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1 Introduction 

Auctions are extensively used by governments and private organizations as a price-setting 

mechanism in markets with private information. However, the performance of a specific auction 

mechanism as well as the choice of the optimal policy instruments (such as reserve price) 

depend on the exact distribution of private information in a given auction environment. Thus, 

it is important in empirical auction analysis to be able to non-parametrically identify the 

distribution of bidders’ private information from the available data. 

A large literature on non-parametric identification of auction models has emerged to pro-

vide a theoretical foundation for empirical analysis. In a seminal contribution, Guerre, Perrigne 

and Vuong (2000) established that the first-order condition of bidder optimization problem 

can be used to recover the distribution of private information from the distribution of bids 

under independent symmetric private values. Subsequent literature extended this result to 

settings with affiliated private values, asymmetric bidders and settings with risk-averse bid-

ders. An important assumption underlying this literature is that the researcher has access to 

all the common information available to bidders. 

When a researcher may not have access to all the common information incorporated in 

bidding decisions, the environment is said to feature unobserved auction heterogeneity. More 

recently, it has been shown that models with independent private values are identified in the 

presence of unobserved auction heterogeneity. Krasnokutskaya (2009) shows identification and 

proposes an estimation procedure for the model with an unobserved heterogeneity factor that 

multiplicatively affects bidders’ costs. She shows that accounting for unobserved heterogeneity 

has important implications for policy analysis. Hu, McAdams and Shum (2008) obtain more 
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general identification result that allows for a flexible relationship between the distribution of 

bidders’ costs and the unobserved heterogeneity factor. These papers, however, assume that 

the unobserved heterogeneity factor is one-dimensional and, therefore, affects the moments of 

the distribution of bidders’ costs in a coordinated way. The restriction of unobserved hetero-

geneity to be one-dimensional is potentially an important one. However, the literature provides 

neither the identification results nor estimation procedure in case of multi-dimensional unob-

served heterogeneity. Consequently, little is known about its empirical relevance. This paper 

attempts to fill this gap in the literature. 

In particular, this paper extends the framework in Krasnokutskaya (2009) to allow for 

two-dimensional unobserved heterogeneity so that independent factors may affect the mean 

and the variance of the distribution of bidders’ costs. I prove that such a model is identified 

from bid data and show how the identification argument can be translated into an estimation 

procedure that produces uniformly consistent estimators. The latter step involves significant 

modification of the argument developed in the one-dimensional case. In the one-dimensional 

case the consistency argument relies in part on the results from the classical measurement 

error literature developed by Li and Vuong (1998). However, these results require that all the 

distributions should have bounded support. In the two-dimensional case the intermediate steps 

of estimation procedure require working with the distributions that violate this assumption. 

Therefore, an independent proof of consistency has to be developed which exploits restrictions 

on the tail behavior of the distributions in question. 

I apply the proposed estimation procedure to the data from California highway procure-

ment auctions to investigate the empirical importance of allowing for multi-dimensional un-

observed heterogeneity. The results show that allowing for two-dimensional unobserved het-
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erogeneity may significantly affect the results of estimation as well as the choice of policy 

relevant instruments derived from the estimated distributions of bidders’ costs. In particular, 

I study the data on auctions for “bituminous resurfacing” and “small construction” categories 

of projects. I recover the distributions of the private information and the unobserved hetero-

geneity under the two alternative assumptions on the structure of unobserved heterogeneity, 

i.e. one- or two-dimensional. In the latter case two non-trivial components of unobserved 

heterogeneity are recovered for both sets of projects. However, in the case of bituminous 

resurfacing, the distribution of private information remains virtually the same under the two 

specifications. In the case of small construction auctions, the variance of the private cost 

component almost doubles when going from the model that allows for one-dimensional unob-

served heterogeneity to the model that allows for two-dimensional heterogeneity. Similarly, I 

find only small differences in the mark-ups over the bidders’ costs and in the optimal reserve 

price computed for the two specifications in the set of resurfacing projects. In contrast, for the 

set of small construction projects, the model that allows for two-dimensional heterogeneity 

recovers mark-ups which are 30% higher than those recovered in the model that allows for only 

one-dimensional heterogeneity. Similarly, the optimal reserve price derived from the estimates 

obtained in the model with two-dimensional heterogeneity results in a cost of procurement 

which is 15% lower relative to the costs that arise when the reserve price is computed on 

the basis of the estimates from the model with one-dimensional heterogeneity. These finding 

indicate that allowing for a flexible relationship between the distribution of bidders’ costs and 

unobserved heterogeneity may have important implications for policy variables and have a 

sizable economic impact. 

Hu, McAdams and Shum (2009) provide a very general identification result allowing for 
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a flexible relationship between the distribution of bidders’ costs and the unobserved hetero-

geneity factor in the setting with one-dimensional unobserved heterogeneity. They introduce 

an unobserved project heterogeneity as a factor conditional on which bidders’ valuations are 

independent. The authors require that a functional should exist that extracts the realization 

of unobserved heterogeneity in a given auction from the auction-specific distribution of bids. 

In addition, they require that a certain completeness condition should be satisfied. This con-

dition essentially states that the null space of this functional should contain only zero. They 

show that under these conditions the distribution of valuations conditional on unobserved het-

erogeneity and the distribution of unobserved heterogeneity are identified. It seems that their 

argument may be extended to allow for multi-dimensional unobserved heterogeneity. Their 

strategy, however, does not allow to recover the distribution of private values or measure the 

importance of private information since we cannot recover the functional form through which 

unobserved heterogeneity combines with private values to form costs. Further, the estimation 

strategy based on this identification result has not yet been developed and, therefore, cannot 

be used to empirically assess the importance of multi-dimensional unobserved heterogeneity 

in the data. 

The rest of the paper is organized as follows: The remainder of this section discusses the 

prior literature. Section 2 describes the model with two-dimensional unobserved heterogene-

ity. Section 3 outlines and proves the identification result. Section 4 describes an estimation 

algorithm and analyzes statistical properties of the estimation procedure. Section 5 describes 

the market for highway procurement projects and presents results of the estimation and policy 

analysis. Section 6 concludes. 
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1.1 Literature 

This paper relates to several strands of the empirical auction literature. The first strand 

concerns estimation of auction models with private information. These are some of the most 

influential papers in this literature. Donald and Paarsch (1993, 1996) and Laffont, Ossard 

and Vuong (1995) develop parametric methods to recover the distribution of costs from the 

observed distribution of bids. Guerre, Perrigne and Vuong (2000) study identification of the 

first price auction model with symmetric bidders and propose a uniformly consistent estimation 

procedure. Li, Perrigne and Vuong (2000, 2002) extend the result to the affiliated private values 

and the conditionally independent private values models. Campo, Perrigne and Vuong (2003) 

prove identification and develop a uniformly consistent estimation procedure for first price 

auctions with asymmetric bidders and affiliated private values. 

The second strand concerns the literature that studies unobserved auction heterogeneity. 

Campo, Perrigne and Vuong (2003) as well as Bajari and Ye (2003) rely on the assumption that 

the number of bidders can serve as a sufficient statistic for unobserved auction heterogeneity. 

Haile, Hong and Shum (2003) appeal to the instrumental variables approach to control for 

the variation generated by unobserved factors. Hong and Shum (2002) account for unobserved 

auction heterogeneity by modeling the median of the bid distribution as a normal random 

variable with a mean that depends on the number of bidders. Athey and Haile (2001) study 

identification of auction models with unobserved auction heterogeneity in the context of second 

price and English auctions. Chakraborty and Deltas (1998) assume that the distribution of 

bidders’ valuations belongs to a two-parameter distribution family. They use this assumption 

to derive small sample estimates for the corresponding parameters of the auction-specific 
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valuation distributions. The estimates are later regressed on observable auction characteristics 

to determine the percentage of values variation that is due to unobserved auction heterogeneity. 

Hu, McAdams and Shum (2009), Krasnokutskaya (2009), Guerre, Perrigne, Vuong (2009), 

Roberts (2008) propose alternative methods to identify auction model with one-dimensional 

unobserved heterogeneity. 

Highway procurement auctions have been extensively studied in the literature. Porter 

and Zona (1993) find evidence of collusion in Long Island highway procurement auctions. 

Hong and Shum (2002) find some evidence of common values in bidders’ costs in the case 

of New Jersey highway construction auctions. Bajari and Ye (2003) reject the hypothesis of 

collusive behavior in procurement auctions conducted in Minnesota, North Dakota and South 

Dakota. Jofre-Bonet and Pesendorfer (2003) find evidence of capacity constraints in California 

highway procurement auctions. Bajari and Tadelis (2001) and Bajari, Houghton and Tadelis 

(2004) study the implications of the incompleteness of procurement contracts. Decarolis (2008) 

studies Italian highway procurement auctions where the average bid is used to determine the 

winner. 

2 Model 

This section describes the first-price procurement auction model under unobserved auction 

heterogeneity and summarizes properties of the equilibrium bidding strategies. 

The seller offers a single project for sale to m bidders. Bidder i’s cost is equal to 

(1) Ci = Y1 + Y2Xi 

where Y1 and Y2 represent common cost components known to all bidders; Xi is an individual 
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cost component and private information of bidder i. I use capital letters to denote random 

variables summarizing the common and individual cost components. The small letters y1, y2 

and x denote realizations of common components and the vector of individual components. 

The random variables (Y1, Y2, X) are distributed on their respective supports S(Y1) = 

[y , y1], S(Y2) = [y , y2], S(X) = [x, x]m , y > 0, y2 > 0,1 according to the probability 
1 2 1 

distribution functions FY1 , FY2 , FX . 

Asymmetries between bidders: I assume that there are two groups of bidders; m1 bidders 

are from group 1, and m2 bidders, m2 = (m − m1), are from group 2. Thus, the vector of 

independent cost components is given by X = (X11, .., X1m1 , X2(m1+1), .., X2m). The model and 

all the results can easily be extended to the case of m groups. I focus on the case of two groups 

for the sake of expositional clarity. Groups are defined from the observable characteristics of 

bidders. 

Assumptions (D1) − (D4) are maintained throughout the paper. 

(D1) Y1, Y2 and Xj’s are mutually independent. 

(D2) The probability density functions of the individual cost components, fX1 and fX2 , 

are continuously differentiable and strictly positive on the interior of [x, x]. 

(D3) EY2 = 1 and EX1 = 0. 

(D4) (a) The number of bidders is common knowledge;2 

1The variable Y2 captures the unobserved scaling of costs. It is natural, therefore, to restrict y2 > 0. In 

addition, the natural restriction on the support of cost distribution is c > 0. Hence internal consistency requires 

that either y1 > 0 or x > 0. 
2Note that the model does not assume that the number of bidders is exogenous. All the results in this paper 

are valid if the number of bidders is endogenous and depends on the realization of unobserved heterogeneity. 

For the details of the model with endogenous participation see Krasnokutskaya and Seim (2009). 
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(b) There is no binding reservation price. 

The assumption (D2) ensures the existence and uniqueness of the equilibrium in the auction 

game; (D1) and (D3) provide a basis for the identification argument; assumption (D3) provides 

necessary normalization restrictions;3 and (D4) summarizes miscellaneous assumptions about 

the auction environment. 

The auction environment can be described as a collection of auction games indexed by 

the different values of common components. An auction game corresponding to the common 

components values y1 ∈ [y , y1], y2 ∈ [y , y2] is analyzed below. 
1 2 

In this game, the cost realizations of bidder i are given by y1 + y2xi, for the realization of 

the individual cost component xi. The bidding strategy of bidder i is a real-valued function 

defined on [x, x] 

βi(.|y1, y2) : [x, x] → [0, ∞]. 

Small Greek letter β with subscript i is used to denote the strategy of bidder i as a 

function of the individual cost components and a small Roman letter b to denote the value of 

this function at a particular realization x. 

Expected profit. The profit realization of bidder i, πi(bi, b−i, xi|y1, y2), equals (bi −y1 −y2xi) 

if bidder i wins the project and zero if he loses. The symbol bi denotes the bid submitted by 

bidder i, and the symbol b−i denotes the vector of bids submitted by bidders other than i. At 

the time of bidding, bidder i knows (y1, y2) and xi but not b−i. The bidder who submits the 

lowest bid wins the project. The interim expected profit of bidder i is given by 

E[πi|Xi = xi, Y1 = y1, Y2 = y2] = (bi − y1 − y2xi) Pr(bi ≤ bj , ∀j 6= i|Xi = xi, Y1 = y1, Y2 = y2). 

3These normalization restrictions imply that E[Y2Xi1 ] = 0 and, therefore, E[Y1] = E[Ci1 ]. 
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A Bayesian Nash equilibrium is then characterized by a vector of functions 

β(.|y1, y2) = {β1(.|y1, y2), ..., βm(.|y1, y2)} such that by1,y2;i = βi(xi|y1, y2) maximizes 

E[πi|Xi = xi, Yl = yl], when by1,y2;j = βj(xj |y1, y2), j 6= i, j = 1, .., m; 

for every i = 1, .., m and for every realization of Xi. 

McAdams (2003) and others establish that, under assumptions (D1) − (D2), a vector of 

equilibrium bidding strategies β(.|y1, y2) = {β1(.|y1, y2), ..., βm(.|y1, y2)} exists and is unique. 

The strategies are strictly monotone and differentiable. 

Next, I characterize a simple property of the equilibrium bidding strategies. 

Proposition 1 

If (α1(.), ..., αm(.)) is a vector of equilibrium bidding strategies in the game with y1 = 0 and 

y2 = 1, then the vector of equilibrium bidding strategies in the game with (y1, y2), yl ∈ [y , yl],l 

is given by βi(.|y1, y2) = {β1(.|y1, y2), ..., βm(.|y1, y2)}, such that 

βi(xi|y1, y2) = y1 + y2αi(xi), i = 1, ..., m. 

The proposition shows that the bid function has a factor structure similar to costs with 

the individual bid component given by αi(.). The proof of this proposition is based on the 

comparison of two sets of first-order conditions and follows immediately from the assumption 

that the factor structure of bidders’ costs and the common components are known to all 

bidders. 

The equilibrium inverse individual bid function for a group “k” bidder is denoted by ξk. 

Since the function αk(.) is strictly monotone and differentiable, the function ξk(.) is well-defined 

and differentiable. The necessary first-order conditions for the set of equilibrium strategies 
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when y1 = 0, y2 = 1 are then given by 

(ξk(i)(a))ξ
0 (a) (ξ−k(i)(a))ξ

0 (a)1 fXk(i) k(i) fX−k(i) −k(i)
(2) = (mk(i) − 1) + m−k(i) , 

a − ξk(i)(a) 1 − FXk(i) 
(ξk(i)(a)) 1 − FX−k(i) 

(ξ−k(i)(a)) 

where ξk 
0 (.) denotes the derivative of ξk(.). 

Equation (2) characterizes the equilibrium inverse individual bid function when y1 = 0 

and y2 = 1. It describes a trade-off the bidder faces when choosing a bid: an increase in the 

mark-up over the cost may lead to a higher ex-post profit if bidder i wins, but it reduces 

the probability of winning. The bid a is chosen in such a way that the marginal effects of an 

infinitesimal change in a bid on the winner’s profit and the probability of winning sum to zero. 

3 Identification 

I assume that the econometrician has access to bid data, based on n independent draws from 

the joint distribution of (Y1, Y2, X). The observable data are in the form {bij }, where i denotes 

the identity of the bidder, i = 1, .., m; and j denotes project, j = 1, ..., n. If data represent 

equilibrium outcomes of the model with two-dimensional unobserved auction heterogeneity, 

then 

(3) bij = βk(i)(xij |y1j , y2j ) 

(i.e., bij is a value of bidder i’s equilibrium bidding strategy corresponding to (y1j , y2j ) evalu-

ated at the point xij ). 

I use Bi to denote the random variable that describes the bid of bidder i of group k(i) with 

distribution function GBk(i) 
and the associated probability density function gBk(i) 

; bij denotes 

the realization of this variable in auction j. The econometrician observes the joint distribution 
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function of (Bi1 , .., Bil ) for all subsets (i1, ..., il) of (1, ..., m)
4 . 

As was shown in the previous section, bij depends on the realizations of the common and 

individual cost components as well as on the distributions of the individual cost components. 

This section examines under what conditions on available data there exists a unique tuple 

{{xij }, FY1 , FY2 , FX } that satisfies (3), i.e., under what conditions the model from the previous 

section is identified. 

Proposition 1 establishes that 

bij = y1j + y2j aij , 

where aij is a hypothetical bid that would have been submitted by bidder i if y1 were equal 

to zero and y2 were equal to one. I use Ai to denote the random variable with realizations 

equal to aij . The associated distribution function is denoted by GAk(i) 
with the probability 

density function gAk(i) 
. Notice that the econometrician does not observe (y1j , y2j ) and neither 

therefore aij . The distribution of Ai is latent. 

The following theorem is the main result of this section. It formulates sufficient identifica-

tion conditions for the model with two dimensional unobserved heterogeneity. 

Theorem 1 

If conditions (D1) − (D4) are satisfied, then the probability density functions fY1 , fY2 are 

uniquely identified from the joint distribution of four arbitrary bids (Bi1 , Bi2 , Bi3 , Bi4 ). The 

probability density functions fXj , j = 1, 2, are also uniquely identified from the joint distribu-

tion of four bids (Bi1 , Bi2 , Bi3 , Bi4 )as long as at least one of (i1, i2, i3, i4) is a type j bidder.5,6 

4In fact, it is not necessary to observe joint distribution for all subsets. For details, see the formulation of 

Theorem 1. 
5Notice that if bidders are symmetric any four bids would work. 
6In this paper, we do not aim to propose the identification strategy that obtains the lowest data require-
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The proof of Theorem 1 relies on a statistical result by Kotlarski (1966),7 which establishes 

0 

that the marginal distributions of mutually independent random variables (Z1, Z2, Z3) are 

identified from the joint distribution of random variables (W1,W2) such that 

W1 = Z1 + Z3, W2 = Z2 + Z3. 

This result requires that the characteristic functions of Z1, Z2, Z3 should be non-vanishing. 

isUnder these conditions it is possible to solve for the characteristic functions of Z from 

the joint characteristic function of (W1,W2). More specifically, let Ψ(., .) and Ψ1(., .) denote 

the joint characteristic function of (W1,W2) and the partial derivative of this characteristic 

function with respect to the first component respectively. Also, let ΦZi (.) denote characteristic 

is . Then,0functions of Z 

Zt 

(4) ΦZ3 (t) = exp ( 
Ψ1(0, u2)

du2 − itE[Z1]),
Ψ(0, u2) 

0 

ΦZ1 (t) = 
Ψ(t, 0) 

,
ΦZ3 (t) 

ΦZ2 (t) = 
Ψ(0, t) 

,
ΦZ3 (t) 

Once characteristic functions of Z1, Z2, Z3 are known the probability density functions of Z 0 is 

can be recovered using inverse Fourier transformation. In fact, since there is a one-to-one 

relationship between characteristic and density functions, the distribution of random variable 

is identified if the characteristic function of this distribution can be recovered. 

Proof 

Lemma 1 (see Appendix) establishes that all the random variables considered in this proof 

ments. It is possible that other strategies exist that may have lower data requirements than the strategy 

proposed here. 
7See Rao (1992). 
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have non-vanishing characteristic functions. The rest of the proof is organized in 3 steps. 

Step 1 

First, I form the pair-wise bid differences for two pairs of distinct bids: 

Wi1,i2 = Bi1 − Bi2 and Wi3,i4 = Bi3 − Bi4 . The identification of the probability density 

function fY2 is established by applying Kotlarski’s argument to the joint distribution of 

(log Wi1,i2 , log Wi3,i4 ) conditional on (Wi1,i2 > 0,Wi3,i4 > 0). The later condition is equiv-

alent to (Ai1 − Ai2 > 0, Ai3 − Ai4 > 0). Since there is no special rule according to 

which indexes (i1, i2, i3, i4) are fixed, then log(Ai1 − Ai2 ) and log(Ai3 − Ai4 ) conditional on 

(Ai1 − Ai2 > 0, Ai3 − Ai4 > 0) are independent of each other and of log(Y2). Therefore, condi-

tions of Kotlarski’s theorem are satisfied. At this point I impose normalization E[log(Y2)] = 0. 

I will re-adjust recovered distributions later so as to satisfy condition (D3). 

Step 2 

(a) The joint characteristic function of Wi1,i3 and Wi2,i3 conditional on 

Wi1,i3 > 0, Wi2,i3 > 0 together with the characteristic function of Y2 (identified in (a)) identi-

fies the joint characteristic functions and therefore joint distributions of 

(Ai1 − Ai3 , Ai2 − Ai3 ) conditional on (Ai1 − Ai3 > 0, Ai2 − Ai3 > 0). The joint distributions 

of (Ai1 − Ai3 , Ai2 − Ai3 ) conditional on (Ai1 − Ai3 > 0, Ai2 − Ai3 < 0), 

(Ai1 − Ai3 < 0, Ai2 − Ai3 > 0), (Ai1 − Ai3 < 0, Ai2 − Ai3 < 0) are identified in a similar way. 

The probabilities of observing (Ai1 − Ai3 > 0, Ai2 − Ai3 > 0), (Ai1 − Ai3 > 0, Ai2 − Ai3 < 0), 

(Ai1 − Ai3 < 0, Ai2 − Ai3 > 0) or (Ai1 − Ai3 < 0, Ai2 − Ai3 < 0) are identified from the data. 

Therefore, the joint distribution of (Ai1 − Ai3 , Ai2 − Ai3 ) is also identified. 

(b) Kotlarski’s argument, then, is applied to the joint distribution of 

(Ai1 − Ai3 , Ai2 − Ai3 ) to identify the probability density functions of Ai1 , Ai2 and Ai3 under 
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normalization that E[Ai1 ] = 0. 

(c) The argument developed in Laffont and Vuong (1996) and used in Krasnokutskaya 

(2009) establishes identification of the probability density functions of Xi1 , Xi2 , Xi3 from the 

probability distributions of Ai1 , Ai2 and Ai3 . 

(d) Let eY2 and eX1 denote the expectations of Y2 and X1 under above normalization, 

then the random variables Ỹ 
2 = Y2 , X̃ 

1 = eY2 X1 − eY2 eX1 , Ã 
1 = eY2 A1 − eY2 eX1 , and X̃ 

ik = 
eY2 

eY2 Xik − eY2 eX1 , Ã 
ik = eY2 Aik − eY2 eX1 , represent components of the model that corresponds 

to the normalization postulated in (D3).8 

Step 3 

The probability density functions gAi1 
, fY2 uniquely determine the probability distribution 

and thus the characteristic function of Y2 · Ai1 , which allows unique identification of the 

probability distribution of Y1 from the characteristic function of Bi1 . End of proof. 

Thus, fY1 , fY2 , fX1 , fX2 are identified from the joint distribution of four arbitrary bids. 

Similar to the one-dimensional case, the exact realizations of y1j , y2j and {xij } are not uniquely 

identified. 

4 Estimation 

The econometrician has data for n auctions. For each auction j, (mj, {bij }
i=mj , zj ) are observed, i=1 

where mj is the number of bidders in the auction j, with mj1 bidders of group 1 and mj2 

bidders of group 2; {bij }
i=mj is a vector of bids submitted in the auction j; and zj is a vector i=1 

of auction characteristics. 
8Notice, that the difference E[X1] − E[Aik ] is correctly recovered. Therefore, no additional correction is 

needed. 
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In the estimation procedure which follows the observable covariates could be handled in two 

ways. An index assumption could be made, i.e. cij = exp(zj α)(y1j +y2j xij ).
9 From Proposition 

1 it follows that bij = exp(zj α)(y1j + y2jb0 
ij ). Then, in the first step the index zj α is estimated 

conditional on the number of bidders and normalized bids are formed: b0 
ij = bij / exp(zj α). 

The remaining steps of estimation procedure are applied to the normalized bids. I follow 

this procedure in the empirical part of this paper. Alternatively, the estimation steps below 

could be implemented conditional on the observable project characteristics. More specifically, 

the researcher should condition on discrete attributes and use kernel smoothing over the 

continuous attributes. 

The steps of the estimation procedure closely follow the steps of the identification argu-

ment. I assume that at least four bids, (Bi1, Bi2, Bi3, Bi4) are available per project. For the 

convenience of exposition it is assumed that index i1 corresponds to the bids submitted by 

the bidders from the group 1 whereas all other bids are submitted by the bidders from the 

group 2. It is straightforward to adjust the steps of estimation procedure if the configuration 

of bidder set is different. Finally, I use Δk,lX to denote the difference between the observations 

of variable X subscripted ik and il, i.e. Δk,lX = Xik −Xil ; LΔk,lX denotes logarithm of Δk,lX. 

Step 1 

1) First, the researcher selects a subsample such that (Bi1 − Bi2 ) > 0, (Bi3 − Bi4 ) > 0. Let 

us denote the number of projects in this subsample by n01. This subsample is used to 

estimate the joint characteristic function of (log(Bi1 − Bi2 ), log(Bi3 − Bi4 )) as 

X1 n01 

Ψ̂ 
(L(Δ1,2B),L(Δ3,4B))(t1, t2) = exp(it1 log(Bi1 − Bi2 ) + it2 log(Bi3 − Bi4 )) n 

j=1 

9In this case, we additionally need to require that zj should be independent of (xj , y1j , y2j ). 
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and the derivative of Ψ(., .) with respect to the first argument, Ψ1(., .), by 

X1 n01 

Ψ̂ 
1,(L(Δ1,2B),L(Δ3,4B))(t1, t2) = i log(Bi1 −Bi2 ) exp(it1 log(Bi1 −Bi2 )+it2 log(Bi3 −Bi4 )). n 

j=1 

The researcher should average over all possible quadruples to enhance efficiency. If bid-

ders are symmetric, the efficiency could be further improved by using 

(−(Bi1 − Bi2 ), −(Bi3 − Bi4 )) for Bi1 − Bi2 < 0, Bi3 − Bi4 < 0.10 

2) The characteristic function of log(Y2) is estimated as 

Zt 
Ψ̂ 
1,(L(Δ1,2B),L(Δ3,4B))(0, u2)ϕ̂LY2 (t) = exp( du2 − itE[log(Bi1 − Bi2 )]). 
Ψ̂ 
(L(Δ1,2B),L(Δ3,4B))(0, u2)

0 

Here I adopt normalization E[log(Y2)] = 0. As in the identification argument the re-

searcher would re-normalize all the variables in the later steps. 

3) Next, I use inversion formula to estimate f̃  
LY2 (.). ZT 

f̃  
LY2 (y) = 

1 
exp(−ity)Φ̂ 

LY2 (t)dt 2π 
−T 

for y ∈ S(log Y2), where T is a smoothing parameter. 

4) Finally, I obtain f̃  
Y2 (.) as 

f̃  
LY2 (log(y))f̃  

Y2 (y) = 
y 

for y ∈ S(Y2). 

Step 2 

10Estimation procedure requires that bids should be associated with independent private values. It is im-

portant, therefore, that bids for the same auction should be recorded in the dataset in a “random” order. We 

can not, for example, arrange bids in increasing or decreasing order prior to implementing Step 1. 
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1) I use ϕ̂LY2 (t) to estimate the joint characteristic function of 

(log(Ai1 − Ai3 ), log(Ai2 − Ai3 )) from the subsample with (Bi1 − Bi3 > 0, Bi2 − Bi3 > 0) 

and, therefore, (Ai1 − Ai3 > 0, Ai1 − Ai3 > 0) 

bΨ(L(Δ1,2B),L(Δ2,3B))(t1, t2)ϕ̂L(Δ1,3A),L(Δ2,3A)(t1, t2) = . 
ϕbLY2 (t1 + t2) 

Similarly, I obtain for sl = {+1, −1}, l = 1, 2, 

From subsample with (s1Δ1,3B > 0, s2Δ2,3B > 0) : 

Ψ̂ 
(L(s1Δ1,2B),L(s2Δ2,3B))

(t1,t2)
ϕ̂L(s1Δ1,3A),L(s2Δ2,3A)(t1, t2) = .

ϕ̂LY2 (t1+t2) 

2) I use the inversion formula to obtain 

T TR R(k) 1f̃ (u1, u2) = exp(−it1u1 − it2u2)ϕ̂L(s1Δ1,3A),L(s2Δ2,3A)(t1, t2)dtL(s1Δ1,3A),L(s2Δ2,3A) (2π)2 

−T −T 

conditional on (s1Δ1,3A > 0, s2Δ2,3A > 0), for u1 ∈ S(Ls1Δ1,3A|s1Δ1,3A > 0), 

u2 ∈ S(Ls2Δ2,3A|s2Δ2,3A > 0). 

As before, sl = {+1, −1}, l = 1, 2, and superscrip k, k = 1, ..., 4, enumerates possible 

combinations of (s1, s2). 

3) Next, I derive 

f̃
(1) 

(log(u1),log(u2))(l) L(s1Δ1,3A),s2L(Δ2,3A)f̃ (u1, u2) = s1Δ1,3A,s2Δ2,3A u1,u2 

conditional on (s1Δ1,3A > 0, s2Δ2,3A > 0), for u1 ∈ S(Ls1Δ1,3A|s1Δ1,3A > 0), 

u2 ∈ S(Ls2Δ2,3A|s2Δ2,3A > 0). 
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4) I use frequency estimators11 

X1 
n01 

ˆP rob(Δ1,3B > 0, Δ2,3B > 0) = I(Δ1,3B > 0, Δ2,3B > 0); 
n01 j=1 X1 

n02 

ˆP rob(Δ1,3B < 0, Δ2,3B < 0) = I(Δ1,3B < 0, Δ2,3B < 0); 
n02 j=1 X1 

n03 

ˆP rob(Δ1,3B < 0, Δ2,3B > 0) = I(Δ1,3B < 0, Δ2,3B > 0); 
n03 j=1 X1 

n04 

ˆP rob(Δ1,3B > 0, Δ2,3B < 0) = I(Δ1,3B > 0, Δ2,3B < 0); 
n04 j=1 

to obtain the probability density function of the unconditional distribution of 

(Ai1 − Ai3 , Ai2 − Ai3 ): 

ˆf̃  
Δ1,3A,Δ2,3A(u1, u2) = f̃ (1) (u1, u2)P rob(Δ1,3B > 0, Δ2,3B > 0) + Δ1,3A,Δ2,3A 

ˆf̃
(2) 

(−u1, −u2)P rob(Δ1,3B < 0, Δ2,3B < 0) + −Δ1,3A,−Δ2,3A 

f̃
(3) ˆ(−u1, u2)P rob(Δ1,3B < 0, Δ2,3B > 0) + −Δ1,3A,Δ2,3A 

f̃
(4) ˆ(u1, −u2)P rob(Δ1,3B > 0, Δ2,3B < 0).Δ1,3A,−Δ2,3A 

5) This allows us to construct 

Z Z 
Φ̂Δ1,3A,Δ2,3A(t1, t2) = exp(it1u1 + it2u2)f̃  

Δ1,3A,Δ2,3A(u1, u2)du1 du2 Z Z 
Φ̂ 
1,Δ1,3A,Δ2,3A(t1, t2) = iu1 exp(it1u1 + it2u2)f̃  

Δ1,3A,Δ2,3A(u1, u2)du1 du2. 

6) The characteristic functions of the individual bid components Aik , k = 1, 3, are estimated 

11Here n02 is the number of projects with (Δ1,3B < 0, Δ2,3B < 0), n03 is the number of projects with 

(Δ1,3B < 0, Δ2,3B > 0), n04 is the number of projects with (Δ1,3B > 0, Δ2,3B < 0). 
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as 

Zt 
Ψ̂ 
1,Δ1,3A,Δ2,3A(0, u2)ϕ̂Ai3 

(t) = exp( du2 − itE[Ai1 ]), 
Ψ̂ 
Δ1,3A,Δ2,3A(0, u2)

0 

Ψ̂ 
Δk,3A,Δ−k,3A(t, 0)ϕ̂Aik 

(t) = for k = 1, 2. 
Φ̂ 

Ai3 
(t) 

Here I use normalization that E[Ai3 ] = 0. I re-normalize all the variables in the later 

steps. 

7) The inversion formula is used to estimate densities e , k = 1, 3,gAik ZT 
1 

f̃  
Aik 
(u) = exp(−itu)Φ̂ 

Aik ,n
(t)dt. 

2π 
−T 

8) The individual inverse bid function at a point a ∈ S(Ak) is estimated as 

ˆ (1 − F̃  
A1,n(a)) · (1 − F̃  

A2,n(a))ξk,n(a) = a − 
(mk − 1) · f̃  

Ak,n(a) · (1 − F̃  
A−k ,n(a)) + m−k · f̃  

A−k,n(a) · (1 − F̃  
Ak,n(a)) 

where Za 

F̃  
Ak ,n(a) = f̃  

Ak,n(z)dz 

ân 

and ân is an estimate of the lower bound of the support of fAk (.), which corresponds to 

the normalizations E[log Y2] = 0 and E[Ai3 ] = 0 (see the Appendix for the discussion of 

the support estimation). 

9) Here the re-normalization should be performed as described in step 2 of the identification 

argument. 

Step 3 
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1) I estimate fY2Ai1 
(.) as Z 

1 z 
f̂  
Y2Ai1 

(z) = f̃  
Ai1 
( )f̂  

Y2 (y) dy. y y 
S(Y2) 

2) I then estimate ϕY2Ai1 
(t) and ϕY1 (t) as Z 

ϕ̂Y2Ai1 
(t) = exp(itu)f̂  

Y2Ai1 
(u)du 

S(Y2Ai1 ) 

Φ̂ 
Bi1 
(t)

ϕ̂Y1 (t) = , where 
ϕ̂Y2Ai1 

(t) X1 n 

Φ̂ 
Bi1 
(t) = exp(itBi1 ). n 

j=1 

3) The inversion formula is used to estimate the density f̂  
Y1 

ZT 

f̂  
Y1 (y) = 

1 
exp(−ity)ϕ̂Y1 (t)dt. 2π 

−T 

5 Properties of the Estimators 

The estimation procedure yields uniformly consistent estimators of the relevant distributions. 

This result is derived under the following restrictions on the tail behavior of characteristic 

functions. 

(D5) The characteristic functions ϕLY2 , ϕY1 , ϕLAk , ϕAk and ϕY2Ak are ordinary-smooth.
12 

This property holds, for example, when cumulative probability functions of cost compo-

nents admit up to R, R > 1 continuous derivatives on the support interior such that M of 

them, 1 ≤ M ≤ R, can be continuously extended to the real line. 

12Following Fan (1991): The distribution of random variable Z is ordinary-smooth of order κ if its charac-

teristic function Φz (t) satisfies d0|t|−κ ≤ |Φz(t)| ≤ d1|t|−κ as t→ ∞ for some positive constants d0,d1,κ.with 

κ > 1. 
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Theorem 2 summarizes properties of the estimator. 

Theorem 2 

If conditions (D1) − (D5) are satisfied, then f̂  
Y1 , f̂  

Y2 and f̂  
Xk are uniformly consistent 

estimators of fY1 , fY2 and fXk , k = 1, 2, respectively. 

Notice that in this setting I cannot directly apply results obtained in Li and Vuong (1998) 

on the uniform consistency of the estimators derived from the Kotlarski’s theorem. This is 

because their results require that all the random variables involved have bounded support. 

This property does not hold in this setting. The random variables Aik , k = 1, .., 3, have 

the same support. As a result the support of (Aik − Ail ) contains zero and the support of 

log(Aik − Ail ) conditional on Aik − Ail > 0 is given by (−∞,M ] for some M > 0. In order 

to derive the uniform convergence of estimators in the case with unbounded support I will 

exploit the tail behavior of log(Aik − Ail ) which is established in Lemma 3 (in the Appendix). 

6 Application 

I apply the methodology presented in Section 4 to data from highway procurement auctions. 

I use data provided by the California Department of Transportation (CalTrans), which is re-

sponsible for construction and maintenance of roads and highways within California. CalTrans 

allocates the work which needs to be done to companies in the form of projects through a 

first price sealed bid auction. The project usually involves a small number of tasks, such as 

resurfacing or replacing the base or filling in cracks. 

Projects are advertised four weeks prior to the letting date. Companies interested in the 

project can obtain a detailed description from CalTrans. CalTrans constructs a cost estimate 
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for every project. This estimate is based on the engineer’s assessment of the work required 

to perform each task and prices derived from the winning bids for similar projects let in the 

past. The costs are then adjusted through a price deflator. The reserve price, while formally 

present, is not enforced. 

It is unclear if the auction participants have a good idea about the number of their com-

petitors. The existing literature on highway procurement auctions tends to argue that this 

is a small market where participants are well informed about each other and can accurately 

predict the identities of auction participants.13 I follow this tradition and assume that the 

number of actual bidders is known to auction participants. 

I allow for cost asymmetries between bidders. In particular, I distinguish between two types 

of bidders: regular (large) bidders and fringe bidders. The set of regular bidders is defined to 

include companies that consistently won at least $10 million in projects during each year in 

my data set and have at least 100 employees. 

The analysis focuses on two types of projects: (1) bituminous resurfacing and (2) small 

construction projects.14 The projects in the first set involve stripping the old surface off, 

correcting the road base and laying out new surface. These projects are quite similar and well 

defined. After I control for the size of the project, time allocated, location and type of road, the 

remaining variation (not observed in the data) is associated with possible curvature, incline 

or elevation of the road, ground conditions, etc. In comparison, small construction projects 

13See, for example, Bajari and Ye (2003). 
14The “small construction projects” is a category that includes construction projects under $3 mln. The 

distribution of project sizes in this category is comparable with the distribution of sizes in the bituminous 

re-surfacing category. In contrast, the regular construction projects category consists of projects that costs 

more than $10 mln. 
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usually involve building small parking lots, culverts and small bridges. The projects in this 

set are less homogeneous and may have substantial amount of project-specific variation which 

is difficult to summarize in the data. Such projects usually involve excavation, leveling the 

ground, laying the base, building a stand alone structure, etc. They are much simpler than 

projects in the construction category because they involve building simple objects according 

to known and well-defined blueprints. The completion of such project does not require a lot 

of time and therefore is not associated with long-run risks, planning and commitments. Thus, 

these projects are consistent with private value framework adopted in this paper. 

Table 1 provides summary statistics for the two sets of projects. I focus on the medium-

size projects in both categories so that engineer’s estimates are similar across the two sets. 

The small construction projects are allowed longer duration (on average 25% longer than the 

duration of resurfacing projects) and tend to have a higher number of tasks. 

Table 2 reports the estimates from the OLS regression of the logs of the bids on the 

project characteristics for the two sets of projects used in the estimation. The results indicate 

that observable characteristics explain a higher portion of variation in log-bids in the case of 

bituminous resurfacing. In addition, the engineer’s estimate plays a more important role in 

the case of bituminous resurfacing. This indicates that this measurement is more precise for 

resurfacing projects. 

To account for the observable project characteristics I assume that 

log(cij ) = xj α + log y + log xij 

for the specification with one-dimensional unobserved heterogeneity and 

log(cij ) = xj α + log(y1 + y2xij ) 
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Table 1: Summary Statistics 

Variables Bituminous Small 

Resurfacing Construction 

Engineer’s estimate 6.05 6.0 

(hundreds of thousands) (1.6) (1.2) 

Duration (days) 69.5 44.1 

(15.1) (25.3) 

Tasks 4.2 9.4 

(1.32) (4.46) 

[nregular, nf ringe] [4, 0] [4, 0] 

Number of projects 252 270 

Note: The standard deviations are shown in the parenthesis. 

for the specification with two-dimensional unobserved heterogeneity. That is, I extract observ-

able project variation by using OLS projection of bids on observable project characteristics 

and use residuals from this regression in further estimation. 

Figures 1 and 2 depict the estimated densities of the costs components under one- and two-

dimensional unobserved heterogeneity, and for the two sets of projects. Table ?? summarizes 

the results of the estimation. For both groups of projects the estimation under the assump-

tion of two-dimensional unobserved heterogeneity recovers three non-trivial cost components. 

In both cases, the variance of the scaling component (Y2) is smaller under two-dimensional 

specification relative to one-dimensional specification. The variance of the distribution of the 

individual cost component is very similar across specifications in the case of bituminous resur-
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Table 2: Log-Bid Regression 

Variables Bituminous Small 

Resurfacing Construction 

Constant 0.273 -0.0061 

(0.087) (0.002) 

Engineer’s estimate 0.903 1.013 

(0.024) (0.012) 

Duration 0.0011 0.0003 

(0.0002) (0.0001) 

Tasks 0.0008 0.0006 

(0.0002) (0.0001) 

Other controls: year, month and district dummy variables. 

R2 0.91 0.82 

Note: The standard errors are shown in the parenthesis. 

facing and increases substantially in the case of small construction projects. Similarly, the 

estimated markups over the bidders’ costs differ very little across specifications in the case of 

resurfacing projects whereas they increase from 7% (under one-dimensional specification) to 

9.3% (under two-dimensional specification) in the case of small construction projects. 

The results of estimation, thus, underscore the potential for misspecification bias. The 

model with two-dimensional heterogeneity mitigates the bias by allowing for greater flexibility 

in estimation. 
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Further, I study the importance of allowing for greater flexibility in the specification of the 

model with unobserved heterogeneity by comparing the optimal reserve price derived from 

the estimates obtained under the assumption of (a) one-dimensional and (b) two-dimensional 

unobserved heterogeneity. 

The government chooses a reserve price to minimize the expected cost of procurement, 

which consists of two parts: the expected cost of not allocating the job today and the expected 

cost of completing the work today given the reserve price r. Let us denote the first component 

c0. It represents the sum of the cost of waiting another period and the expected cost at which 

the project can be completed in the future. Then the objective function of the government is 

therefore given by 

Zr 

C = c0 Pr(bij > r, i = 1, ..., n) + bn(1 − FB(b))
n−1fB(b)db. 

b 

I do not have data on the magnitude of c0. Therefore, I use a plausible value for c0 and 

derive an optimal reserve price for this value. 

The results of the analysis are summarized in Table 4. The table records for every case 

(1) the reserve price, (2) the probability with which a bid is submitted and (3) the cost of 

procurement as a percent of c0. 

For each specification I consider two cases: (a) realization of unobserved heterogeneity is 

known to the government with the cost to the government given by 

Zr 

C(y) = c0 Pr(bij > r, i = 1, ..., n|y) + bn(1 − FB(b|y))n−1fB(b|y)db; 
b 

(b) realization of unobserved heterogeneity is unknown to the government and the reserve 

price is derived to minimize the average cost of procurement, where the average is taken with 
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Table 3: Estimation Results 

One Factor Model Two Factor Model 

Bituminous resurfacing 

2 
Yσ 0.12 0.062 
2 

[0.11, 0.128] [0.053, 0.068] 

2 
Xσ 0.11 0.124 

[0.102, 0.125] [0.11,0.132] 

2 
Yσ - 0.11 
1 

[0.106, 0.118] 

avrg. mark-up 6.6% 7% 

[6.3,6.9] [6.5, 7.2] 

Small Structures 

2 
Yσ 0.16 0.07 
2 

[0.153,0.172] [0.064,0.8] 

2 
Xσ 0.08 0.13 

[0.07,0.085 ] [0.12,0.14] 

2 
Yσ - 0.13 
1 

[0.12,0.126] 

avrg. mark-up 5.7% 7.8% 

[5.3,6.4] [7.2,8.3] 

Note: The 5% - 95% quantiles of the estimators are shown in the parenthesis. The quantiles are computed 

through a bootstrap procedure. 
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respect to the distribution of unobserved auction heterogeneity, i.e. Z Zr 

C = (c0 Pr(bij > r, i = 1, ..., n|y) + bn(1 − FB(b|y))n−1fB(b|y)db) fY (y)dy. 

b 

For the case in (a) Table 4 reports (1) the average reserve price, (2) the average probability 

with which a bid is submitted and (3) the average cost of procurement as a percent of c0. The 

average is taken with respect to the distribution of unobserved heterogeneity. 

I consider both (a) and (b) cases because the case (a) may not be implementable in practice 

if the government does not know the realization of unobserved auction heterogeneity. In this 

case the reserve price derived in (b) can be used. 

The table shows that in the set of small construction projects the reserve price based on the 

distributions estimated under the assumption of two-dimensional unobserved heterogeneity is 

higher than the reserve price based on the distributions estimated under the assumption of 

one-dimensional unobserved heterogeneity. It also results in higher participation and lower 

cost of procurement. The table does not record significant differences between one- and two-

dimensional cases in the case of bituminous resurfacing. 

7 Conclusion 

This paper analyzes the first price auction model with two-dimensional unobserved auction 

heterogeneity. I show that such a model is identified from the bid data, and develop an esti-

mation methodology to recover the distribution of bidders’ private information and the distri-

butions of two-dimensional unobserved auction heterogeneity. I show that this methodology 

produces uniformly consistent estimators of the distributions in question. 

I apply this methodology to the sets of projects associated with bituminous resurfacing 
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and small structures. I find that while in the case of bituminous resurfacing projects the 

estimated distribution of the private information differs little across specifications, in the case 

of small structure projects, allowing for two-dimensional unobserved heterogeneity results in 

significantly different estimates. 

I also show that accounting for the two-dimensional nature of unobserved heterogeneity 

has important implications for the computation of optimal reserve prices. In particular, I find 

that in the set of small construction projects where two distinct dimensions of unobserved 

heterogeneity are present, the optimal reserve price is higher and calls for higher participation 

compared to the reserve price derived from the estimates obtained under the assumption of 

one-dimensional unobserved heterogeneity. I also find that the reserve price based on estimates 

from the misspecified model results in procurement costs which are 15% higher than the 

procurement costs under optimal reserve price. 

Affiliation: 

Elena Krasnokutskya - Johns Hopkins University, U.S.A. 
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Figure 1: Bituminous Resurfacing 
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Note: The top panel shows the estimated densities of the unobserved auction heterogeneity components. The 

lower panel reports the estimated density of bidder private information. The solid line corresponds to the case 

of one-dimensional unobserved heterogeneity while the line with a cross-marker depicts the density estimated 

under two-dimensional unobserved heterogeneity. Dotted lines represent 5% - 95% quantiles of pointwise 

density estimators. The quantiles are computed through a bootstrap procedure. 
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Figure 2: Small Construction Projects 
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Note: The top panel shows the estimated densities of the unobserved auction heterogeneity components. The 

lower panel reports the estimated density of bidder private information. The solid line corresponds to the case 

of one-dimensional unobserved heterogeneity while the line with a cross-marker depicts the density estimated 

under two-dimensional unobserved heterogeneity. Dotted lines represent 5% - 95% quantiles of pointwise 

density estimators. The quantiles are computed through a bootstrap procedure. 
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8 Appendix 

Definition 

The characteristic function of the variable X is non-vanishing if for every T > 0 there 

exists t such that |t| > T and ϕX (t) 6= 0. 

Lemma 1 

Let Y and A denote random variables with bounded supports [y, y] and (a, a] such that 

y > 0, a = 0. Then, the characteristic functions of (a) Y and (b) log A are non-vanishing. 

Proof 

(a) The non-vanishing property of the characteristic function of Y is established as in Kras-

nokutskaya (2009). The proof introduces a function which is an extension of the characteristic 

function to the complex plane. It is shown that such a function is infinitely differentiable 

everywhere in the complex plane. It, therefore, is an entire function. Thus, the number of 

points where ϕY (t) is equal to zero cannot be more than countable, which means that ϕY (t) 

is non-vanishing. 

(b) I follow a similar strategy to show that the characteristic function of log A is non-

vanishing. Notice that the density function of log A is given by flog A(x) = fA(ex)ex . Then, the 
logR a logR a 

itafA(echaracteristic function of log A is given by ϕlog A(t) = eitaflog A(a)da = e a)eada. 
−∞ −∞ 

It is easy to see that the characteristic function can be extended to the complex plane. The 
logR a 

(k) itafA(ek-th derivative of the characteristic function, ϕ (t) = (ia)ke a)eada, is well defined log A 
−∞ 

and finite everywhere on the complex plane. Therefore, ϕlog A is an entire function. As before 

this implies that ϕlogA(t) is non-vanishing. 

Lemma 2 
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Let X = (X1, X2) denote a vector of random variables such that 

1) The support of X, SX , is unbounded, i.e. SX = [−∞,M ]2 for some M > 0; 

2) P rob(|X| ≥ x) ≤ L0e−x for some L0 > 0. 

nThen, provided that Tn = O(( )α) for some α > 0:
log n Z 

itX d( ˆ 
log n 

(a) sup[−Tn, Tn]| e Fn;X − FX )| = O(( )0.5) a.s. 
n 

Further, if the following conditions are satisfied 

3) P rob(|X2| ≥ x) ≤ L1e−x for some L1 > 0; 

4) E[Xk|X2] ≤ Lk < ∞ for some Lk > 0, k = 1, 2;1 

5) E[X1 
k|X2] ≤ L2 ∗ Lk 

3 
−2k! < ∞ for some L3 > 0, k > 2; 

nthen, provided that Tn = O(( )α) for some α > 0:
log n Z 

log n 
(b) sup[−Tn, Tn]| iX1e itX2 d(F̂  

n;X − FX )| = O(( )0.5) a.s. 
n 

Proof 

The (a) statement of Lemma 2 follows from Theorem 1 in Csorgo (1981). The latter result 

establishes that Z 
itX d( ˆΔn(Tn) = sup[−Tn, Tn]| e Fn;X − FX )| = O(Rn) a.s. 

∞ ∞X X 
−M1R2 n −M2R2 nn(5) if e + (KnTn/Rn)

2 e n < ∞ 
n=n0 n=n0 p

for some M1, M2 > 0 such that n0 = n0(M1, M2) = inf{n : Rn ≤ 1/4 max(M1, M2)} 

and Kn = inf{x > 0 : P rob(|X| > x) ≤ Rn}. 
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( log n )0.5It is straightforward to verify that condition (5) is satisfied for Rn = 
n and Tn = 

O(( n )α) with α > 0 when P rob(|X| ≥ x) ≤ L0e−x for some L0 > 0. The latter implies
log n 

that Kn = −0.5(log log n − log n) − log(L0). Substituting all the appropriate values into (5) 

obtains: 

X∞ ∞X 
−M1R2 −M2R2 

n ne n + (KnTn/Rn)
2 e n 

n=n0 n=n0 

∞ ∞X X n−M1 )α+0.5)2 −M2n + ((−0.5(log log n − log n) − log(L0))( n ≤ 
log n 

n=n0 n=n0 

∞ ∞X X n−M1 )2α+1 −M2n + (log n)2( n 
log n 

n=n0 n=n0 

∞ ∞X X 2α+1−M2n 
n −M1 + < ∞ for M1 > 1 and M2 > 2(α + 1). 

(log n)2α−1 
n=n0 n=n0 

(b) The result in 5 can be extended to the case of 

Z 
it2X2 d( ˆΔn(Tn) = sup[−Tn, Tn]| iX1e Fn;X − FX )| 

when random vector X satisfies conditions (1-5). The statement exactly identical to the one 

in Theorem 1 of Csorgo (1980) obtains with the only modification that n0 = n0(M1, M2) = 

inf{n : Rn ≤ L2/4
p
max(M1, M2)}. 

Lemma 3 

Let X1 = log(Bi1 − Bi2 )|Bi1 − Bi2 > 0 and X2 = log(Bi3 − Bi4 )|Bi3 − Bi4 > 0 for some 

i1, ..., i4 such that i1 6= i2 and i3 =6 i4. Then the the following properties hold: 

1) The support of X, SX , is unbounded, i.e. SX = [−∞,M0]
2 for some M0 > 0; 

2) P rob(|X2| ≥ z) ≤ L0e−z as z → −∞ and for some L0 > 0.; 

3) P rob(|X| ≥ z) ≤ L01ez as z → −∞ and for some L01 > 0. 
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4) E[Xk|X2] ≤ Lk < ∞ for some Lk > 0, k = 1, 2;1 

5) E[Xk|X2] ≤ L2 ∗ Lk−2k! < ∞ for some L3 > 0, k > 2.1 3 

Proof 

1) According to the assumptions of the model S(Bik ) = [b, b]. Then, S(Δkl|Δkl > 0) = 

(0, b − b]. Finally, S(LΔkl|Δkl > 0) = (−∞, log(b − b)]. Denoting M0 = log(b − b) 

obtains the result. 

2) Here I use that log(Bik − Bil ) = log(Aik − Ail ) + log(Y2). Then, 

Pr(log(Aik − Ail ) + log Y2 ≤ z, Aik − Ail > 0)
Pr(log(Aik −Ail )+log Y2 ≤ z|Aik −Ail > 0) = . 

Pr(Aik − Ail > 0) 

Further, 

(6) Pr(log(Aik − Ail ) + log Y2 ≤ z, Aik − Ail > 0) = Zy Za a1Z+ez−y 

fAk (a2)fAl (a1) da2 da1 fLY2 (y) dy = 

y a a1 Zy Za 

(FAk (a1 + e z−y) − FAk (a1))fAl (a1) da1 fLY2 (y) dy = 

y a 

Zy Za 

(fAk (a1)e z + o(e z))fAl (a1) da1 fLY2 (y) dy = 

y a Zy Za Zy Za 

e z fAk (a1)fAl (a1) da1 fLY2 (y) dy + o(e z) fAk (a1) da1 fLY2 (y) dy ≤ W1e z + o(e z) 

y a y a 

as z → −∞. 

The last inequality holds because Ak, Al, LY2 have finite support and continuous den-
y aR R 

sity functions. Therefore, fAk , fAl , fLY2 as well as fAk (a1)fAl (a1) da1 fLY2 (y) dy and 
y a 
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y aR R 
fAk (a1) da1 fLY2 (y) dy are bounded by some constant. 

y a 

a aR R 
In addition, Pr(Aik − Ail > 0) = fAk (a2) da2 fAl (a1) da1 = 

a a1 

aR 
(7) (1 − FAk (a1))fAl (a1) da1 ≥ W2 for some W2 > 0. 

a 

Combining (6) and (7) proves the result of the lemma. 

3) Similarly, 

Pr(log(Ai1 − Ai2 ) + log Y2 ≤ z1, log(Ai3 − Ai4 ) + log Y2 ≤ z2|Ai1 − Ai2 > 0, Ai3 − Ai4 > 0) = 
y a aR R R 
(FA1 (a1+e

z1−y )−FA1 (a1))fA2 (a1) da1 (FA3 (a2+e
z2−y )−FA3 (a2))fA4 (a2) da2 fLY2 (y) dy 

y a a 

aR aR . 
(1−FA1 (a1+y))fA2 (a1) da1 (1−FA3 (a2+y))fA4 (a2) da2 

a a 

As above, Za Za 

(1 − FA1 (a1))fA2 (a1) da1 (1 − FA3 (a2))fA4 (a2) da2 > W3 > 0. 

a a 

Further, 

yR aR aR 
(FA1 (a1 + ez1−y) − FA1 (a1))fA2 (a1) da1 (FA3 (a2 + ez2−y) − FA3 (a2))fA4 (a2) da2 fLY2 (y) dy = 

y a a 

y a aR R R 
(ez1−yfA1 (a1) + o(ez1 ))fA2 (a1) da1 (ez2−yfA3 (a2) + o(ez2 ))fA4 (a2) da2 fLY2 (y) dy = 

y a a 

y a aR R R 
ez1 ez2 (e−yfA1 (a1) + o(1))fA2 (a1) da1 (e−yfA3 (a2) + o(1))fA4 (a2) da2 fLY2 (y) dy ≤ 

y a a 

z1 ez2 W4e for some W4 > 0 as z1, z2 → −∞. 

In addition, 

Pr(log(Ai1 − Ai3 ) + log Y2 ≤ z1, log(Ai2 − Ai3 ) + log Y2 ≤ z2|Ai1 − Ai3 > 0, Ai2 − Ai3 > 0) = 
y aR R 
(FA1 (a+e

z1−y )−FA1 (a))(FA2 (a+e
z2−y )−FA2 (a))fA3 (a) da fLY2 (y) dy 

y a 
,aR 

(1−FA1 (a))(1−FA2 (a))fA3 (a) da 
a 

37 



and, 

y aR R 
(FA1 (a + ez1−y) − FA1 (a))(FA2 (a + ez2−y) − FA2 (a))fA3 (a) da fLY2 (y) dy = 

y a 

y aR R 
(ez1−yfA1 (a) + o(ez1 ))(ez2−yfA2 (a) + o(ez2 )fA3 (a) da fLY2 (y) dy = 

y a 

y aR R 
z2ez1 e (e−yfA1 (a) + o(1))(e−yfA2 (a) + o(1))fA3 (a) da fLY2 (y) dy ≤ 

y a 

z1 ee z2 W5 for some W5 > 0 as z1, z2 → −∞ 

aR 
with (1 − FA1 (a + ey))(1 − FA2 (a + ey))fA3 (a) da > W6 > 0. 

a 

4) The probability density function of the conditional distribution of log(Bi1 − Bi2 ) condi-

tional on log(Bi3 − Bi4 ) is given by 

fΔ1,2B|Δ3,4B (b1|b2) = 
y a aR R R 

eb1−y fA1 (e
b1−y +a1)fA2 (a1) da1 eb2−y fA3 (e

b2−y +a2)fA4 (a2) da2 fLY2 (y) dy 
y a a 

= y aR R 
eb2−y fA3 (e

b2−y +a2)fA4 (a2) da2 fLY2 (y) dy 
y a 

y a aR R R 
b1 −2y b1−y b2−ye e fA1 (e +a1)fA2 (a1) da1 fA3 (e +a2)fA4 (a2) da2 fLY2 (y) dy 

y a a 
. y aR R 

e−y fA3 (e
b2−y +a2)fA4 (a2) da2 fLY2 (y) dy 

y a 

Then, 

Z 
E[|B1||B2] = |b1|dFB1|B2 = 

y a aR R R 
b1 −2y

M e e (eb1−y + a1)fA2 (a1) da1 (eb2−y + a2)fA4 (a2) da2 fLY2 (y) dyZ fA1 fA3 
y a a 

|b1| db1 ≤ 
y aR R 

−∞ e−y fA3 (e
b2−y + a2)fA4 (a2) da2 fLY2 (y) dy 

y a 
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y a aR R R 
b1 −2y b2−y + a2)fA4M e e fA1 (e

b1−y + a1)fA2 (a1) da1 (e (a2) da2 fLY2 (y) dyZ fA3 
y a a 

|b1| db1 ≤ 
W7 

−∞ 

M M M−y −yZ −e +e Z Z 
M2 (a − a)2 

|b1|e b1 2 MLY2 A db1 ≤ W8 |b1|e b1 db1 = W8( b1e b1 db1 + 
W7 

−∞ −∞ 0 Z0 Z∞ 

+ |b1|e b1 db1) = W8(e M (M − 1) + 1 − b1e −b1 db1) = W8e M (M − 1). 

−∞ 0 

The first inequality holds for every b2 6= b, b since due to continuity of fA and fLY2 there 

exists non-empty sets of y’s and a2’s such that the integrand is positive over these sets. 

The second inequality also arises due to the continuity of fA and fLY2 and compactness 

of [y, y] and [a, a]. All the equalities are derived by direct computation. Similarly, Z 
b2E[B2|B2] = 1dFB1|B2 ≤1 

M MZ Z 
W8 b1

2 e b1 db1 = W8( b1
2 e b1 db1 + 

−∞ 0 Z0 Z∞ 

+ b21e b1 db1) = W8(e M (M2 − 2(M − 1)) − 2 − b21e −b1 db1) = W8(e M (M2 − 2(M − 1)). 

−∞ 0 

5) Finally, for the k-order moment I have Z 
E[|B1|k|B2] = |b1|kdFB1|B2 ≤ 

M MZ Z 
bkW8 |b1|k e b1 db1 = W8( 1e b1 db1 + 

−∞ 0 Z0 M Z∞Z 
+ |b1|k e b1 db1) = W8( b1 

k e b1 db1 − b1 
k e −b1 db1). 

−∞ 0 0 

M ∞R R 
Denote M0 = bk b1 db1 and M1 = bk −b1 db1. Then,k 1 e k 1e 

0 0 

M0 = eM Mk − kM0 
k k−1 

M1 = kM1 
k k−1. 
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Using the recursive formulas above obtains: 

M1 = k!k 

l=Xk−1 

Mk 
0 = e M (Mk + 

k! 
Mk−l(−1)l) − k! 

(k − l)!
l=1 

This gives us 

l=Xk−1 
k! 

E[|B1|k|B2] ≤ W8e M (Mk + (Mk + Mk−l(−1)l) = 
(k − l)!

l=1 

l=Xk−1 
1 

k− 
1
2W8e M Mkk!(1 + M−l(−1)l) = W8e M Mkk!W9 = L2(MW )k−2k! 

(k − l)! 9 

l=1 

for some W9 > 0. 

Lemma 4 

Let X be a random variable with the probability density function fX (.) and such that 

1) The characteristic function of X, ϕX (t) is ordinarily smooth, i.e. |ϕX (t)| ≥ d0|t|−βx for 

some d0 > 0 and βx > 1; 

2) The estimator of ϕX (t), ϕ̂X;n(t) is such that supt∈[−Tn, Tn]|ϕ̂X;n(t) − ϕX (t)| = Cϕ;n; 

RTn 

3) The estimator of fX (.), f̂  
n;X (x) is given by 1 e−itx ˆ (t)dt.f̂  

n;X (x) = 
2π ϕX;n 
−Tn 

Then 

sup |f̂  
n;X (x) − fX (x)| ≤ 2TnCn;ϕ + T 1−βx a.s.n 

x∈S(X) 

Proof 

ZTn 

1 |f̂  
n;X (x) − fX (x)| ≤ |ϕ̂X;n(t) − ϕX (t)|dt + 

2π 
−Tn Z−Tn Z∞ 

1 1 |ϕX (t)|dt + |ϕX (t)|dt ≤ 
2π 2π 

−∞ Tn 
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Z∞ 
1 

2Tn sup |ϕ̂X;n(t) − ϕX (t)| + |d0t−βx |dt = 
πt∈[−Tn, Tn] 

Tn 

2TnCϕ;n +
1 
d0Tn 

1−βx . 
π 

Proof of Theorem 2 

Step 1 

First, I begin by establishing the rate of convergence for sup[−Tn, Tn] |ϕ̂n;LY2 (t) − ϕLY2 (t)|. In 

Step 1 I always condition on Δ1,2B > 0, Δ3,4B > 0. I suppress conditioning in the notations 

for the ease of exposition. 

Applying Taylor approximation to 

Zt bΨ1;LΔ1,2B,LΔ3,4B (0, u2)
ϕ̂LY2 (t) = exp( du2bΨLΔ1,2B,LΔ3,4B(0, u2)

0 

obtains 

∞ Zt ZtX bϕLY2 (t) Ψ1;LΔ1,2B,LΔ3,4B (0, u2) Ψ1;LΔ1,2B,LΔ3,4B (0, u2)|ϕ̂LY2 (t) − ϕLY2 (t)| = ( du2 − du2)
l 

l! Ψb 
LΔ1,2B,LΔ3,4B(0, u2) ΨLΔ1,2B,LΔ3,4B(0, u2)l=1 0 0 

tRt b RΨ1;LΔ1,2B,LΔ3,4B (0,u2) Ψ1;LΔ1,2B,LΔ3,4B (0,u2)
Denote |Δn| = | du2 − du2)|. Then 

Ψb 
LΔ1,2B,LΔ3,4B (0,u2) ΨLΔ1,2B,LΔ3,4B (0,u2) 

0 0 

∞X 
|ϕ̂LY2 (t) − ϕLY2 (t)| ≤ |Δn|l . 

l=1 

Using von Mises differentials I have 

∞X 1 
Δn = dkT (FLΔ1,2B,LΔ3,4B ; F̂  

n;LΔ1,2B,LΔ3,4B − FLΔ1,2B,LΔ3,4B),k! 
k=1 

where dkT (FLΔ1,2B,LΔ3,4B; F̂  
n;LΔ1,2B,LΔ3,4B − FLΔ1,2B,LΔ3,4B ) = Zt R 

dk ib1e
iu2b2 d(FLΔ1,2B,LΔ3,4B + λ(F̂  

n;LΔ1,2B,LΔ3,4B − FLΔ1,2B,LΔ3,4B))R du2|λ=0. 
dλk eiu2b2 d(FLΔ1,2B,LΔ3,4B + λ(F̂  

n;LΔ1,2B,LΔ3,4B − FLΔ1,2B,LΔ3,4B ))
0 
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By direct differentiation I establish that 

Zt 
A(u2)B(u2)

k−1 

dkT (FLΔ1,2B,LΔ3,4B; F̂  
n;LΔ1,2B,LΔ3,4B − FLΔ1,2B,LΔ3,4B) = (−1)kk! du2

ΨLΔ1,2B,LΔ3,4B(0, u2)
k+1 

0 

where Z Z 
iu2b2 d( ˆA(u2) = ib1e Fn;LΔ1,2B,LΔ3,4B − FLΔ1,2B,LΔ3,4B ) e iu2b2 dFLΔ1,2B,LΔ3,4B Z Z 

iu2b2 d( ˆ− ib1e iu2b2 dFLΔ1,2B,LΔ3,4B e Fn;LΔ1,2B,LΔ3,4B − FLΔ1,2B,LΔ3,4B). Z 
iu2b2 d( ˆB(u2) = e Fn;LΔ1,2B,LΔ3,4B − FLΔ1,2B,LΔ3,4B ). 

Lemma 2 and Lemma 3 imply that 

Z 
iu2b2 d( ˆsup |B(u2)| = sup | e Fn;LΔ1,2B,LΔ3,4B − FLΔ1,2B,LΔ3,4B )| = O(Rn) 

t∈[−Tn,Tn] t∈[−Tn,Tn] 

log n log n 
)0.5where Rn = ( and Tn = ( )α for some α > 0; 

n nZ 
iu2b2 d( ˆsup | ib1e Fn;LΔ1,2B,LΔ3,4B − FLΔ1,2B,LΔ3,4B)| = O(Rn) 

t∈[−Tn,Tn] 

log n log n 
)0.5 )αwhere Rn = ( and Tn = ( for some α > 0. 

n nZ 
| ib1e iu2b2 dFLΔ1,2B,LΔ3,4B | ≤ L1;LΔB . 

Therefore, 

Z Z 
iu2b2 d( ˆ|A(u2)| ≤ | ib1e Fn;LΔ1,2B,LΔ3,4B − FLΔ1,2B,LΔ3,4B)|| e iu2b2 dFLΔ1,2B,LΔ3,4B| + Z Z 

iu2b2 d( ˆ| ib1e iu2b2 dFLΔ1,2B,LΔ3,4B || e Fn;LΔ1,2B,LΔ3,4B − FLΔ1,2B,LΔ3,4B)| ≤ Z 
iu2b2 d( ˆ| ib1e Fn;LΔ1,2B,LΔ3,4B − FLΔ1,2B,LΔ3,4B)|+ 

Z Z 
| ib1e iu2b2 dFLΔ1,2B,LΔ3,4B|| e iu2b2 d(F̂  

n;LΔ1,2B,LΔ3,4B − FLΔ1,2B,LΔ3,4B )| = O(Rn). 

42 



Next, 

dkT (FLΔ1,2B,LΔ3,4B ; F̂  
n;LΔ1,2B,LΔ3,4B − FLΔ1,2B,LΔ3,4B ) = Zt Zt 

A(u2)B(u2)
k−1 Rk−1Q1Rn n(−1)kk! du2 = du2 ≤ 

ΨLΔ1,2B,LΔ3,4B(0, u2)
k+1 ΨLΔ1,2B,LΔ3,4B (0, u2)k+1 

0 0 ZTn 

T 1+βLΔB (1+k)Q1Rn
k 1 

du2 = Q2Rn
k 

n for some Q1, Q2 > 0.−βLΔB (k+1)dLΔBTn 
0 

The following reasoning justifies the inequality: ϕLY2 (t) and ϕLΔk,lA(t) are ordinarily 

smooth with parameters βLY2 and βLΔA respectively. Since LΔk,lB = LY2 + LΔk,lA then 

ΨLΔ1,2B,LΔ3,4B(0, u2) is ordinarily smooth with parameter βLΔB = βLY2 +βLΔA. Further, it can 

be shown (see Li and Vuong (1998)) that if Tn is large enough then |ΨLΔ1,2B,LΔ3,4B(0, u2)| > 

dLΔB|Tn|−βLΔB for an appropriate dLΔB > 0. 

Then, X∞ 
T 1+2βLΔB ( log n )0.5log n 

)k/2T 1+βLΔB (1+k) n n|Δn| = Q2( n = Q2 . 
1 − T βLΔB ( log n )0.5n 

k=1 n n 

Therefore, 

log n log n |Δn| ≤ O(T 1+2βLΔB ( )0.5) = O(( )0.5−α(1+2βLΔB ))n n n 

and 

|Δn| log n 
)0.5−α(1+2βLΔB ))|ϕ̂LY2 (t) − ϕLY2 (t)| ≤ = O((

1 − |Δn| n 
1 

if α ≤ . 
2(1 + 2βLΔB) 

Next, Lemma 4 implies that 

1−βLY2
log n 

)0.5−α(1+2βLΔB )) + Tsup |f̂  
LY2 (y) − fLY2 (y)| ≤ O(Tn( n 

y∈SLY2 
n 

log n log n 
or sup |f̂  

LY2 (y) − fLY2 (y)| ≤ O(( )0.5−2α(1+βLΔB )) + O(( )α(1−βLY2 )). 
ny∈SLY2 

n 
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Since y > 0 and y2 < ∞: 
2 

f̂  
LY2 (log y) − fLY2 (log y) sup |f̂  

Y2 (y) − fY2 (y)| = sup | | ≤ 
yy∈SY2 y∈SY2 

log n log n 
)α(1−βLY2O(( )0.5−2α(1+βLΔB )) + O(( )). 

n n 

I use CfY2 
to denote sup |f̂  

Y2 (y) − fY2 (y)| in the rest of the proof. y∈SY2 

Step 2 

All the analysis below is performed conditional on Δ1,3A, Δ2,3A unless otherwise noted. 

The conditioning is suppressed for the ease of exposition. I begin by deriving 

sup |ϕ̂LΔ1,3A,LΔ2,3A(t1, t2) − ϕLΔ1,3A,LΔ2,3A(t1, t2)|. 
[−Tn, Tn] 

Taylor expansion gives: 

ϕ̂LΔ1,3A,LΔ2,3A(t1, t2) − ϕLΔ1,3A,LΔ2,3A(t1, t2) = 

k=∞ 
ϕLΔ1,3A,LΔ2,3A(t1, t2)X 

(log( ̂ϕLΔ1,3A,LΔ2,3A(t1, t2)) − log(ϕLΔ1,3A,LΔ2,3A(t1, t2)))
k . 

k! 
k=1 

Further, 

|ϕ̂LΔ1,3A, LΔ2,3A(t1, t2) − ϕLΔ1,3A, LΔ2,3A(t1, t2)| ≤ 

k=∞X 
|(log( ̂ϕLΔ1,3A, LΔ2,3A(t1, t2)) − log(ϕLΔ1,3A, LΔ2,3A(t1, t2))|k = 

k=1 

O(log( ̂ϕLΔ1,3A, LΔ2,3A(t1, t2)) − log(ϕLΔ1,3A, LΔ2,3A(t1, t2))) 

when | log( ̂ϕLΔ1,3A, LΔ2,3A(t1, t2)) − log(ϕLΔ1,3A, LΔ2,3A(t1, t2))| < 1. 

44 



Then, 

| log( ̂ϕLΔ1,3A, LΔ2,3A(t1, t2)) − log(ϕLΔ1,3A, LΔ2,3A(t1, t2))| = 

| log(Ψ̂ 
LΔ1,3A, LΔ2,3A(t1, t2)) − log(ΨLΔ1,3A, LΔ2,3A(t1, t2)) + 

log( ̂ϕLY2 (t1 + t2)) − log(ϕLY2 (t1 + t2))| ≤ 

Ψ̂ 
LΔ1,3B,LΔ2,3B(t1, t2) − ΨLΔ1,3B,LΔ2,3B (t1, t2)

O(| |) + 
ΨLΔ1,3B,LΔ2,3B(t1, t2) 

|ϕ̂LY2 (t1 + t2) − ϕLY2 (t1 + t2)|
O( ). 

ϕLY2 (t1 + t2) 

Similar to Step 1, ordinary smoothness of ϕLΔ1,3A,LΔ2,3A and of ϕLY2 implies that 

|ϕLΔ1,3A,LΔ2,3A(t1, t2)| > dLΔA,LΔA|t1|−βLΔ1,3A |t2|−βLΔ2,3A 

|t|−βLY2 .|ϕLY2 (t)| > dLY2 

Applying Lemma 2 and Lemma 3, I obtain 

sup |(log( ̂ϕLΔ1,3A, LΔ2,3A(t1, t2)) − log(ϕLΔ1,3A,LΔ2,3A(t1, t2))| = 
t1,t2∈[−Tn,Tn]2 

log n 
)0.5−α(βLΔ1,3B +βLΔ2,3B ) log n 

)0.5−α(1+2βLΔB3,4 +βLY2 ) 
log n 

)0.5−αβ
∗ 

O( + O(( ) = O(( ) 
n n n 

if Tn = O( 
n 
)α , with α ≤ 

1 
where 

log n 2β∗ 

β ∗ = min{(βLΔ1,3B + βLΔ2,3B), (1 + 2βLΔB3,4 + βLY2 )}. 

nNotice that in above (t1 + t2) ∈ [−2Tn, 2Tn] where as 2Tn is still O(( )α).
log n 

Using Lemma 4 and the fact that ϕLΔ1,3A,LΔ2,3A is ordinarily smooth with parameters 
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βLΔA1,3 , βLΔA2,3 obtains: 

sup |f̂  
LΔ1,3A,LΔ2,3A(a1, a2) − fLΔ1,3A,LΔ2,3A(a1, a2)| ≤ 

a1, a2∈S(LΔ1,3A,LΔ2,3A) 

0.5−αβ∗ 
log n 2−βLΔ1,3A

−βLΔ1,3A 
O(Tn ) + Tn 

n 

or |f̂  
LΔ1,3A, LΔ2,3A(a1, a2) − fLΔ1,3A, LΔ2,3A(a1, a2)| = 

log n log n 
)α(βLΔ1,3A

+βLΔ2,3A
−2) log n 

)0.5−α(1+β
∗))O(( )0.5−α(1+β

∗)) + O(( ) = O(( 
n n n 

1 
if α < . 

2(β∗ + βLΔ1,3A + βLΔ2,3A − 1) 

Also, for every subset, SC = [εn,MA]
2 , of S(Δ1,3A, Δ2,3A) = (0,MA]

2 

sup |f̂  
Δ1,3A,Δ2,3A(a1, a2) − fΔ1,3A,Δ2,3A(a1, a2)| = 

[εn,MA]2 

|f̂  
LΔ1,3A,LΔ2,3A(a1, a2) − fLΔ1,3A,LΔ2,3A(log a1, log a2)|sup ≤ 

[εn,MA]2 a1a2 

log n 
)0.5−α(1+β

∗)).= O(ε− 
n 
2( 

n 

Then, 

|f̂  
Δ1,3A,Δ2,3A(a1, a2) − fΔ1,3A,Δ2,3A(a1, a2)| = O((

log n 
)0.5−α(1+β

∗)−2γ ). 
n 

log n 
if εn = ( )γ for some γ > 0. 

n 

Next, I investigate the convergence of the estimator for the density of the unconditional 

distribution of Δ1,2A, Δ3,4A. 

sup |f̂  
Δ1,3A, Δ2,3A(a1, a2) − fΔ1,3A, Δ2,3A(a1, a2)| = O((

log n 
)0.5−α(1+β

∗)−2γ ). 
a1, a2∈S(Δ1,3A,Δ2,3A) n 

It is so because 

| ˆ 2
1 
).Pr(Δ1,3B >< 0, Δ2,3B >< 0) − Pr(Δ1,3B >< 0, Δ2,3B >< 0)| = O(n 
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Next, I use the uniform convergence of f̂  
Δ1,3A,Δ2,3A(a1, a2) to show the uniform convergence 

for ϕ̂Ai3 
, ϕ̂Aik 

as well as f̂  
Ai3 

and f̂  
Aik 

for k = 1, 2. I begin as in Step 1 by using a Taylor 

approximation to obtain that 

∞X 
|ϕ̂Ai3 

(t) − ϕAi3 
(t)| ≤ |Δn|l . 

l=1 

t b tR RΨ1;Δ1,3A,Δ2,3A
(0,u2) Ψ1;Δ1,3A,Δ2,3A

(0,u2)
where |Δn| = | 

Ψb 
Δ1,3A,Δ2,3A

(0,u2) 
du2 − 

ΨΔ1,3A,Δ2,3A
(0,u2) 

du2)|, and 
0 0 Z 

Ψb 
Δ1,3A,Δ2,3A(u1, u2) = e i(u1a1+u2a2)f̂  

Δ1,3A,Δ2,3A(a1, a2) da1da2 Z 
Ψb 
1;Δ1,3A,Δ2,3A(u1, u2) = ia1e i(u1a1+u2a2)f̂  

Δ1,3A,Δ2,3A(a1, a2) da1da2. 

Using von Mises differentials I have 

∞X 1 
Δn = dkT (fΔ1,3A,Δ2,3A; f̂  

n;Δ1,3A,Δ2,3A − fΔ1,3A,Δ2,3A),k! 
k=1 

where 

dkT (fΔ1,3A,Δ2,3A; f̂  
n;Δ1,3A,Δ2,3A − fΔ1,3A,Δ2,3A) = Zt R 

dk a1e
iu2a2 (fΔ1,3A,Δ2,3A + λ(f̂  

n;Δ1,3A,Δ2,3A − fΔ1,3A,Δ2,3A))da1da2R du2|λ=0 = 
dλk eiu2a2 (fΔ1,3A,Δ2,3A + λ(f̂  

n;Δ1,3A,Δ2,3A − fΔ1,3A,Δ2,3A))da1da2 
0 Zt 

A(u2)B(u2)
k−1 

(−1)kk! du2
ΨΔ1,3A,Δ2,3A(0, u2)

k+1 

0 

with 

Z Z 
A(u2) = ia1e iu2a2 (f̂  

n;Δ1,3A,Δ2,3A − fΔ1,3A,Δ2,3A)da1da2 e iu2a2 fΔ1,3A,Δ2,3Ada1da2 − Z Z 
ia1e iu2a2 fΔ1,3A,Δ2,3Ada1da2 e iu2a2 d(f̂  

n;Δ1,3A,Δ2,3A − fΔ1,3A,Δ2,3A)da1da2. Z 
B(u2) = e iu2a2 (f̂  

n;Δ1,3A,Δ2,3A − fΔ1,3A,Δ2,3A)da1da2. 
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In contrast to Step 1 all the random variables in the expression above have bounded 

support. Therefore, 

|B(u2)| ≤ (Δa)2CfΔA 

|A(u2)| ≤ (a 2 − a 2)(Δa +Δa 2)O(CfΔA ). 

As in Step 1 I use the fact that Δk,lA is ordinarily smooth with parameter βΔA: 

∞ 
T̃ 2βΔAX 

˜ T 2βΔA|Δn| ≤ Q3Cf
k 
ΔA 

Tn
βΔA(1+k) = n 

T βΔ 

C 
A 

fΔA = O( ˜ n CfΔA ), 
1 − ˜ nk=1 CFΔA 

n 
where T̃  

n = O(( )α1 ) for some α1 > 0. 
log n 

Therefore, 

log n 
)0.5−α(1+β

∗)−2γ−2α1βΔA )|ϕ̂Ai3 
(t) − ϕAi3 

(t)| ≤ O(|Δn|) = O(( 
n 

0.5 − α(1 + β∗) − 2γ 
with α1 < . 

2βΔA 

The rate of convergence for Ai1 and Ai2 is obtained as at the beginning of Step 2. 

|ϕ̂Aik 
(t) − ϕAik 

(t)| = O(CΨΔ1,3A,Δ2,3A )) + O(T̃  
n

βAi3 CϕAi3 
) 

O(CfΔA ) + O(T̃  
n

βAi3 CϕAi3 
) = 

log n log n 0.5−α(1+β∗)−2γ−α1(2βΔA+βAi3 
)

O(( )0.5−α(1+β
∗)−2γ ) + O(( ) ) 

n n 
log n 0.5−α(1+β∗)−2γ−α1(2βΔA+βAi3 

)
O(( ) ) for k = 1, 2. 

n 
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Finally, the rate of convergence for densities follows from Lemma 4 and is given by 

1 1−βAik˜|f̂  
Aik 
(a) − fAik 

(a)| ≤ 2T̃  
nCϕAik 

+ dAik 
Tn for k = 1, 2, 3 

π 
log n log n α1(βAi3 

−1)|f̂  
Ai3 
(a) − fAi3 

(a)| ≤ O(( )0.5−α(1+β
∗)−2γ−α1(2βΔA+1)) + O(( ) ) = 

n n 
log n 0.5 − α(1 + β∗) − 2γ 0.5 − α(1 + β∗) − 2γ 

O(( )0.5−α(1+β
∗)−2γ−α1(2βΔA+1)) for < α1 < 

n βΔA + 2βAi3 
2βΔA 

log n 0.5−α(1+β∗)−2γ−α1(2βΔA+βAi3 
) log n α1(βAik 

−1)|f̂  
Aik 
(a) − fAik 

(a)| ≤ O(( ) ) + O(( ) ) = 
n n 

log n 0.5−α(1+β∗)−2γ−α1(2βΔA+βAi3 
) 0.5 − α(1 + β∗) − 2γ 0.5 − α(1 + β∗) − 2γ 

O(( ) ) for < α1 < . 
n 2βΔA + βAi3 

+ βAik 
− 1 2βΔA 

The uniform consistency of the estimator for the density of cost distribution is shown 

exactly like in Krasnokutskaya (2009). The only modification needed concerns the derivation 

of the estimators for the support bounds. More specifically, if [Δa, Δa] denotes the support 

of Δk,lA variables, then under normalization E[log Y2] = 1 the following restrictions hold: 

ΔB = y2Δa 

ΔB = y Δa 
2 

log y2Z 
fLY2 (y) dy = 1 

log y
2 

log y
2Z 
yfLY2 (y) dy = 0. 

log y
2 

Alternatively, I could have used restriction that Δa = −Δa since it holds even under the 

normalization above. The last two equations uniquely identify y and y2 whereas the first two 2 

equation will then identify Δa and Δa consistent with E[log Y2] = 1 normalization. The latter 
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set of values can be used to identify a and a from the following restrictions: 

a − a = Δa Za 

fAi1 
(a) dy = 1. 

a 

This set of restrictions is used to derive estimators for the support bounds. 

Step 3 

I first derive 

CfY2A1 
= sup |f̂  

Y2Ai1 
(z) − fY2Ai1 

(z)| ≤ 
z∈S(Y2A1)Z 

1 z z z z |f̂  
Y2 (y)f̂

 
Ai1 
( ) − f̂  

Y2 (y)fAi1 
( ) + f̂  

Y2 (y)fAi1 
( ) − fY2 (y)fAi1 

( )|dy 
y y y y yZ 
1 z z z ≤ (|f̂  

Y2 (y)||f̂  
Ai1 
( ) − fAi1 

( )| + |fAi1 
( )||f̂  

Y2 (y) − fY2 (y)|)dy = 
y y y yZ 

1 
((M1,Y2 + CfY2 

+ M1,ACfY2 
)dy = 

y 
)CfAi1 

M0,Y2 M1,Y2 CfAi1 
+ M0,Y2 M1,A1 CfY2 

+ M0,Y2 CfY2 
CfAi1 

≤ Q3CfAi1 
= 

log n 0.5−α(1+β∗)−2γ−α1(2βΔA+βAi3 
)

= O(( ) ) for some Q3 > 0. 
n R 

Here 1 dy ≤ M0,Y2 , |f̂  
Y2 (y)| ≤ M1,Y2 , |fAi1 

( z )| ≤ M1,A1 with M0,Y2 > 0, M1,Y2 > 0 M1,A1 > 0. 
y y 

This, then, implies that 

|ϕ̂Y2Ai1 
(t) − ϕY2Ai1 

(t)| ≤ Z 
log n 0.5−α(1+β∗)−2γ−α1(2βΔA+βAi3 

)|f̂  
Y2Ai1 

(y) − fY2Ai1 
(y)| dy = M0,Y2Ai1 

Q3CfY2Ai1 
= O(( ) ), 

n R 
where dy ≤ M0,Y2Ai1 

. 
S(Y2Ai1 ) 

Similar to Step 2: 

|ϕ̂Y1 (t) − ϕY1 (t)| = O(| log( ̂ϕY1 (t)) − log(ϕY1 (t))| 
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and 

Ψ̂ 
Bi1 
(t) − ΨBi1 

(t)
CϕY1 

= sup | log( ̂ϕY1 (t)) − log(ϕY1 (t))| ≤ O(| |) + 
t∈[−Tn,Tn] ΨBi1 

(t) 

ϕ̂Y2Ai1 
(t) − ϕY2Ai1 

(t) 
T̂ 1+βB ˆβY2A1O(| | = CFB n + CϕY2Ai1 

Tn = 
ϕY2Ai1 

(t) 

log log n log n 0.5−α(1+β∗)−2γ−α1(2βΔA+βAi3O(( )0.5−α2(1+βB )) + O(( ) )−α2βY2A1 ) = 
n n 

log n 0.5−α(1+β∗)−2γ−α1(2βΔA+βAi3 
)−α2βY2A1 )O(( ) 

n 
α(1 + β∗) + 2γ + α1(2βΔA + βAi3 

)
if βY2A1 < 1 + βB , or α2 ≤ . 

1 + βB + βY2A1 

Here I use the ordinary smoothness of ΨBi1 
(t) and ϕY2Ai1 

(t). 

The value for supt∈[−Tn,Tn] |Ψ̂ 
Bi1 
(t) − ΨBi1 

(t)| is obtained from integration by parts 

Z 
sup |Ψ̂ 

Bi1 
(t) − ΨBi1 

(t)| = | (F̂  
n;B(b) − Fn;B (b))ite

itbdb| = 
t∈[−T̂  

n,T̂  
n] 

ˆ log log n 
)0.05−α2 )= CFB Tn = O(( 

n 
n 

for T̂  
n = O(( )α2 ) with α2 > 0. 

log n 

The value for CFB obtains by the log-log law (see Chung, 1949; Serfing, 1980). Finally, from 

Lemma 4 I have 

1−βY1ˆ ˆ|f̂  
Y1 (t) − fY1 (t)| ≤ 2CϕY1 

Tn + dY1 Tn = 

log n 0.5−α(1+β∗)−2γ−α1(2βΔA+βAi3 
)−α2(1+βY2A1 ) 

log n 
)α2(βY1 −1)).O(( ) ) + O(( 

n n 
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