support bounds. The proof of this statement and the derivation of the rate of convergence are given together with the
proof of Proposition 6. Below | describe a procedure to estimate the support bounds of the distributions of the individual
bid and the common cost components.

Denote the support of the log of the common componentyby] [and the supports of the log of the indi-
vidual bid components bya[a]. Then the support of the log of bids for Group 1 is given &y ,a +Y] and
the support of the differences in the log of bids is givenay & a— a]. Additionally, | start with the normal-
ization E[log(A1)] = 0. Since the bounds of the supports can be estimated adofydinj)), max(og(byj))] and
[min(log(byj) —log(by pj)), maxdog(byj) —log(bypj))], I arrive at the system of equations

min(log(byj)) =8, +9,,.
max(log(byj)) = an+Yn,
max(og(byj) —log(bypj)) = ak—ay,
%n N
/A agLan(@da=0.
Ja,
Therefore, | have a system of four equations in four unknowns. The population counterpart of this system is
a+y =log(),

a+y = log(b),
a—a=log(by) —log(by),

/(agL A(@da=0.

It is straightforward to establish that this system has a solution and that this solution is unique. Firett yigteand
acan be expressed as functiongnf

that—Ug < a < 0. Indeed, since| a(a) > 0 and [{’312
—Uas. Third, it is easy to show thdt(z) = f(3+za a(@)dais strictly increasing oi—Ugz, 0) sincegp a(:) is positive

Let us denot&)g = b, Up =b, Uz = by — by, thena= Uz +a and [{3T2ag a(a)da= 0. Second, let us establish
ah| a(a)da=\0, it must follow thal < 0 anda > 0 ora >
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on the interior of the lo@®) support. Indeedf (z) = (Uz+2)g. a(Uz+2) —zg a(2) > 0. If z < a, thenzg_a(2) =

at the same time, @ Uz +z < Uz+a=aand, thereforglU3+2)g. A(U3+2) > 0. The argument is similar when- a.
We have two cases when=a: (a)g_a(@) > g a(a) and (b)g_ o(@) < gL a(@). In (a), f (2) > 0 follows immediately.
In (b), we haveag, a(@) —agLa(@) > (@a—a)gL a(@ > 0. Finally, f (—U3) < 0, whereasf (0) > 0. Therefore, the
solution tof€3+a ag_ a(@da= 0 must exist and be unique.

Proof of*Proposition 5. The proof consists of several steps.

(1) First, | establish that the distribution function and the probability density functions of the individual bid compo-
nents inherit properties of the distribution function and the probability density functions of the individual cost
component. Namely,

Lemma A2. Given Dy — Ds, the distribution functions g (-) satisfy the following:

(i) Their supports €5 5, ) fre given bya,a] witha=X and a> 0;

(i) Ga, is continuously differentiable on the interior o(fCSAk) ;

(iii) For every closed subset of the interior c(ﬁ;‘g\k) there eX|stsg:> Osuch that @, (@) >cg>0on
this subset.

(iv) For every closed subset of the interior c(f A F'there existsg > O such thatl — G, (a) > ¢ > 0
on this subset.

Proof. The point (i) is established in Section 2. To show that the points (i), (iii), and (iv) hold, | use the
relationship between the distribution functions of the individual bid components and the distribution functions
of the individual cost components. Namely,

Ga (@) = Fx, (Ek(a)),
wheregy (+) is the inverse individual bid function of the bidder of gr&uphen,
In (@) =Gy, (@) = fx, k(@) (a).

From(D2): fx, (-)is continuously differentiable and for every closed subsS( G‘Ak)gthere exists¢ > 0 such
that fx, () > cy; from equilibrium characterizatiodi () is continuously differentigble and strictly increasing
on S(GAk)(teherefore, for every closed subseSQfGAk)£here existsg > 0 such thaiZj (-)| > co. This implies
(i) and (iijy wherecg is equal to the product of correqpondmgandcg. Finally, (iii) implies thatG a, (a) < 1
for any closed subset &(G Ak)(:vhich obtains (iv).

@

~

If the probability density functions of the cost components are ordinarily smooth of orddr, then Theo-
rems 3.1-3.2 iii and Vuong(1998) apply; these theorems establish the uniform consistency of the first-stage
estimators. In particular, they establish that

R n 22+5)
sup  [fLy,n(W)—fLy(MI =0 (ﬁ) .

y S oglogn
N
- T
sup gLAk,n(a)‘gLAk(a):O(w)c—l.
a S(CLAk)(
Since,
fLy(l - fLva(
fLa, (log@ _ fl log(a
I = A ey = LA

anda [a,a],a> x> 0, then
-2

~ (2+
su f — f =
, su—rin)l Y.n(y) — fy (W)l oglogn ‘
sup  Gacn(@ —0a @ ﬁ (Ml)
A, n ) = JA¢ =
a S(CAK)( oglogn
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(3) Next, | establish the uniform convergence of the individual bid function following the logic of Proposition 3 and
Theorem 3 of Guerre, Perrigne and Vug2g00).

(a) First, | derive the rate of convergence for the support bauadda. Recall that the bounds of supports have been
derived in several steps. First, supports of the distributioh8gf and(L By, —L Bliz)(vave been estimated as

[min(log(by;)), max@og(byj )] = [U1,n, Uz nl,
[min(log(by;j ) —log(bypj)), maxdog(by; ) —10g(bypj)] = [-Usz n, Uz nl.

These are maximum likelihood estimators for the support bounds of corresponding densities. We know that they
converge to the true value of the support bounds at the rate of

R Ogn+z 2 Usn 2
Qn(@ = /tﬂ a@‘LAl,n(a)da) = /0 a@LAl,n(a+2)da+Z)-
z

The usual results for extremum estimators apply. NoteQRats (J; SagL A @+2)da+ z) at the same rate
asgi aq,n Converges tg a, - 31 et us denote this rate loly4. All the\standard conditions for the  convergence of
extremum estimators hold; therefoaq%:| converges ta uniformly at the rateln. Sincean, v, ancfn are linear

combinations ofJ; ns Uz n» U3 n, anda,,, they converge unlformly @y,y correspondlngly at the ratly. The

bounds of supports foky are estimated eg% =exp@,) andan = exp(an), respectively. The smoothness of the
exponential function ensures the consistency of these estimators. The delta method can be used to show that the
rate of convergence remains equadi{o

The rate of convergence f@p, n() is eAstainshed ili and Vuong(1998). Recall that here we denotelit

Now, we derive a rate of convergence &g, . The estimator fo6 p, is defined as

Gaun(@ = /( A n(@da

To establish consistency we consider

(b

~

N 2 a
Bacn@ —Ga (@) < /A Gan(@da + / (Gacn(@) — g, (@)
kn =

Sincegp, is a continuous function with bounded support, according to Lemma 6.1(i)geis a bounded
function. For large enough Ga, n is also bounded a.s. due to the uniform convergengg,of to ga, . Then,
part (b) implies that the first summand converges to zero at thentafee second summand also converges to
zero at the rateqdsince support of a, is bounded. ThereforéAsAk,n converges t@ a, at the rate gl

(c) Next, | prove the uniform consistency of the estimator for the individual inverse bid function. The following
argument holds for every closed subsetapf). Note that for everp  (a,3), correspondmg‘k n(a) is finite.
It follows immediately smchk n(@ and 1— GAk n(a) are positive on the interior of the support. Note that
ga.n@=>¢cg>0 and( EGp,, n(a))€ Cg > 0 for someeg andcg sincega,n andGAk n uniformly converge
to ga, andGa,, respectively, and (iif) and (iv) of Lemma 6.1. Let us denote

(f-CGa @) (f-Cn@)(

(mc—1)-ga@- (A= Ga_, @) AM_k-ga_Na)- 1—GAk(a))’(

-~ F_GAJ_ n(a r_GAz n(a)){

T -1 aan@- (\-Ca_ kn(a))fm k-GA_.@)- (1— GAkn(a))(

(@ = (Mc=1)- ga @+ (1-Ga_, @) fr k- ga_, @ (1~ G (@) (

@) =

Gn(@) = (M= 1)-a, n(@) - (1- GAk,n(a))(L M_k-GAon @ (1 éAk,n(a))(
e(@ = (1-Ga @) ((1-Ga @),

#n(@ = (1—Gay n(@) ((1—6A_k,n<a)) :

31. See Li and Vuong (1998) for an appropriate rate of convergence.
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Then,

_ 1 .
I<k,n(@ — k(@) < o [ek,n(@k (@) — ex(@k,n (@], Cyp=(Mk+m_g—1)cyCq,
1

_ 1 _
ISk,n(@ — k(@) < ?(I?k,n(a) —ex(@]- 1k @]+ 1¢k,n(@) — k@] - ek (@)]),

1
S < Gl % -
Bon(@ —4e@1 < G lfcn(@ = @1+ 23 on(@ ~ (@,

stantsCy, andCg are well defined becausg, (-) andG a, (-) fre continuous functions ai8{Ay) iska compact
set.

Pointwise application of the delta method and uniform convergenga g and GAk,n to ga, and Ga,
correspondingly allows us to conclude that

whereCy = (my +my — 1)TCg, Tg = Maxy A (9A (a))gandEG =maxy ga, (1-Ga, (a))gThe con-

[ek,n(@) — ek (@) = O(dn), as.
I¢k,n(@) — k(@] = O(dn), a.s.
I<k,n(@) —<k(@)] = O(dn), as..
(d) Next, | establish the uniform convergence of the individual bid function estimator. For akgivenX), let us

denote byag = ak(x) and byan = @k n(x). Here,ag is some number frorta, @) anday, is a random variable
with realizations ind, @) for largen. For every realization &y, there is a number such that

&k(ag) —k(an) =¢(@n)(@—an), ay [ag,an],

since&(-) is continuously differentiable on the compact. Let us also denog, lay random variable with
realizations as above. Note thaigf an always belong to the interior & Ay), thena,, also always belongs to
the interior ofS(Ay). Sincelk (') is strictly increasing on the compact, thép(a,) > ¢z > 0, and therefore,

a—an < — &k(a) —<k(an) -

Qe

On the other hand, _
¢k(ag) —<¢k(an) = ¢k n(@n) — &k (an)-

Since, as | have shown aboﬁgn converges uniformly tdy, then

&(@g) —&k(@n) = &on(an) —&(an) = O(dn) ass.
and
a—an = dkn(X)—ak(x) =0(dn)as.

(e) Finally, | establish the uniform convergencefq{k,n(x).
G an(@kn(0)) = Ga (ak() < Gpan(@k,n()) = Ga @n(¥) + Ga @k,n(X) — G (ak(X)

Uniform convergence o@Ak,n andak n(x) and continuous differentiability 0B p, (-) obtain éAk}n(&k,n(x)) —
Ga (ak(x) = O(dn) as.

Practical issuesAs noted byDiggle and Hal(1993) and.i, Perrigne and Vuon{2000), the estimators fd?|_y(~)
andgy a(-), which are obtained by truncated inverse Fourier transformation, may have fluctuatity Eails feature
can be alleviated by adding a damping factor to the integreﬁéym-) and@) a(-). Following Diggle and Hall(1993)
and Li, Perrigne and Vuor{@000), | introduce a damping factor defined as

19—
dT(t):[l—T, |f|t|§TI

0, otherwise] '

32. Li, Perrigne and Vuon(2000) encountered this problem as well and dealt with it in a similar way.
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Thus, the estimators are generalized to
_ 17 N
gLA@) = 7/ dr(t)exp(—ita) La(t)dt,
T JAT

~ 1 L~
fLy(y) = Z/TdT(t)eXD(—ltY) Ly (Hdt.

The smoothing parameté&rshould be chosen to diverge slowlyras> oo, so as to ensure the uniform consistency
of the estimators. However, the actual choic& a@f finite samples has not yet been addressed in the literature. | choose
T through a data-driven criterion. In particular, | use the bid data to obtain estimates of the means and variances for
distributions3 34 of LY andLA, ALy, ALa, = 0. LAy, EEY., G2 .. G¢p,- These estimates are then used to choose
a value ofT. Specifically, | try different values df and obtain estimates df y(-) andg a(-). From each estimated
density | compute the means and variates, & A, » L Ay O'EY, UEAl O'EA , respectively. This gives goodness-of-
fit criterion |z y — ,uLyl +loLy — aLy|2 for LY and similarly forL Ax. The value off that | choose minimizes the
sum of these errors in a percentage@ ando; C In the estimation, the optim&l equals 50.

Finally, similar toHorowitz and Markato}996), | find that the bias correction technique described in their paper
improves the performance of the estimator in\small samples.

A.3. Summary of testing procedures

Point (a) describes the procedure to test the conditional independeficarat Z, conditional on linear index variable
X; point (b) outlines the procedure | use to test the equality of two functions.

(a) Test of conditional independent®The conditioning variable is assumed to be given by a single index of the
observable covariatesy ¢X). The test statistic is based on the monotonic transforip @f), U = Fg(1g (X)),
and Rosenblatt's transfordfsof Z1 and Z,,
Zy =Gz, u(Z11V),
Z3 =Gz, u(Z2]U).

Here, X denotes the vector of project characteristids,a vector of parameters, aRgl(-) is the cumulative distribution
function of 19 (X). The hypothesis tested is

Ho: Pr(GZ (211 4(X),Z2) =Gz (21), 21 [0,1])61 or
Ho: PrE[14Z1 < 21) | A(X). Z2] % E[Z1 < 1] [0,1)=1

The test statistic is given by
Tk s,n = supldn()l,
rs

where

_~ 1 i=n Py = = .
ﬂ(ur):ﬁz Ui W12y <21)-2)AZ5i <22)—22), 1 =(U,21,2), With
i=1
=fn(g,iug(xn, z(-zézl.u,mzuﬁi), Zoi =G 2,0, (Z210)).

kernel egtimators 0Bz, u.i (- | -) andGz,u,i (- | -). All three objects are estimated with the omission of ttiedata
point. The test statistic above converges to a Gaussian process as. For more details, se&&ong(2009). | compute
the distribution of the test statistics via a wild bootstrap procedure.

where ﬁf’i ), Gzyu,iX 1), andGz,u\ (- | -) denote the empirical distribution function Ef3(X; i1, n and

33. Note that the estimation is performed under the assumigflog(A1)] = 0. The distributions are later adjusted
to satisfy normalization iD3).
34. The estimates for the first two moments of the distributionsYafL A1, andL A, can be obtained as fol-
Z|l<m1|°g bll Z l<i2§m|°g(b|2)

lows: 71y = T A O/‘ x(m=mp) ALY Giy=( 01p 9B, "OLB - LBZ)
?EAl 52, — O‘LY, ands?
ir?ls testis deveI g)ng ( 09) An alternative approach to this test is pres€ntaddiwWhit€2008).

36. ee Rosenblatt( 52)
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(a) Test of the equality of two functiofi$he null hypothesis is

Ho: fq(t) = fa(t) vs.
Hy: f1(t) = f2(b).

The test statistic is defined as N

o= R(fLat) — 2n))?
i=1
where({tj}i—1 N is a finite set of points from the real line. The asymptotic distribution of this test statistic is
unknown. Therefore, it is not clear whether a bootstrap procedure can be used to compute the distribution of the
test statistic. Instead, a subsampling procedure can be used since the rate of convergencéﬁsTbrmmx_re
the power of the test, | use re-centred test statistics folloWatigand Horowitz (1996):

_ =N -
Tn= Z(’g(fo,b(ti)— fon())?,
i—1

wherefo, = f1p — f2p is computed from a simulated sample dpg = f1.n — f2.5 is computed from the data.
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