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PREFACE.

Much of the latter part of this dissertation is a development
of ideas which were originally worked out in collaboration with
Professor Mirrlees, and which were set out in our joint article,
"Agreeable Plans". Section 8.6. and parts of chapter 10, in particular,
rely heavily upon that article. Nevertheless, the dissertation itself
does not incoporate any work done in collaboration. It is entirely my

own work, except for those results vhich are individually acknowledged

as coming from the work of others.
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‘lost of the existiny literature on intertemporal welfare economics
overlooks the nossibility of nlanned choices being altered. In particular,
it assumes that individuals' tastes are fixed. This thesis attempts to set
out a dynamic welfare theory which allows for changing choices on the part
of individuals, but maintains consistent social choice.

The first part is prelininary discussion of static welfare economics.
Individual welfare is linked to choices wnich are in the individual's
interest. GSocial welfare *s assumed to be related to individual welfare via
1 form of constitution. Then certain unanimity principles can be justified,
and the additive form of Bergson welfare plausible.

The second part starts by presenting various kinds of dynamic choice.
One of these “orms, derived by 'intertemporal liberalism", is identified
witl intertemporal welfare. The relationship between individual choice

and intertemnoral social welfare is discussed, and the need for a general

form of dynamic constitution sugpgested. The theory is related to sucn

problems as changing tastes, unborn generations; and population control.

The third and final part considers the problem of the time horizon.
The use of an infinite horizon is seen as a way of avoiding detailed consi-
deration of the norizon, on the assumption that it is in any case very distant.
loreover, the inconsistencv that would result from finite horizon planning
{5 avoided. recause of noisible paradoxes, an alternative to the standard
anrtroach of optimal growth theorv is su gested, and its theoretical pro-

nerties investigated.
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0/1.

INTRODUCTION

Welfare economics is the study of what-+it is that makes one
economic policy desirable and others less desirable. This, at least,
is a rough definition which will serve to explain in this introduction
what is the subject of this study. Intertemporal welfare economics
is concerned with policies which have effects over a significant
length of time, and for which different effects at different moments
of time have to be considered together. The clearest and most common
examples are policies affecting capital accumulation. But many other
areas of policy - such as natural resource exploitation, population;
pension schemes, the formation of international economic communities -

spring readily to mind.

Now, from the work of Irving Fisher, Hicks, Arrow and Debreu,
economists have been able to develop a powerful construct for
handling many such issues. Commodities at different dates are
regarded as different goods. Then, using this apparatus of dated
commodities, intertemporal welfare economics is no different, in
essence, from static welfare economics. Following Vickrey, we may
call this approach to intertemporal welfare economics the metastatic

approach.

The metastatic approach has by now been well absorbed into
economics, and is frequently used to decide practical issues such as
whether to undertake a specific investment project. Indeed, most
applications of cost-benefit analysis rest on the metastatic approach

to intertemporal welfare economics.

[ —— 1
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Nevertheless, proponents of the metastatic approach have not, on
the whole, made very clear what precisely-ﬁnderlies it, It is easy to
raise awkward questions. Graaff was very concerned about the time
horizon., Other problems arise when tastes change, and because of
unborn generations. More sericusly still, tastes may not only change,
but change in a way which depends upon the economic policy which is
adopted. This phenomenon is called an endogenous change of tastes.
Similarly, the number and composition of the population may be endogenous.
Another problem, which is related to the problem of changing tastes,
is that choices over time may be inconsistent. In other words, the plan
which an individual makes today is likely to be changed before very long.

This has serious implications for intertemporal welfare analysis, as

Strotz recognized.

The final problem is perhaps the most serious of all. This is
uncertainty. Once again, economists - notably Arrow and Debreu =
have developed an apparatus for treating policy issues when uncertainty
seems important. But this apparatus - contingent commodities - barely
scratches the surface of the problem. What happens as individuals'
subjective probabilities change, as they learn by experience? How does
one treat uncertainty about future tastes? What about the uncertainty
which arises because individuals cannot possibly make all the calculations

needed to determine their "rational" behaviour?

To attempt to answer all these questions in a single work would
be foolish. Accordingly, I have limited mysélf by ignoring uncertainty,
for the most part. Of course, this means that the work has very little
practical relevance unless it so happens that neglecting uncertainty

makes little real difference to the analysis of practical issues. That
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the same is true of virtually all existing work is an inadequate
defence. My reason for neglecting uncertainty is simply that easier
problems have to be tackled first. My hope is that the present work
will facilitate a later treatment of some aspects of welfare economics

under uncertainty.

Although intertemporal welfare economics is the subject of this
study, I have found it convenient to start by discussing static welfare
economics. One reason for this, I suppose, is that the metastatic
approach = or a generalization of it - retains its normative appeal even
when the new problems arise. In addition, before venturing into new
kinds of problems, we should be sure of the scope and aims of welfare
economics. To judge from recent writings, many welfare economists are

still rather unsure of what precisely they are doing and saying.

The first three chapters, therefore, neglect time - or rathér, they
fail to make any explicit mention of time and the special problems
arising in intertemporal welfare. Chapter 1 explores the relationship
between ethics and welfare economics. In particular, it explains the
role of the logical exercises which are the heart of most of the
succeeding chapters. Chapt>r 2 links welfare to choice, both for
society and individuals, and defines a constitution, Chapter 3 studies
specific properties of constitutions, namely unanimity principles, and

correspondence to an additive Bergson social welfare function.

Time is first considered explicitly in chapter 4, which considers
dynamic choice - i.e. choice when there is scope for changing one's mind.
Chapter 5 discusses the relationship between intertemporal welfare and

dynamic choice, and also dynamic constitutions.
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: In chapter 6, the theoretical constructs of chapters 4 and 5 are

used to discuss how problems such as changing tastes can be treated

in intertemporal welfare economics.

By now, it has become completely standard to treat the horizon
problem by considering an infinite horizon. Chapter 7 discusses what
this means, and how it may achieve consistency which would otherwise
be lacking. Chapter 8 considers the problem of optimal capital
accumulation, and illustrates the paradoxes to which the standard
approach can lead. These two chapters lay the foundations for the
last two chapters, which suggest a different approach to the horizon
problem. This approach stems from the reccgnition that planning is
dynamic, and so only a short-term plan need be chosen, provided it is
justified by the possibilities of extending it. Such short-term plans
are called "overtures", and the new approach is called "overture
planning". Chapter 9 introduces the subject, and discusses "overture
optimal" and "overture maximal" plans. The relationship to "agreeable
plans" is also shown. Chapter 10 contains theoretical results
concerning the existence, uniqueness, and characterisation of such

plans.

For dynamic choice, the assumption that it should correspond to a
utility function, or even to apreference relation, has rather less
normative appeal than for static choice. This is illustrated in
chapter 4, Partly for this reason, and partly because it seems safer
to consider choice explicitly rather than through preference relations,
much of the analysis is in terms of fairly general choice functions.

These are defined, and the properties used are derived, in appendix 1.
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This work is a theoretical investigation, and so much of the
discussion in the following chapters is in abstract terms. The chapters
and sections are arranged in logical sequence. So applications often
follow the theoretical discussion., If the reader prefers to see some
applications first, which he can keep in mind in considering the theory,
he is advised to turn to chapter 6. This discusses a number of
practical problems and relates this work to conventional approaches,

For the later chapters, on infinite horizon choice, a suitable practical
problem to bear in mind is that of capital accumulation in a one-good

growth model, as expounded in section 8,6,
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Chapter X,

ETHICS, VALUE JUDGMENTS, AND WELFARE ECONOMICS.

1.1 Values and Welfare Economics

Before embarking on a theoretical analysis, it is desirable to be
clear what the subject of the analysis is, and how the results can be
used. After all, it is the practical applications of a theory which

should determine the questions to be considered.

Now in the case of welfare economics, the purpose of theoretical
analysis is still surprisingly unclear. The confusion can be illustrated

by two quotations from fairly recent writings:-

"It must be concluded that the techniques and results of
welfare economics are irrelevant to any evaluation of the
desirability of choices made within or by a society. Any
appearance to the contrary springs from normative judgments
made by the welfare economist without justification. This is
so, even though these techniques can throw light on the
implications, the consistency, and the effects of normative
judgments." (From p. 190 of E, van den Haag (1967))

"Welfare economics and ethics cannot, then, be separated.
They are inseparable because the welfare terminology is a value
terminology. It may be suggested that welfare economics could
be purged by the strict use of a technical terminology, which,
in ordinary speech, had no value implications. The answer is
that it could be, but it would no longer be welfare economics.
It would then consist of an uninterpreted system of logical
deductions, which would not be about anything at all, let alone
welfare. As soon as such a system was held to be about anything,
for example, welfare or happiness, it would once again be
emotive and ethical." (From pp. 79-80 of Little (1957))

Consider an argument of the following type:-
(1) The set of values which, I believe, determine what is right 15‘1)%
(2) 1In this case, the facts which determine the effect of implementing
the set of valuesv, are 9’1.

(3) The logical consequence of applying the values U/ in the factual

situation.;“ is that action a should be followed.
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(4) Therefore, I helieve that a is right.

It is hard to see how any policy recommendation, of the type considered
Ly welfare economists, could ve justified except by an argumen. of this
form. For, although the decomposition into values, facts and logical
argument may be difficult, none of the above ingredients is really
dispensable. Facts alone cannot be cited to justify an action, and so
values are involved somewhere. On the other hand, what action is right
is not a question which can be settled without any reference to facts
whatsoever. Finally, although the move from facts and values, taken
together, to a choice o action can be made to seem trivial, it is,

strictly speaking, a logical move(l).

We are now in a position also to see more clearly what role values
have in welfare economics. Insofar as a welfare economic study leads
up to a practical recommendation, it must make value judgments at some
point. It may explore the consequences for policy of certain values.
It may even suggest that, if certain values Vare accepted, then the
right policy is a*. But this is, at most, an invitation to the reader
to accept the valueszj'; the study has not, in itself, made any value

judgments.

(1) The decomposition considered here involves the distinction between
facts and values, known as Hume's Law. This has been widely disputed

by philosophers, but it seems possible to regard the distinction. as one
which is impossibly hard to make in a universally agreed fashion, rather
than as one which cannot even be made in principle. And to see the role
of theoretical welfare economics does not really require complete agree-
ment about how to separate facts from values; all that is needed is a re-
cognition that logic can be applied to sets of premises which, to7ether,
have both factual and evaluative content.

It may also be hard to tell where logical analysis starts and the
specification of facts and values stops. For example, facts can be
logically analysed to provide new facts. Is it the premises or results
of this logical analysis which are to be regarded as the facts¥ ?
Fortunately, what we decide makes little difference.
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In this study, there will be no value judgments. It is, therefore,
a purely theoretical study. In any practical application, value
judgments have to be made. The theory will be developed to try -c

accommodate as many different kinds of values as is reasonably possible.

But full generality has, of course, to be abandoned in order to achieve

more useful results.

H
)
|
'
|
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1.2 Ethics and Economic Policy.

So far, we have considered the form of argument which is used in

welfare economics, but have not stated what the subject of these

arguments is.

It hardly needs saying that welfare economics is concerned with
economic problems. Broadly speaking, this means that it is concerned
with the way in which scaree resources are used and their produce
distributed to meet the wants of members of society. But the point about
the form of analysis and argument is that it can be used in many other
fields besides economics. It can be used to treat ethical questions in
politics, law, medicine, psychology, etc. fOme can talk of welfare theory
or'of welfare analysis in general. Welfare economics is then that parf

of welfare theory which is most suitable for treating economic problems.

The type of problem which welfare economics purports to handle is
policy recommendation and, closely associated with this, the evaluation
of economic systems. But welfare economics is concerned with the
Jjustification of a given policy recommendation or an evaluation, rather
than with recommendation or evaluation per 8e. The reason for this is
that given by Barry(l). A recommendation or evaluation can be made with
no justification to support it. But, without the justification, it is

of no interest to the welfare economist, who wants to know .why a

recommendation or evaluation has been made.

Justifications are based on values, and they characterise normative
economies. But, although welfare economics is a branch of normative
economics, not all of normative economics is welfare economics. In

normative economics, no kind of justification is necessarily excluded.

— e —

f
o Barry's reasons concerned political argument, but are equally
applicable to economic argument. See Barry (1965) (pp. 2-3).

R = ———
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But in welfare economics, it is generally accepted that only ethical

justifications are admissible. Consequently, purely egoistic norms,

and other norms whici: am not <thical, -ve excluded.

In fact, in welfare economics, the traditional view is that a
policy is justified insofar as it improves the welfare of the society
and of its members, taken together. But, for this to tell us what form

justification takes, we need to know what welfare means.

T

-~

e,
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1.3 Interests and Welfare.

Welfare means "well-being". That it should be the primary end ~f
economic policy is therefore open to dispute. It is too close to making
contentment the goal. A better term might be "interests'. It seems to
cover just about all aspects of the consequences of a policy. If we claim
that a policy is in the interests of an individual 4, we purport to take
account of A's tastes, wants, needs, desires, satisfaction, happiness,
nleasure, etc. - both now and in the future. Moreover, "interests' are
commonly regarded as the ultimate justification. If it is claimed that
policy * is right because of what it does for A, it is always possible to
make the counter-claim that x is not (really) in A's (best) irnterests.
But if it is claimed that x is in A's intercsts, the only way of
countering the claim is to object that & is not in A's interests and to
zive a reason. Then, of course, there is likely to be an argument as to

what A's interests really are.

A more precise definition of "interests" will be given in the next
chépter. A's interests will be defined in terms of the choices which, if
they were being made on A's behalf, would be ethically justified. To
conform with the usual use of the word by economists, "welfare'" will be
defined as effectively didentical to "interests'. It should, however, be
remembered that this is a technical sense of the word 'welfare', which may

well differ from the standard one.
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Chapter 2.

WELFARE AND CHOICE.

- — A ——— - — —

In Chapter 1, it was suggested that in welfare economics, a policy
is justified insofar as it advances the interests of the society and of
its members. However, the term "interests" was not precisely defined.
But it was suggested that "welfare" should be understood as effectively

the same as '"interests'.

It is common in welfare economics to identify an individual's wel-
fare with what he sees as his own interests. It is assumed that the
individual has an ordinal-utility function, representing his choices.
One presumes that, in any environment, the individual chooses the
option which is most in his interests, as he sees them. It is also the
option which maximizes his utility functionsl). Then the individual's Ei
welfare is measured by the ordinal utility function. Since welfare is 3
to be identified with interests, this means that the individual's own !
view of his interests is accepted as proper. To summarigze, this common li
procedure involves three assumptions, namely:- \
(1) The individual's choices in the various possible environments |

correspond to an ordinal utility function.
(2) This utility function represents the individual's interests, as he
sees them.

(3) The individual'¢ interests are, in fact, as he sees them.

The first two assumptions force us to consider only those individuals

uhose choices satisfy rather stringent restrictions. It is common to

e o mee e mes e - - ——— e -

(1 -
) 4 clear statement of the common economist's view of welfare is
contained in Graaff (1957) (pp. 5, 33-34).
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lahcl such individuals "rational egoists". It is common to regard
individuals who violate assumption (1) as "irrational'. Individuals

may violate assumption (2) either because they are "irrational" or becaure
they are "altruistic" or "malevolent" - i.e. their utility function takes
account of the interests of others as well as of themselves. For the
moment, we shall assume that (2) is violated because of irrationality;

the rational altruist will be considered later, in sections 2.3. and 2.5.

In fact, it is common to discount an irrational individual - or, at
least, to tamper with his choices in some way, so that the result is
the choice function which, it is believed, the irrational individual would
have had if he had been rational. There is, however, no obvious procedure
for tampering with general irrational choices(l). Nor is there a

procedure which does not involve judging what interests an individual

possesses.

The third assumption involved in the procedure which is common in
welfare economics - namely, that the individual's interests are as he
seems them - is also, in effect, a judgment about what an individual's
interests really are. Nevertheless, it is a judgmént to which many

economists would be happy to subscribe, for many policy issues(z).

(1) In certain very special cases, there may be. For example, if an
{ndividual has "imperfect discrimination" and ignores small utility
differences, it is nevertheless possible to discover his utility function
from his choices. See Luce (1956).

(2) Indeed, Archibald (1959) has claimed that at least part of welfare
economics - the "new' welfare economics which '"makes no interpersonal
comparisons" - is value-free. He jdentifies an individual's welfare with
his own choices. The result is a "welfare economics" which is "purely des-
criptive", as he states. But, as Archibald uses the term, "welfare" has
been stripped of all its ethical force. There can be no presumption that
it is ethically right to promote Archibald-welfare unless certain value
judgments are made. These value judgments are essentially assumption (3)
above. Without these value judgments, Archibald's version of the "new
welfare economics" is a pointless exercise.
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Incidentally, it is worth remarking that such judpments about individuals’
interests are difficult to categorize: they may be ethical value judgments
or they may be factual judgmnnts(l). Discussion of this is best left

until section 2.3.

——
- —

VR Ng (1972) has called such factual judgments "subjective judgments
of fact".




These assumptions and judgments are so specific that it seems
desirable to move away from them. But then the meaning of '"welfare"
and of "interests'" needs to be re-examined. This is what will be done

in the rest of this chapter.

Suppose that a given individual's interests are known. Then we
vnow what, in our opinion, the individual ought to choose in any given
environment. This suggests that interests can De defined in terms of
choices in v;rious environments - just as, in revealed preference
theory, preferences are revealed by the demands of the individual as
he faces a varying budget constraint. But, before an exact definition
can be given, a more definite concept for describing choices in various i
environments is needed. This concept is that of a choice function. ﬁ
Choice functions have already been studied by a number of auxhors(l)
but a definition is provided and explained in the following section

in order to make clear what is meant here by a choice function, and by

certain associated terms. A summary of the definitions, and of

various properties of choice functions, is contained in Appendix 1.

— e —— ————

(1) Choice functions, as opposed to preference relations, have been
studied principally by Arrow (1963)(pp.19-21), (1959), Uzawa (1960),
Herzberger (1971), Sen (1969), (1970a), (1971), Schwartz (1970),
Weddepohl (1970), Pattanaik (1971).
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Choice Functions.

In any choice situation, there is a set of options, A4, which will
be called the feasible set. There is also an agent who makes the choice.
A choice situation is completely characterized by the agent and by the

feasible set. The feasible set may also be called the environment.

in the end, the agent has to choose a single option from A. This
is so, even though the agent may be willing to choose more than one
option. If the agent is not forced to choose a single option, in the

end, the set of options cannot have been properly specified. Moreover,

e TRRSES

we assume that each option includes within it a complete description

of the consequences of choosing that option.

Giver the feasible set A, there is a set of options which the

(1) is i

agent is willing to choose. This set, called the chotice set
written as C(A). Since A is the feasible set, it is meaningless to be
willing to choose any option which is not in A. So we require that C(4)

must be a subset of A. Then the set A - C(A) is the (possibly empty)

se. of options which the agent is unwilling to choose from A.

0Of course, in the end, the agent must choose a single option from

i
.

A. Nevertheless, as remarked before, he may be willing to choose more
than one option. Consequently, C(A) may contain several options. If it
does, then a final choice has to be made from C(A). We shall assume that

this final choice is left to chance, or to some other external agency.

(1) Some authors have preferred to reserve the term 'choice set" for
what is here called the "feasible set". This is unfortunate because it is
hard to think of a better term than "choice set" for the set of options
which an agent is willing to choose. To describe an element as "eligible"
as Weddepohl (1970) does, seems to suggest that the element is a serious
candidate for choice, rather than something the agent is willing to
choose,

J
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;l choice junction is a mappinz whose domain is a set 09 of possible
environments. It indicates the choices which a given agent is willing
to make in those environments. Let X = U {A|AcoD}. Then X is the set
of options which may be possible,. depending upon which environment is the
true one. ¥ is called the wnderluing set. The power set of X,SD{J.’}, is

the 32t of subsets of X.

Given any Aca@, there is a choice set C(4A), which is a subset of 4,

nd so a subset of X. Consequently, a choice function is defined as a

mapping, C:a@ ‘*?(Z{).

Sut not any mapping C:ao +6D(X) can be acceptec as a choice function.
For, if the feasible set is A, then, as already mentioned, C(A) must be |
a subset of A. In addition, the agent must choose something; to choose
nothing 2t 2ll is not one of-the optioms open to him. Therefore C(A) '

must not be empty.

It is not very interesting to have a choice function C whose domain
consists of a single set A. If the environment were to change from 4,
nothing could be said. So it is common to define a choice function on as
large a domain as possible. The largest possible domain, given the
underlying set X, would be the power set Px). But, for many of the choice
functions studied by economists, there are subsets A of the underlying set
for which the choice set C(A) is empty. For example, X may be a real
vector space, ((4) may be the set of options in A which maximize a
continucus utility function; then it is possible to find infinite sets
A for which C(A)is empty. Consequently, we shall not insist that C(4)
must be nonempty for every A € X. But the only compelling reasons for

allowing choice sets to be empty apply, it seems, to infinite sets. 5o

1
i

we shall insist that any finite subset of X has a non-empty choice set

(1)

Herzberger (1971) calls this restriction 'regularity".




This still leaves the damain cD undefined. The obvious approach
is to have ag} = {A C x|c(a) ¢# ¢.} and define € DE‘] -»p:'XJ . But this obwvi
approach causes problems because, before saying anything about C(A), we '
have first to check that 4 ed) The alternative, which will be adopted ,

here, is to define ( on the whole of the power set@(x) » and to allow '

'(A) to be empty for A £¢a

'~ summarize then, a choice function is a mappingC :@UU+W(X},

‘or some set X, such that, for someoggp()()

(1) If A 509. then C(A) is not empty and C(A)CA. o
(2) If A is a finite subset of X, thenAe.Q. | ]
But cince the choice set for environments outsideag is irrelevant, we !
can arbitrarily setC(4) = ¢ whenever A .9. So, finally, we can ignoreag |
aitogether and define a choice function as a mapping C:@(X) -+pr) I
such that:-

(1) For alLAC X, C(A) € A.

(2) 1If A is a finite subset of X, then C(A) is non-empty.

~ We shall say that C is a choice function defined on X.

The rest of this work is, in effect, a study of choice functions
and of their role in theoretical welfare economics. The phrase ""choice

function" will often be abbreviated to "CF".




°. _Individual Welfare.

In this section, an individual's interests will be identified with
a choice function called the individual's welfare choice function - or l

HCF. The underlying set for this CF is the set of all possible economic

policies, which will be denoted by X.

Lot ¢ denote the individual whose interests are being considered.

+ if 2's interests are knowm, then, in any environment A, the set of

ptions which are (most) in 7's interests is known. This set, which we
shall denote by C{(A}, has the same properties as a choice set. Indeed,
C.(A) is the appropriate choice set if the only criteria for choice are
“'s interests. Consequently, there is a choice function Ci’ defined on
4y such that, given any environment A¢X, C‘i (A) is the set of options

(1) | l

which are In #'s interests.

But this does not provide a way of telling what an individual's interests ].

are. As already remarked in section 2.1., what an individual's interests {
are is a matter of judgment, be it a value judgment or a factual judgment.
The orthodox starting point is the choices which the individual himself
would be willing to make. But, for various reasons, some of these choices
may be overruled as indicators of the individual's interests. The most
cormon reason is that an individual's choices may fail to satisfy the
raticnality postulates which are regarded as essential. Otherwise, the

fXt Two most common reasons are that the individual has inadequate knowledpe .
thet his choices show insufficient forethought,

Inadequate knowledge

vidently involves uncertainty and it will therefore not be pursued here

B R T ———

" flere, it is being assumed that whenever 4 is a finite subset of ¥,
'5 possible to specify some options in 4 as being in 7's interests,

/#n this environment. This seems a mild assumption, given that 7's
‘rests are supposed known.,
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Insufficient forethought is hard to characterize, in general, but in
-
many cases it leads to "naive" dynamic choice of the kind'studied in

chapter 4.

Let C? denote the individual's own choice function, giving the

choices he is willing to make. Let Ci denote his welfare choice function.
Let n. denote those individual characteristics, apart from choices,

sich affect the judgment of the individual's interests. Then (. can

—

be reg-rded as derived from C? and a by a functional relationship:-
C, = 6,03, a) |
As far as welfare economic theory is concerned, it is the WCF Ci which

is all that needs to be known; how it is derived is of no importance

uantil practical applications of the theory are being'contemplated.

Notice that, as they have been defined above, each individual's J
interests are effectively independent of the interests of others. This
does not preclude external effects of consumption, in which one

individual's interests are affected by his neighbour's consumption. Fo:

notice that the choice function Ci specifies choices of an entire

economic policy. Consequently, Ci effectively represents choices of

allocations to all members of society. So, in deciding which policies

are in 1's interests, the effects of other individuals' consumption

on these interests is taken into account.

Altrui=m, however, is precluded. An altruist is someone whose
own choiece funection Cg, giving the choices he himself is willing to
make, takes into account not only his own interests but also those of
other people. But, as individual welfare takes into account only the

interests of the individual, those choices which an altruistic individual
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makes to further the interests of others have to be disregarded. The

same is true whenever an individual's own choice function takes into .
account the interests of others, as he sees them. Thus, in Sen's
celebrated example, the prefcorence of the prude for preventing the
lascivious man from reading "Lady Chatterley's Lover", and the

vreference of the lascivious man for having the prude read the novel,

are hoth to be disregarded in judging the two individuals' Interests,
Lecause both preferences are formed with the supposed interests of the

sther individual in mind‘1’.

This does not mean that altruism has to be disregarded altogether
in welfare economics. As will be seen later, altruism can be taken
into account in deciding about social welfare. Here, all that is
claimed is that the welfare of a genuine altruist - that is, someone
who is prepared to advance the interests of others even at the cost of
hindering his own interests - is independent of the welfare of other
people, including those about whom he cares most. The reason is that
what is in an altruist's interests is what should be chosen on his
behalf - often what he himself would choose - assuming that the fate

of all other individuals is fixed.

In identifying an individual's welfare with his interests,
interpersonal comparisons are also not allowed for. Thus, each individual's
NCF, Ci may correspond to a (real-valued) welfare function Hi'
Interpersonal comparisons involve comparing the relative values of wi,

for one individual 7, and h}, for another individual j. But such

See Sen (1970a), p. 80 or (1970b), p. 155. The requirement that
certain types of choice, regarding other people, should be disregarded
has also been recognized by Barry (1965). The type of choice which he
requires to he disregarded, "publicly oriented wants", is very similar
to choice with the interests of others in mind, as defined here.




s

relative values have not been piven any meaning. In any case, such
interpersonal comparisons are only relevant to policy decisions when
the interests of more than one individual are to be taken intc account
simultaneously. So they have no role to play in determining the

welfare of a single individual.
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2.4. Rationality and ndmigsible Choice Functions.

So far, any choice function C£ has been allowed as a possible WCT
for individual 7. 7y contrast, it has been traditional in welfare
econonics *o allow only choice functions satisfying certain '"rationality"
postulates. In order of increasing strength, the most common forms
~f these postulates are as follows:-

1) ¢ corresponds to a weak preference relation Ri and to a strict
preference relation P.. P, is acyclic (binary choice)(l)

2) Ci corresponds to a weak preference relation Ri and to a strict
preference relation Pi. Pi is transitive (quasi-transitive
preferences, quasi-ordinal choice).

3) C{ corresponds to a weak preference relation Ri which is transitive
(ordinal choice){zl

) C. corresponds to a choice indicator function u (which is called

1's welfare function).

While any of the first three postulates can be made to seem plausible,
and the fourth can be derived from the third under weak assumptions(a),
they are restrictive conditions. Indeed, in chapter 4, we shall see that
some of the approaches to dynamic choice bring about violations of
postulate (1), the weakest postulate. So it seems desirable not to insist

on any stronger rationality postulates than are absolutely necessary

for the development of a potentially useful theory.

(1) g "3
Binary" is the term used by Herzberger (1971). Sen (1971) prefers

"normal".
(2)

"Ordinal" is a term due to Herzberger (1971).

(3) i )
_ ' For derivations, see Debreu (1954), (1959, ch.4), (1964), Rader (1963),
Howen (1968), Arrow and Hahn (1°71).
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Of course, if we are looking for generality, no rationality
postulates at all should be insisted on. DBut that would make it
virtually impossible to say anything worthwhile. So rationality
postulates will be brought in, as is necessary. However, much of the
argument will rely on a rationality postulate which is weaker than (1)

above.

ihis postulate is:-
0) Whenever BC 4, B - CifBJgA - Ci(A).
It is a postulate which has acquired many names(l). But none of the
existing names seems both short and appropriate. So here a CF satisfying

postulate (0) will be called coherent(z).

There are many ways of explaining the appeal of coherence. To try
another r 1y seem pointless. Nevertheless, remembering that the WCF Ci
is meant to represent individual 7's intereéts, it may be worth reconsidering

cocherence for such CF's.

Suppose that the initial feasible set is 4 and the options in 4
which are in 7's interests are the members of c£CA). Then, when the
feasible set is 4, the members of 4 —.Cifﬂ) are not in 7's interests. Now
suppose that the feasible set expands .to B, where B2 A. Is there any
reason for the members of A - Cifﬂ) to become in 7's intereets, when they

wvere not before? Coherence is the assumption that there is no such

reason.

) For a brief discussion of this assumption, and references to earlier
discussions, see Sen:(1969, p. 384) or (1970a, p.17)
(2) Afriat (1962) defines '"coherent" choices, in consumer demand theory,

s choices satisfying the strong axiom of revealed preference. (Houthakker
(1950)). There snould be no confusion, although I use the same term in
a different sense.
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In this section, various postulates concerning an individual's

WO have been mentioned. In what follows, the postulates which are

assumed will vary. In general, there will be, for each individual 7,

a class € .(X) of admissible choice functions, defined on the
[

underlying set X. Tfi(X} is the class of choice functions satisfying

the postulates which are required.




2/15. “T

2.5. Social Nelfqggpggg Copstitggiggi.

i

Welfare economics is concerned with the welfare of all individuals
in a society. To make decisions about economic policy, the interests ot

individuals and (where distinct) of the society as a whole have to be

weiphed against each other. The resuiting decisions purport to take
sccount of all these interests. These decisions correspond to a choice

function C on the underlying set of possible economic policies X.

In welfare economics, it is common to talk of "social welfare'.
Here, socicl welfare will be ident’ fied with a choice function which
takes account of the interests of society as a whole. Such a choice 1

funetion will be called a soctal welfare choicz functionm, or SWCF.

As with individual welfare, the precise definition of SWCF in any

economy depends upon what the interests of individuals and of society as
a who%e are, and how these interests are combined into a choice function.
As with individual interests, what constitutes social welfare is a matter
of judgment. But, whereas what an individual's interests are could
perhaps be a factual judgment, it is hard to see how what social welfare

is could be anything other than an ethical value judgment.

The question which will concern us here is the relationship, if any,

!

1 3 - - Ll - Il ‘
between social welfare and individuals' interests. This is very similar |
|

to the relationship between social choice and individual values which |

Arrow considered.

How it would seem that most peoples' conception of social welfare
deperds upon a number of factors, which might be classified as follows:-
1) Individuals' interests
%

Interpersonal comparisons

3) Preference intensities




4) Community interests (as distinct from individuals' interests)
5) Individuals' ethical values

6) Other ethical considerations.

0f these, individuals' interests have already been explained. Inter-
personal comparisions are "as if" choices of which individual one would
like to be, in a given environment. Preference intensities are

- rements of the relative importance of individuals' i-terests, either
oy different individuals facing the same issue, or for the same individual
(1)

‘acing different issues, or for both ~’. Both (2) and (3) are related to

individuals' interests, but are not completely determined by them.

Tt has often been claimed that a community may have interests which
are related in no obvious way to those of its individual members. It is
hard to think of an entirelj convincing example of this. Nevertheless it
is in principle possible to allow non-individualistic ethical considerations

of all kinds to affect the social welfare choice function.

So far, for a given individual, only his interests have been

admi tted as influencing the conception of social welfare. But one also
wishes to admit individuals' ethical values. Thus, most people in this
country regard cock-fighting as an unethical sporting activity. Yet this
has nothing to do with any individual's interests, since it is surely

roo far-fetched to claim that significant suffering would be caused among
those vho object to cock-fighting, and do not watch it, by the knowledge
that it is being practised. Another example is punishment. Some people
elieve that a wrongdoer deserves to be punished, regardless of whether
the punishment deters this or any other potential offenders, or is in

any way in the interestc of some individuals in society. One may or may

(1)
Seze Sen (1970a), chapters 7, 8 and 9.
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not wish to respect such ethical values, hut a theory which excludes

altogether is clearly limited. So, individuals' ethical values will be

sdmitted as relevant. In doing so, we admit Arrow's individuet ‘values®

(as opposed to "tastes")(lj in general, and Harsanyi's "ethical pre-

ferencas"(Q) and the preferences of an altruist, in particular.

The social welfare choice function, or SWCF, is analogous to the
Bergson social welfare function. Indeed, when the SWCF corresponds to
a choice-indicator function, that function is precisely a Bergson social

wel fare function.

Now, what is the relationship between social welfare and individuals'
interests? It can be only a partial one. If individuals' interests change,

the CWCEF will change, in general. But the SWCF may change even though no

Gl
See Arrow (1963 ), p. 18

See Harsanyi (1953)}(1955) , and Pattanaik (1968), (1971) Ch. °
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‘,dividual's interests change. Nevertheless, in this study, it will
-cumed that the SWCF changes only if some individual's WCF changes. Thi:
weans that none of the other factors influencing sccial welfare -
interpersonal comparisons, measures of preference intensity, community
‘nterests, individuals' ethical values, etc. - can change, unless some
‘,dividuals' interests also change. So all of these factors are assumed

.mselves wniquely determined by the set of individual interests,

Le aiven society being considered. For example, if a previously healthy

~on became sick, but his and everybedy else's interests remained
unchanged, the interests of the sick person could not be given extra weliy
. comparison with those of others. Whether this is serious is not very
clear, because it is hard to imagine somebody becomiag other than trivially

i11 without his interests changing.

The assumption that interpersonal comparisons do not change, unless
individuals' interests do, rules out welfare analyses based on Pawls'

(1)

concept of justice . This loss could be rectified by extending the
underlying set from X to X x I, where I is the set of individuals(2).
That is, not only choices of economic policy have to be contemplated,

but also hypothetical choices of whc one wishes to be for a given economic

poliey.

it should be emphasized that the assumption that the SWCF changes only
¢ some individual's WCF changes does not mean that we have a purely
individualistic ethical system; it only means that we shall not be able

5 say anything about changes in the non-individualistic aspects of the

PPy upng
stem.

' cee Rawls (1958 ), (1971).

' As explained in Sen (1370a), ch. ¢.

e

-

e
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Given these assumptions, a "constitution' function [ can
constructed. Let I denote the set of individuals, which is taken to be
either a finite set of the form {1,..., n}, or (to allow for infinite
qorizons) the set of all positive integers {1, 2, ... }. Let X be the
underlying set. Letif;(X) ba the class of WCF's for individual 7 which are

admissible. Let ¥(X) be the class of admissible SWCF's. Now, given any

individual WCF's <C.>. . (where each C, ¢ }fifx)},there is, by
sunption, a uniquely determined SWCE C = f(<C£)ieI) . So, as (Ci)icf

aries s - . i v M. . CalX) +0A
ries over the product set HLEI El(XJ, a mapping f Hu1 flff »O(X)

is constructed. Such a mapping is called a constitution(l).

The properties of constitutions are the subizct of social choire theory. %J
The present work, being concerned with welfare eaconomics, wi].i assume that L
the constitution is given, and not enquire too closely into the properties
underiying it. At least, this is true except for the next chapter. There, 1

we shall consider one particular property which has been gener:lly

accepted by economists - the Pareto principle - and also the additive ﬁ‘ﬁ#

form of Bergson social welfare function which will often be assumed in : $|

the later chapters. !'h.
i
i

! ! I
"Constitution" is a term first suggested by Kemp and Asimakopoulos
(1952), and later adopted by Arrow (1963, p.105). The term was used
describe a function from lists of individual preference relations to
“ocial preference relations - i.e., what is commonly called an "Arrow
ocial welfare function". Here, a constitution is a somewhat more general
/pe of mapping, because general choice functions rather than preferences
re Leing considered. Barry (1965) talks of "social decision procedures',

1

nd Sen (1970a) of "social decision rules'.
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2.6. Conclusion.

It may be helpful to summarize the ingredients of the welfare
economic theory which will be employed in later chapters. These are:-
1) An underlying set of options, or possible economic policies - X.
% set of individuals in the society - I (which may be finite or else
untably infinite).
tor each 7 € I, a class of admissible welfare choice functions,
-.";., defined en X =~ tz'(X)' Each C‘E" under certain circumstances,
represents the interests of individual 7.
%) A class of admissible social welfare choice functions, C , defined

on X - f'(X).

5) A constitution f: Meer fi(X) + Ux).
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UNANIMITY PRINCIPLES AND SOCTAL, WELFARE.

3.1. Introduction.

In section 2.5., a constitution was defined as a mapping from lists
of individual welfare choice functions (WCF's) to social welfare choice
runctions (SWCF's). No properties were attributed to the constitution.
Yot it has been customary in welfare theory to invoke the Tareto

rinciple. In its weak form, this states that a change which makes

each individual better off is to be regarded as a favourable change. But
it: definition requires the assumption that each individual's choice
function is binary, and it acrives at a social preference relation

which is to be incorporated into the SWCF. Such incorporation is not
always oo ible, unless the SWCF itself satisfies certain rationality

postulates.

This chapter starts by exploring how the Pareto‘principle can be
generalized to allow for non-binary individual WCF's. The result will
be criteria which, even in the case when individual choice is binary,
pive more selective social choice sets than the Pareto principle pives.
The final section of the chapter considers briefly the assumptions
underlying the additive form of Bergson so0+ial welfare function which is

commonly assumed, and will be used extensively in later chapters.

The one crucial assumption which will be made in tpis chapter is
*hat the appropriate choice, for any group of individuals, depends only
°n the interests of those individuals. While this assumntion is very
much concerned with ethical values, in a given situation, the other

assumptions are mostly technical in nature.

T s sl
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3.2. _Unanimity Principles - the General Cas

e,

Let I be the set of individuals. TImagine that each individual 7 i
in I has a representative who makes choices of economic policy with only
t's interests in mind. So 7's representative has a choice function C.,
which is i's welfare choice function. Given any feasible set A & X,

C.(A) s by definition, the set of options which 7's representative is

willing *to choose.

Now suppose that, for the feasible set 4 € X, there happens to be

an option x such that:-
n. (4). f
xell ; Ciﬂﬁ)

Then each individual's representative is willing to choose x. So z is

in the irterests of each individual in the society. It does not }i
. il i
necessarily follow that x is an acceptable social choice. 1In section 255050 f?

we saw how a number of factors, apart from individuals' interests, affect \

social choice. Thus x may involve unnecessary .cruelty to animals;

although this may not be against any individual's Laterests, it may

T e

still be ruled out on ethical grounds - because most individuals find it

ethically unacceptable, for example(l).

Nevertheless, cases in which an option is ethically unacceptable,

&

wen though it is in the interests of every individual, seem exceptional.
So we shall restrict ourselves to choice situations in which, if > is in

the interests of all, then it is an acceptable social choice. Then we

' Sen's "Liberal Paradox" is not an example in which an option which i
‘n the interests of all is not an acceptable social choice. The only
option which is genuvinely in the interests of each individual is to have
the lascivious man read "Lady Chatterley's Lover". Sen applies the
‘areto principle to the individuals' owm choieces and shows, in effect, tha:
the result is counter to te individuals' interests. The trouble secer. |-

rise because the individual's choices extend beyond their own intercsts.,
ee Sen (1970b) and also section 2.3.
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have the first unanimity prineiple, which can be stated

For each A € X,

if ¢ ﬂ:._i_j c'_‘..r,’l)
then x « ClA)

where ( denotes the SWCE.

this is a restriction on social choice which specifies a sufficient

ndition for an option to be chosen. Since such unanimity is rare, the

ondition cannot be made a necessary one, otherwise the social choice set

o —

uld be empty in most situations. But where unanimity does occur -

4O

- Y-

whele !'1',.“_ C.(A) is not empty - it is tempting to insist that the

condition. y eﬂid. Ci (A) should be necessary as well as sufficient for

¥ to be cisen.  For it is possible to meet the interests of all individuals

simultaneously, and yet no option outside nieI CifA) does this. This

11 A+ =

suggests what will be called the strong second unanimity princi)

‘For each 4 ¢ X,

if nﬁ_}. C-i (A) is non-empty

then C(A)C nid C,(4). | '

Together with the first unanimity principle, this principle ensures
that ifnid CT:(A) is non-empty, then C(A)= ﬂie_, C'-,' (A), and so the social
choice set is completely determined. But .ifﬂ":':‘lr 6‘{{.4) is empty, anything

is possible.

The "strong" second unanimity principle leads to difficulties when r
coherent social choice is insisted on, as will be seen in the next section.

20, latcr, the principle will have to be weakened. '




4
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It will be convenient to express the sirong second

srinciple in the form:-

-

r 7a s -
C(A) ¢ SU(A) (each A c X)
where:-
SU(A) n.,- . C.(4) (if this is non-empty)~
:‘ : -

Lz'l (otherwise)

is a choice function, as is easily s

-~

Although the unanimity principles concern social choice for a

‘nen 1list of individual WCF's, they have a natural extension to

manimity principles governing the constitution. Say that a constitution

D

satisfies the first unanimity principle if:-
Fou all «Cp>p p e M V.(X), and all A g,

N /
. C.(A) € f£(<C >, 1)(A)

L

'hat is, if for all admissible individual WCF's, and all choice situation:

the intersection of the individual's welfare choice sets is a subset of

the social welfare choice set, fer the SWCF prescribed by the constitution.

Say that a constitution f satisfies the strong form of the second

unanimity principle if:-

For all <C.>. n. . 0.(¥), and al1 A € ¥,
- vel "1 -

el €
n,»‘. . '.‘"T. (A4) is non-empty

implies f(«:C{:»_L.CIJf;‘])g nicI CifA).

Without extra assumptions, such as coherence, it is hard to say




about the consequences of unanimity principles for social choice, ny

the constitution.

This section concludes with a result whichi has some bearine on
admissible choice functicrs, as defined in section 2.4. In effect, it
states that any choice function which is admissible as a WCF for some

irdiv.dval must also be admissible as an SWCF.

Theorem 3.2. Let f: ﬂ?.rI 81:{.11') ~€(X) ve a constitution satisfying the
first, and also the strong second, unanimity principle. Suppose that the

choice function € for which:-

C{A) = A (each A € X)
is a member of 5;(X), for each 7 ¢ I. Then

Pt \
XD b’ief \Ci (X,

Proof Consider the list of choice functions <C§>ic1’
where .‘_’,';: 3 Ek()()
and c® = ¢ (7 # k)

By the unanimity principles, for any AC X,

FICT, L)(A) Cy(A)

and so {,'2 € Efﬁ.’).

The extra assumption, that to be willing to choose anything is
idmissible as an individual WCF, is hardly severe when it is recalled that
+ choice function is admissible provided that it satisfies cortain
fatlonality postulates (see section 2.4.). There is no implication that

uch a choice function represents any actual individual's interests.
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Because unanimity principles for constitutions are no more

than straightforward extensions of "hose for “WCF's, we shall not
consider ther explicitly from now on. Tt will be assumed that ti
individual WCF's are fixed, and that the unanimity principles govern

soccial cheice for this fixed 1list of individual WCF's.




3.3. Coherent Choice and the Unanimity Principles.

From now on in this chapter, it will be assumed that only coherent
SWCF's are admissible. An immediate implication of this is that only

coherent individual WCF's are admissible, by theorem 3.2.

Tt is now possible to demonstrate why the strong second unanimity

prirciple is too strong, using an example due to Pattanaik(l).

Example 3.3.1

There are three individuals, 7 = 1, 2, 3. The underlying set X consists Qw

of three options r, y, 2. Each individual has a WCF which is quasi~crdinal(2). {
C; corresponds to R (£ =1, 2, 3), where:- ) "
© Py, v I, = z I, x | L

. ||yl

i

x I, u, Y P2 F. 2 1'2 x i w

Iil‘_' o

) o

x IS Y, v I,_z 2, 2 Ps x “' }t‘

s I" :Ihri

Now, in this case, the choice function SU is as follows:- # | E!

iy

SU({=, u}) = {z}, SU(ly, 2z}) = {y}, SU((z, z}) = {z) 1l
Su(x) = x. ) f" i

Evidently, 5U is incoherent. More seriously, if C is any SWCF satisfying the

strong form of the second unanimity principle, then C(4) ¢ SU(A) for all
A€ X Thus, in particulag C({z, xz}) € SU({z, x}) = {2}. So x ¢ C({z, =}).

[f ¢ iz also coherent, it follows that x ¢ C(X). By symmetry, if C is

conerent, then y ¢ C(X) and z ¢ C(X). But, since C is a choice function, C(X)

See Pattanaik (1971), theorem £.2., p. 1lul. ]

ee appendix 1, section A.7.

|




cannot be empty. This is a contradiction, and something must g
oither the strong form of the second unanimitv principle, or coliereut .

.y A Ay e
social cholice.

if the CWCF has to be ccherent, tre strong second unanimity
incipie must be violated in certain circumstances. In what

tances? Can it be weakened so that it neve: has toc be violated

Because social choice is coherent, the strong form of the second

unanimity postulate:-

Cli) c su(A) (each 4 ¢ X)
mplies something stronger - at least, it does when SU is not itself
coherent, wnich it may not be, as example 3.3.1 illustrates. In fact,
censider Jorma A.2 of appendix 1.

Define SU(A) = {x ¢ Alxr ¢ B¢ A implies = € SU(B)}. Then SU i, 2 set
function with the property that SU(A) € SU(A) (each A € X). Also, if U is
2 coherent choice function with the property that

C(A) € 5U(A) (each A ¢ X),
then S¥ is a choice function, and

cta) ¢ s (each 4 ¢ X).
It is therefore evident that if there is any coherent SWCF satisfying the
strong second unanimity principle, then SU is such a choice function.
Consequently, such a choice function exists if and only if SU is a choic
function (rather than merely a set function); the condition for this is

vv SU(A4) must be non-empty whenever A is finite. This answers the fi

question,

D . it




3/9.

Before turning to the second question, it is worth noting that,

if SU is a choice function, then there is a coherent SWCF satisfying the
first as well as the strong form of the second unanimity principle.

Recall that, if the SWCF is to be coherent, we had better insist that each
inlividual's WCF is coherent. Then, the following lemma shows that SU

at least, is a coherent choice function satisfying both unanimity

principles, providing that it is a choice function, of course.

Lemma 3.3.2. If each Ci is coherent, and if, for any 4 C X,

nie’ Ci (A) is non-empty, then

SU(A) = nﬁ__I C;(A).

Proof It is enough to prove 1:]'1&‘!:"\1:':.r 01:(.4):_: SU(A). So suppose
z e ﬂid C.(A), and that x ¢ BE A. Forany t ¢ I, z ¢ Ci(A), and, because |

C; is coherent, z ¢ CifB). Therefore x € SU(B). So, by definition,

C

T e SEI(A),as required.

_—

"r

f

|

'
Now we can consider how to weaken the second unanimity principle il ‘J
so that it never has to be violated to ensure that social choice is f

coherent. Define the weak second wnanimity prineiple as follows:- !

For each AC X, if nitl' cim) is non-empty,
(
Again, it is convenient to express this unanimity principle in the

form:-

C(A) € WU(A) (eachA € X)
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where:-

WU(A) = Uie! C;(A) (if nm C;(A) is non-empty)

A (otherwise).

Then, evidently, WU is a choice function.

The weak form of the second unanimity principle can be interpreted
as follows. Suppose that‘1£cI C£{A) is non-empty. Then each individual's

interests can be fully met by choosing an option inlqie C,(A). The

1
principle states that no option y is to be regarded as acceptable unless
it fully meets the interests of at least one individual - i.e. unless,

for some j e I, y € Cf(A). To violate this principle would be to

disregard individuals' interests entirely, it seerms.

The following example shows that it is always possible to find a
constitution satisfying both the first and the weak form of the second
unanimity principle. This is true even if we insist on the SWCF being

coherent, because then, by theorem 3.2., each individual's WCF must be

coherent too.

Example 3.3.3.

Consider the constitution

f(<C£>£EI) (A) = CI(A) (each A C X).

IE CI is coherent, the SWCF is always coherent. Both the first unanimity

principle and the weak form of the second unanimity principle are clearly

satisfied.

This example also shows how weak is "weak" unanimity. It does not

rule out the obvious generalization to choice functions of an Arrow
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where:-

WU(A) = U-z'.!:I C,(A) (if n{ﬂ C;(A) is non-empty)

A (otherwise).

Then, evidently, WU is a choice function.

The weak form of the second unanimity principle can be interpreted
as follews. Suppose thatr]icf Ciﬁd) is non-empty. Then each individual's

i1terests can be fully met by choosing an option in nieI C;,(A). The

principle states that no option ¥ is to be regarded as acceptable unless
it fully meets the interests of at least one individual - i.e. unless,
for some j e I, ¥ € CiCA). To violate this principle would be to

disregard individuals' interests entirely, it seers.

The following example shows that it is always possible to find a
constitution satisfying both the first and the weak form of the second
unanimity principle. This is true even if we insist on the SWCF being |
coherent, because then, by theorem 3.2., each individual's WCF must e ':. ‘

coherent too. {

Example 3.3,3, { !.-‘
Consider the constitution f

£ -
Fl<Cp>, )(A) = C,(4) (each AC X).

If C; is coherent, the SWCF is always coherent. Both the first unanimity

principle and the weak form of the second unanimity principle are clearly

catisfied.

This example also shows how weak is "weak" unanimity. It does not

rule out the obvious generalization to choice functions of an Arrow |
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(1).

"dictatorship" But it does confirm that we have at least succeecdcd
in our task of weakening the second unanimity principle so that, even in
combination with tne first, it can always be satisfied by some cohe. c...

social choice function.

Notice that the first unanimity principle is always easy to satisfy,
because it can never force a choice set to be empty. From now on, it
has almost no role in the analysis, and so is left implicit. It
rrovides a sufficient condition for an option to be a social choice; we
shall be more concerned with necessary conditions, which is what the

second unanimity principle is, in either of its forms.

There is one obvious question which this section has_left untouched.
What is the character of coherent SWCF's satisfying the weak form of the
second unanimity principle? All that we can say at present is that such
an SWCF C nust satisfy:-

C(A) € U(A) (each A & X)

where WU(A) = {z ¢ Alx € BC 4 implies = ¢ WU(B)} is derived from Wl
in the same way as Sb was derived from SU. To say much more for general
coherent choice functions would be difficult. Accordingly, extra assumpti:
will now be considered, which restrict the classes of admissible choice
functions, and so allow stronger and, in some cases, more familiar

results to be derived.

! . ¢
) Arrow defined "dictatorship" for social welfare functions. See
Arrow (1963), definition 6, p. 30..
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/

3.4, Binary Choice and the Pareto Principles.

In this section, it will be assumed that only binary choice functions
are admissible as individual WCF's. So, assume that individual 1's
WCF Ci corresponds to a weak preference relation Ri' -Given this
assumption, there is a link between the unanimity principles and the

more ftamiliar Pareto principlescl).

Consider the weak Pareto principle. Define the relation WFPF on

¥ by:-

awPPb iff YielI aP,b
The weak Pareto principle states that, given a set A, x € C(4) only if

there is no ¥ € 4 such that y WPP x. So define the relation WFPR by:-

a WPR b iff not b WPP a.
llow, it 15 easy to see that WPR is a weak preference relation, because it
is connected and reflexive. In addition, the corresponding strict
preference relation WPP is acyclic, because each individual's strict
preference relation P?: is acyclic. Therefore the relation WPR corresponds
to a choice function on X; let this choice function be denoted by WPE.
For any set A € X, WPE(A) is the set of weakly Paretc efficient options In
A. The weak Pareto principle states that:-

C(A) € WPE(A) (each A € X).

Consider now the weak form of the second unanimity principle.
Cvidently, if a WPP b, then b ¢ WU ({a, b}). Now let A be any subset of
X. Because WU is coherent, if there exists y ¢ A such that y WPP x,

then x ¢ W‘if({:r:, u}), and so x ¢ WU(A). Therefore:-

WU(A) € WPE(A)  (each A g X).

from which it follows that the weak form of the second unanimity principle:

C(A) ¢ WU(A) (each 4 ¢ X).

= - — i . o o — v —— ————— —— i —— e —

(1) see Arrov (1963), condition P, p. 96; and Sen (1270a), ch. 2.




3/13.

entails the weak Pareto principle:
cla) Q WPE(A) (each A ¢ X).
But the weak Pareto principle doe; not entail the weak form of the
second unanimity principle, because WU(A) may be a proper subset of WPE(A4)

as will be seen in example 3.4. below.

tefore turning to this example, however, it is convenient first
to consider the strict Pareto principle in a similar way. Indeed the
results are very similar, except that the strict Pareto principle does

not always give rise to a choice function, in the proper sense.

Define the relation SPP on X by:-
aSPPb iff VielI aR.bs EF eraPJ.b
The strict Pareto principle states that, given a set A, x ¢ C(4)
only if there is no ¥ ¢ A such that ¥y SPP z. So, define the relation
SPR by:-
a SPRb iff not b SFP a.
It is easy to see that SPP is a weak preference relation, because it is
connected and reflexive. But the corresponding strict preference
relation SPP may be cyclic, as example 3.3.1. shows. Therefore the
relation 5PP may not correspond to a choice function. But we can define
a set function SPE(+) on s'ibsets of X as follows:-
SPE(A) = {x ¢ Alu ¢ A implies z SPR u}
for any set A € X, SPE(A) is the set of strictluy Pareto efficient options
A(l).

in The strict Pareto principle states that:-

C(A) € SPE(A) (each A ¢ X).

On the other hand, consider the strong form of the second unanimity

vinciple. It is evident that, if a SPP b, then b ¢ SU({a, b}). Now let

‘Strictly" is often dropped, because it is customary t: consider only
trict Pareto efficienty.
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A be any subset of X. Because SU is co.erent - as a set function - if
there exists y € A such that y SPP x, then x ¢ SU({x, y}), and so
» ¢ SU(A). Therefore:-
SU(A) € SPE(A) (each A X).
from which it follows that the strong form of the second unanimity

nrinciple entails the strict Pareto principle.

That neither Pareto principle entails the corresponding form of the

second unanimity principle is demonstrated by the following example:-

Eggmg}e 3.4.

The underlying set X = {a, b, e, d}
The set of individuals I = {1, 2}
The two individuals have quasi-ordinal choice functions corresponding

to the following quasi-transitive preferences:-

a PI b b P, e a P, e a I, d b I, d e I, d

e P_. b b P, a e P, a a I, d b I, d e I, d

b4 2 2 2 2 2
Then WU(4) =| {a, e, d} (if A = X)
{a, e} (if A = {a, b, e})
A (otherwise)

Cvidently, then, WU is a coherent choice function, which implies that
it is identical to WU .
Also, SU(A) ={{d} (if A = X, or if A is any triple includingd)
A (otherwise)
fvidently, too, SU is a coherent choice function, which implies that it

is identical to SU.

On the other hand, there is no pair of options such that x WFP y
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or even such that x SPP y. Therefore:-

SPE(A) = WPE(A) = A (for all A C X).

This example makes it clear that the second unanimity principle,
in either of its forms, may be more stringent than the corresponding

Parete principle. But, whenever A4 is a pair set, then, obviously:-

wU(A) = WPE(A) and SU(A) = SPE(A).
So the unanimity principles fail to correspond to binary choice functions,
as the Pareto principles do. Naturally, this makes the unanimity principles

rather harder to apply in general.
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5. Ordinal Choice and the Unanimity Principles.

As remarked in chapter 2, it is common in welfare economics to dassume
that any social or individual weliare choice function is ordinal - that
{5, binary, with a transitive weak preference relation. We shall make
the same assumption for the rest of this chapter. !More specifically,
<e assume that:-

(1) The SWCF C is ordinal.
'2) Each individual's WCF Ci is ordinal.

Jiven these assumptions, we have the following result:-

Theorem 3.5. If the SWCF C, and each individual's WCF ¢, are ordinal,

T

then:-

(1) Each form of the second unanimity principle is identical to the
corresponding Pareto principle.

(2) There exists a constitution satisfying ‘the strong form of the

second unanimity principle.

Proof

o —

(1) Since we already know that:-

WU(A) ¢ WPE(A) and SU(A) ¢ SPE(A) (each A € X)

it is enough to show that:-

WPE(A) € WU(A) and SPE(A) ¢ SU(A) (each A & X).

(a) Suppose that = ¢ WU(A). Then there exists B ¢ A such that z ¢ B
and =z ¢ WU(B). So, for each 7 ¢ I, = ¢ CifB). Also, there exists
y € B such that for each © ¢ I, y ¢ Ci(BJ. Because Ci is ordinal,
it follows that y P, ¥ (each © € I). Therefore y WPP x, which
entails x ¢ WPE(A), because y ¢ A. So WPE(A) ¢ WU(A) (each A € X),

as required.
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(b) The proof that SPE(A) ¢ SU(A) (each A ¢ X) is similar.

(2) It is sufficient to specify one such constitution.

wurmber the individuals in society so that
s ft; 2, 3 sl (it does uot matter if I is infinite, provided

i+ is countable). Let the social weak preference relation R be defined,

25 a function of individual preference relations Ri‘ as follows:-

aRb iff Viel aRib
or Jj eI s.t. aﬂib (£ =1, 25 snsyd = 1)

and anb.
Thus, a R b ifaP.Ib, orifaRIbandasz,

or if a RI L, a Rz b, and a P3 Dy OF covesss
It is easy to see that R is reflexive, connected and transitive, because M)
each Ri is. It is also obvious that this "lexicographic'" constitution

satisfies the strict Pareto principle, and so, because of (1), it kTl

satisfies the strong form of the second unanimity principle.

Naturally, neither WPE nor SPE are ordinal choice functions in A
general. But they must, at least, be binary choice functions. And, in

fact, when each individual's WCF is ordinal, it is easy to see that both

WPE and SPE are quasi-ordinal.




3/18.

Additive bBergson Social Welfare.

A Bergson social welfare funetion is a choice-indicator function
corresponding to an ordinal SdCF. That is, given the SWCF C on the
wnderlying set X, a Bergson social welfare function - or BSWF -
corresponding to C is a mapping W: X + R with the property that,

¢or each 4 C X,
C(A) = {z ¢ Aly € A implies W(x) > W(y)}

ot us assume that a BSWF exists, and also that each individual's WCF
C. corresponds to a utility function u, ¢ X + R. Assume too that the
nanimity principles are all satisfied - both first and second, the second

in its strong form.

Suppose that x and y are two options in X such that, for each
tel, u/lz)= uify).

Thi
.0 0. ; C(1z yb) = (=, v}

By the first unanimity postulate, it follows that

ct{x, »}) 2 {z, y}, and so W(x) = W(y).
Therefore the value of the BSWF W(x), for a given option z, is uniquely
determined by the 1ist of values of the individual utility functions
<u?:fx) il for this option z, and does not depend on I itself. Thus the

function W(-) can be written in the form:-

W(ix) = F(<u£(:J>i€IJ

for some mapping

F: I u.(XJ-*R,

1el "1
2y the strict Pareto principle (which is here equivalent to the strong

‘orm of the unanimity principle, by theorem 3.5)

1]
R
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u.fx) > u.ly) (each 7 € I)
i -1

and uj(:::) > uj(yi (some j ¢ I)
then W(x) > W(y).

It follows that F is strictly increasing in u:s for each 7 € I.

A BSWF which can be written in this form with F strictly increasing in

each argument, is called an individualistic or Paretian social welfare
(1)

function .

N

Now, it has been common in the literature of welfare economics to

assume a very much more special form of BSWF, namely the additive form:-

W(ix) = r’i:I u,z(x).

This is a restrictive assumption, which has frequently been criticimd(ﬂ.
Nevertheless, it is often useful and is certainly conceptually more

simple than more general kinds of BSWF. Also, it is an assumption which

will be used in chapter 6. This section will discuss conditions which

are sufficien‘!: for there to be a BSWF of this additive form. Naturally, e

it makes use of the theory of separable utility fmct:lons(a).

All the relevant results on separability which we have apply only !
when the underlying set has the form of a Cartesian product,

X = “isI xi. where u, : xi +Q For u, to correspond to Ci, it is then

clearly necessary to have Ci defined just on Xi rather than on the whole
of X. In much of the literature of welfare economics, this is true in

any case. X, is individual i's consumption set, and individual 7 has interests

1) See Graaff (1957), pp. 7 - 10.

vl See, for example, Samuelson (1947), pp. 226 - 227, who criticized it

as unnecessary, or Sen (1973) who criticises it as being unable to deal |
adequately with our regard for equity. Also, it excludes Rawls' '
criterion of justice; see Sen (1970a), ch. 9.
(3)

’ See Debreu (1960), Gorman (1968a), (1968b), Fishburn (1969),
Koopmans (1972a).
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in only his own consumption - not in that of anybody else. But this rules
out all external effects of consumption, and also, analogously, all
public goods and common interests in the choice of production plan. So
it is surely excessively restrictive to assume that the underlying set

ic decomposable in this way.

There is, however, an alternative method of arrivins at a
decomposable underlying set. It involves hypothetical, "as if" optionms,
which could not possible be feasible. Let X be the true underlying set.
Suppose that it were possible to choose a different option in X for each
individual. Thus we can choose xq for individual 1, z, for individual 2,
etc. Let x; denote the optibn for individual ¢. Then a typical
hypothetical option is a list @ > of options, one for each individual,
There is now a hypothetical underlying set. It is the Cartesian product
ﬂiﬁI X. where each X, is just a copy of the original underlying set X.
And the original underlying set X, of options which might be feasible, can
be identified with the set X of hypothetical options, in which the same

basic option is chosen for each individual. Thus:-

X = {<xz.>

; iﬂﬂx eX s.t.x, =2 (each 7 ¢ I)}

liow go on to imagine a hypothetical SWCF C defined on Mier X It

induces an SHCF C on f; and C can be regarded as the "true" SWCF.

Consider any set of individuals J ¢ I. Suppose that the sublist of

options for individuals outside J is fixed; let it be <x£°>i£I-J' The
choice function C on “icI Xi induces a choice function

M fem © o

Cjlex,">. ;) on the underlying set {<«x. ">, , ;P x M. . X.
Cﬁ(<x£°>£gI-J) could be regarded ds a projection of the choice function

- )
To be completely explicit, for each 4 ¢ {<z; > el-a) * Mieg Xio
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. o -
'..(‘(x‘i >£EI_J} (A) - C(A).

naturally.

When <.>. r s is fixed at <I£°>££I'J’ this means that the options for
‘ndividuals outside J are fixed, and so there is no opportunity for
making choices which advance their interests. Consequently, CJ(-J , which
‘5 » social welfare choice function, must reflect, the interests of
individuals in J, and of no others. Speaking loosely, we would say that
TJ!-) reflects J's interests. Of course, as we saw with constitutions in
section 2.5., C, and so CJ(°), could also reflect things other than the

:nterests of individuals in I; however, we shall neglect this possibility.

Now evervthing which affects an individual 1's interests - at least,
everything which is affected by the choices we are contemplating - is
corpletely determined by the option Z.. By definition, therefore,
individual 7's interests are affected only by the choice of option for
him - i.e. by the choice of ;. So the interests of individuals in the
set J are completely unaffected by the list of options for individuals
outside J. Therefore, the choice function CJ(qziyiel-JJ which reflects the
interests of individuals in J, must be independent of <z >, r_ ;.

5o there is a well-defined choice function C, on IL. Xi, such that for

J 1ed

any <@ > r g amdany Ag My ;X

Cl{<x.%>
1

- o
ser-g} * A) = Lemy g p gh m 4D

‘e say then that choices on the space n. J Xi are separable - or,

i€
alternatively, that J is separabze(l). In particular, when J = {Z},
there is an individual VWCF C{i}’ or just Ci for short, which is defined

°n %. - or, in effect, on the original underlying set X. Ci represents 1's

(=

)
“ee Debreu (1960), Gorman (1968b).
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interests, so here we have an alternative way of defining individual

welfare, providing we make appropriate assumptions.

In combination with some further, less exceptionable assumptions,
this separability property gives us the additivity property we are
seeking. Let us spell out the extra assumptions. First, suppose that
the hypothetical SWCF on the underlying set niEI Xi corresponds to a

cheice=-indicator function ¥ : F‘icI X‘i +@. Here, ¥ is an extension of a

LSWE from the original underlying set X to the hypothetical underlying set.
Suppose also that the function ¥ is continuous, and that eacu of the sets
¥. is topologically connected (for a suitable topology on the original
underlying set X, of which Xi is a copy). Suppose toc that there are at

least three individuals 7 for whom there exists an option z. € Xi and a

set Ai C X; such that z, £ 01:(41:). Finally, suppose that I contains a

finite number of individuals.(l)

These extra assumptions, together with the separability property, e

imply that there is a continuous utility function vi for each individual } ) !

7, such that v, represents (., individual Z's WCF, and such that ;

VlT>seP = Lier V3025

2.2

is a BSWF on the hypothetical underlying set “igf 1 ‘

As is well known, the function V and the list of functions W

@re uniquely determined up to a common positive affine transformation -

i.e. one of the form:-

(1

Infinite sets of individuals raise special problems. In fact, infinite
‘¢ts of individuals do not arise very naturally unless there is a potentially
“finite time-horizon, or else uncertainty. Infinite time-horizons are
"axen up in chapters 7 to 10.

'f for proofs see Debreu (1960), Gorman (1968a) (for a calculus proof
-~ “h is much simpler but rests on stronger assumptions), Gorman (1968b),
‘aiburn (1969) and Koopmans (1972a).
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aV + B

aw, + B; (each © € I), where a > O.

The important result is that even the original SWCF on the underlying
set X corresponds to an additive BSWF. For, writing W(x) for V(<x£>£cI)
when . = r (each 2 ¢ I), we get:-

- ZicI vifx).

whicnh is the customary additive form.

:'J'(I)

A similar form of DSWF has been propounded by Fleming, Harsanyi
and Vickrey(l). But their arguments were based on different grounds.
liere, we have effectively only assumed that welfare choices on behalf of
any group depend only on the interests of individuals within that group.
It seems that those who object to additivity want to bring in more than
individuals' interests. Of course, this is neither improper, nor
surprising; for example, Rawls is more concerned with interests in the

(2)

"original position" than with actual interests

— e ——— — e ——

1
(1) See Fleming (1952), Harsanyi (1953), (1955), Vickrey (1960) and
Pattanaik (1968), (1971)(ch. 9).

(2) .
See Rawls (1970).
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3. 7. Conc%ysions.

It is certainly somewhat restrictive to assume that only individual
interests matter in considering wnat is an appropriate social ‘choice.
sut this restrictive assumption is a common one, and appealing to many.
In this chapter, we have seen how far this assumptionm, by itself, can

take us.

In the first place, we can insist on unanimity principles, as

iofined in section 3.2. If an option x is in everybody's interests,

given the feasible set A4, then x is an acceptable social choice,

given the assumption that only individual interests matter.

The second unanimity principle, in either its strong or weak form,

siving necessary conditions for an option to be an acceptable social choice,

is akin to the Pareto principle, in the corresponding form. Nevertheless,

the two are not identical except in the special case when each individual's | ]
welfare choice function is ordinal. In other cases, the second |
unanimity principle is more stringent than the Pareto principle, in the ?

corresponding form.

In section 3.6., we saw the consequences of assuming also that

each individual has a welfare choice function corresponding to a
continuous utility function, and that the social welfare choice function
corresnonds to a continuous Bergson social welfare function. Suppose

too that, given any group of individuals J, the choices to be made on J's
~ehalf depend only on the interests of J's members. Finally, suppose
tiat ¥ is - or can be made into - a Cartesian product space X = I, . X.. i
wiere X, is the space whose members are the objects of individual i's ‘

‘nterests. Then, with one or two extra technical assumptions, the
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jergson social welfare function takes the additive form:-

Wlx) = zieI uifx).

Amongst other things, what this result shows is that those who dispute
the suitability of an additive welfare function must (virtually) be
bringing in considerations other than individual interests - e.g.
ethical vieuws about equality, or special consideration for the interests

of the under-privileged.

This concludes the discussion of purely static welfare. From now

on dynamic problems will be considered.

ee——— I
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Chapter. !

DYNAMIC CIi0ICE

Introduction.

Most economic choices have repercussions which last for a considerable
time. This is true, in particular, of any investment decision, or of

any decision affecting investment.

The choice functions studied in chapters 2 and 3 took no explicit

account of time. Nevertheless, it is easy to make some allowance for
time within that kind of choice framework. The options consist of policy
sequences, giving a detailed listing of the decisions to be made at each
moment of time. These policy sequences are like the iatertemporal

commodity bundles which have arisen in intertemporal economic theory,

and which are associated with the names of Irving Fisher, Hicks, Arrow

and Debreuu). Following Vickrey, we may call this approach to choice

(2)

over time the metastatie approach

While the metastatic approach has been an extremely useful tool
in intertemporal economics, its power makes it easy to overlook a
fundamental problem concerning choice over time. The agent making

choices has time to change his mind, and to revise the choices he

(1) Fisher (1530) realized that incomes in different periods could use-
fully be regarded as separate commodities - see also de Montbrial (1971)
ch. 10. Hicks (1946), ch. 15 suggests regarding commodities at
different dates as different commodities, so that:-
"The problem of maximizing the present value of the production
plan is formally identical with the problem of maximizing the
surplus of receipts over costs in the static problem of the firm."
(pp. 196-197).
Thereafter Arrow (1953) and Debreu (1959) made clear the extension of
general equilibrium theory to intertemporal economics.

(2
) See Vickrey (196%).
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. (1) )
originaliy thought he was going to make . He may choose the option x,

«hich is a sequence of decisions (.rI, Toseos ). But, a little while later,
he may choose another option y which is a different sequence of decisions

(175 Ygaeen ). Then, what is his real choice?

The problem of changing choice is important to welfare economics.
for economists use welfare theory to consider choice over time. Yet an
irndividual's interests, social welfare, etc., are each identified with
s cingle choice function. This is no less true of interests over time,

and of welfare over time.

It might be thought that, as a normative theory of choice, welfare
economics could get round the problem of changing choice very simply by
not allowing it - by postulating that once the (implicit) agent has
made his choice, he must stick to it. And, ultimately, this view must

be correct. But it merely assumes away the real problem.

Suppose that the individuals in an economy seem to make reasonably
sensible choices, except that they are prone to change their minds
without any obvious reason. Suppose too that, as welfare economists, we
would be prepared to accept these individuals' choices as representing
their interests, if it were not for these changes of mind. How are we
to proceed? Surely we cannot neglect these individuals' choices

altogether, and yet it is not immediately clear how to reconcile their

(1) "
This aspect of choice seems to have been recognized by Strotz first

among economists. See Strotz (1956). Some earlier work by Allais
recognized that an individual might regret having made certain choices
in the past, but did not suggest that an individual might actually
revise his choice. See Allais (1947), and, for a more detailed
discussion of his work,appendix 2.

r—— s
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cfarent choices at different moments of time. So we are forced to

.ansider changing choices.

gven if the individuals in the economy never change their minds,
we may still be forced to consider changing choices. Suppose that we
orbine the interests of the individuals alive at a given date into a
ocial welfare choice function, via some constitution. Then, at a later
qste, we do the same again. Because some individuals have died and others

have been born since the constitution was last applied, it is unlikely

‘1.at the new SWCF will be the same as the old. Of course, an obvious

way out of this is to apply a constitution at any given moment of time,

to the interests of all individuals, including the dead and the unborn(l).

e —————

But, particularly when choices involve decisions about population, this

may not be possible.

To discuss changing choices, we need another theoretical framework.
This will be provided by the dynamic choice functions which are the
subject of this chapter. Their relationship to "metastatic" choice
functions will be explored. In particular, we shall seek a method of
reducing changing choices to a single coherent choice function which can
be taken as a welfare choice function. Chapters 5 and 6 explore
constitutions involving dynamic choice functions, and the application of

this kind of constitution to a number of dynamic problems in intertemporal

welfare economics.

Defore commencing our analysis of dynamic choice, we shall consider

1 simple example to illustrate some aspects of the problem.

e

(1 ,
) This way out is not sc obvious that it has always been taken. See

‘nagaki (1970), (1973).
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4.7. The Procrastinator Fxample

A procrastinor wishes to perform a certain action a. Every day,
\owever, he plans to perform a the following day. Consequently a never

~-ets done.

Formally, the procrastinator's options are zt(t 21y, 2, ses)y
where Z, denotes the performance of a on day t. Included in his options

iz the option x_, which amounts to never performing a.

On day 8, his feasible options are:-
el ther As = {Io, Toppr ttes z_}
(if he has not already performed a)
or {xr} (if he has already performed a on day r, where r < 8).

The only interesting case is when he has not already performed a by day s,
and then his feasible set is As' Let C'a denote his choice function on
day 8. Thus Ca indicates on which days he is willing, on day &, to
perforn a.  For the procrastinator, C (4,) = {z,,;}. The outcome of his

choosing Tae1 O0 day &, for each 8, is x_ - the action of a never gets

+1
performed. This is an outcome which the procrastinator never chose, and,

in saying on day 8 that he "chooses" Toe1® he is being naive(l).

It is worth representing the procrastinator's choices diagrammatically,
“(2)

by a "decision tree
At each "node" nos the procrastinator can either choose xt, or proceed to

the node n Observe that, "growing out" of each node n, is a "subtree"

t+1°

(1 :
) This apt term is due to Pollak (1968), p. 202.

(2) .
The tree analogy was recognized by von Neumann and Morgenstern (1953)

p. 66. "Decision tree" is a term used by Raiffa and Schlaifer (1961), p.7.

The "branches'" are the options x, (20, 15 2400.").

-
i
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of the original tree. Moreover, this is also true at each z_ , although
there the subtree is trivial. Nodes such as I, where no further

decisions are possible, will be called '"degenerate nodes'.

Suppose that the procrastinator is at a given node . Then the
set of branches which he can still choose is:-
= J
x{"t) {xsls >t} {z}
The set of nodes immediately succeeding n, is:-
Su("t) =z ntﬁl

because I, is a node, albeit a degenerate ome.

The procrastinator provides a particularly clear example of
changing choice. Decision trees, such as the procrastinator's, are the

basis of general dynamic choice functions, as they will now be defined.

|
]
!
g
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Dynamic Choice Functions.

In chapter 2, a choice function was defined, on an underiying set X,
. mapping C:fD{X) -+ ﬁkX). for each subset A of X, C(A) is the set of

orions which the agent is willing to choose from A.

hanring choices, such as those of the procrastinator, obviously have
to he ¢o.cribed Ly more than one choice function. But the underlying
cots of these choice functions are linked. In fact, they are all subsets

ot . "decision tree", which will now be defined.

A desision tree is a set A of branches. Each branch r of the tree 4
~onsists of a sequence of nodes of the tree. Let z(t) denote the node
resched at the end of period t on branch x. Then z = (x(C), x(1), x(2),...).
The sequence of nodes which determines a branch may be finite or

countably -ufinite.

Let " denote the initial node of the tree. Then every branch must

start fromn,. So x ¢ A only if z(0) = ny

Let the set of nodes in the decision tree be written as N(A). That is,

NA) = {n|3x ¢ A, I . z(t) = n}

Given any node n ¢ N(A), there is a set A(n) of branches which are
still possible after node n has been reached. So:-

Am) = {x € A|3t . z(t) = n}

Say that a node n precedes another node n', written as n Pr n',

if there exists a branch z of the tree 4 such that z(t) = n, z(t') = n',

dhere t < t',

The sets A(n) (n € N(A)), must satisfy the following properties,

which have natural interpretations when it is recalled what each A(n)

represents: -




q, ;I

(1) A(n,) = A
(2) If = € A, then x € A(x(t)) (t =0, 1, 2, ves)
(3) 1f n Pr n', then A(n') C A(n).
These conditions imply that the set 4 has a tree structure which can be

represented in a diagram as follows:-

n

> A(n)
(=A)

The set of nodes within the tree A will be written as N(A). The
tree structure of A is given by the set of correspondences A: na) +Pa)

where A(n) is the set of options which are still possible after n has

been reached.

For any node n ¢ N(A), say that n' is a successor of n, and write

n' ¢ Su(n), if there is a branch z ¢ A such that xz(t) = n, x(t+1) = n'

(some t}(l)(z),

Strictly speaking, n' € Su(n) iff n' is an immediate successor of n.
() " L
) Notice that the decision tree A is, in effect, the "tree-graph" (N(A), Su),
in the sense of Berge (1963), p. 27.

i
|
i
|
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‘'uppose the agent facing the decision tree X is at node n. Then,

1y feasibte set A € X(n), there is, presumably a set of options C(n)(A)
b he is willing to choose. As A varies over subsets of X(n), we
set a choice function C(n) defined on the underlying set X. This suggests

the following definition:-

A dmamic choice function is a set {C(n)|n € N(X)} of choice functions
C(n), 'efined on the corresponding underlying sets X(n), where X is a |
decision tree for which the set of nodes is N(X), and the tree structure is
civen by X(n) (m e N(X)). X is called the wnderlying tree of the dynamic -:‘
choice function. For brevity, a dynamic choice function will be written
simply as {C(n)}. The choice functions C(n) (n ¢ N(X)) will be called the

components of the dynamic choice function.

In the typical dynamic choice problem, the feasible set is a subset
A of X. But any subset of X inherits a tree structure from X. For if
AC X, and n € N(A), the set of options which are still feasible after .
reaching the node n is Am) = A N X(n). It is clear too that A itself is a h
decision tree; it will be called a subtree of the underlying tree X.
Noti~e that a subtree can be obtained from the underlying tree simply
by cutting off some of the branches, just as a subset can be derived from

the underlying set simply by deleting some of the options.

Dynamic choice functions provide a framework in which one can discuss
changing choices and their relationship to welfare. As stated in section
4.1., we shall seek a method of reducing changing choices - or, rather, a
dynamic choice function - to a single coherent choice function which can be
raken as a welfare choice function. But reduction to a single coherent
choice function, on the underlying set X, is not quite enough. The result

©f the reduction process must be another dynamic choice function, otherwise
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there is a serious danger that the dynamic features of the choice
<iruation will still not be properly taken into account. But it must

be a dynamic choice function of which each component is equivalent to the
-ame static choice function . Such a dynamic choice function will be
described as "consistent". A precise definition of consistency, and

some implications of this definition, follow in the next section.
Thereafter, various ways of achieving consistency are explored, and

oxamined for their ability to generate coherent choices.

s

|
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Consistent Dynamic Choice.

As suggested above, a dynamic choice function will be defined as
consistent if each component is equivalent to the same static choice
function. But this equivalence needs to be very carefully specified.
The obvious definition is that there should be a choice function C on
+he underlying set X, corresponding to the underlying tree X of the
dynamic choice function {C(n)}, such that:=

C(n){A) = C(A) (each n € N(X), A € X(n))

fut this definition is inadequate, as the following example shows:-

Example 4.4.1.

n

c@d)

C

The underlying tree X is as shown in the diagram. 7, is used to denote
the node af(l1) = b(1). i
Suppose that C(n)(A) = C(A) (each n € N(X), A € X(n)) f{ }

and that C({a,b,e}) = l(a}

C(la,b}) = (b}

Then, with B = {a,b,c}:-
ac C(no)(B), but a ¢ C'flll)fB(nJ))
and b ¢ C'rnl){Bfn]H, but b ¢ C(no)(B).

So a is chosen at time O, but mot at time 1; b is chosen at time 1,
but not at time O. This is hardly consistent, nor have we really

succeeded in making all dynamic choices equivalent to a static choice

function. Is it a or b which is "chosen" from B? il

Suppose @ is unambiguously chosen. Then we need not only
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a € C(ny)(B) but also a ¢ C(n,)(Bln,)).
Suppose b is unambiguously chosen. Then we need not only

b e C(nJ){B(nI)J but also b ¢ C{no) (B).

This example helps to suggest the following definition. Suppose
that A is the feasible set, and that x ¢ C(n) (A(n)). Let n' be any

node such that n Pr n’. Then dynamic consistency demands two things.

First, if £ ¢ A(n'), so that x is still feasible at the later

node, then x must still be in the choice set at n' - i.e. x € C(n')(A(n')).
Second, suppose that z € A(n’), and that y € C(n')(A(n')) - i.e.

y is a possible choice at n'. For this to be consistent with the earlier

choice at n, ¥ as well as * must be a possible choice at n - i.e.

y € C(n)(A(n)).

Notice that the second argument only applies if X(n') N C(n)(A(n))
is non-empty. Otherwise, while the feasible set remains A, the agent
never puts himself in the position of having to choose from A(n'), and

so no choice from A(n’) can be inconsistent with his choice from A(n).

To summarize, the dynamic choice function {€(n)} on the underlying
tree X is consistent if, whenever n Pr n' and = € C(n)(A(n)) N am’):-
() xzeCMm')(AMM'))

(2) 1f y € C(n')(A(n’')), then y € C(n)(A(n)).

An equivalent, but less direct, statement of these conditions for
consistency is the following:-
Whenever n Pr n' and z ¢ C(u)(.l(n»ﬂ An'),

Ctn')(Am')) = Am') ) C(n)(A(n)).
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The proof that this is an equivalent statement is straightforward.
another equivalent statement, which is easier to verify for particular
cases, is the following:-
Whenever n' ¢ Su(n) and x € C(n)(A(n)) nam',

Ccn')(A(n')) = An') (\ C(n)(A(n)).
This is clearly implied by the previous statement. That the converse is
+pue can easily be proved by induction on the number of steps needed

to move fromn ton'.

The following theorem characterizes consistent dynamic choice more
fully and also shows. more clearly what was wrong with the first attempt

at a definition of consistency.

Theorem 4.4.2
(a) Given any consistent dynamic choice fumction {C(n)} on the
underlying tree X, there exists a choice function C on X such that:-
(i) For each n ¢ N(X), Ac X(n),

either C(n)(A) = C(A), or C(A) is empty.

(ii) For each n ¢ N(X), Ac X,
if z e C(A), and z € X(n),

then C(A(n)) = A(n) 0 C(A).
(b) Conversely, given any choice function C on X satisfying (ii) above,
there exists a consistent dynamic choice function {C(n)}, on the under-
lying tree X, defined by :-

C(n)(A) = C(A) (each A C X(n))

Proof

(2)(1) Define C(A) = C(ny)(A) , whenever A C X, where 1, is the initial

node of the tree A. Then C is a choice function.
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Suppose A C X(n), for some n ¢ N(X). Then A(n) = A = A!no).
cuspose too that T € C(A). Then z € C(no)(AJ,so that, by dynamic

onsistency, since x € A(n) Clny)(A):-

cn)(Am)) = A(n) N Clny) (Alny,

i.e. C(n)(A) = AN T(A) = T(A)
(:1) 1f x € C(A) = C(ny)(A(ny)), and if x € X(n),
then C(n)(A(n)) = A(n) N\ C(ny)(A(ny))
and so C(A(m)) = Afn) ) T(A).

—_—

(b) Suppose that C satisfies (ii), and that {C(n)} is defired by
C(n)(A) = C(A) (each A € X(n)).

Suppose that z ¢ C(n)(A(n)) and that n Pr n'.

Let B denote A(n). Then B(n) = B, B(n') = A(n').

Now C(n')(A(n'))

cin')(B(n'))
C(B(n'))

Bn') N C(B)

An') 0\ Tn)(A(n))

as required for dynamic consistency.

The theorem shows that the first attempt to define consistent
dynamic choice failed because it overlooked the need for property (ii).
Property (ii) is a kind of "rationality" property. Its meaning can be
illustrated by lemma A.S5.1l. of appendix 1, which is restated here for

convenience.
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mma 4.4.3.

The foliowing condition: are equ:valent:-
1) B¢ A and x € B C(A) together imply that C(B) = BN C(A).
(2) € is an ordinal choice function on the family of sets S for

which C(S) is non-empty.

, relationship to property (ii) can be seen by recalling that, if
¢ C(A) and x € X(n), then x € A, and so x € A(n) - i.e. x € A(n)N C(A).
o, if (1) is satisfied, then C(A(n)) = A(n) N C(A), as required. In
particular, then, if C is any ordinal choice function on X, the dynamic
choice function {C(n)} on X, defined by:-
C(n)(A) = C(A) (whenever A C X(n))
(1)

is consistent .

Now that we know what consistent dynamic choice means, we can
proceed to explore ways of removing inconsistency in a given dynamic
choice function. Before getting too involved in theoretical detail,
nowever, some of the ways of removing inconsistency will be illustrated

iz a simple, but fundamental, example.

i It has  ~n my experience that some people find this result
comter-intu. .ive, and a contradiction of Strotz (1956), who proved

that the utilit; functions he was considering had to have a very special
form if they were to correspond to consistent dynamic choice. But this
contradiction is only apparent. Given two nodes such that n' e Su(n),

‘rotz insisted on a very special relationship between C(n) and cm') -
namely that C(n') was effectively C(n) shifted one period forward in time -
! stationarity property. To make +'iis meaningful, there was a similar
“elationship between X(n) and X(n'). It was these staotionarity properties
which, together with dynamic consistency, gave him such strong results.

|
b
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4.5. The Potential Addict Example

Consider an individual who is _contemplating a mode of behaviour
which is potentially habit-forming. More specifically and clearly,
suppose the individual is wondering whether or not to start taking an
addictive drug. We may presume that the drug gives rise to pleasant
sensations, at least initially. The individual would most prefer to take
the drug infrequently, or for a short time, so that he enjoys the drug
without damaging his health. It is assumed, however, that if the
individual starts to take the drug, then he is certain to become an
addict, and so to take the drug very much more than he had originally
intended, with serious consequences. On the otﬂer hand, hz can refuse

to take the drug at all.

The pctential addict has a dynamic choice problem which, given the

simplifying assumptions, has the following underlying tree:-

a
l"l.1 .
n'O
c(1) c

where n, is used to denote the node a(1) = b(1), and where the options
a,b,c can be described as follows:-
a - take the drug until it is about to impair health, then stop
b - become an addict

¢ - refuse the drug altogether.

The most plausible dynamic choice function for the potential addict

is as follows:-

)




C(no) corresponds to a preference relation R, such that:-

a }’O b, a PO c, e PO b

C(n,) corresponds to a preference relation RI such that:-
b P, a
Evidently, {C(n)} is an inconsistent dynamic choice function. Four

possible ways of removing this inconsistency are the following:-

(1) First, the agent can be "naive" or "myopic"(l).

At time 0, and
node e he "chooses" a., At time 1, and noderﬁ, the feasible set is
X(nj) = {a,b} and his choice is b. The outcome is b, and this is his

"choice" from {a,b,c} .

This procedure can be used to find the naive dynamic choice function

{¢°(n)} corresponding to {C(n)}. Here:-

CO(nOH{a,b,c}) = {b}, C°(no)({a,b}) = (b},
Co(noH{a,o}J = {a}, c"rno)r{b,cn = {e}
c°rn1)r{a,bn = {b}

as is easily checked. Moreover, {c°(n)} is dynamically consistent.
However, the corresponding static choice function = Cp(noJ is

obviously incoherent.

(2)

(2) Second, the agent can be "sophisticated". He foresees that, if

he ever takes the drug, he will then become an addict. So, at time O and

node 55 he recognizes that the only two options he can attain, given
(1)
See Strotz (1956) and Pollak (1968).

(2) ’
See Pollak (1968), p. 203. Strotz (1956), p. 173, calls this "the

trategy of consistent planning". Since there is more than one way of
removing inconsistency, Strotz's term seems to make an excessive claim
or one of these ways.

e —
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s later choices, are b and ¢ - addiction and refusing the drug
- together. He chooses from the set {b,cl}, and his choice is ¢ -

not taking the drug.

This procedure can be used to find the sophisticated dynamic

hoice function {C*(n)} corresponding to {C(n)}. Here:-

C*(noJ({a,b,c]) = {e}, C‘(no)({a,b}) = {b},
C‘(nOJ({a,c}J = {al, C‘(noJ({b,c}) = {e}
C*(nz)f{a,b)) = {b).

as is easily checked. Moreover, {C*(n)} is dynamically consistent.
However, the corresponding static choice function C* = C*(no) is

obviously incoherent.

(3) The third possibility is one which I shall call "intertemporal
liberalism". In the first place, the potential addict notices that
b Pl a. Then, he adjusts the choice function C= C(no) to take account
of this, so that, in the end, he has a new dynamic choice function which

is consistent. There are, of course, several ways of making the

adjustment. One restriction which must be satisfied is that C({a,b}) = {bl.
But, as is shown by example 4.4.1. (which is a partially specified version
of the potential addict's problem) this does not, by itself, achieve
consistency. For consistency, C must also satisfy property (ii) of

theorem 4.4.2. As lemma 4.4.3. shows, it is sufficient for C to be

ordinal.

Suppose that C corresponds to the preference relation ﬁ, which is

-

transitive. Then the following are the possible adjustments:-

|
|
|
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)y bPa, a Pe, b Pe
y bPa, ¢ Pa c¢Pb
y 4 Pa, ecPa, bPe
iv) b Pa, ¢ Pa, b ITe
(v) bPa, a Te, b P e.

co the preference relation PO does indeed have to be altered, and not

oni s replacing a PO bbyb P a; consequential changes are also needed.

The special case in which C is ordinal will be considered for more
peneral dynamic choice problems later on. So will the use of the term
"intertemporal liberalism". But, even now, it is possible to notice some

(1)

affinity to Sen's use of the term "liberalism". Roughly speaking,
"liberalism" involves recognizing that some individual preferences should
be decisive, when a social preference relation is being coastructed.

"Intertemporal liberalism" means that certain preferences in the future

]
|
|

should be decisive, when a consistent dynamic choice function is being

constructed.

(4) A fourth suggestion is that the agent should "precommit" himself‘z).

This means that, somehow, he forces himself to follow the path he chooses
initially. But the way this is to be done is left unclear. It seems to
involve new options. For example, Odysseus was able to listen to the
“irens without harm because of the careful precautions he took(a). But,

if these precautions had not been feasible - if, for example, there had

been no rope or twine to bind him to the mast - he could not have

(1)

See Sen (1970b), and (1970a), ch. 6.
(2) .

See Strotz (1956), p. 173, Pollak (1968), p. 202. Blackorby et al.
1973} speak of "preference inheritance".

) ; ’ .
~ This striking example is suggested by the quotation at the head of
trotz (1956).




ccansfully precommitted himself. Again, how is the potential cddict
precommit himself, so that he avoids addiction? Thare must be a

new option, d, which involves him taking the drug but being forced to

we it up before it harms him. With this new option, the underlying

tpee becomes:-—

ff,,a-L
T
. \E—‘x‘h Tt
R

d has the same consequences, in terms of enjoyment and continuing health,
as does a. But if the agent chooses d, rather than a, he avoids

addietion.

It seo95 that, although precommitment may be an important
phenomenon in dynamic choice, #t is nothing more than a certain kind of
sophistication. For, when all the options are taken into account, there
is no way of precommitting oneself which is not already specified within
the set of options. Accordingly, precommitment cannot be regarded as a

-

way of making dynamic choice consistent after all.

The rest of this chapter is a discussion of these different ways
of making dynamic choice consistent. But first some rather drastic
assumptions will be made. These have the effect of greatly simplifying
the analysis. The seriousness of the assumptions will be discussed later,

in section 4.9.
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Come Assumptions_and Notation.

To facilitate later analysis, I shall now introduce some
;implifying assumptions concerning the underlying tree X, and the
iynamic choice function {C(n)} which is to be made consistent. The

assumptions are as follows:-

(#1) Lach branch x of the underlying tree X has at most T nondegenerate

rodes. That is, if = = (x(0), x(1), =(2), ...) is a branch of X,

then, for all t > T, X(x(t)) = {z}.

This means that on no branch. of the underlying tree is there any
scope for changing the choice of option after period T has bean reached.
Such a tree will be called bounded, and T will be called a bound. T
is a bound on the length rather than the number of branches, of course.

But notice that a tree with a finite number of branches must be bounded. i

(A2) For each node n ¢ N(X), C(n) is a coherent choice function on the

underlying set X(n). |
This assumption is straightforward.

(A2) For each node n ¢ N(X), and each AC X(n), C(n)(A) consists of

precisely one option.

This is certainly a strong assumption, particularly in combination
with (A2). Indeed, (A2) and (A3) together imply that each choice function
Cfn) is ordinal, and corresponds to a stromg ordering, as is shown in
appendix 1, lemma A.5.2. Let P(n) be the strict preference relation

corresponding to C(n).

Define a dynamic strict preference relation as a set {P(n)|n € N(X))

* strict preference relations P{n), where each P(n) is defined on X(n),
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(or the tree X. Say that {P(n)} is eonsis tent if, whenever n I'r n'
nd x, y € Xn')a-
xr P(n') y iff x P(n)y
. rie case when {€(n)} is a dynamic choice function, and each component
‘s ordinal, and, for each A € X(n), C(n)(A) consists of a singleton,
we know that, by theorem A.9.3., {C(n)} is consistent if and only if

{P(n)} is consistent.

Let us introduce some further notation. Let X be a decision tree,

with structure {X(n)}. Let {C(n)} be a dynamic choice function on X.

Given any node n ¢ N(X) and any branch x ¢ X, write nlfn,x) for the
node immediately following n on the branch x. That is, if x(t) = n,
then x(t+l) = nf(n,x). Also n' € Su(n) and £ ¢ X(n') if and only if

n' = nlfn,r). And, of course, Su(n) = {(n'|3z € X(n) . n' = nlfn,x)}

Given any node n € N(X), and any A € X(n), let A, or AJ{n) denote
the set of nodes immediately succeeding n which can be reached alongz

=~me branch of A. That is:-

A ) = (n'|3z e A(n) . n' = ny(n,z))

0f course, X,(n) = Su(n) in this notation.

Also, given any component C(n) of the dynamic choice function, and
any AC X(n), let CIfanA) denote the set of nodes, immediately

succeeding n, to which the agent is willing to move along a chosen

branch, That is:-

C,m)(A) = (n' e Al(n)lﬂz € Cm)(A) . n' = n,(n,zx)}
Now C,(n) is not a choice function, because it maps sets of whole branches
‘nto sets of single nodes. Nevertheless, it serves to define a choice

function Ci(n) on X(n) as follows:-
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¢y (R) =U{AMm')|n" ¢ C,(n)(A}}

o C}(n}(ﬂ) if and only if, for some n' ¢ Cf(n)(AJ. zcAln').
other words, X is '"chosen" if and only if, after one of the first
noves from n which the agent is willing to choose, x is still feasible.

bviously,
Cn)(A) € Ci(n)(ﬁ) € A (each A c X(n))

and 5c¢ F}(n) is certainly a choice function.

Nevertheless, it is Cz(nJ itself which is more useful in the

following analysis.

e et g A PR Y T

T T P
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t,7. Naive Choice

The first method of arriving at consistent dynamic choices,
~tarting from an inconsistent dynamic choice function, is myopic ur
naive choice. In this section, naive choice will be defined, and it
W11l be shown that it does lead to consistent dynamic choices, although
not necessarily to the ones which the agent thinks he is going to make.
In adiition, it is shown that naivety makes no difference if the dynamic

choice function is consistent to start with.

Consider the naive agent at node n of the underlying tree X,
facing the feasible set AC X(n). The choice set which he believes he
has at node n is C(n)(A). Consequently, n’ is a node to which the agent
might move one period later if and only if, for some branch r of thel

tree X, and for some time t:-

x(t) = n, x(t+l) =n', and = € C(n)(A).
i.e. z(t) = n, and z(t+l) ¢ CI(n)(A).
(using the notation introduced in section 4.6).
And n" = x(t+2) is a node to which the agent might move two periods
later if and only if, in addition:-
z(t+2) € CI(n')M{n'J)
By induction on 8, z(8) is a node to which the agent might move at the

end of period 8 if and only if:-

z(r) € Cylz(r=1) (Alx(r-1))  (r = t+1, t42, ..., o)

Let (“(n)(A) denote the set of branches which the agent may eventually

follow, given his later choices each period. Then what has been shown
that:-
x ¢ C°(m)(A) iff, for some time t, x(t) = n, and:-

2(8+1) ¢ szx(a))(A(x(s))) (8 = t, t+l, t42, ...)

et it i
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Notice that z ¢ C°(n)(A) iff, when n' = nJ(n,x}:-
i)n' ¢ CT(HJ{A)

‘i) x e COMm')(A(MM'))

Now, it seems fairly obvious that the following results will be true:-

-

) ic°(n)} is a consistent dynamic choice function on the underlying
set X.
it {C(n)} is consistent, then {C°(m)} is identical to {C(n)}.

.od, these results are valid provided that the underlying tree is

unded - that is, assumption (Al) of section 4.6. is satisfied. But

without this assumption, problems can arise, as the following modification

of the procrastinator example of section 4.2. shows:-

Example 4.7.1.

The unicrlying tree X is as in the procrastinator example:-

ox »x x rx ox

0 1 e / .
[ S ———— _..___._‘.'_'.’. / . — S — — — L |
n n, n, ng n, z

The agent's choice function at each node O is taken to be :-
C(ﬂt)(AJ =A - ()} (each A € X(n,)).
That is, the agent ic assumed not to care when he performs the act a,

provided he performs it at some finite time.

It is easy to check that {C(n)} is a consistent dynamic choice
function on the underlying tree X, and that each component C(n) is
rdinal. Indeed, each C(n) corresponds to a utility function u(n)(.)

‘fined as follows:-

u(n)(xt) 1 (t finite)

"
o

u(n}(xm)

T

s

——— - e

i
|
i
i
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Despite the apparent simplicity and normality of this example, naive

choice h::ls some surprising properties.

rirst, suppose 4 = X = {x_} - that is, performing a at any [iuice
ime is feasible, but putting it off forever is not.
Now x_(t) = n,s and so z_(t+l) ¢ lex.(tJ)(A(:_(tJ)) (t =0,1,8,004)
S0, according to the definition of naive choice, z_ ¢ Cofnt) (A) (each t),
even though r_ ¢ A. That is, Cofnt,l (+) violates one of the axioms of
choice - that (,'°{nt) (A) € A (each A). So {c®°(n)} is not even a dynamic

choice function, properly speaking.

Second, x_ € C°(nt)(Afnt)), but x_ ¢ C(nt)(X(ntJ) (each t). That is,
naive choice is different from intended choice, even though the intended

dynamic choice function {C(n)} is consistent.

To surmount this troublesome example, it will be assumed from now

on that the underlying tree is bounded. Then:-

Theorem 4,7.2,

{c°)} is a consistent dynamic choice function on the underlying

tree X,

Proof.

(1) Suppose that A is a finite subset of X(n), for some n ¢ N(X). Then,
«henever n precedes n', A(n') C A, and so A(n') is finite. It follows
that C(n')(A(n')) is nonempty, and so, that C‘I(n')(A(n'J) is nonempty,
whenever n Pr n'. Consequently, one can find a sequence of nodes

M aMgs Mgy such that n, ¢ (.'I(n)(AJ, and n

1 m+1
Now, there is a branch z ¢ X such that z(t) = n. Let y be the branch

€ CI(nMJ M(an(m 2 1,2,000/

defined as follows:-
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t+1,t+2,...)

n (s

y(s) :{r(n) (8 = 055040t
s-t

Then ¥ € c®°()(A), and so this choice-set is nonempty.

(2) Let T be a bound on the length of the branches of the underlying
tree X - i.e., suppose that, whenever & ¢ X and t > T, then X(x(t)) = {z}.
Suppose that x € c°(n)(A) (some A C X(n), some n e N(X)).
Then z(8+1) ¢ Cl(x(s)){df:(e)d (s = t, t+l,...)
x(t) = n.
In particular, whenever 8 > T,
2(s+1) ¢ Cy(z(s)) (A(z(8))).
But if 8 > T, then A(z(8)) is a singleton - {y} say.
Now, by induction on &, z(8) = y(8) (each s > T). Hence x and y must

be the sam= branch. In particular, z € A. This shows that c°m)(a) ¢ A.

(3) From (1) and (2), it is clear that {c®(n)} is a dynamic choice

function. Call it the naive dynamic choice functionm .

(4) Tt remains to b-e shown that {C°(n)} is consistent. Suppose that
ne NX), n' € Suln), z ¢ A(n') N ®(n)(A(n)), and that x(t) = n. Then
z(t+l) = n' = nI(n,::J.
(1) Now z(s+1) ¢ C,(x(8)) (Alz(8))) (8 = t,t+1,...), and so
x e C°(n')(A(n')), certainly.
(ii) Conversely, if y € C°(n')(A(n')), then y(t) = n, y(t+1) =n', and

y(e+l) ¢ ley(s“(uyl’s))). (8 = t41,t42,...).

Since n' ¢ CI(n)I'A(n)), it follows that

y e An')N c°(n)(A(n)), as required.

It is worth noting that assumption (Al) - that the tree is bounded,

was only needed for part (2) of the proof.




orem 4.7.3.

1f (C(n)) is consistent, then {C°(n)}is identical to (C(n)} - i.e.

ive choice s identical to intended choice.

.= proof will proceed by backward induction. Suppose that T is a
“he length of each branch - i.e. that X(z(t)) = {x} whenever
“nen, whenever t > T, n = z(t} and A C X(n) = {z},
c®mn)a) = cm)(4) = (xh
\-xt, suppose that whenever n'e Su(n), then ¢®°(m') is identical to

°m). Let Ac X(n). It is enough to show that c®(n)(A) = C(n)(A).

(2) Suppose that z € C(n)(A). Let n' denote nI(n,x).
then = ¢ C(n')(A(n')), because {C(n)} is consistent. So
c ¢ M i .(n')), by the induction hypothesis. Since n' e CI(n)(A),

it follows that x* € ¢°(n) (A), as required.

(3) Suppose that x € c°mn)(A). Let n' denote nJ(n,.:.'). Then n' € Cl.’n) (A),
e = On')(A(n')). So, for some y € A(n'), y e Cinii/). Since {cn)?
s consistent, it follows that

Cin'J(An') = A(n') ) C(n)(A).But c®m')(Am')} = Cctn')aln'))

the induction hypothesis, and so x € C(n)(4), as required.

0f course, if {C(n)} is not consistent, then {¢°(n)) cannot be the

me as (C(n)}, because {€°(n)} is consistent.

[ne coherence of naive choice will be explored later, in section 4.9.
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4.8. Sophisticated Choice.

The second method of removing inconsistency from dynamic choice i<
to make sophisticated choices. These will now be characterized, and
results corresponding to those for naive choice will be proved. But

now heavy reliance has to be placed on the assumptions of section 4.6.

A sophisticated agent is one who, in making his choice at a node n
of the decision tree, takes into account those choices which he will
actually make at nodes which follow n, and recognizes that he can only
choose amongst those branches of the decision tree that he will actually

follow through to their end.

Let A be the feasible set of options. Suppose that the agent finds
himself at node n. Then his feasible set has become A(n) = AD X(n),
because of the structure of the underlying tree X. But the set of optiens
which are truly available to the agent is a subset of A(n), which depends
on his later choices. For, if his later choices veto branch z, he

cannot in fact attain z even though z ¢ A(n).

Let A*(n) denote the set of branches or options which are attainable,
given that the agent is at node n. If A*(n) were the feasible set, and if
the agent faced a purely static choice situation, his choice set would be
C(n)(A*(n)) - i.e. he would choose according to the appropriate component
of his dynamic choice function {C(n)}. In fact, the agent faces a dynamic
choice situation, in which A#*(n)is the attainable set rather than the
feasible set. But the sophisticated agent ignores these differences. He
regards the choices which he makes later as. constraints, just as though

they were choices being made by other agents. In fact, he plays a game -
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in the von Neumann - Morgenstern sense - with these other agents. This
pame is one of perfect infomation.(l) The agent chooses as best he
can, given the reactions of these other, fictitious, agents to his

choice. Consequently, at node n, the agent has the choice set:-

C4(n)(A(n)) = C(n)(A*(n)).

Under the assumptions of section 4.6., the attainable sets A*(n)
and the sophisticated dynamic choice function {C*(n)} can be found by
backward induction, as follows:-

First, if AC X(n) and A = {z}, then obviously:-

A%(n) = {z)} , and C*(n)(A) = C(n)(A) = (z).
Given the assumption that X(x(t)) = {z} whenever t > T, this serves

to define {(C*(n)) whenever n = x(t) , where t > T.

More generally, for x € A*(n) to be true, the agent must be willing
to follow = from the node n' = nJ{n,z} on, if he starts by going to n',
So it is necessary that = € C*(n')(A(n')). But this condition is not,
strictly speaking, sufficient. The reason is that whether z is attain-
able depends not merely on whether the agent is willing to choose x,
but on whether the agent will in fact choose zx. And, ultimately,

the agent cannot choose more than one option.

It was preciscly to overcome this problem that assumption (A3) of
section 4.6. was made. For if C(n)(A) is a singleton, whenever Ac X(n),
the problem disappears. As will shortly be shown, there will then always
le a unique option which the agent is willing to choose, and so it

becomes safe to assume that he will choose that option.

(1) )
See von Neumann and Morgenstern (1953), p. 51 and 112 - 124,

s a—

£
|
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Now define the attainable sets A*(n) and the sophisticated

Jynamic choice function {C*(n)} so that:-
A*n) = U {C*(n')(AMm'))|n" € Su(n)}

c*(n)(A(n) = C(n) (A%(n))

(whenever n ¢ N(X) and A C X(n)).

14(n) has the form above because the agent is free to move to any node

later choices force him

w! ¢ 5u(n), once he moves to n', however, his

o follow C*(n')(A(n')), which will be a unique branch, as will now be

seen. In fact, it is obvious that C*(n)(A(n)) is always a singleton

because of assumption (A3) of section 4.6.

The following results show that sophisticated choice is dynamically

consistent, and that sophistication is unnecessary if the original

dynamic chcice function is consistent.

Theorem 4.8.1.

(C*(n)} is a consistent dynamic choice function.

Proof

(1) That C*(n) is a choice function on X(n), for each n ¢ (X) , is

evident because A*(n) € A(n) (each n) and C*(n)(A(n)) = Cn)(A*(n)).

hlso, A*(n) is clearly non-empty whenever A is finite, by backward

induction.

(2) 1f z € C*(n)(A(n)), and = € A(rn'), where n' ¢ Su(n), then = ¢ A*(n),

nd sox € CAn'")(A(n')).

(3) 1f 9 ¢ C*n')(A(m')), where.n' ¢ Su(n), then y € A*(n). But, by (A3),

C4(n)(A(n)) consists of precisely one option. Let this be x. Then,

by (2), = ¢ C*(n')(A(n')). Again, by (A3), C*(n')(A(n')) is a singleton,

50 that z = y, and so ¥ ¢ Cc*(n)(A(n)).

|
|
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(4) From (2) and 13). ifzeAm') N C*(n)(A(n)), and n' € Su(n), then

rxin')(A(n')) = Am') O\ C*(n)(A(m)). So {C*(n)} is consistent.

Theorem 4.8_3_3_.
If {C(n)} is consistent, then {C*(n)} is identical to {C(n)l.

Proof.

(1) The proof will proceed by backward induction.

First, if n = x(t), where t > T, then X(x(t)) = (z}, and so
c*(n)(A) = C(n)(A) = {x} because, if A € X(n), then A = {z}.
Next, suppose that whenever n' € Su(n), then C*(n') is identical to
C(n'). Let AC X(n). It is enough to show that C*(n){4) = C(n)(A’.
(2) Suppose that x € C(n)(A). Let n' denote nI{n,z). Then £ . C(n')(A(n')),
by consistency. So x € C*(n')(A(n')),and therefore x ¢ A*(n). Now,
by (A2) of section 4.6., we are assuming that C(n) is coherent. Therefore,
since x € C(n)(A), = ¢ A*(n), and A*(n) € A, it follows that

r e C(n)(A*(n)) = C*(n)(A), as required.

(3) Suprose that x € C*(n)(A). By (A3) of section 4.6., there
is a unique ¥ such that y € C(n)(A). By (2) above, y € C*(n)(A). But
z € C*(n)(A), and C*(n)(A) is a singleton. Therefore z = y, and so

z e CM)(A), as required.

The assumption that there was a singleton choice set obviously
had a crucial role in these proofs. Less obvious may have been the
necd to invoke coherence, which we did in part (2) of the proof of
thcorem 4.8.2. The following example illustrates what can go wrong if

there is incoherence.

I il e
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Exam le y, B. 3.

. *a
e

- M Ty

"-0 - ‘\\\‘\\

[

The underlying tree is as in the diagram above, and {C(n)} ia defined

by the following:i-

C(no)({a,b,c}) = C(no)({b,c}) = {e}).
Crno)({a,b}) = C’(no)({a,c}} s C{nj)({a,b}) = {al.

Then {C(n)} is dynamically consistent, but Ct’no) is incoherent, because
et C(no)({a,c}.!, although ¢ ¢ C{no)({a,b,c}). In this example,
sophisticated choice leads to A*(noJ = {a,e} (if A = {a,b,c}),

and C‘fno)r{a,b,c}) ] C(no)({a,c}) = {a}, which is not the same as

Clny) ({a,b,e}).
As with naive choice, if {C(n)} is inconsistent, then {C*(n)}
cannot be the same as {C(n)}, because {C*(n)} is comsistent.

The coherence of sophisticated choice, together with that of naive

choice, will now be explored.

I
|
\
1
|
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4.¢, The Coherence of Naive and Sophisticated Choice.

Now that naive and sophisticated choice have been defined - at
least, defined under special circumstances, as specified by the
assumptions made in 4.6. - we can set about finding when they are

coherent. It turns out to be easiest, in many ways, to treat both

kinds of choice together, for this purpose.

We already know, from the potential addict example of 4.5., that

both naive and sophisticated choice may be incoherent, no matter how
"rational" the components of an inconsistent dynamic choice function
may be. On the other hand, if a dynamic choice function is consistent,
and satisfies the assumptions of 4.6., then both the naive and
sophisticated dynamic choice functions derived from it are, in fact,
identical tc the original dynamic choice function, and so give coherent

choices. This follows from theorems 4.7.3. and 4.8.2.

These special cases tell us something; in particular, they tell us
that our problem is to characterize those dynamic choice functions which

give rise to incoherent naive choice or to incoherent sophisticated choice.

It turns out that the kinds of choices which led to incoherence in
the potential addict example are especially significant. Broadly
speaking, unless there is a part of the underlying tree over which the
dynamic choice function looks like that of the potential addict, both
naive and sophisticated choice are coherent. In fact, given our assumptions,
they are not only coherent; they are also identical to each other and
are both ordinal. These preliminary remarks will, I hope, serve to

make the following steps more plausible.

Recall that the assumptions made in section 4.6. implied that each

component of the dynamic choice function {C(n)} corresponds to a strong




ylering P(n) on the set X(n). HNow a generalization of the dynamic
-

choice configuration of the potential addict example is as follows:-

First, define n(aq,0), for any pair of branches a,b € X, as the
node m € N(X) such that a(t) = b(t) = n, but a(s) # b(s) whenever s > ¢,

nranches @ and b have the sequence of nodes

{,(-'_:,', -.-(U,...,al'c)) = (b(O),b{I),...,b(tJ) in common, but separate

With this notation, the required gemeralization of the potential
addict example can be described as follows:-
There are three branches a,b,e and two nodes n,n’ of the underlying
tree X such that:-
(i) n = n(a,e) = n(b,ec)

(ii) ="' - n(a,b)

o —— s

(iii) n Pr n'

(iv) @ P(n') b, b P(n) e, ¢ P(n) a. |

Properties (i) to (iii) can be illustrated in the following diagram:-

/

n
/
S (z'\(k'b‘l] / T - e
s .)1 ; (=alt) s Ht')) te v
(=n(a,) e R e e ‘
(- L= e clerd) L

¢

0 the underlying tree is a "stretched" version of that in the potential

#ddict example of section 4.5.
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The preferences on such a triple are dynamically inconsistent, of

~urse, because it must also be true that b P(n) a. This type of
.- ~snsistency will be seen later to be ‘especially importént. Accordingly,
shall say that the dynamic strict preference relation {Pn)} is
rentinlly inconstotent if there is a triple {a,b,e} with properties
.y +. ('y) above. Otherwise, we shall say that {P(n)} is essentially

i P Lent.

3 considering the three options a,b,c as in the potential addict
ewamnle. it is easy to show that any essential inconsistency gives rise
ot - incoherent naive choice and to incoherent sophisticated choice
o~ the triple {a,b,e} . Our task now s to prove that under essential

consistency, both naive and sophisticated choice are coherent.

Recall that if a coherent choice function has singleton choice sets,
then it is ordinal and corresponds to a strong ordering (lemma A.5.2. of
anpendix 1). So, since the assumptions of section 4.6. imply that both
-aive and sophisticated choice give rise to singleton choice sets, if
they are coherent, they must also be ordinal and correspond to a strong
ordering. As will be shown later, the strong ordering they correspond to -
if they are coherent - is the fcllowing:-

r Py iff =z P(n(z,yl)) y
It is obvious that P is antisymmetric, in the sense that either = Py

7z or r = y. Then we have:-

.
7]
-+
"3

ansitive unless the dynamic preferences (P(n)} are essentially
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Proof.

Suppose P is not transitive. Then there is a triple of options
{2,0,c} such that:-

aPb bPe ePa

fvidently, n(a,b) # n(b,c), because each P(n) is transitive. Define

" = n(e,b), n = n(b,e). Assume that the options are labelled so that
v v+ n . Then, from the definition of P, it is evident that we have an

essential inconsistency.

So, if the dynamic preferences {P(n)} are essentially consistent,
as we assume they are, then the relation P defined above is a strong
ordering. Finally, we show that, in this case, it corresponds to both

naive and sophisticated choice.

Lemma 4,9,2.

Suppose that the dynamic choice function {C(n))} satisfies the
assumptions of section 4.6., and that the corresponding dynamic
preference relation {P(n)} is essentially consistent. Then naive

iynamic chuice corresponds to the strong ordering P.

Proof
(1) The proof will proceed by backward induction.
First, if ¢t is large encugh, then X(xz(t)) = {x}, and then c®n)

7ust correspond to P, because any feasible set A € X(n) :s a singleton

anyway.

Suppose that n ¢ N(X) and that C°(n') corresponds to P whenever

"' ¢ Suln). Suppose that A C X(n).

(2) Now, suppose that z e C°(n)(A). Let n' be the node immediately
“ucceeding n on the branch z. Suppose too that z(t) = n. Then C(n)(A)

!s a singleton, {z)} say, where z(t+1) = z(t+1). Suppose that y ¢ 4 - {z}.




wypothesis, » F w.
¢ ¥(n'), then y ¢ Cm)(A), and so z P(rn} u. But niy,z) - n,
'« By (a), > P 3. Since P is transitive, x ¥ v,

it v ¢ ¥(n'), and y # x, then, by (a),

ither case, if x ¢ rP(nJﬂAJ, and y ¢ A - {x}, then x F y

‘rcely, suppose that = € A and there exists y € A such that

Now, if T € Cofn)(ﬂ}, then, by (2) above, x P y, because

/4 - lxr}. This is a clear contradiction, because P is antisymmetric.

< f "'ﬁ'-.’r.)(A), as required.

re ®(n) corresponds to P, as required.

':4..‘_.,. . i

“uppose that the dynamic choice function {C(n)!} satisfies the

|
!

mptions of section 4.6., and that the corresponding dynamic

‘ercnce relation (P(m)) is essentially consistent. Then sophisticated

naric choice corresponds to the strong ordering P.

) The proof is very similer to that of lemma 4.9.2., and proceeds
Laskwards induction. It is enough to show that, when n e ¥(X), and
') corresponds to P whenever n' ¢ Su(n), then C*(n) corresponds to
ose that A C ¥(n).
ppose that o e C*(n)(A) . Then, for sume t, x(t) = n. Let
note x(t+!) . Suppose that y € 4 = {z}.
f Xn'), and ¥ ¢ A*(n), then, since {x} = C(n)(A*(n)), it

nllows that & P(n) y, and n = n(z,v) , so that x P y.
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(,) 1f y £ X(n') and y £ A*(n), then there exists z such that

(2} = CAO(e+1fAly(£41))) . Since y £ CAGy(t+1)) Aly(t+1))
i+ fol)rws that z Py, by the induction hypothesis, and becuusa
y(t+1) ¢ Su(n). But now 3 ¢ X(n') and z € A*(n), so x P z, by
(a) above. Since P is transitive, x P y.

(¢) Ify ¢ X(n') , then, since {x} = C(n')(A*(n’)) = C*(n')(A(n'))
it follows from the induction hypothesis that x P v, since

y € An').

Therefore, if v ¢ A - {x} , then z Py, as required.

(2) Conversely, suppose that x ¢ A and there exists y € 4 such that

y Pz Theny ¢ A - {x}. So, if x € C*(n)(A), then by (2), x P y. This
contradicts antisymmetry of P.

(4) Thercflore C*(n) corresponds to P, as required.

In a sense, the whole of the preceding argument, from the start of
section 4.6., has been leading up to a single result. This result can

now be set out in full; the proof has already been carried out.

Theorem 4.9.4.

Let {C(n)} be a dynamic choice function on the underlying tree X,
satisfying the following properties:-

(A1) There exists T such that, tor all x € X,

X(z(T)) = {x}.

(A2) For each n ¢ N(X), C(n) is a coherent choice function on X(n)

(A3) For each n ¢ N(X) and A € X(n), C(n)(A) consists of precisely one
branch of X,

“t P(n) be the strong ordering to which C(n) corresponds. (It corresponds

o a strong crdering because of lemma A.5.2. of appendix 1).
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Then both tiie naive and the sophisticated dynamic choice functicns
©/n)} and {C*(n)}, are well-defined, consistent, and satisfy (A3).
necessary and sufficient condition for both ¢®(n) and C*(n) to be
colierent choice functions, for all n € N(X), is that there should be no
triple (a,b,c} of vranches of X on which the dynamic strict preference
relation {P(n)} is essentially inconsistent. If this condition is
satisiied, then naive and sophisticated dynamic choice both coincide,

(1)

and correspond to the strong ordering P

Naturally, even though naive and sophisticated choice may still
coincide with each other, when {C(n)} is inconsistent, they cannot
coincide with {C(n)}, because beoth {¢°(n)} and {C*(n)} are consistent -

as was seen in sections 4.7. and 4.8.

It is now time to evaluate theorem 4.3.4. In intertemporal welfare
economics, as in static welfare economics, our concern is with welfare
choice functions, for individuals and for society. These must be well-
defined, and ideally, coherent. So, in a dynamic choice situation, one
locks for a dynamic WCF corresponding to a single "metastatic", WCF. The
question now is how successful are naive and sophisticated choice in

providing us with such a WCF. In view of theorem 4.9.4., the answer

depends on how restrictive one finds essential consistency.

Y Blackorby et. al. (1973), theorem 6, is a result giving conditions
under which sophisticated choice from budget sets gives rise to inter-
‘emporal demands which maximize an intertemporal utility function. They
S1ow, in effect, that the dynamic preference relation must be consistent.

Attouph they consider a somewhat different issue, this result seems to
be quite close to theorem 4.9.4.
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.

In fact, it is hard to believe that very many dynamic choice

functions will be essentially consistent, unless they are fully consistent
erample essential consistency implies that ir a, b are two uranc es
wnich follow a common path up to node n' and then part - i.e. n' = n(a,b) -
and if n is a node preceding n'- i.e. n Pr n' - and if, finally,

g P(n) >, then at least one of the following must be true:-

(1Y a Pn') b

(2) There is no ¢ € X(n) - X(n') such that @ P(n) ¢ and e P(n) b.

nf these, (1) is tantamount to consistency of the dynamic strict

preference relation {P(n)}. On the other hand, (2) is a particularly
strong requirement, because if X(n) is a topologically connected set, the

condition implies that P(n) cannot be represented by a continuous

utility function.

At this point, it is time to assess how the restrictive assumptions
(Al) and (43) affect the conclusion that naive and sophisticated choice
are unlikely to be coherent. Suppose that we have a completely general
decision tree X, and a general dynamic choice function, whose only
restriction ic that each component C(n) is coherent - without this
restriction, there seems virtually no hope that naive or sophisticated
choice will be coherent. Pick any three branches of the decision tree X
at random, and consider dynamic cheices on this subtiree, consisting of
just three branches. For coherent naive and sophisticated choice on X,
4e need colierent naive and sophisticated choice on the triple. On this

‘riple, (Al) is satisfied automatically. (A3) will be unless we happen

"o have picked a triple for which no choice set contains more than one

ranct

+ And if (A3) is satisfied, then what is needed for coherent naive

and sophisticated choice just on this triple, is an absence of essential

‘fcunsistency. Since this must be true on any triple, it seems hard to
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be ieve that assumptions (Al) and (A3) make very much difference.

For this reason, it seems fairly safe to regard both naive and
sophisticated choice as inappropriate ways of achieving consistency in
dynamic welfare choice functions. And, of course, this reason is quite
independent of any additional ethical arguments which could be advanced
against such choice procedures. Such arguments are, moreover, easy to
sdvance. Naive choice, and its synonym, myopic choice, are value-loaded |
phrases which seem appropriate. Sophisticated choice is virtually an

implicit "second-best" approach(l).

Consequently, in the rest of this work, there will be no further
consideration of naive or of sophisticated dynamic choice. Instead, the
third method of reconciling inconsistent dynamic choices is the one ;
to be used from now on. This, remember, was called "intertemporal
liberalism" in section 4.5. After a lengthy but necessary consideration

of alternatives, it is time to return to it.

—

(1)

As suggested by Phelps and Pollak (1968). 1
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Intertemporal Liberalism.

Naive and sophisticated choice were two possible ways of reconciling
‘hconsistent dynamic choic;s. But they are not the only two possible
;ays. Moreover, as was seen in section 4.9., they are unlikely to
sield a consistent dynamic choice function with coherent components. A
third method of removing inconsistency was suggested in section 4.5.,
and the term "intertemporal liberalism" put forward as a possible
description of the method. This section considers the method for

more general dynamic choice situations.

It is convenient to retain assumption (Al) of section 4.6., that
the underlying tree is bounded. Indeed, this assumption will be
retained almost without exception until chapter 7. On the other hand,
assumption (A3), that every choice set is a singleton, no longer has
any significant role to play, and so it will be dropped. Assumption (A2),
that each component of the dynamic choice function {C(n)} is coherent,

will be discussed shortly.

The problem we have been facing throughout this chapter is that of
converting an inconsistent dynamic choice function {C(n)} intc a
consistent one {C(n)}, of which each component C(n) is a coherent
choice function. It is this cohevrence which has been difficult to achieve.
So let us now see what methods can possibly give cohererce. First,

however, we must consider all the possible ways of reconciling dynamic

inconsistencies.

What is involved here is a mapping g from dynamic choice functions
‘ynamic choice functions, with the property that each image dynamic

‘ce function is ccnsistent.
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Thus (Cfn)} = g({Cn)})
iCin)} is consi;:tent, then ;"(no,‘- where n, is the initial node
the underlying tree X - determines {C(w} uniquely, as in section 4.4,
the mapping can be expressed in the following form:-
Clnyi = gl{cn)}).
.refora g aggregates the components of a dynamic choice function into

;ingle choice function on the underlying set X. So g will be called

. dynamic aggregation function - or DAF.

So far, only dynamic aggregation at node no has been considered.
"ut there is no reason to stop tl;er'e. At any node n ¢ N(X), there is
a dymamic choice function {C(n')}(n) on the underlying tree X(n). Here,
{C(n')}(n)denotes the dynamic chcice function {C’'(n’)} defined on
X(n) by:-

C'(n')(A) = C(n'")(A) whenever n Pr n' and AC X(n').

The dynamic choice function {C(n')}(n) can also be aggregated to yield
a single choice function C(n) on X(n), and so a corresponding dynamic
choice function on X(n). There is no guarantee a priori that the choice
function £(n) will be consistent with E'(no}. Nor is there any reason

to regard E‘(no) as giving "better" choices than 5‘(?1), or vice versd.

fo dynamic aggregation can occur 2t any node n € N(X). There are,
accordingly, mappings g(n) from the set of dynamic choice functions on

1/ to single choice functions on X(n), for each n ¢ NiX). Each function

' i5 a dynamic aggregation function.

What we are looking for is a.comsistent se:i of dynamic aggregation

Jwietions {g(n)} - one DAF for each n € N(X) - such that:-

N




Yy (n) maps yuamic choice functions {C(n')Y(n) on X(x)
nto cingle rhoice functions on X(n), thus:-
= an) ({(C(n') Hn))

“(n)} is a consistent dynamic choice function on X, for

iy given initial dynamic choice function {C(n)}.

(3) for each n ¢ N(X), C(n) is a coherent choice function.

e more property seems sensible. If the dynamic choice function
')} (%) cn X(n) is already consistent, there is no point in changing
i1 to achieve consistency. But there may still be a need to change it
schieve coherence; to exclude this possibility, we shall keep
umption (A2) of section 4.6. - that each component C(n) of {C(n)!
s ~oherent. Then the following extra restriction on DAF's will be
impose-::
(4) If {C(n')}(n) is consistent, then C(n) = C(n).
Although this restriction is important in restricting the search

for DAF's, it has little role to play in the formal analysis.

First of all, let us verify that there is a consistent set of

DAF's satisfying these properties.

Theorer 4.10.
let ¥ be any bounded underlying tree. Then, for dynamic choice
functions with coherent components, there is a consistent set of

lvnamic aggregation functions satisfying conditions (1) to (4) above.

We 5h1ll show how to construct a consistent set of DAF's by

‘ward recursion. Let {C(n)} be any dynamic choice function with




rent components. It is encugh now to tind {&(ms} so that (1)
-

.Love are satisfied.

st, .nce the tree X is bounued, if t Iz _arg~ enoug

- [z} for all x ¢ X. So then if A C X(x(t)), A = {x}, and
)i = Clx(t){(A) = A. Obviously (1) to (4) are trivially

satisfied so far.

Suppose we have constructed C(n') for n' € N(X(n)), n' # n so that
tn (4) are satisfied. If we can now construct C(n) so that (1) to

4) are satisfied, ther backward induction establishes the theorem.

£ {C(»')}(n) is consistent, define C(n) = C(n). Now, for all
‘¢ Suln), it must be true that {C(n")}(n') is consistent, and so, by
(4, C(n') = 7(n'). Therefore {Cn')}(n) is consistent, Ctn) is

coherent, and, indeed, (1) to (4) are all sa*isfied.

Suppose {C(n')}(n) is not consistent. On the set of nodes
irm.liatelv succeeding n, Su(n), let CIfn) be any coherent choice function.

ueh a choice function certainly exists - e.g._CI(n)(AI) = AI’ for

110 A, C Suln). Now defire, for each AC X(n):-

Ayn) = (n' e Su(m) |3z ¢ A(n) . n' = nlfn,z)}
as in section 4.6, Thus AI(n) is the set of nodes immediately succeeding
' which can be reached along some branch of the tree X. Define, too:-
Clr)(A) = U {Cn*)(A(n'))|n' ¢ C,(n)(A,(n))
=« C(m)(A) if and only if, when n' = nI{n,xJ , then n' € C;(”)(ji{”:;
an: x Cin")(A(n')) - i.e. if the first move of x from n is chosen

by the choice function CI(n), and then the rest of x is chosen by Cin').

It remains only to verify that this C(n) is a coherent choice

nction which is consistent with C(n') whenever n' ¢ Su(n).
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y coherent choice function

fausly, Cin){A) € A whenever A € X(n)

£ 4 is finit=, then A‘.(n) is finite, and so ( t’r:)(f‘l}{r".),-‘

1
[¥Fn' ¢ (‘I(RNAI(P:J,', then C(n')(A(n')) is non-empty.

-empty.

pose that B€ A ¢ X(n) and x ¢ B - C(n)(B).
¢t m! = wm.(n,x). Now:-
*) Guppoc~ = ¢ "in')(B(n')). Since B(n') C A(n'), and C(n') is coherent,
x ¢ C(n')(A(n')). Therefore x ¢ C(n)(A).
If £ ¢ C(»')(E(n')), then it must be true that n' ¢ C,(n)(5 (n)}.
Sinca b}{n) C AI."n) and C‘I(n) is coherent, n' ¢ len)(AI(n)). So

again x ¢ Cln)(A). i

Thus C(n) is coherent.

vin) is consistent with C(n'), whenever n'e Su(n)

Suppose that A ¢ X(n), n' ¢ Su(n), and x ¢ A(n') 0 C(n)(A). Then
n' = n,Mm,x), and, by definition of CMm), n' ¢ C‘I(n)(.“.z(n).l.
[t it then clear from the definition of C(n) that:-

Cn')(A(n')) = An') O C(n}(A)

5 required.

Hotice that, in this proof, C‘I(nJ was any coherent choice function
wuln). So, in general, there are very many consistent sets of DAF's.
'5 perhaps as well, because C(n).was not related to the original
mic choice function {C(n)} in any way, unless {C(n’')}(n) happened to

consistent. So there is scope still for E‘(n) to reflect, to some

i1, the properties of {C(n')}(n).
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fiven a procedure for making a dynamic choice function consistent,

-211 say that the procedure is intertemporally liberal if it~

. sonds te a consistent set of DAf's satisfying properties (1} o
The term "intertemporally liberal" is used because of the

,+ionship of such procedures to Sen's concept of "liberalism"(“.

a

;elationship will now be explained.

s.ppose that f is a constitution, as defined in chapter 2. Thus,
" naps lists of choice functions, one for each individual, into a social
noice function:-

C = £1C;5CpsvsC,)-

cupnose too that the social choice function is always coherent, no

natter what the individual choice functions may be.

g -

Let X be the underlying set, and let A € X. Individual 7 is said
to be desigive over the set A if, whenever BC A, the social choice set
satisfies:-

cm = c,(8)?

lotice that, if © is decisive over A, then, because of coherence, for

any set § € X,

if z¢ cIrsﬂ A), thenz ¢ C(SO 4),

and so x ¢ C(S).
Thu: 7 has an effective veto over elementz of A which are not in his

interests,

ee Sen (1970a) ch. 6. and Sen (1970b).

" "Desisiveness" usually refers to preferences, social and individual
'I...I"T'"J\J (1963), definition 10, p. 52. The definition here is an
Cuvious generalization.
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Now, Sen was less concerned with a precise definition of liberalism
.an with a condition for "minimal liberalism" which he showed to be
‘ncompatible with the Pareto principle. Nevertheless, his work suggests
'at any judgment we make about the "liberalism" of a society should be
based on the families U% of setsaﬂi over which 7 is decisive - for each
‘ndividual ©. To take an obvious example which Sen himself suggests,

(1)

i= each individuml decisive in the choice of colour for his own walls?

Now, DAF's are somewhat similar to constitutions. To bring this
out, imagine that each component C(n) of the dynamic choice function
represents the choice of a different agent - the agent 7n, say. Then
7(r) is a "constitution" to be applied to the choices of agents n' for

which n Pr n'.

Of course, each agent has two choice functions, C(n) and C(n).
And, although each DAF is defined as being applied to sets of the original
choice functions C(n), dynamic consistency demands that some of the
choice functions C(n) must also be taken into account. In fact, we
lose nothing by considering more general DAF's of the form:-
Cn) = h(n)({crn')}fn;, ‘E'f"'“n'esm))

i.e. where the dependence of &(n) on CMm'), for nodes n' ¢ Sulii}, is

(2)

explicirly recognized.

Now, dynamic consistency requires, amongst other things, that
for any AC X(n'), where n' € Su(n):-

Ctn)(A) = C(n')(A)

See Sen (1970b), p. 152.

{23 ) .
Mhere is no point in taking into account €(n") for nodes n" which
come after members of Su(n), because then C(n") is already determined

Wy Of

/(n'), for some n' ¢ Su(n), on account of dynamic consistency.

.
[
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this means precisely that the agent n', with his mod?fied choice

ction C(n'), is decisive over the set X(n').

whether such decisiveness deserves to be labelled "liberalism"
‘< in the end, a matter of definition. But "intertemporal liberalism"
crnvenient term. Moreover, provided that the agent n' takes account
of hi suceessors, as he does in using the choice function C(n'), then
{cas over X(n') would seem to be his proper concern. For his
decessor n to want to interfere with such choices is illiberal; but n
s not being illiberal if he refuses to allow n' to be decisive over any
set other than X(n') and its subsets. At least, so it could be argued. So

"liberalism” may not be an entirely inappropriate description.

Nevertheless, it is possible for "intertemporally liberal" choices
to seem sonewhat illiberal. Consider the potential addict example again.
Suppose t..at the potential addict has an extra option, d, which is to
write to his doctor to tell the doctor to put the potential addict in
care if he does become addicted to the drug. We may suppose, for
‘implicity, that addicts who are put in care lose their addiction. Then

the decision tree is:-

" ‘L (L&&! d.-uj , t ake tr(d‘lﬂ-fﬁ'vt:)

e

-

A_./-""’ﬁ}) /q (l-ukt d"“ﬁ X 3“;( J,r {CFOFC lll‘l\ltlf"‘)

1 R
.-““‘-_1‘ \1(,- (ezuo.nb AJJ;J' - G tfﬂu{“\l“(>
(l) H“‘-—-._x“
“‘\._‘_\-.

C c.\gqet take ol'u.ﬂ)
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Since b P(HJJ a, it is clear that intertemporal liberalism demands
“(n,) a, by condition (4) on consistent sets of DAF's. Here, of course,
P(n) is used to denote the strict preference relation to which, it is
.ssumed, C(n) corresponds. Then, too, it must be true that b f’(no) a,
by dynamic consisiency, even though a P(no) b. Plausible initial
preferences at n, might be:-

a P(nOJ c P(noJ d P(no) b, with P(no} transitive.
With intertemporal liberalism, it seems likely that the agent would
still keep the preference d ﬁfno) b. Since b ?(uo) a, and, we assume,
ano) is transitive, it follows that d ?(no) a. This means that the
agent at 7, prefers to "force” his "successor” to give up the drug,
rather than to let him do it freely - which, in fact, would not occur,

of course. This has strong overtones of "illiberalism".
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Uncertain Tastes and Dynamic Consistency.

Throughout this chapter, it has so far been assumed that there was

5 single, well-known, dynamic choice function {C(n)}. This implies that

at node n, all future choice functions are known, which is clearly an
unrealistic assumption. Indeed, the assumption is so unrealistic that
one may wonder whether the search for dynamic consistency is not
completely pointless. If future choices are uncertain, how can one be

<ure of achieving consistency? Why not simply be naive?

Naturally, to discuss this problem fully would involve first of

all giving a full discussion of choice under uncertainty, which this
study has eschewed. Nevertheless, it is possible to make a few simple
remarks, and to show that the quest for consistency is neither completely

empty nor completely fruitless.

When making choices under uncertainty, unless he is naive, an
arent does not commit himself to a single plan which he carried out
without regard to the circumstances. Indeed, typically, he must modi fy
his plan according to the circumstances, since these affect what is
feasitle, and, by definition, he cannot be sure what circumstances wiil
e in the future. So the agent's future choices must depend upon the
circumstances he faces when he puts them into effect. The agent make

a contingent plan, specifying what choice he will make in each possible

situation he may face - or in each '"state of the worid".

A similar situation arises when an agent is uncertain about his
future tastes, or his future choice functions. The agent modifies his
cioices according to what his future choice functions turn out to be.

* makes a contingent plan, specifying what choice he will make for any

‘iven configuration of future choice functions - for any "state of mind",
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might say.

For example, suppose that the urderlying tree is:-

and that there are two possible choice functions at the node ngi-
1 " 2 _
C fnl)({a,b}) = {al, (nz)({a,b]) = {bl.

Then, to ©- consistent, the agent at node no has to have a contingent

choice funetion (Cl(no), szno)), where:-
" _ 6‘2 .
C (no)({a,b}J = {al, (no}({a,b}) = {b}

CI(nNJ indicates the choices which the agent is willing to make if his
choice function at n, is Ci(nj); szno) indicates the choices which the

agent is willing to make if his choice function at n, is Cz(ni). Notice

1
that an agent with this contingent choice function is naive, sophisticated,

and intertemporally liberal.

More generally, achieving dynamic consistency by means of a
corntingent choice function is more complicated, but effectively the
same idea prevails. Notice that dynamic consistency is still meaningful,
even under uncertainty about future choice functions, and so is
intertemporal liberalism. What may not be clear is whether we can ever
tell in practice that an agent is being dynamically inconsistent or

itertemporally illiberal. Uncertainty gives so much scope for

Vb N T

T
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-ranging choice functions that it is hard to tie the agent down

,fectively, or so it might seem.

In fact, it is clear that if we merely observe what an agent

chooses, there is no way of telling that he is being inconsistent. All

. krow is that, given a certain feasible set A, the branch the agent
<hooses is x. That is never inconsistent, in itself. Therefore, to
shserve inconsistency , we need to know not only which branch the agent
‘hooses, but also the branches which he contemplated choosing at various

times. Moreover, to allow for uncertainty, even more must be known; it

B

is necessary to know how the agent's contemplated contingent choices adjust
to changes in future choice functions. To see whether such knowledge is
ever possible, or the extent to which it helps to identify inconsistency

or illiberalism, it is best to discuss some examples.

For the first example, take the procrastinator of section 4.2. If

he reports his intention to perform the action a tomorrow, and then fails

to carry out this expressed intention, there is a prima facte inconsistency.
If we face the procrastinator with this inconsistency, he may modify the
report of his intentions. He can say that he will perform a tomorrow
provided that he feels like it when he wakes up tomorrow morning. Otherwisz:,
he will not perform a tomorrow. Given these intentions for contingent
choices, he cannot possibly be dysamically inconsistent. So it is easy

for the procrastinator to achieve dynamic consistency; indeed, it is so

easy that dynamic consistency itself does little to tell us how the

procrastinator might behave when he sees his problem.

For the procrastinator, intertemporal liberalism means the following.
“uppose a has not already been performed before day . Then the man's

“ference on the morning of day t must be decisive in determining
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it is better to perform a on day t than at some later date.

whether

¢ there is day t such that o has not been performed before day t,

and if the man wakes up on the morning of day t feeling like performing

chat day, then a must be performed on day t. It is not necessarily

a
true, however, that, if the man wakes up on the morning of day t still
not feeling like performing a, then a continues to be put off; it is

still possible for the agent to decide to perform a on day t, rather

than to risk further serious delay. What intertemporal liberalism
excludes is for the agent, when he wakes up on day t, to decide to

perform a on day 8, where 8 > t. At least, such a decision is only

allowed if the agent is sure that, when he wakes up on the merning of

day 8, he will be prepared to perform a that day.

A sccond example is the potential addict of section 4.5. Dynamic
consistency iequires him to contemplate, at least, the possibility of
addiction, if he starts to take the drug. Intertemporal liberalism

requires him to prefer tc continue taking the drug if he does become
addicted; moreover this preference must apply before he becomes addicted

as well as after.

A third example is a political party considering its policy on some
lonz-term issue, such as whether to use road velicles or some modernized
railway system as the primary means of transport in the future, or

whether to start developing desalination plants to provide .resh water.
We may suppose that the present party leaders are old enough to be
concerned with only the earlier effects of the policy decision they make,
and, in particular, to feel that few of the benefits will be ncticeable
{0 their lifetime. The younger members of the party, however, are

concerned with all the effects of the policy decision. In addition, it




- ;hese younger members who, if the party is in power, will be
le for implementing the later details of the long-run policy -

responsl b

jecisiou. Then the younger party members presumacly have a better .

\wa of how the policy will be implemented in the future.

1

In deciding its policy on such an issue, the party has a dynamic

choice  roblem. It can achieve consistency through intertemporal

li:-ralism. What this means is that the party leaders have to accept

.‘.'n: policy recommendations of the younger members, for decisions which will
be made far in the future. And "acceptance'' means more than consulting

the younger members and noting their suggestions. For example, the

olcer members of the party may be tempted to try to find out what their
successors wish to do, and then to sabotage those parts of the younger

merbers' piens which they do not like. This would be sophistication

rether than intertemporal liheralism.

The last example to be discussed here concerns education. It may

be the case that students sometimes have a clearer idea than their

teachers of how they might use their learning. Suppose that the teachers
are trying to decide a curriculum, and accept that it is onlv the way in
Which their pupils can use what they learn which is relevant to the
decision. Then, in effect, the teach~srs are trying to choose a dynamically
consistent plan of teaching and the use of imparted knowledge. But it

is the pupils who will use the knowledge. Then intertemporal liberalism -
o7 just plain liberalism - requires that the students must play a prominent
pert in deciding the curriculum. Indeed, the teachzrs must accept the
Students' view of how they will use what they learn, unless the teachers
9ppet to believe that the students are bad predictors of what they will

er finishing their =ducation.




y / 56

These examples have illustrated the force of intertemporal

liveralism. Whether it is ethically justified is another question,

4hich brings us back to welfare economics. It is taken up in chapter

[«
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Conclusions.

fhis chapter set out to do the folloing:-

(1) Provide a theoretical framework in which changing choices

could be discussed \

(2) Suggest a method (or methods) of arriving at a single coherent

intertemporal choice function whick took account of possibly 1

chan ging ChOi ces.

In the attempt to carry out this program, dynamic choice functions
vere defined. It was seen that, in order to have a dynamic choice

function equi\falcnt to a single choice function, dynamic consistency

was required. So problem (2) turmed into that of eliminating inconsistency

from a dynamic choice function, while preserving coherence. Naive and

sophisticated choice were considered as possible methods, and rejected - |
partly because they obviously lacked ethical appeal, but mostly because |
they failed, in general, to give coherent choices. Finally, intertemporal

liberalism was put forward as a property which the method must satisfy. l
It was defined in a way which guaranteed that the resulting dynamic [i
choice function was consistent and had coherent components. The l
relationship to Sen's "liberalism" was shown. Finally, its meaning was it
illustrated by some examples. In particular, it was shown that both dynamic i |
consistency and intertemporal liberalism do mean something, even when ¢

there is uncertainty about future choice functions.

n the rest of this work, only intertemporally liberal methods of

achieving dynamic consistency will be considered. This is because most

; . . |
welfare economic theory relies on coherence. Nevertheless, it should :F
recognized that problem (2) has not really been satisfactorily resolved.
‘h particular, we are a long way from having a uniquely specified method

achieving dynamic consistency.




This chapter has drifted away from a direct discussion of

. fare economic problems. But the divewrsion has been a necessary one;
i~ sossible now to return and to discuss intertemporal welfare

economica, making use of the theory of dynamic choice. As will be

seen in chapter 6, this theory can shed new light on problems which

have sometimes been found perplexing. But first, it is necessary to

- what is meant by intertemporal welfare - individual and

s

e L

g
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Chapter 5.

" TERTEMPORAL WELFARE AND DYNAHIC.CONSTITUTIONS.

remmoral Wcl€are Choice Functions.

tion 4.1., it was seen that changing choices had to be

‘ey a conplete understanding of intertemporal welfare economics.
hanging choices have been fitted into the framework of dynamic
o theorv, it is time to return to the specific field of welfare

What has to be done now, is to put together the static

~oncepts of chapters 2 and 3, with the dynamic choice functions

“ene. or what a welfare choice function is. Individual 7¢'s WCF
icates, for any choice situation 4, the set Ciﬁa) of options which

's interests. Similarly the social WCF indicates, for any

vation 4, the set C(4) of options which are in the interests of
as a whole. Now a dynamie choice situation is described by a

«tih is a subset of an underlying tree X. Morecver, 4 inherits

structure of X. A(n) is the set of options in A which are

asible alter node n has been reached. A5 time unfolds, and a %
rough the tree is followed, there is, for each node n, a set Y
ptions which are in ©'s interests, and a set C(n)(A(n))

which are in the interests of society as a whole.

intertemporal choices are being considered, it is long-run
which matter. Also, we continue to assume that there is
rtainty. So nothing unforeseen ever happens. And long-run
take azccount of foreseen changes. This being so, can a

in 7's long-run interests today fail to be in his interests
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vow? Surely, if it ceases to be in his interests, it must be

o of some new development which was not foreseen. Similarly, can

nich is not in 7's interests today become in his intere:ts

~ow - assuming that today we embark on a plan which is ip t's

11 assume that, for all the sets of options to be considered,

nswer to both these questions is negative. The implication is that

mic choice function {CifnJ}. indicating which choices are in i's

iynam
interests, must be consistent - i.e.:-

sherever n Prn' and * € An') (N C(n)(A(n)),

con')(Am')) = A(m') O\ C(n)(A(n)).

Thic .- to be true for each individual i. By a similar argument,

the dynamic choice function {C(n)}, indicating which choices are in the

interests of society as a whole, must also be consistent. Then it

follows that the interests of individuals and of society can each be
identified with a single, "metastatic", choice function - Cif"o)

for individual Z, and Cfno) for society as a whole - where 7, i the

initial node of the underlying tree X. It is natural to call these

‘hoice functions "intertemporal welfare choice functions” - just as the i

static choice functions correspending to the interests of an individual

society were called "welfare choice functions" in chapter 2.

nis shows that the metastatic approach to intertemporal welfare
nics - the technique of treating the problem as though it were
“ut with dated commodities, etc. - can be given a justification. |
is only the beginning rather than the end of the problem.
use of metastatic techniques, the intertemporal social WCF has

be found. This might be related to individual intertemporal
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via a constitution, just as a static social WCF might he related
ndividual static WCF's, as discussed in section 2.5. But does a
rution to be applied to intertemporal WCF's - an "intertemporal
{+ution" - differ essentially from a'static” constitution? After
- long enough time period is being considered, the set of
iduals in the society is going to change. And to what extent can
hody individuals' estimates of their own interests into an

intertemporal social WCF?

These are the questions to be taken up in the rest of this

~hapter and also, to some extent, in chapter 6.

R ————
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Metastatic Intertemporal Constitutions.

——— -

onstitutions were the subject of section 2.5. There it was shown

under certain assumptions, there exists a mapping f from lists

'ividual WCF's to social WCF's, such that, if C_‘_: is individual

{'s WCF, then

g =fr<cf)£cf)

the social WCF. A very similar argument might be used to establish

'~ existence of an "intertemporal constitution", when the WCF's indicate
intertemporal choice. Such an intertemporal constitution would be
"metastatic", in the sense that it treats intertemporal welfare problems
no more than a formal extension of static problems. Where intertemporal !
constitutions have been considered - for example, in defining intertemporal

Pareto efficiency - it is this metastatic approach which is almost

(1)

invariably used . The first question is whether this approach is the

right one.

One difficulty occurs because an individual's intertemporal interests

nay be unclear - very much less clear than his interests at a given moment
of time, for example. An individual's WCF is likely to be an amalgam of
inconsistent components of a dynamic choice function. How the dynamic
aggregation is to be performed is rureiy obvicus. But this is an
inevitable problem in welfare economics anyway, it seems. It has to be

! at some point, before we reach a consistent dynamic social choice
tion. Why not straight away, while each individual is still being

‘dered separately?

© only exception, it seems, is contained in the work of Allais (1947),
» considered in appendix 2. See also the discussions by
/1 (1972) and de Montbrial (1971).




another difficulty arises when the size and composition of the
+ion is endogenous. What is the welfare choice function of an
‘4ual whose very existence depends upon the option society chooses?
ion we soon have to face is: Is it in 7's interests to be born?
such a question may not be quite meaningless, there is much to
avoiding it, if possible. Surely it is the interests of
sembers of society which are far more relevant for determining
.+her i should be born. Of course, once 7 has been born, his interests
come into play. To capture these considerations in an intertemporal WCF
syor each individual, including many who may never be born, and also in a
retastatic constitution, when the list of individuals is itself a matter
of choice, is quite hard. Even if it were done, it might not be clear
whether tl.c metastatic constitution had the right form. A different
approach, more in accord with standard practice and our normal ways of

thinking about welfare problems, seems desirable. !

The third and last difficulty is, perhaps, much more serious. In

section 2.5., we say how the social WCF might depend on a number of things
other than individual WCF's - e.g. interpersonal compariscns. ilow, in the
intertemporal case, might not the social WCF depend not only on the
individuals' consistent dynamic WCF's, but also on the inconsistent

dynamic choice functions from which these were derived?

‘onsider the following example, based on the potential addict

fxample of seciion 4.5, The underlying tree is:-

| / Q




. two societies, each of n individuals. .
individuals 7 = 2 to n, the choice functions Ci are the same

1, society.

n the first society, individual 1 has the potential addict's

choice function, corresponding to the following preferences:-

a P(no} e P(?lo) b, b Pl’nj) a.

1 result of intertemporal liberalism, applied to these preferences,
the individual has a WCF corresponding to the following preferences:-
bPacPe

Tor example, the drug may be nicotine and the individual may want to
smoke so badly that he is prepared to smoke all his adult life rather
than neve~, even though originally he would have liked to give up

smoking after a short time.

In the second society, individual 1 has no reservations about
smoking, and his original dynamic choice function and his WCF both
>spond to the preferences

bPaPe.

Now, 1f social choice is based on a metastatic constituticn, the

cial choice in each of these +wo societies must be the same, because
‘ndividual has the same intertemporal WCF in each society. There
~ of taking account of individual 7'soriginal willingness to be

' give up smoking, in the first society, unless we are also ready

¢ him to give up smoking in the second society. This is a serious

““ingly, we shall now consider "dynamic constitutions" which
‘metastatic constitutions". We shall also look further into

rictiveness of the assumption that there is a metastatic
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ymnamic Constitutions.

. metastatic constituion takes account of the interests of all the
‘uals who might, at one time or another, be members of that

It involves the interests of those who will not be born for
nerations to come, and, perhaps, of those who, in the end, are

rn. Of course, no constituton works like this in practice. And
reality is not always a reliable guide to the way things ought to
done, in this case it provides a useful suggestion for a first approach
towards overcoming the difficulties and deficiencies of metastatic
constitutions. For, in practice, insofar as a constitution tales explicit
account of individuals' interests, it is usual for it to take account

of the interests of only those individuals who are currently alive at any
one time. Ui course, if this is so, there is almost certain to be
inconsistent dynamic social choice, as the set of living individuals
changes over time. Accordingly, we shall have to modify standard practice

in order to ensure consistency.

First, we need a formal model, in which these ideas can be made
precise. Let X be the underlying tree, with tree structure {X(n)}. To
‘escribe the effect of econmomic policy upon population, it is sufficient
T specify the set of individuals who are alive at any given node n of the
‘ecision tree; let this set of individuals be I(n). Then tn: total

set of

possible individuals is the unicn of all the sets Ifn), i.e.:-
I =U{I(m)|n e N(X)}

juite natural assumptions are that there should be no
Aation, and that individuals are mortal. So, for each individual

- #dch x € X, etther there are two finite times bi (x) and dil’::)
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when n = z(t) and b (x) < t < di(xJ , then © € I(n).

ver n = x(t)y, © / I(n). This means that if branch x of the

. tree is followed, then either individual 7 never lives

e lives from time bifx) to difx). Here, d{(xJ is the

h 7 dies; if bifx) > 0 , then bifx) is the time at which 7
if iifx) = 0, then 7 is already alive at time O, and his

is not specified.

for each ¢ ¢ I, let {Cifn)} denote i's dynamic choice function.

Depending upon the precise problem being considered, [Ci(n)} can
represent various kinds of choice. Two especially important kinds are
lowing:~
'iini represents 7's interests, as he himself sees them, at node
n of the decision tree.
Since an individual can hardly perceive his own interests when he is not
alive, ZJnJ is defined, strictly speaking, only when 7 ¢ I(n). However,
:t will be notationally convenient to have Ci(") defined for all n. Now,
¢ Im), instead of saying that 7 cannot perceive his interests, we
could alternatively say that he has no interests anyway. And naving no
interests means, persunably, that the choice function expresses total
anathy. So, we shall define Cifn)(A) = A vwhenever A € X(n) and 7 ¢ T(n).
Notice that, if bi(I) > 1, this is likely to lead automatically to
“naric inconsistency, because Cifno)fAJ = A for all AC X, and it is
7 that the individual will be totally apathetic while he is alive.
7)) is a consistent dynamic choice function corresponding to
long run interests. Thus, Ci(no) is his intertemporal WCF.
» there are circumstances in‘which an individual can hardly
iterests, because he could not possibly be born. For example,
that there is a node n such that, for any n' for which

- £ I(m'). Then, at node n, individual 7 can never come into
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nce, and so, presumably, he has no interests. Strictly speaking,
not defined at this node. Nevertheless, to avoid having to
omains of definition, we can say that Cifn) 18 defined at

»de, but takes the apathetic form:-

C.m)(A) = A (each A € X(n)).

ther assumption we might make is that dead individuals have no

in current and future policy choices. This can be expressed

ving C.(n) take the apathetic form whenever n comes after 7's death.

(2

|

tice, however, that dynamic consistency forces us to acknowladge
‘he as yet unborn do have interests. Suppose that 7 ¢ I(n).

typically, Ci(n) will not be apathetic. Yet it must be true that

ip/ (4 C.(m)(A) whenever A € X(n). So, even if 7 has not been born

at n,, he does have interests at noe

“oth cases (a) and (b) lead to a dynamic choice function {Cfrn)F

defined for all n € N(X) - not just for those nodes n such that 7 € I(n/.

fut, to express the facts that individuals can only perceive their interests
“hen they are alive, that they cannot have interests if they cannot

pessibly be born, and our assumption that the dead have no interests,

1mpose

the following restrictiom:-

"ieénever there is no node n' such that n Pr n' and © € I(n')

Cifn)(A) =A (each A C X(n)).

¢ minimum restriction; it needs to be strengthened when Cifn)

the individual's perception of his own interests.

that we have specified the underlying tree, the set of individuals

]

and circumstances in which they are alive, and the choice

of

the individuals, we can start to consider the constitution.

hall start by following the standard practice of taking
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.nt of the interests of only those individuals who are currently
Let f(n) denote the constitution which will operate at node 7
¢ the underlying tree. The relevant set of individual choice functions

(C.(n)|i € Im)} because, by definition, Cit'n) is the choice function

's relevant in considering i's interests at node n.

et [.(n) denote the class of admissible choice functions for
individual Z, and let C(n) denote the class of admissible social choice
functions. In each case, of course, it is the class of choice functions
which are admissible at node n. Then:-

fin): N eItn) fi(n) + Yn)

i basic dynamic constitution is a family of such constitutions
{ftn)|n ¢ 37X)}.

Keep the individuals' dynamic choice functinns <{C'£ r")}>£af
fixed. Let:-

Cin) = f(n)t'<6'£ fn)>££I(n)).

S0 C(m) is just the result of applying the component f(n) of the
basic dynemic constitution to the list of corresponding components of
the individuals' dynamic choice functions. C(n) is itself a component

£ T L] * - -
0% a dynamic social choice function {C(n)}. But there is no reason for

{CMm)} to be consistent; indeed there are good reasons for it to be
Inconsistent:-

(a) The individuals' dynamic choice functions {C(n)} may be
inconsistent.

'@ set of individuals, I(n) , whose interests are embodied in

/» 1s changing over time.

vecially important is (b). Thus, if n’ is a node which comes

‘ently long after n, the sets of individuals I(n) and I(n’') will




5/11.

be entirely disjoint. The individuals ir I(n) may be totally
disinterested in what happens.from n' onwards. In other words, if

AC X(n'), }hen the unanimity principles of chapter 3 lead to completely
thetic social chcice:-

cn)(A) = A.

other hand, individuals in I(n’) will be concerned about what

s to them. This gives a clear inconsistency.

In chapter 4, a number of methods of reconciling inconsistent
dynamic choices were examined. Here, one wants an intertemporal social
WCF,and so the method adopted must yield a coherent choice function.
Neglecting trivial exceptions, this means that the method of reconciliation

Tust be intertemporally liberal, as was seen in section 4.10.

Let {C(n)} be the dynamic social WCF which results when the
inconsistencies in {C(n)} have been resolved. Let n’ Fol »n denote the
fact that the node n' lies in the subtree X(n) of branches which are
stil. feasible after node n has been reached. That is:-

n' Fol n iff n' € W(X(n)) iff [n Pr n’] or n=nr]

let {Cn')}(n) denote the set {C(n')|n’ Fol n} of components of (C(n)}
Then {C(n*j}(n) is a dynamic choice function on the subtree X(n.).
Intertemporal liberalism, as defined in 4.10., means that for each

%y there is a dynamic aggregation function g(n) mapping (C(n')}(n)
into a choherent choice function C(n). Homover,{ﬁ'(u)} must be a

tonsistent dynamic choice function.

-

Otice that:-

Cln)

gtn) ((C(n')} (n)

gn) ({f(n'){<C‘£(n'J>£EIrn,J)}(n)) (a)

© this can be written alternatively as:-

Cln) = h(n)({c_il’n') |n' Fol n, 7 ¢ I(n’)g (B)

N
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In other words, intertemporal liberalism requires that the social

WCF at node n must depend on the WCF's of all individuals who could

possibly live after n. This seems entirely appropriate.

vevertheless, the form (A), involving the functions g(n) and
), is less general than form (B), involving A(n). Moreover the

¢ generality in (A) could be serious, as the following example

suggests.

=1

ExamEle 5.3.

The underlying tree is as in the potential addict example:-

. 'a

n

_ ‘ -t

HG ‘“\ ; !
| |
|
c(t) ' r
\‘C |

Now, however, the branches are different options. One of the important

factors affecting the desirability of the United Kingdom's membership

of the European Economic Community is the Common Agricultural Policy, It i
is not implausible to believe that many U.K. citizens would regard

membership of the E.E.C. as desirable if and only if the C.A.P. were to

b changed to allow lower prices to the consumer, with farm incomes
sWsidized from the proceeds of increased direct taration. It is also not

imm 1

Mplausible to believe that, now the U.K. is a member of the E.E.C., the

¢ of its citizens who would wish to give up membership if the C.A.P.
unchanged, is declining. Finally, it was suggested that the

Was

much more likely to be changed after the U.K. joined the E.E.C.;

o
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for simplicity, assume that it would definitely not be changed if the

-

U.K. had not joined.

A stylized representation of the U.K.'s decision problem in 1971
;s ziven by the above decision tree. The node n, corresponds to the

point at which the decision to join the E.E.C. was finally made. The
options @y b, € can be described as follows:-

2 - join the E.E.C., but leave unless the C.A.P. undergoes a
suitable change

b - join the E.E.C., and stay in whatever happens

~ - remain outside the E.E.C.

At node s let us assume, everybody prefers to be outside the
E.E.C. if the C.A.P. is unchanged, and furthermore, prefers to leave
the E.E.C. unless the C.A.P. is changed. That is:-

a pi("O) b (all Z).

At node s however, after a spell inside the E.E.C., people

change their minds, and become reluctant to leave the E.E.C. once they
have entered it. This is despite the absence of any change in the C.A.P
let us assume, then, that:-

b Pifnz) a (all 7).

So far, option ¢, of remaining outside the E.E.C., has not been
considered. Suppose that the majority prefers at least to try to get the
“.F. changed, even though first entering and then leaving the E.E.C. is

ly costly. That is, the majority prefer @ to o,

N the other hand, suppose that the majority prefer to stay out of
-, rather than to enter and to accept an unchanged C.A.P.

then the najority prefer ¢ to b.




5/14.

uppose that social preferences are determined by majority rule,
sherever possible, and the constitution takes a form given by (A).
*hen the social dynamic preference relation takes the form:-

P(nj;' a, a P(no) e, c P(no) b, a P(no) c.

{P(n))} is not consistent. According to (A), it must be transformed
nsistent dynamic preference relation {P(n)} which is consistent.
ut notice that:-

Biny) = glny) (P(ny), P(ny))

in effect. So I:’(nOJ must be independent of the majorities underlying
the original dynamic preference relation {P(n)}. So, too, must the

social choice set E‘(no)([a,b,c}).

This - ependence, however, is ethically questionable. The strengths
of the majorities underlying the preferences ¢ P(no) b and a P(n,) e
can affect our view of what sccial choice is appropriate. Let us take

in extreme case to illustrate this.

suppose that we have two societies, SI and 52. In SI' everybody
prefers @ t¢ e , but only a small majority prefers ¢ to b. That is,
everybody is willing to enter the E.E.C. on the right terms, and there is
¢ large minority in favour of entry even if the C.A.P. cannot be changed.
Ten one feels that an appropriate social ordering is b f’(no) a, a Ie'(no} c,

¢, because it overrules only a small majority. So » - continued

wrbership even if the C.A.P. cannot be changed - emerges as the social

“bpose, on the other hand, that in society 52, everybody prefers ¢ to
71y a small majority prefers a to e¢. That is, nobody at n, is
"0 enter unless the C.A.P. is changed, and there is a large minority

“gainst entry whatever happens. Then one feels that an appropriate
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i 11 ordering is e lg(no) b, b f’(no) a, ¢ IA’(no) a, (given the
ceauirement that {P(n)} must be consistent, and given that b f’(n}J al
ise it overrules only a small majority. So ¢ - refusal to enterp

t all - emerges as tiic social choice,

‘nis example suggests that in deciding what an appropriate consistent
vnamic social welfare function {E'(n)} would be, one does want to take
into account not only the social choice function {C(n)}, but also the
individual choice functions <ci{n)>£eﬂn) from which each C(n) was
derivec. That is, form (A) fails to capture all our ethical values, and so

we must consider the more generdl form (B). From now on, it is form (B)

which will be assumed.

In the end, then, a dynamic comstitution is a set of mappings

{nfn)

n € N(X)}, defined on lists of sets of components of individual

WCF's, “{C::("'”f"”«;.;p and such that, if Cn) = h(n)(dC'ifn')](n) :'icI)

(eac: n ¢ N(X)), then {C(n)} is a consistent dynamic choice function.

trictly speaking, this is not the same as (B), because in (B)
only some incividuals' choice functions were included as arguments of
hin) - namely the choice functions of those individuals who belong to a set
In'), for some n' Fol n. But, because of the restrictions pluced on the

choice functions C(n) - namely, that unless there exists a node n' Fol n

Sch that 7 € I(n'), then Cln)(A) = A for all Ac X(n) - this does not matter.

‘9@ extra individuals have no interests which are relevant for the
tution hfn), and so it makes no difference whether or not their

~wictions are included as arguments of h(n).

° Worth remarking that, if there is Just a single individual,

‘ynamic constitution meduces to a dynamic aggregation function,
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_ind discussed in 4.10., provided that dynamically consistent

are left alone.

‘+hout a more detailed description of the economy and of the
uals in it, it is hard to say very much more about dynamic
+ions. Clearly we need to turn to applications and specific

This will be done, to a limited extent, in chapter 6.
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onclusions.
G

purpose of this chapter has been to show that, in principle,

-

ssible to devise a welfare theory which takes full account of

o

imamic features of the economy. In particular, we have considered
¢ apgregating individual dynamic choice functions {Cifn)} into
snsistent dynamic social WCF {C(n)}. Two ways of doing this seem
» suggest themselves:-

(1)(a) Modify each individual's dynamic choice function {Cl.(n)} s0
that it becomes a consistent dynamic WCF {aifn)}. Because of
consistency, only &i(no), for the initial node n5s really
matters.

Avcsregate the individual WCF's &ifno), via a "metastatic"
constitution, into a social WCF a(noi, so that {C(n)} is
consistent.

For each n, aggregate the choice functions Ci (n) of the
individuals who are alive at node n into a social choice
function C(m) via a constitution f(n), thus:-

1ZcI(n))
dodify the dynamic choice functior {C(n)} sc that it becomes

ctn) = fn)(<cytn)>

¢ consistent dynamic social WCF {C(x)}.

‘either of these methods, however, is satisfactory. (1) is deficient

hee

sause individuals' inconsistent choices may reveal something which

Uid De taken into account in aggregating their WCF's 51:(“0) into a

NCF &fno). Also, the method runs into difficulties when the set
‘viduals is varying - particularly when it is varying endogenously.
' the preferences of someone who can never live after node 7

passed affect the social choice at node n?
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the other hand, (2) is deficient because individuals' choices,

re aggregated into the social dynamic choice function (€(n)},

something which should be taken into account when {C(n)}

‘ried so that it becomes consistent. This was seen in

~dingly, a somewhat more complicated form of dynamic

~+itution is suggested. At each node n, the social WCF Cln) depends
n the individual choice functions C‘i (n') for all nodes n' following
v, and for all individuals 7 who are alive at n'. Moreover, Cln) is

constructed so that the dynamic choice function {C(n)} is consistent.

It probably bears repeating that we have, of course, neglected
one of the >3t important aspects of dynamic welfare - namely uncertainty.

This must wait for later work.

The following chapters consider rather more specialized problems.
‘napter 6 looks at a number of more specific problems which, it seems,
some economists believe are beyond the scope of welfare economics, or

else seriously affect its usefulness. Thereafter, we shall expiore the

consequences of relaxing the assumption that there is an upper bound on

the length of the branches of the underlying tree - in other words we snall

infinite horizons.

|
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Chapter 6.

SOME PROBLEMS IN DYNAMIC WELFARE ECONOMICS

6.1. Endogenous Tastes.

tccording to the orthodox view of welfare economics, tastes must
he exogenous. Therefore, if tastes are moulded by education, by
advertising, by receiving information, or in any other way, welfare
economists have had little or nothing to say. A forceful statement of

(1)

this view has recently been made by Gintis On the other hand,

Weizsicker has recently put forward some tentative suggestions for

making welfare judgments when tastes are endogenous(z).

Now, the apparatus of dynamic choice functions which was constructed
in chapter 4, and related to welfare in chapter 5, was expressly designed
to allow for endogenous tastes. Rather more precisely, it allowed for
changing welfare choice functions. If, however, we take the usual step
of identifying an individual's welfare with his tastes, the two are

equivalent.

It seems therefore that the orthodox view that tastes must be
exogenous is mistaken. In fact, it rests on two mistakes. The first is

to insist that welfare must be identified with tastes; once this requirement

————

(1)

SEt‘?'Gintis (1971 )(1972). Also Schoeffler (1952) shows that the
boint was realized long ago.

“e¢ Weizsdcker (1971). Much earlier, Schoeffler (1952) also touched

on 'Fhls_s problem. Indeed, Schoeffler's suggestion that a change increases
f::: ‘ndividual's welfare provided the individual desires it both

°* @te and ex post, is one which Weizs¥cker adopts. It has been
(riticized by Harsanyi (1954}. Weizs¥cker realizes that the criterion
“dn give rise to preference cycles.
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changing tastes do not preclude welfare judgments. The second

e,

5 to believe that the individual's welfare choice function has to

ne fixed for all time; in fact, there is no reason why it should not be

ej_:c‘.‘_-.--gu:‘.‘.;."changing over time, although then the problem of finding a

consistent dynamic social WCF has to be faced. This was the problem
discussed in chapter 5. As should be apparent from section 4.10., the
difficulty is in narrowing down the search for an appropriate social

WCF: the difficulty is not, as was often thought, that one cannot find

a suitable social WCF at all.

To summarize, the proposal here for handling endogenous tastes is to
construct a consistent dynamic WCF in a certain way. For individuals,

the method is based on intertemporal liberalism, as suggested in 4,10.

For society, a consistent dynamic WCF is constructed by means of a dynamic

constitution, as suggested in 5.3,

It is worth comparing the proposal for finding an individual's WCF
with von Weizsidcker's discussion of individual welfare. It is clear
that he had myopic individuals in mind.(l) In period t, a consumer's
tastes depend upon what he consumed in period ¢ - 1. But, in making his
demands for period %, the consumer ignores the effect of his consumption
on his future tastes. In fact, to simplify analysis, suppose that the

individual's intertemporal welfare function tzkes the additive form

E;; th:_l, qt)‘ Because the individual is myopic, however, his derands

maximize Zt:l u(qo,qt). In other words, he assumes his tastes are always

+h
e same.

Weizsdcker assumes that the consumer faces the same budget

" each period, so that the consumption stream (9,5955++.) is feasible

- See Weizsdcker (1971), pp. 360 - 363.

L
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¢ 5 (each t). So, in effect, the individual chooses q, to

paxirize ‘I(Gc’ql) subject to q, ¢ B(l). Next period, by the same argument

he chooses G, toO maximize u(ql,qz) subject to qy « B - and so on.

I+ follows that, if g’ is the previous period's consumption, then
consumption q maximizec u(q',q). So u(-,*) is the short-run

(2)

v function.

joizsicker's discussion concentrated on long-run demands. q* is a
long-run demand, given the fixed budget set B, if and only if g*
maximizes u(g*q) with respect to q, subject to ¢ € B. In other words,
7* is a long-run demand if and only if, should the consumer have consumed
2* in the previous period, he continues to demand q* in the current

period.

An obvicus question now, which Weizs¥cker discusses in the two good
case, is whether long-run demands maximize a long-run utility function.
If they do, and v(q) is the long-run utility function, then, by considering

choice on finite sets, it follows that v(-) must be such that:-

vlq) > v(g') iff there is a sequence qc’_,q"i,...,q"l such that g’ = q©°,
q = &,‘n, and: -

u(qm,qm”J > u(qm,qm) (m=0ton - 1)(3)

(1), ®
Of course, [, u(q,,q,) diverges, but one can use Weizsicker's
overtaking criterion - Weizsicker (1965) - to argue that the pa*h

7, =4, (all t), where q, is as suggested above, is optimal.
2) . . .
:f. Weizsicker's "short-run indifference curves" (1971), p. 352.

(3) . .
1zsdcker (1971), p. 352.
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to axist, u(+,*) has to satisfy certain restrictions. In
the long-run strict preference relation P, defined by

'.a) > ulq',q'), must be e.cyclic(1J

. there is a long-run utility function v(-). Does it tell us

‘-1 is relevant for welfare judgments? Weizsdcker claimed that

~1aimed that if v(x) > v(y), then x is superior to y in the

Moreover, he claimed that if there is a sequence qo,qj,...,q
m m m
t ula ,q +1) > ulq ,qm) (m=0 ton - 1), then the sequence of
i ’ o 1 R i3 .
consurption bundles (773Q 500454 ) is superior to the status quo

gc).(Q) Are these claims correct?

vy

. general intertemporal welfare function of the form I::: u(qt_],qt},

it is easy to see that they are not. x is superior to ¥ in the long run

if and only if u(z,x) > uly,y). It is quite possible that this is true,
and also that ulz,y) > ulx,z), uly,y) > uly,x), so that viy) > viz).

i+ is quite possible to have a sequence (qo,qT,qz,...}

for which u(qo,qOJ o, U(qo,ql) =1
and :u";*,qt) = =2, u(qt,qtﬂ) =-1 (t=1,23...)
i the sequence (qo,qj,qz,...) is worse than (qo,qo,qo,...) even though

ach change from 9,.7 to q, seems to be an improvement in the short rum.

rtheless, these examples have assumed that the intertemporal
eliare function is given. It may be more pertinent to ask whether long-
preforences can help in deciding what is the appropriate intertemporal

i myopic individual. It is usual to identify individuals'

icker (1971), p. 357.

icker (1971), p. 361.
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eferences with their welfare; can we identify long-run preferences

i+h long-run welfare?

wilti

Notice that any transform u(q',q) of the short-run utility function

'.q), such that:-

ulq',q) = &(q', u(q',q))

s increasing in u, corresponds to the same short-run preferences

1c y does. In particular,

2(q'yq) = v(q') + ulq',q)

for aw function ¥(q'), corresponds to the same short-run preferences.

Suppose that v(*) is a long-run utility function corresponding to the

short-run utility function u(+,*). Define u(q',q) = v(q') + u(q',q) - u(q',q"')

for all 4,q'. Then u(q',q) is another short-run utility function. And

if we take S 1 E(qc_l,th as the individual's intertemporal welfare

function, then:-
(1) v(z) > v(y) iff u(z,z) > uly,y), so v(*) indicates the individual's

long-run welfare.

) > u(rt,zt) (t =0,1,2,...), then ulz

and (because v{xtﬂ) > v(:rt)), u(:t+1,:

co that (xo,.'ri,xz,...) is superior to (x ,:ro,:co,...), according to

) If u(xt'xt-rl t’mtﬂ) > u{xt,:ct)

t+1) > u(zt,xt) (each t),

the intertemporal welfare function.

This certainly does not specify the individual's intertemporal WCF
uniquely, because by varying the form of the function v(+) which

represents long-run preferences, we can vary the intertemporal WCF. And
of course, wu(.,.) may be varied as well. Nevertheless, it does somewhat

restrict the class of possible intertemporal WCF's, which may be helpful.




|
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uld be recalled that the intertemporal WCE must embody value
That an individual's interests are the same as his preferences
:udpment. That a myopic individual's long-run interests

e as his long-run preferences, as these are revealed through

~yun myopic choices, is also a value judgment, and one that may he

accept. 5o, although WeizSacker's suggestion for making long-

;= ussessments when tastes are endogenous is objective, it is

far from ethically indisputable.

Throughout the latter part of this section, it has been assumed that
long-run preferences exist. In fact, this is a critical assumption,

which seems very hard to justify. It is violated, for instance, if my
eating fish today makes me less ready to eat fish and more ready to eat
reat tomorrow, and if my eating meat today makes me less ready to eat

teat and more ready to eat fish tomorrow. An interesting open question is
whether the assumption becomes more plausible as the time period lengthens

(1)

and we consider average demands over the period ~.

In conclusion, then, Weizsacker's long-run preferences, if they
exist, may help us in the search for a satisfactory intertemporal WCF for
an individual, providea that we are happy to identify his long-run

interests with his lomg~run preferences.

ey

uestion suggested to me by Avinash Dixit, It is related to Gorman's
Justification of quasi-concave utility functions - see Gorman (1957).
ittle also sugpests locking at average demands over a long period as

* Wy of handling people's desire for variety - Little (1957),

p. 38 - 39,




¢ 2. Overlapping and Unborn Generations.

e e

jother problem which, it is sometimes thought, limits the

-olicability of welfare economics, is that many of the people affected

 term plans are not even born when the plans are first being

worked out. But again, in our formal analysis in chapter 5, no such

v caused difficulty; so, at the very least, we have succeeded in
swee; ing any difficulties there might be conveniently out of sight. What

precisely might these difficulties be?

Une practical difficulty is glaringly obvious. In our planning,

ve cSten need to take account of the interests of individuals who are

not vet even born, and it is hard to make predictions about these interests.
The easiest course is to neglect these interests entirely, and no doubt
such neglc. . cdoes often occur. But this is a comment on the adequacy of
practical planning procedures rather than on the limitations of welfare
economics. Moreover, a very similar comment applies to planning which
overlooxs changing tastes. In fact, the problem of predicting the tastes
and Interests of the unborn seems little more difficult than that of
predicting the future tastes and interests of the currently living. Of
course, the currently living can be asked what their future tastes are
likely to be,whereas the unborn cannot; but are individuals always good
predictors of their own future tastes? And what are we to do when our
Poiicy choices affect tastes? No - surely no fundamental new difficulty

arises

Lecause the tastes and interests of unborn individuals have to be

uen ot theoretical welfare economics has been concerned with the

ati

Lonship between allocations achieved in competitive markets and

etfi

icient allocations. Now, unborn individuals are obviously in




+o undertake forward transactions i: 3n Aprrow-leurcu narxet,
sine that other agents might act on their L=ialf 1o Surely too
o, is it not the case that a market a.location nced no

Oy

rareto efficient because only the currently living can trade

sarket? As soon as the question is posed, it becomes clear that,

..... . are unborn generations, it is unrealistic to assume that there
narket in which all trades are determined once and for all.
tqere must be a time-sequence of markets, so that each generation
orortunity to trade. There must also be a way of transferring
‘np power from one market to the next and vice versa - e.g. a bond

f &

.st. Then, provided that agents have perfect foresight concerning

price., we have a system of markets which is formally equivalent to a single
hrrow-Uesreu market, in which all individuals participate, including

those yet - be born. So the allocation achieved through such a system

will he Pareto efficient, granted the usual assumptions. Conversely, a
Pareto efficient allocation can be achieved through such a system of

markets, provided that lump-sum transfers take place, and all the usual

(1)

convexity and non-satiation assumptions are valid ~°.

liotice that unborn generations can only cause difficulty if the
Lifetimes of some unborn individuals overlap with the lifetimes of some
currently living individuals. Otherwise the unborn generations could be
conpletely ignored. It would be possible to devise a plan which took

mt of interests of only currently living individuals and which dic

recify decisions to be taken after the last currently living

© fucther details, see Guesnerie (1971) for a discussion of the
“ficiency of an equilibrium in the sense of Radner (1972). Of

urse, Arrow (1953) contains a similar discussion for the two-period
@, when there is also uncertainty.
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+o undertake forward transactions i:n in Arrow-Deurcu mareket,

-ine that other agents might act on their L2ihalf iz surely too
~d4. Sc, is it not the case that a market aiLlocation nced no

Oy

careto efficient because only the currently living can trade

arket? As soon as the question is posed, it becomes clear that,
. are unborn generations, it is unrealistic to assume that there
narket in which all trades are determined once and for all.
1, tnere must be a time-sequence of markets, so that each generation
sprortunity to trade. There must also be a way of transferring
‘ng power from one market to the next and vice versa - e.g. a bond

wrehans
purch ny

vot. Then, provided that agents have perfect foresight concerning

price., we have a system of markets which is formally equivalent to a single
hrrow-Uesreu market, in which all individuals participate, including

those yet - be born. So the allocation achieved through such a system

will he Pareto efficient, granted the usual assumptions. Conversely, a
Pareto efficient allocation can be achieved through such a system of

markets, provided that lump-sum transfers take place, and all the usual

ki)

convexity and non-satiation assumptions are valid ~°.

liotice that unborn generations can only cause difficuity if the
lifetimes of some unborn individuals overlap with the lifetimes of some
currently living individuals. Otherwise the unborn generations could be
completely ignored, It would be possible to devise a plan which took

nt of interests of only currently living individuals and which dic

recify decisions to be taken after the last currently living

© funther details, see Guesnerie (1971) for a discussion of the
‘ficiency of an equilibrium in the sense of Radner (1972). Of

urse, Arrow (1953) contains a similar discussion for the two-perioc
i"e, when there is also uncertainty.
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1 died. This could be dynamically ccnsistent; there would
revise it until a new individual was born, but by that

~urrently living individuals would have no interests anyway.

there is no possibility for trade between currently living

vet unborn individuals, so that an Arrow-Debreu market in which
rrently living individuals participate loses nothing. So it is
. combination of overlapping and unborn generations which could

ause trouble,

ievertheless, we can now see that the difficulties are the

-ractical ones of predicting tastes, interests, and market prices,

than theoretical ones. Of course, the neglect of uncertainty
makes the theory we have developed unrealistic. But, as a first step, it
at leact srows how one could in principle handle some problems which

have troubled economists.



us l}qgilatiqy_

number of people in a society is itself affected by the
as it is, for example, as scon as measures to encourage

are being contemplated, or when a device, such as larpe

rash barriers, which could reduce the number of deaths in

.ntc, is rejected as too expensive - then economists have

iverpent views about what a proper objective is. For example,

.y'= supgestion, that the well-being of a nation was best indicated
the number of 1its citizens,(l) would hardly be accepted by Malthus or
by most of our contemporaries. Rentham would have us add the utilities
of all the menbers of society, to determine that society's welfare; so
the society is better or worse off for the presence of an extra individual
accorcing as that extra individual has a positive or negative utility. Some
more modert. <riters have preferred to follow the Average Utility Principle -
the welfare of a society is its average utility, or its Benthamite welfare
divided by the number of heads. The society then is better or worse off
for the presence of an extra individual according as that individual has

P (2)

a utility which is above or below the average .

All the above-mentioned criteria were essentially static. Is it better
0 te In stationary state 4, with constant population m, rather than in

stationary state B, with constant population n? That is the kind of question

sSuch cri

teria purport to answer. Yet such a question ignores the problems

.Fousseau - Du Contrat Social, Book III, ch. IX. His suggestion
somewhat qualified by a ceteris paritbus assumption, but he seems
0 have regarded this as an important qualification, and it is
#here explained what precisely was being assumed equal.

-ussion of this principle and its history, see Rawls (1971)

F ¥
. H
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nsition from one steady state to another. More seriously, perhaps,

to_capture most of the problem.

+ +nat individual 7 is born at time t. Quite apart from

" himself, this obviously affects the welfare of many other

.1s. notably i's parents, other relations, the friends 7 makes
1ife, i's spouse, t's children, etc. One might call such

//vect. On the other hand, society has another individual to feed,

child to educate, another person who might be expected to

Jute valuable labour services, etc. Such effects might be called

contril

indirect.

The same breakdown into direct and indirect effects is possible

. individual dies.

The direct effects clearly matter more to some individuals than

to others. When an individual is born, or dies, benefits and costs are
very unevenly distributed between the members of society. But it is

the direct benefits and costs which are most unequally distributed. The
indirect benefits and costs are much more evenly distributed through

the community.

It is these indirect benefits and costs which seem most usually

be considered by economists. There may be two reasens for this. One

is that it is thought much easier to attach an appropriate monetary

value to the indirect effects - food, clothing, shelter, education,
labour services can all be costed. Another reason is that it is so much
€asier to consider the effects of a change which influences everybody in

the came way: how does Mr. Average fare if we adopt a certain

.y
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+hat we can think a little more carefully about appropriatec

ial
-

. ithout worrying about distributional aspects of population
~~pose to introduce a drastic simplifying assumption. This
nulation change affects all households in the same way.

cld pains a new member, they all do - if one househlold loses
-tev all do. Moreover, we shall assume that each household
sefined welfare choice function, and that the household WCF's

. aggrepated into a social WCF. We shall not, however, overlook

ivect affects of a population change, which would seem to be the most

important.

, simplify still further, assume that each household an: each
‘iual lives for a single period. This commits us to non-overlapping
neration which is unrealistic, but makes analysis very much simpler.
The conclusions which would be reached in a more general framework are
very similar. Let n_q be the number of individuals alive at the
start of period ¢t. In period t, they enjoy their single period of life
and have n children, who form the next generation. Let z, be the
other variables in period t which are affected by the choice of economic
policy, and which affect individuals' welfare. Suppose that a person
period t has a WCF corresponding to the utility function
SN nt). In the special case where the individuals' only
lnterests in population per se are in the size of their own families,

e utility function becomes ufxt,nt/ht_l), but there is no need to

ire this special form.

“uppose for a moment that the population stream is fixed. Suppose
nat no choice is possible after time T. Then one is concerned with
of economic variables (31’331""xT)' Given that all individuals

‘dentical, and if we follow the argument of section 3.6. for an
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.roson social welfare function, it seems pnatural jus

utilities to give:-

Lid 4

n:lij,...,xT) = Iic[ vifno,...,nTg II""’xTJ

+he set of individuals, and v, is 7's utility function. low
' section 5.2., that £ only has interests when he is alive.
+he indicator variable
-1 (if 7 is alive in period t)
[o (otherwise).

. +that all individuals have the utility function u(zt,ntdj,n') for

seriod ¢ when they are alive, it is natural to take v. proportional
. n’xl,nr_f,nt).

Liel it = Me-1 (each t), W becomes:-

'n e = T
YIS ﬂ:,...,xTJ = ¢(n0,...,nT) Zt=1 nq u(rt,nt_l,ntJ

Here ¢(+) i the constant of proportionality, which in general lepends
;on the whole population stream. It is worth noting straight away
we have excluded the following welfare function which has been

. much of the optimal growth literature, in its infinite horizon

g - oT (1)
W o= I::I u(xt).

/ is the sum over time of per eaput utility. It has been rejected
P ]

Lecause it seems incompatible with static Bergson social welfare

(2)

ions, as considered in 3.6.

o now, the population stream has been taken as fixed. If the

b(n,

P“"nTJ is

© Yoopmans (1965) p. 254, for a discussion of why he , at least,
pts it.

15 point has been emphasized by Mirrlees.

properly chosen, then, even when it is aiiowed




]

€/14.

(he DSWE must have the same form.
-

r, just choice at time ] has been considered. How we must
.~ choice, and find a consistent dynamic social WCT.

jynami

‘-t that, if at time 8, choice corresponds to the BSWF:-

) (o - T
. f..J,...,.rT) = ¢(n0,...,nTJ Et'—‘s n,_1 u(xt,nt_z,nt)

* 2 ‘me
4

ren~v is assured. However, in this form of welfare function,

,lation & penerations back affects choice at time &; as s becomes
this becomes implausible. So we shall introduce the assumption

" (-) depends only on (n__,,...,n,) and derive restrictions on the
8 : s-1

¢ the function é(-), using an argument similar in form to Strotz's.(l)

.r extra assumption, then, is that past population size does not
directly 2°7zct the social WCF at time s. This assumption does not
deny that past population has some effect. For example, the number of
feorcian houses extant in Britain is of interest to some individuals,
at least, and is related to the size of the population in Georgian times,
aron -t other things. But such effects are allowed for in the list of
economic variables X, In a similar way, memories of earlier days of

ngested life can be allowed for in the list of variables x, -
, such memeries are not strictly economic variables. Preferences

family size may depend upon the number of brothers and sisters one
up with. This would violate the assumption, but could be allowed

<ithout much extra difficulty.

ven our assumption, choice at time 8, corresponds to a Bergson

1 “are function of the form:-

trotz (1957) p. 172.
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; vi i )
,KFJ(TJ,...,ITJ = ¢Blnn_1,...,n7J iﬂZH nt_} uer,nf‘I,JrJ

+ 1. the BSWF is:-

e J
'-J""“T){:3+1""’"T) = ¢ (ns,..., TJ Lt g+l Me-1 4(x n,. 121/

g+l

-:istency of choices of (ns+1’°"’nT) and (x8+1,...,xT). it is

; that
qpeseaty) Et-s+1 g ulxn,_pmy)
3 gg(Mgses e 7’ E‘_3+I g ulz g om,)
should be proportional, as functions of the choice variables. So there
st Le a constant as(ns_l,ns), for each n _, and n_ , such that +

..,nT) = uafns_l,ns) ¢8+1{na""’nTJ'

Starting from @T{nt_I,nTJ, and working backwards recursively, it follows

that:-

hgppeeeang) 2 {nrus ur(nr_l,nr)} Op(ny_ganp) -

1 2%p)

T

1
sy nr(n 727, )} ¢T{nTBI’"TJ It =7 Me-1 u(:t,nt 12" )

e that the objective:-

T

* lgag Myeg U(Zpnypoty)
(1)

as a special case

form of objective has been used by Meade (1955), pp. 82-93, 573-577
upta (1969 ), except that u did not depend directly on n and n,
(135%) and Votey (1969),(1972) have discussed implication§ ’
rental preferences regarding family size. Mirrlees (1972a), section 7,
ites, for a single period, a welfare function which, when there is
tainty, more than one period, and no overlap of generations, becomes

Ly=7 Bem1 u(zt, nt/ﬂt-l)
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e above form is incompatible with that prescribed by the:

+ility principle, which gives the following BSWF at time &:-

T
N ulzy, ny_go ny) Leze-1 "

form has been excluded by our assumption that the BSWF at time 8
.~endent of population before time &, and dynamic consistency. The
follow . np example shows much more directly how the average utility

principle is dynamically inconsistent:-

uppose that the average utility principle gives rise to the

iollowing form of welfare function at times 1 and 2:-

TR o3 3
Yy = Dpeg neeq ¥E) Liat Mo

3 3
K. = Ve Mpmg ¥(®¢) zt=2 Re-1

Suppose that there are two paths:-

¥ = rnoaxlpnlszzanzs‘rs) = (1, ;13 1, ;'23 1, :'-:3)

' ] ] ] ] 1) = - T
= (nf sxpngazpn’ peay) = (1, 2y 1, Zps 2, z,)

:t‘::j} = 3, N(Ez) = 'J, u&s) = I'

5/4

Then ¥,(x) = 4/3, Wzt’y ')

and W._(u)

&

172, Wy(y') = 2/3

‘s an obvious inconsistency.

is, however, possible to maintain the spirit of the average
principle, which I take to be homogeneity of degree zero in the
“tream. The simplest way of ensuring that each W  is

of degree zero is to take:-



(1)

) -1 T
n‘. - L?':T_IJ ths nt_l u(It, nt_JJ nt).

.+ the precise form of the functions “r(') and ¢,(*) is a

.t+hical question which will not be pursued here.

6/17.
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'he Time Horizon.

, far, throughout the discussion of dynamic choice and welfare,

i+ has been assumed that there is an upper bound T to the length of the

sranches of the underlying tree X. This means that the number of

separate decisions to be made sequentially is bounded. Thus, if economic
; can be changed once a year, then the assumption is that no further
dec'<ions can be made after T years. Really, then, we are assuming that

after 7 years, nothing matters. Accordingly, T is called the horizon.

In practice, the horizon is uncertain, and there is no guarantee
that no decisions will still be outstanding when T is reached. If T
is not the true horizon, the original choices, made on the assumption

that nothing matters after time T, are likely to be inappropriate.

Suppose that the true underlying tree is X. The effect of

assuming that the horizon is T is to truncate the decision tree to XlT.
The members of this truncated tree - z|T - are equivalence classes within
X. 1Twun options a and b of X are regarded as equivalent if they fail

(1). Given

to part until after time T - i.e. if a(t) = b(t) (t = 0 to T)
the horizon T, there is a choice function defined on X|T. Corresponding
to this choice function is another choice function CT. defined on X,

which has the property that if a|T = b|T (i.e. a(t) = b(t) (¢t = G to T)),

then a|T ¢ CF (A) iff blrec"w (each A C XJ.

[f the horizon turns out to come after T, this will be realized at
sore later date - certainly by time T itself. When the realization
eceurs, choices after time T will be planned. It is extremely unlikely

——

(1)

%ffco that we are assuming that all branches are truncated after the
same number of periods. This makes analysis much simpler without
198ing any real generality.
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v ane new choicea will be the same as the original choices

i 41 lures to choose. By time T, at the latest, choices will be

~rnice function C, defined on X, which differe from C .

.ntly, the effect of truncating the true decision tree is naive

(1)

mic choice.

ether this naivety is of importance is not clear. To know whether

i+ i important, we have to assess the effect of naivety. To do this,

<+ consider the alternative, in which dynamic choice is consistent.
mi= involves extending the time horizon, recognizing that decisions
.till have to be made after time T. But where does the extension of the
time herizon end? It seems that no finite extension is certain to make
dynanic choice consistent. For this reason, we are led to consider
infinite-horizon dynamic choice. This is the subject of the remaining

four chapters of this work.

(1) .
:§r’faextensive discussion of the horizon problem, see Graaff
(1957), ch. 6. Although Graaff knew of Ramsey (1928), (see p. 10ln.)
ne nowhere considers an infinite horizon as a way of surmounting the

problem,
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Chapter 7.
INFINITE HORIZON CHOICE.

7.1 Jlntgduction

—

In chapters 4, 5 and 6, it was assumed, as a rule, that the
mderlying tree X - for the dynamic choice functions being considered -

«as bounded. That is, there was a finite upper bound H on the number

of periods before any branch came to an end - i.e., for any t > H, and
any branch r € X, X(x(t)) = {x}. Such a number # will be called a

horizon for the underlying tree. If there is no such bound, the horizon

is said to be infinite.

The assumption that there is a finite horizon was convenient because
it avoided some tricky analytical problems. Nevertheless, as was seen

in section 5.4%., this assumption is unsatisfactory in many practical
policy questions, when policies with extremely long-term consequences

are being considered. For, although it seems certain that there is a
true finite norizon H, we are extremely uncertain about the precise

value of H. If we guess H, and our guess is too small, then eventually
our plan yill be revised. This is just like naive choice. On the other
hand, if our guess of H is too large, naivety is avoided, but the choice
we make is still unlikely to be appropriate. There are costs both to

underestimating and to overestimating H.

An apparently obvious and superficially attractive way to deal

with this problem is to recognize explicitly that there is uncertainty
about the true horizon, and to treat the choice problem as one of choice
under uncertainty. Suppose we do treat the problem in this way, and
suppoce that choice under uncertainty corresponds to maximizing the

cted value of a von Neumann-Morgenstern utility function. Then we

*d with specifying probabilities py for the different possible
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,f the horizon H.-

vou. it seems difficult to specify such probabilities with any

WOW

- 4ence. wWhen do we start allowing py to be nonzero? Given that the
,or comes after H, what is the conditional probability that the
horizon is 4 + 1? It would be pleasant to avoid having to answer such
questions. We may be able to do so, if our answers have little effect
on the plan we choose. But then the simplest course is to assume, in

effect, that there is no uncertainty - which brings us back to the

original problem of guessing the horizon.

But perhaps the choice of plan is sensitive to the probabilities

Py Then we have a case of a choice situation in which the specification
of probabilities is both hard and important. The task has to be
undertaken. Nevertheless, even when the probabilities are gpecified, not
all the difficulties are over. It could happen that there is still no

finite bound to the possible length of the horizon,so that we still have

an infinite horizon choice problem.

S0, unless we are sure both that there is an upper bound to the true
horizon 4, and also that our choice of plan is sensitive to the
probabilities Py there is a case to be made for studying underlying

trees whose branches are unbounded in length. Indeed, unless we are sure
that there is an upper bound to the true horizon, we are forced to consider
such underlying trees . The study of choice functions on such infinite
trees ic the subject of the remaining four chapters of this work. The
remainder of this chapter considers infinite horizon choice quite

fenerally, and prepares the ground for later chapters.
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{te an'l Infinite Horizon Choice.

.wnlore the theory of general dynamic choice functions on

underlying trees would be quite hard, but it is fortunately

nité

|y necessary. At least, it is not necessary if we maintain the
. t+pat there is, in reality, a finite horizon #, but that it is

~d so we are led to consider infinite horizons. For, if we
Liitain this view, then we can relate the infinite horizon dynamic choice

function to a sequence of finite horizon dynamic choice functions.

et X be the infinite-horizon underlying tree. For each possible

norizon H, we have an equivalence relation EE on X, defined as follows:~-

r F

gy iffz, =y, (t =0 to H)

Thus, two :ranches are equivalent if they have failed to separate hy
tire /. Denote a typical equivalence class by z|H. Let the set of such

equivalence classes be X|H - this is a truncation of the tree X.

Assume that, for each H, there is a coherent and consistent dynamic
choice function on X|H. Because of consistency, it is enough to specify
the choice set C|H/A) for each A ¢ X|H. Then C|H is effectively an
ordinary choice function on the underlying set X|H. Corresponding to Cl¥
is 2 choice function C” on the underlying set X. To define O, first

defin=,

for each A € X:-

Ald = {::Iﬁlay el s.% sl gl

and ther-

define:-
f »
Awa)=tzea | z|H ¢ C|H(A|H))

! is obviously a coherent choice function on the underlying set

© which ignores the distinction between branches which part

“ter time 4.
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+he choice function which is truly appropriate is CH, for

M
W

w

But, because the horizon is unknown, the choice function

hopizon &

‘< sctually adopted may be an infinite horizon one. Let it be C*

which

.atisfactory, C* must give choices which are nearly as good as those

7o De

which ¢ gives, for the true H. It seems that the most likely way of

achieving this - assuming some sort of continuity - is to have C* give

approximately the same choices as C‘H, for the true H. Here, the true
4 is likely to be large: this is why infinite horizon choice is considered.
So, recognizing that H is unknown, we are looking for a choice function C*

vhich gives approximately the same choices as C’H, provided that H is

large; evidently, then C* will be some sort of limit of the choice functions

C'd, as H + =,

As a convenient shorthand in the study of limits, we shall adopt

the following terminology for properties of infinite sequences. Let

<nH> be any infinite sequence of mathematical objects, and let Tl denote
any property which the objects uH may have. Then, say that uH eventually
has property 1 if there exists Ho such that, whenever H > Ho, aﬁ has
property M, say that u” frequently has property T if there is an infinite

subsequence <aHn> of the sequence <cH> such that, for each n, an has

property ﬁ.(l)

Notice that uH frequently has property N if and only il it is false
that of eventually has property (not ). To illustrate the terminology,
consider the definition of a limit of a sequence of points q:H:- in a
topological space X : x* is a limit of <z'> if and only if, for any

neighbourhood N of z*, = eventually belongs to N.

(1) ,
-¢e felley (1955), p. 65.
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Limits of Choice Functions.

7.3.

ore is no single straightforward definition of the limit of a

sequence Of ~hoice functions, as will become apparent in the following

giscussion. Different definitions fit different circumstances. Moreover,

wone of the definitions specify a unique liwit, in general; instead, there

are two limits, one of which gives an upper bound on choice sets, and the
other a lower bound. There is a parallel here with the unanimity principles

of chapter 3: indeed, limits are derived on a kind of "eventual unanimity"

principle.
The discussion will be facilitated if we concentrate on special cases,

characterized by particular assumptions. Two special cases are considered:

it is only these special cases which are relevant for the remainder of

this vork. I

We are concerned with the limit C* of a sequence of choice functions
«"'> all defined on the same underlying set X. The assumptions in the
first special case are:-

(1) Each choice function C‘H is ordinal,

(2) C* is quasi-ordinal.
To assume that C* is ordinal is too stringent. For example, if it

happens that, for some choice functions 01 and C,,

Ha) = C,(4) (each A C X) (H 0dd)

02(4) (each A ¢ X) (H even)
(where C‘Irﬂ) £ C2(A), for some 4 c X)

then any limit C* should be some amalgam of CI and Cz. In chapter 3, and

the discussion of unanimity principles, we found it reasonably straightforward

(1) _
“2e footnote (2) of p.7/6.
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.mate ordinal choice functions into a quasi-ordinal choice

11y Qllic

Sut to amalgamate ordinal choice functions into an

tion.

ice function itz much more difficult; for example, Arrow's Impossibility
. ~hows that we must violate his axiom of Independence of

Irrelevant Alternatives, in general(l). The parallel is close enough

to -upsest that there are likely to be similar difficulties in finding

4 rdinal limit to a sequence of choice functions, and that we should
4o well to look only for quasi-ordinal limits, at least to start with.
Also, at the end of the chapter, there is a brief discussion of ordinal

limits.

‘ven if we do confine ourselves to quasi-ordinal limits, and make the
assumptions (1) and (2) above, we shall not generally succeed in specifying
the limit -toice function C* uniquely . Instead, for each A C X, we shall
specify two sets CI"(AJ and Cz‘(n) such that, for the "true" limit

choice set C*(A) (whatever it may be), CI‘M)C_‘. C*(A) c Cz‘(AJ. Here

the sets C,*(A) and 6‘2‘(.1) will be specified so that the following
assunption is certainly satisfied:-

(3) If there exists sets BI' 82 C A with BI non-empty, such that

8,C C'(4) ¢ B, eventually, then B, C C*(4) C B,

This would seem to be no more than a reasonable restriction on our
definition of the limit of a sequence of choice functions. For, surely,

if the members of B, are chosen for all large H, they should be chosen

1
in the limit as the horizon tends to infinity. And if only members of

6, are chosen for all large H, then only members of 2, should be chosen

in the limit as the horizon tends to i.nfinity(?).

——

(1)

See Arrow (1963).

2)
th T"JTlc? too the parallel with unanimity principles. This explains
¢ allusion at the start of this section to "eventual unanimity".




~an ensure that (3) is always satisfied by specifying the lower
mits CI*(AJ and C_,*(A) so that:-
exist sets BI’ 894‘ A, with BI non-empty, such that

_.".',,I 5 o) % V *
(A) ¢ By eventually, then BI C CI (A) C 6'2 (4) < 82.

This property will be used to define C‘I“(A) and Cz‘(A), for

Surpose that, for each H, the ordinal choice function CH corresponds

to the preference relations PH and }'{H .

Now we shall look for an appropriate limiting strict preference
relation P* and for a corresponding proper weak preference relation R*,
4o defined in section A.8 of the appendix. Recall that R* must have
the following two properties:-

(5) F* is reflexive and transitive (but not necessarily connected)
() z P* u iff (x R* y and not y R* x).
In fact, there are two alternative definitions which arise naturally,

and we shall have to consider both of them.

First, suppose that X ’! y eventually. Then {z,y} 2 CHI'{:c,y}J > {x}
eventually, and so, by (4) above, z € CI‘(AJ. Therefore, we define
“7' so that:-
(N z R *y iff = o y eventually.
Because each d is reflexive and transitive, (5) is certainly satisfied;
I‘ is defined so that:-
(8) z P %y iff [_-{.r A y eventually) and not (y R z eventually)]

(6) will also be satisfied if and only if P

iff [{:: 7 y eventually) and (z 7 y frequently)]
-’“3‘ is asymmetric and transitive, so that it is a strict

~elation corresponding to a quasi-ordinal choice function.
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S0, as a first attempt, we might take as upper and lower limits

e set of maximal and optimal elements in each set 4, defined as in
coction A.8 of the 3ppendix:—

v A(4) = {z e A | ¥y ¢ A implies not ¥ PI" x}

5 4(A) = (z e A | y € A implies x R % y}

. as the following example shows, there exists a chcice function
~+ -arisfying (3) and (4), for which C*(A4) C MI"fA) (each A C X) is

false.

!_5_15;15_.‘}9 7.3.1.

“uppose that X = {a,b} and that
a FJir b (H odd)
a IH b (H even)

Then a P,* b, so that MI‘fX) = {a}

1
But, if we define C*(X) = {a,b}, it is clear that (3) is satisfied.

So, second, Supposie that = PH y eventually.
Then {x}C C‘H({x,y}J ¢ {z} eventually, and so, by (u),Cz‘({a:,y}) ¢ (z}
Therefore, we define Pz‘ so that:-

(9) = P?" y iff x PH y eventually.

’}bviouslj,r,Pz* is transitive and asymmetric, because each P is,
and so Pp' is a strict preference relation corresponding to a quasi-

oriinal choice function.
fotice that P,* C P.*, and that the two relations may not be
identical - in example 7.3.1l., a PI‘ b, but it is false that a Pa‘ B

It is hard to characterize any proper weak preference relation Rz“

corresponding to Py*. We do know, however, that one such relation must
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.= in section A.8 of the appendix, we can define HZ* = Pz* v Iz“,

rI,%u iff [z P,* s iff y P,*2) and (z Py* x iff z P,* y)]

nately, no characterization of R, * is required for our purposes.

Fort

2

¢+ concerns us is the following result, which shows that we have

What
succeeed in putting the appropriate bounds on the limit choice function
4

| P

Theorem 7 3.2

Let ‘fC'H‘»‘ be an infinite sequence of ordinal choice functions on the
underlying set X. Let C’q correspond to the preference relations PH and
H=1,2...). Let C* be a quasi-ordinal choice function on X,
correspondiry to the preference relations P and R (where R is connected,
but may be improper - so x Ry iff (not y P x)). Then C* has the

property that:-

non-empty, such that

(3) If there exist sets B 32 C A, with B

1.’

eventually, then

1

5,¢ a) B,

. . ]
BIQC‘ (A) C B,

if and only if R 2 R,* and P?Pz‘

1

Proot

(A) Suppose that C* is a quasi-ordinal choice function, and that

RO R,% PO P?". Suppose also that BI c CH(A) C 82 eventually, where BI
Is non-empty.

(1) “uppose z ¢ 4 - B.. Then z ¢ GH(AJ eventually. Suppose y € B Then

2 £
v e (A) eventually. As each C” is ordinal, it follows that y PH &
“ventually, so that y P,* z. By hypothesis, P2 P,*, and so y P z,
#hich implies that x ¢ C*(A)

5o we have shown that C*(4) € 82'
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H )
se I ¢ HI' Then « ¢ C (A) eventually. So, given any y ¢ 4,
7"y eventually, and x 11‘1‘ v. It follows that x R y, and
cr(A).

|

co we have shown that BIG C*(A).

nmose that C* is a quasi-ordinal choice function, and that, for

¥

21c X, if .’.1‘1 C C‘H(A) ¢ B, eventually, where BI is non-empty,

2

C*(A) c O,.
then Al ¢ P

ppose that * R,*y - i.e. x 7 y eventually. Then

1
izt ¢ (lz,u}) ¢ (z,y) eventually, and so {z} ¢ C*({z,y}).
Therefore R V.

(ii) Suppose that x P,* v - i.e. x Pﬂ y eventually. Then

.-_"'"({I,_'J}) = {zr} eventually, and so C*({z,y}) = {z}.

Therefore x P u.

The sunscripts I and 2 are now unnecessary. We shall always consider
#.,* as the weak preference relation, and Pz‘ as the strict preference
reiaticn, so write P* for Pz“, and R* for RI" Thus:-
x R*y iff = FH Y eventually

Pty iff = PH y eventually.

 D2(4) (= 0,4(A))

{x € Aly € A implies x R* y}
MAR) (= M 2(A)) = (z € Aly € A implies not y P* x)
is +ie set of optimal elements of A, and M*(A) is the set cf

elements of A.

is important to notice that F* is not necessarily the weak
rence relation corresponding to P*; it is possible that x P* y is
ven though x R* y and not y R* xz. Indeed, example 7.3.1. is an
tanc. of this possibility. Nevertheless R* and P* do have many

roperties of associated preference relations:-

—
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(4) i* is asymmetric and transitive
(+) 7* is reflexive and transitive

1f ~ P* y, then x R* ¥ and not y R* zx.

Theorem 7.3.2. tells us that, if C* is defined so that (3) is
fied, then:-
*(4) C C*A) C M*(A) (each AC X).

the result which will be extensively used in later work.

otice that M*(-) is a quasi-ordinal choice function on the underlying
¥; it corresponds to the strict preference relation P*, which is
trarsitive. In general, however, O0*(.) is not a choice function, because

nay well be empty even if A is finite, as the following example

7 = {r,b} is the underlying set.
Suppose a 7 b (H even)
b P a (B odd)

Then neither @ 1* b nor b R* a is true, and so 0%(X) is empty.

“o far, throughout this section, we have maintained the assumption

that each C” is ordinal. But, in chapter 9 later, we shall be examining

double lirits of choice functions (.‘?. Since a limit choice function, in
“ral, 1s nor ordinal, we are therefore forced to consider the limit

“equerce of quasi-ordinal clioice functions. We shall not give a

!iscussion of this second special case, but shall proceed directly

(1

) cannot use example A.8.2. of appendix 1, because R* does not
“orrespond to P* in the way required. -
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tte following result. It is a weakened form of theorem 7.3.2.,

roved in the same way.

"> be an infinite sequence of quasi-ordinal choice functions
ierlying set X. Let * correspond to the preference relations

(4 = 1,2,...). Let C* be a quasi-ordinal choice function on

crresponding to the preference relations P and R (where R is connected,

; be improper).

efine the relations R4,P* as follows:-

x R*y 1iff =x R’H 17} even.tually

x Pty iff = PH ¥ eventually

Then, C* has the following property only if R 2 R* and P 2 P*:-

If there exist sets BJ, Bz c A, with B, non-empty, such that

1

5,c (a)c 5, eventually, then

2
(a) B, C C*(A)
(b) C*AJC B,
&

Conversely, if R D R*, then part {(a) of the above property is satisfied.

The following example shows that even if P 2 P*, part (b) of the

property stated may not be satisfied:-

t ¥ = {x,y,z}. Suppose that the preference relations RH, IH: PH
tollows:-

r?’Hy, .rIHz, ylﬂz (H odd)

y P X, = PH:, z PHy (H even).
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- ['*  we have C*(X) = {(x,y,2}.

»

all 4, {2} ¢ Fx) c (z,s).

espite this difficulty, we shall continue to assume that, for

all A C X,

0%(4) ¢ C*A) € M*(A)

here */-) and M*(-) are defined precisely as they were before. The
ifficulty is that our upper bound M*(A)on C*(A) may be too large; this
chould be borne in mind before elements of the maximal set are accepted
as suitable choices,Butit is a problem which has to be faced anyway,

even when each C'H is ordinal.
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Y i!r.r‘.7:0r|_f?'f:oi_¢;_'a__a:._d._hddi1ive Utility.

... +hat each finite horizon choice function C|H is defined

uet set X|H = “i:} Xt' and that it corresponds to an additive

gtility function ):‘gﬂ u:(.rt).'rhen ¢ is defined on the infinite product
set X ° ';:1 xt, and corresponds to the same additive utility function.

‘iven these assumptions, the preference relations B* and P* assume
a2 form which has been much used in the theory of optimal growth. Moreover,
it is possible to modify them so that the 1imit choice function has an
extra important property - it is continuous, in a certain sense, provided
+hat each utility function ui’(-) is continuous. This continuity is
achieved at a certain cost in terms of satisfying property (3) of the
previous section. But a slightly modified form of this property will

still be satisfied.

Before turning to infinite horizon choice, however, we shall note
that it is usually possible to simplify the additive utility functions

to just 5'{:} u,(x,), where “t{xt) is independent of H.
for let ' be any horizon beyond H - i.e. H' > H. Then CH corresponds

N’

r ' r r
0 )4.q ¥, (z,), and H' o E!tf:l u: :’::t) . Now ¢ defines a choice function

’:‘f’l_-‘;’ on ¢he underlying set x|# = n’;ﬂ 4\’t and this choice functicn corresponds
to E ; -f (x ). So, in effect, there are two choice functions on X|H -

{ |H. Now, to get an additive utility function corresponding

.o have to assume that choices on X|H are independent of what happens
a%sr time #. Let us extend this assumption so that, if the horizon is

net before time H, then choices on X|H are independent of the horizon. In

e
“r. 7 |¥ and C'H must be identical choice functions, and
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! H' 3 o .
WHe,) and [y_q Uy !’:r:tJ must be equivalent utility functions.

+

i« true for every H and H' such that #' > H, it must be the

w

+hat there is a sequence of utility functions ut(-) such that,

..cn H, " corresponds to Zg:l “t(xt} - where ut(-) is independent

can return to infinite horizon choice. It is convenient

stvoduce the following notation:-

H vil

(V) W (x) = Lt=1 ut(xt)
n o " w
Thus, ¥ is a utility function on the underlying set X, and corresponds
to
in this case, the preference relations of section 7.3. assume a

faniliar form; they become versions of the overtaking criterion first
propounded by 'h‘eizsacker‘(?). For:-
(2) = 7%y iff Wi(z) > Wi(y) eventually

(iff 3H, VH > H, :zz u(z,) - ut(yt)] > 0)

and:-

() = 2%y iff HH(zJ > wH(y) eventually
: H
(iff 38, VH > H, It:lE‘t(’t) ut{yt}] > 0)

Although it is both familiar and also extremely useful, it is

rossible to question whether this criterion needs a minor modification.

Consider the following example:-

(1)
Arack

ck (13970b) and Koopmans (1972b) reach this conclusion in essentially

e same wavy.

_. :vlwi.'.s}';c:-:r‘ (1965) p. 85. Weizsdcker worked in continuous rather than
- iscrete time, but his criterion is obviously the continuous time
‘ersion of F*, as defined here.
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e X, is the underlying set.

t= 1]

! 4°,...)},a countably infinite set.

) = (- oL (g=1)
| 27 (1)
r“ [ n) - Z_H_H

Then a' P* a' iff m > n. Therefore M*(A) is empty. Nevertheless,

for sach Qe A, ,5{1:-: bﬂ{anJ s 0,

Also0, consider any option x(e) € X, where:-

I
It(E) = a, (t>1)

and uI(:I(aH ujfrxi} + ¢ (e>0)

Then, no n<tter how small € may be, we have:-

n=1 ., 2 1

nP‘a Y P*a P‘a.

x(eg) P* ... P*a

Exanple 7.4.1. is troubling because it is not clear that we should
regard d" as better than @' when m > n. And, perhaps more troubling, P*
fails an obvious test of continuity. For we could define x(e) in
example 7.4.1, abuve so that z(0) = al, and so that x(e) is a continuous
function of €. Then, if n > 1, we have a’ P* z(0), and yet x(<c) P* o
for 511 ¢ > 0, This kind of discontinuity is likely to lead to empty

choice sets more often than is comfortable or reasonable.

‘ccordingly, the Weizsdcker overtaking criterion will be modified
it has some basic continuity properties at least. This forces

to consider continuous preference relations.

U X be any topological space, and let K, P be respectively weak
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..+ rreference relations defined on X. Say that:-
- ~ontinuous (as a weak preference relation) if, whenever

and yn +y asn + =, and ' R yn eventually, then r R u.

v
H

omtinuous (as a strict preference relation) if, whenever

and u" + y asn + =, and x Py, then ' P y" eventually.

H

+t these definitions are standard - at least when R is identical

(1)

+ 7). and when R is a weak ordering But they remain useful

? is neither connected nor transitive.

=
iy

ow, we can hardly expect the preference relations R* and P*, defined
. (2) and (3) above, to be continuous, unless the utility functions
sre continuous. So assume that each X£ is a topological space,

that -:":Jc'r *@ is a continuous function.

“eturning to example 7.4.l., the issue raised is a property which
night be called "continuity within finite product subspaces". Formally,

a finite product subspace of X is a subset

H = -
n
=1 Xt X “t=H+I {xt}

@

%GP scme ‘Et> 1), this subsei being endowed with the product topology.
t=H+

A sequence <> of points of X converges to z* within a finite product

In
t
(b) Yt e H n 4
t H xt -+ :t as n + e=.

. finite product subspace, only a finite number of components x,

Cal Chatpe from a single value Et; for convergence within a finite

et subspace, the sequence <x'> must lie in some finite product

- reflexive, connected and transitive. For equivalent definitions,
spmans (1972a), p. 60 - for example.
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w we can define continuity of preference relations, along the
(4) and (5) above. Say that R and P are continuous within
re’uet subspaces if,
. (i) £ + z within a finite product subspace
(ii) yn -+ y " L1 n "
eon n
(a) if x Ry eventually, then = R ¥

(b) if z Py, then z p yn eventually.

i+ is evident that this form of continuity is weaker than that of
continuity in the product topology on X. Yet example 7.4.1. shows

that ¥* and P* fail to be continuous within finite product subspaces.
I+ is easy to modify the definitions of the infinite-horizon preference
relacions o that they become continuous, in this sense. Indeed,

define F 2nd :” as follows:-
o Lim inf
y iff TS [HH(J:) - Hul'y)] >0

(1) z Py iff l;.;m+£:f [Hﬂrzj - VH(y}] >0

=

(6) x

Notice that these definitions are unambiguous provided that each

#' is well-defined up to some common positive affine transformation -

i.e. a transformation of the form

iy

Wz aw 48, (each B)
where a iz a positive scalar. In particular, the definitions are
unambiguous when each hﬂ is additive. But, more generally, ambiguity

1s quite possible.

Evidently, R is reflexive and transitive, and if = R* y, then
Also, _I;’ is asymmetric and transitive, and ifz P Yy, then x P* y.

! P are continuous within finite product subspaces is

ilate from the following:-




ryLs.

I.E
I

: n e 1 .2
r¢ »' converges to £, and ¥ converges to ¥, both within a finite

.t subspace, then

Zz.mj:f E’H{an - kﬂfyn)] tends to

lim i:f [QH(_.,_.) & lﬁ(y)_J, as n + =,

H o>

¢ that each Bﬂ(') is continuous.

n

gy hypothesis, there exists T such that, whenever t > T, z, = x,

"2y . Therefore, if H > T

H % n n,
1 !:‘trrt) - ut(yt)J

T n n H

R E;t(;rt) - ut(yt):l + Yoot Ect(:ct)- ut(yt)]
e -]« e - )] - [Fe - o]
lim inf _‘,‘ﬁ{zn) _ HH(yn)]

o+ w

lim Lﬂf ;\ﬂ(:) - Hﬂfy):l + { hT{:ﬂ) - HT{;,)] - [Hrfynj - VT{yﬂ}
—

H» =

1im inf [,
o WH(x)—HH(y}:I as n ~+ w,

H+w

because VT(‘) is certainly continuous.

[t is worth noticing that, if HH{:J + W*(x) and Vyfy) + W*(y) as
# + = then:=-
2Ry iff W(z) > W*(y)

r Py iff WH(z) > W(y).
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Lpticular, if, for'each z e X, there exists W*(x) such that
*, WwA(r) as H + =, then W*(-) is a continuous utility function
corresponding to R and P. It is easy to construct an example in which

4/ Jdoes not correspond to R* or, indeed, to P* - see example 7.4.4.

"

below.

'+ is convenient to have names for the relations P and R. So, if

, say that x stricily overtakes y; if x R ¥, say that x catches up

()

llotice that, even if x R ¥ and not y R x, it may be false that

le 7.4.3.

*_xarrt 1

Suppose that z,y € X and that:-

WHize) = (1 (H oda)
0 (H even)
Wwiy) = 0 (all B).

Then lf!mf:f [hﬁ (x) - H‘H (y)] = 0, so that

x Ry, but not z P .

Nevertheless,

tminf [fo) - oF (z)]

H + L

n
|
[
.

so that y ¥ = is false.

fne would like to prove a result similar to theorem 7.3.2.

But the property:-

(1)

Eoe Gale (1967), p.3., McFadden (1967), p. 28, and Brock (1970a),
22 275. 1 have used "strictly overtakes" instead of "overtakes by a
Iinlte '&:munt“.
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7, is non-empty, and BI C CH{AJ C 82 eventually, then
o c

e C*(A) C 32

i certainly have to be modified, as can be seen from example 7.4.4.
Since an appropriate modification is not intuitively clear,

. i+ obvious what is the weakest possible modification consistent

ontinuity, we shall go no further into this.

Suppose that x,¥ € X, and that

Fi) =278 oy =0 m=1,2...)

Then W*(x) =(§2 lﬂ(z)) = W4(y) = 0.

50 we have an example here in which z P* y, although W*(x) = W*(y) -
wlich shows that P* may fail to correspond to a utility function,
and also that P* is not identical to P (because x I y).

ere if 4 = (z,y}, and B, = B, = {z}, then B, C )¢ B

2 1 2
for all H, and yet if C* corresponds to the strict preference
relation P, C*(A) = A, contradicting (8).
(¢c) Suppese BI < C'H(AJ eventually, implies that B, < C*(A). Even so,

here we have an example in which, if €*(4) = {x}, this property is

satisfied, and yet ¥y ¢ C*(A) although, for all z € 4, ¥ R z.

Finally, define:-

O(A)

{(ceAly ¢ A implies z R y}

“(A) = (z ¢ Aly € A implies (not y P z))

0(4) is the set of optima in A, and M(A) is the set of maxima in 4. We
assune now that, for each A € X, the infinite horizon choice set C*(A)

Saticfipe
dtisfles:=-

O(A) C C*(A) € M(A).
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whereas M(+) is a choice function, O(-) may not be, because for some

finite sets 4, 0(A) may be empty.

411 these remarks are similar to those at the end of section 7.3.,

he justifications are virtually identical.

A -
and 1

Later, too, we shall have cause to examine double limit choice
functions when the choice functions C;l, correspond to additive utility

suctions, But this examination is best left to chapter 9, which is

where it is first used.
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+he earlier sections of this chapter, we have con~entrated on

.irs C* of a sequence of choice functions ¢CH> defined on the common

limits ¢

nderlying set X. But, in doing this, we have rather lost sight of our

original objective, which was to define a choice function C* on an
infinite-horizon underlying tree X, given the sequence of choice functions
<{:'"'> sefined on finite-horizon trees. As soon as we start to consider
dicice on underlying trees, we have to consider dynamic choice. So far,
not done this, in order to concentrate on a single issue. Now
it is time to re-examine the infinite-horizon choice functions of the

sarlier sections, to see how well they fare in dynamic choice situations.

Suppose now that, for each horizon H, there is a dynamic choice

function {(."::.rﬂ} on the underlying tree X. Then each component Hn) is a
choice function on X(n). Given the sequence <Can)>, with the node n

fixed, there is, in general, at least one limit choice function C*(n)

¢efined on X(n). Consequently, there is at least one dynamic choice function
{C*(n)) with the property that each of its components is a limit of the
sequence of the corresponding components of the finite-horizon dynamic

choice functions {CH{r:)}. (C*(n))} is then said to be a limit dwnamic

choice function.

If it is accepted that infinite-horizon underlying trees are to be
wnsidered because the horizon is unknown but distant, then it should now
‘e clear that what is required as a dynamic welfare choice function is a
linit dymamic choice function. Because any dynamic welfare choice function
{s expected to be consistent, this raises the question of whether a limit
mic choice function is consistent. What will be shown here is that,

acn {07 (n)} is consistent - as surely it must be if it is the dynamic
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. #ymetion which is appropriate when the horizon is H - then there

4 limit dyramic choice function (C*(n)} which is consistent. This

is true whichever kind of limit is being considered - the limits of
-n 7.3. or those of 7.4. A stronger result can hardly be expected,

secti
the definition of a limit choice function is partly ambiguous,

pecause

and so it is possible to pick the limits C*(n) of different components

perversely, and to get inconsistency as a result.

7o show that there is a consistent limit dynamic choice function,
auch use is made of section A.9. of appendix 1, and of theorem A.9.4

in particular. So first, the following result, noteworthy in itself,

is proved.

lemma 7.5.1.

Suppose that, for each H, {CH(n)} is a consistent dynamic choice
function on X, such that CH{nJ is ordinal, for each n ¢ N(X). let
.i'H(n}, PH(n) be the weak and strong preference relations corresponding to

c’“‘(n). Define R*(n) and P*(n) as in section 7.3.:-

If a,b € X(n)
then a R%*(m) b iff a Rﬁ(nJ b eventually
and a P*(n) b iff a PH(nJ b eventually.

Then {P*(n)) and (P#(n)} are consistent dynamic preference ielations.

Proof

Firet, it is evident that, since [C’H(n)} is consistent, so are
{E'anl} and {PH(n)}, because if a,b ¢ X(n), then:-

2e fn) (tab)) i£f a e Fing)(la,b))

(where ", is the initial node of X).
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if a,b e X(n)

then a R*Mm) b

P FF a Rltm) b eventually

iFf a RH(no) b eventually (because (' m)} is consistent)
{€f a R"(r:oJ b,

ot/n)} is consistent. The proof that {P*(n)} is consistent is

virtually identical.

An analogous result can be proved for the limit preference
relations of section 7.4%. But first, notice that if {C‘H(n)} is consistent,
where ) represents choice on X(n), and if C‘H(n} corresponds to an
additive utility function, then this additive utility function must

have <he form:-
. §A
W) (z) = Zt=a+1 u,(z,)

where 7 is the node reached at time 8 along branch xz. This is because

~

e mOJ corresponds to

; H
JH(nO) (xz) It:l u,(x,),

and, whenever r ¢ X/n), the initial sequence (::],:cz,...,:ns) is fixed. Thus

utility functions u, are completely independent of n. Mccreover, each
component €' (n) of the dynamic cnoice function also depends only on the

tire 2 at which n is reached, and so {(.‘H(nJ} can be written simply as

(). Now:-
2

V"fni depends only on the time & at which node n is reached, and the temporal
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panad TsSa

ma

suppose that, for each H, {CH{n)} is consistent and corresponds

H _ H : .
to W (x) = Et:s*]“t{:t)’ where n is the node reached at time 8 along

. pefine {R(n)} and {P(n)} as in section 7.4.:-

vpranch Z.

a,b € X(n)
cen a Rln) b iff Ton inf [Vg(a) - wgfb)] >0
md a Bm) b ife L S [w:ra;' —Hs’rb)] >0

Then (A(n)} and {P(n)} are consistent dynamic preference relations on X.

Proof

The proof is as straightforward as that of lemma 7.5.1., and so

is omitted.

Given these two results, and theorem A.9.4. of appendix 1, it is

immediately clear that the following two existence theorems are true:-

Theorem 7.5.3.
If the assumptions of lemma 7.5.l1. are satisfied, and if, whenever

Ac X(n):-

0*(m)(A) = {x ¢ Aly € A implies x R*(n) y}
MAn)(4j = {z ¢ Aly € A implies not y P*(n) z}
then there is a consistent dynamic choice function {C*(n)} such that,

whenever 4 € X(n), 0%(n)(A) € C*(n)(A) € M*(n)(A).

Theorem 7.5.4.
I the assumptions of lemma 7.5.2. are satisfied, and if, whenever

Ac iin):-
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sm)(A) = (z ¢ Aly € A implies z R(n) y}

Um)(A) = {z € Aly € A implies not ¥ B(n) x)

then there is @ consistent dynamic choice functieon {C(n)} such that,

henever 4 € X(n), O(n)(A) ¢ C(nj(A) ¢ M(n)(A).

1f +hese theorems were not true, the applicability of infinite
horizon choice would be circumscribed. But, reassuring as they may be,
there is little guidance as to how to construct a consistent dynamic
choice function, in general. This gives significance to two special
cases, in which it is obvious what an appropriate consistent dynamic
choice function is. The cases are:-

(1) When 0*(n), or O0(n), is a choice function, for each n.

(2) When, for the true feasible set A, and for each node

n e N(A), M*(n)(A(n)), or M(n)(A(n)), is a singleton.

Also. if A is the true feasible set, and for each n € N(A), 0*(n) (An)),
or O(n)(A(n)) , is non-empty, then at least we have a non-empty set of
options, which is a subset of the appropriate choice set, whatever that

may be. So it is possible to select an option in the knowledge that the

selection is appropriate, granted all the other assumptions of course.

Consequently, in chapter 10 there will be some discussiocn of these

special cases.
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onclusions
nclus1or=

‘his chapter has considered some problems which arise because the
tipe-horizon is not known. It is commonly thought that the time-horizon is
likely to be very distant. Consequently, it may be appropriate to consider
infinite-horizon choice - to pretend that the world will last for ever.

This may be because no bound can be put on the horizon, or it may be

hecauce infinite-horizon choice is a good and convenient approximation to

Jhat would be chosen anyway, were there a bound to the horizon.

Whichever of these two reasons applies, the most appropriate
infinite-horizon choice set would seem to be the limit, as the horizon

¢ tends to infinity, of the choice set which is proper if H is the true
horizon. It turns out that such limit choice sets are not always well-
defined. Nevertheless, in section 7.3., two limit choice functions were

defined - giving upper and lower bownds to the choice set.

Section 7.4. considered the important special case in which each
finite horizon chcice function C'H coi'msponds to an additive utility

function: -

Hia) = 15 ulz,)

n this case, the limit choice functions of section 7.3. correspond to
Weizsicker's overtaking criterion. But, in order to get continuous
preference relations - continuous within finite product subspaces at least -
the preference relations R and Ié. weak and strong respectively, were

cefined as follows:-

y if hm t:f E#(z) - FH(yJ-l >0
Py if I"’" "’_'_f Erafz) - HHryJ_J >0

H
=i

11
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+his special case, and these preference relations, which are

considered in later chapters.

It i

4L

¢ the reasons for considering infinite horizon choice is to

ne Ol

avoid the dynamic inconsistency which is bound to arise if too short

horizon is assumed initially. Accordingiy, it is important to

a tlme

pe sure that infinite horizon choice is dynamically consistent. In

section 7.5., the most that could be done was to show that there exists
a consistent dynamic infinite horizon choice function. It was not,
however, successfully characterized, and it seems that the most which

can be found easily are upper and lower bounds to the choice sets.
Because the choice set is clear when the upper bound gives a single

element choice set, uniqueness is an important question, which is

explored in later chapters.

Now we are in a position to corsider infinite horizon choice in the
kind of problem to which it has been most applied by economists - the
problem of planning capital accumulation. This is the subject of the

next chapter, and of chapters 9 and 10, in effect.



Chapter 8.
ON OPTIMAL CAPITAL ACCUMULATION.

g.1. Capital Accumulation and Welfare.
-0___+___

The choice of appropriate policies governing capital accumulation is
perhaps the principal problem in intertemporal welfare economics. For
it is very clearly an economic problem, and it is also one in which long-
run considerations seem extremely important. It is also the problem to
shich infinite-horizon choice theory has been most applied. Indeed, it is
the problem to which , in effect, the whole of optimal growth theory is
addressed. Moreover, many of the important developments in infinite

horizon choice theory were designed to deal with this prohlem(l).

This chapter will examine how welfare economics can be applied to
the choice of a plan of capital accumulation, and a major difficulty will

be observed.

Policies concerning capital accumulation matter chiefly because
the affect the opportunities which individuals have for consumption, and
for work or leisure. Accordingly, any such policy has to be justified
indirectly, by referring to the consumption etc. which results from such
apolicy. This is not to deny that capital accumulation may have other
results in which individuals have direct interests - pollution, the

aesthetic merits of buildings and bridges, etc.(g}

So, in considering
the choice of such policies, the most appropriate underlying set is the

set of all possible streams of capital, consumption, labour, leisure, etc.

(1

) ‘ Examples are Ramsey (1928), Samuelson and Solow (1956), Weizsacker (1965).
J'chez: developments are considered in chapter 9. Also, there is some
tonsideration c¢f infinite horizon choice in the mathematical statistics
literature. See Blackwell (1965), (1967), Zos (1967).

(2)

i An analysis allowing capital accumulation to have direct effects on

ndividual welfare occurs in Kurz (1968).
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L]

snose that there is a finite number, m, of different kinds of

| good which the economy is capable of producing at one time or

cdj: -

mother. Let L(t) denote the m-vector of capital good quantities which

e available at the end of period t for use in pericd ¢t + 1.(1) Let

enote the vector of net quantities of goods received by individual

A RT

seriod t. Here, ci(t) includes not only consumption, but also the

supplies of services and endowments which consumer 7 provides; we make
«ho usual convention of treating supplies by i as negative supplies to %.
If individual ¢ is not alive in period t, define c‘i(t) = 0. Then write
e(t) for the list <c£(t)>£cr. Although, as we have just emphasized, c(t)

includes lists of supplies of labour etc., it is convenient to refer to

a(t) simply as "consumption', and this will be done in the following

sections.

Given the capital stock vector k(t-1) at the start of period ¢, the
choice of e(t) evidently affects what capital stock vector k(t) can be

left over for use in period t + 1. Let Y(t) denote the set of possible

triples "\k{f"fi.k(t),c(t)) for period t - it is the technology at time t¢.

The economy is .constrained at time ¢, in the choice of consumption

(and current resource usage) c(t), not only by technology. Other constraints
arise because people need food, reut, warmth, and shelter, and can only
provide limited services. In addition, there may be constraiuts on the
distribution of goods and services between individuals. Such constraints

"ay be technological, if it is a question of providing adequate transport.
fut there is also the problem of creating institutions to arrange such

istribution. For example, if allocation has to take place through

N A5 always, time is assumed to be discrete because that makes the
vieoretical analysis easier.



8/3.

and if no lump sum transfers of purchasing power are possible,

marke 15,
there is a constraint on how goods can be allocated. In general, such
conseraints depend upon the capital stock k(t-1). Let Q(t,k(t-1)) be

che set of feasible e(t), given the capital stock kft=1). If there were
just one {ndividual, Q(t,k(t-1)) would be the individual's consumption

set. With many individuals, it is the Cartesian product of the
individual's consumptions sets, less those allocations of consumption

which are ruled out because they cannot be effected by the institutions

of the economy.

A development path is a time-sequence of capital and consumption
vectors, <k(t),c(t)>:=1. The initial capital stock k(0) is given by

history. Then a path <k(t),e(t) >:=1 is feasible if and only if:-

(a) ik(t—:),k(t),c(t)) e Y(t) (t = 1,3,...)

(b) el(t) € Qt,k(t=1)) (t = 1,2,...)

Assume now that for each finite horizon H, there is a social welfare
choice funation C'H Assume too that this choice function CH corresponds
to a Bergson social welfare function which is doubly additive - additive

across both time periods and individuals. Thus (.‘H corresponds to:-

Ao vg (c(t),kft—:),k(t),t).

Ziel’ ziﬂ
This form of function allows for those consumption exterpalities which

occur within a single period. Also, the capital stock at the beginning
and end of each period is allowed to be of concern to individuals during

that period. In section 7.4, it was argued that each function vgi"J

should be independent of H. Accepting this argument, C‘H corresponds to:-

"2 Lier Do ¥ (C(t)'k{t'l)’k(t)’é)'
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5o the problem of choosing an optimal policy for capital

jecunulation is reduced to that of infinite-horizon choice with an,
additive objective function for each finite horizon - i.e. the kind of

roblem discussed in section 7.4. However, it is possible to simplify

the problem to some extent, at least in a formal sense.
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noosing Streams of Capital.

in section A.10 of appendix 1, we can introduce partial choice.
..« can choose a stream of capital first, and leave the choice of
3 stream of consumption until later. Indeed, for each horizon #, there

4 well-defined social welfare choice function DH, on the underlying

is
cet whose members are feasible streams of capital k|H = <k(t)>z__1 .
tnd, by theorem A.10.2., o corresponds to the utility functions:-

ki) = max {VH(GIH,kIH) (e|#,k|H) feasiblel.
for any given pair k(t=1),k(t), define:-

o(cie=1),k(t),t) = max (L, ; v (e(t),k(t-1),k(t),t)
(k(t=1),k(t),e(t)) ¢ Y(t), e(t) € Q(t,k(t-1))}

Then evidently,

A f=1 v(k(t-1),k(t),t).

We have succeeded in recasting the choice problem as one of a choice
of 2 strean of capital. There is no need to consider consumption explicitly
at all, since it has no direct effect on the dynamics of the problem.
t1so, notice that the additive form of the Bergson social welfare
(1)

function has been preserved ~°. The recasting is a considerable

simplification for theoretical analysis.

¢ problem of optimal growth has been considered in this way by,
¢St others, Gale (1967). Also McKenzie (1968) has a similar
@prosch, replacing the utility function v(k(t-1),k(t),t) by a set of
e wriples (k(t=1),k(t),u(t)) - u(t) being utility at time ¢t.
- '/, this was to emphasize the similarity of consumption
“Toires with additive utility, to the more usual turnpikes which
" maximizing a purely terminal objective.
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rom now on, the underlying set X will be the set of feasible

o

ey s treams <3<(t)>t=1. To accord with earlier notation, a typical

. stream will be denoted by x, and its component vectors, each period

?

(rather than k(t)). =x|H will denote <x(t)>f=}. The choice function

¥ ¢4y the horizon H corresponds to the H~horizon uttlity funetion

pix(t=1,2(t), t).

e underlying set - or feasible set - X, can be found as follows.
for each period t, define X(t) as the set of input/output pairs of capital
stock vectors (x(t-1),x(t)) which are both technologically possible,

and also satisfy the constraints which arise because of the individuals

in the economy. Thus:-

1e) = {(&it-1),z(t)) lgc(t) € Q(t, z(t=1)) s.t. (z(t-1),x(t),e(t)) ¢ Y(t))

Then, recalling the condition for feasibility in section 8.1., it is

clear that:-

{r = <.rr’t)>::1 (z(t-1),z(t)) e X(t) (t =1,2,...), =z(0) = =(0)}

where 7(0) is the historically given initial capital stock.

The assumptions made so far nave little economic content and,
¥art from that of additivity, they have been extremely weak. Now come

dnumber of extra assumptions, of which most are commonplace in the

theory of optimal growth.
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\ssumptions Concerning the Feasible Set.

et T = <x(tJ>:_1 be any capital stream. Here, each x(t) is a
ector of capital good quantities. We assume:-

is a member of a finite-dimensional Euclidean

space, and x(t) 3_0.“)

(A.1) For each t, z(t)

“ere are two economic assumptions underlying (A.1):-
(2) Tor each period ¢, there are only a finite number of different
kinds of capital good which can be produced by the end of the period,
ready for use in period t + I.

(b) No negative quantity of any capital good is possible.

(a) is almost self-explanatory. But notice that it rules out a
sontinuum of quality variations. In particular, if goods are distinguished
5y location, amongst other things, then the number of possible locations

mst be finite. So the assumption ir restrictive, although hardly

seriously restrictive.

Assumption (b) is clearly appropriate for physical capital goods.

tut an open economy may hold negative amounts of certain types of

financial capital, by being in dest to foreigners. To allow for this,

2(+) could be defined as the excess of capital over the minimum possible
segative amount - if there is a limit to borrowing. Alternatively, the
wnstraint z(t) > O can be replaced by z(t) 2 - m(t), for some - m(t) < O.

Yeitner alteration has a significant effect.

————

(1)
The following notation is used for vector inequalities:-

Ty iff =z >y, (each 7)
r>u iff (x 2y andx £y

> u  iff ..":1.' > yT: (each z).




8/8.

1)

- each t, X(t) is a closed set, in the Euclidean topology.

the set of feasible input/output pairs at time t. If X(t) is

1E
i &

a finite set, then it must be closed anyway. More generally, X(t) will

infinite set. But this is a mathematical abstraction designed to

be an 1nI

+ the problems which arise when there are indivisibilities. X(t)

-
i

surmou

infinite approximation to the true set of input/output pairs -

e.g. it may be the convex hull, It is always possible to make this
approximation a set which is closed in the Euclidean topology, since the

difference between a set and its closure can hardly affect the validity

of the approximation.

fer each capital stock vector a and each time-period t, define the

set 3(a,t) as the set of output stocks which are feasible, given that

the input stock is @ . Thus:-
Bla,t) = {b | (a,b) € X(t)}

Define also, for each pair a,b of stock vectors, and for each pair 8,t

of time pericds satisfying 8 < t, the set X(a,b,8,t) as the set of

t=1
z(s) = a, z(t) = b. Thus:-

capital streams x = <x(t)> which are feasible, and for which

X(a,b,8,t) = {z € X|z(s8) = a, z(t) = b}

(4.2) implies that all the sets B(a,t) and X(a,b,8,t) are closed,

and also that X is closed in the product tOpology.(” In addition, the

or
\1)

The Euclidean topology is the one induced by the Euclidean metric

dla,p) = {7 (a, - b£,3}¥ where a = (ay,...,a ), b= (bj,...;b,) and

=]
"1s the dimension of the space.

" product topology, a sequence z' +z as n = if and only if, for
, 7'(t) » x(t) as n + = . This can serve as a definition - see

lley (1955), pp. 88-93,
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m,,,,_\;;or.dencies, B(*,t) and X(+,*,8,t) are both upper semi continuous,

they have closed graphs.(“

hecause
(1.3) Bla,t) is compact (each a,t).

gecause of {(A.2) this means no more than that the set of stock vectors b

«hich can be produced from a given stock a at time t, within a single

period, is bounded. Since production needs physical power, and physical
.- available in limited quantities at any one time - given the capital

nowel 1S
rﬂﬂ 3

stock @, at any rate - the assumption seems quite reasonable. It has

important consequences, as will now be seen.

Whenever 8 < t, define:-

t

r=g-1 S° % x(8=1) = a, xz=(t) = b,

F(s,a,t) = (b J<z(r)>
(z(r-1), z(r)) € X(r) (r = 8,8+1,...,t)}

So F(g,a,t) is the set of stocks at time ¢ which can feasibly be reached,
starting with g at the start of period &. Evidently, F(t,a,t) = B(a,t)

An especially importént instance of F(e,a,t) arises when 8 = 1 and a = z(0).
Then F(1,a,t) = G(t) (say) is the set of stocks at time t which can be

reached starting from the historically given stock z(0).

The following result is useful:-

- —

Lemma 8.3.1.

For all ¢ < t and all a ¢ G(s-1), F(s,a,t) is compact.
Proof,

The proof proceeds by induction on m, where m = ¢t - 8. If m =0,

then P(t,a,t) = B(a,t), which is compact, by (A.3).

Suppose the result is true for a given m > O. Then when t - 8 = m + 1:-




B’IQ .

Co.«,.,-;wor.fiencies, B(*,t) and X(-,*,8,t) are both upper semi continuous,

rhey have closed graphs.(l)

hecause

5(a,t) is compact (each a,t).

(]

(A.3)

gecause Of (A.2) this means no more than that the set of stock vectors b
nich can be produced from a given stock a at time t, within a single
period, is bounded. Since production needs physical power, and physical

sower is available in limited quantities at any one time - given the capital
powe
stock @, at any rate - the assumption seems quite reasonable. It has

important consequences, as will now be seen.
whenever 8 < t, define:-

, t
P(s,a,t) = (b atx(rbns_l s.t. z(s8=1) = a, =xz(t) = Db,
(z(r-1), z(r)) € X(r) (r = 8,8+1,...,t)}

So F(s,a,t) is the set of stocks at time ¢ which can feasibly be reached,
starting with a at the start of period 8. Evidently, f (t,a,t) = Bla,t)

An especially important instance of F(s,a,t) arises when 8 = 1 and a = z(0).
Then P(1,a,t) = G(t) (say) is the set of stocks at time t which can be

reached starting from the historically given stock z(0).

The following result is useful:-

B

lemma 8.3.1.

For all ¢ < t and all q ¢ G(s-1), F(s,a,t) is compact.
Proof,

The proof proceeds by induction on m, where m = t = 8. Ifm =0,

then P(t,a,t) = B(a,t), which is compact, by (A.3).

Suppose the result is true for a given m > 0. Then when t - 8 = m + I:-

See Debreu (1959), p. 18, or Berge (1963), p. 1l1l.
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5 a,t) = U (B(b, t=1) | b « F(8,a,t-1)}
‘(s,a,t-1) is compact, by the indyction hypothesis, and B(.,t-1)
n ._‘__-,p_er—:;emi—continuous compact-valued correspondence. Therefore,

erge (1963, p. 110, theorem 3), F(s,a,t) is compact, as required.

1+ leads immediately to:-

¥ is compact in the product topology.

Proof.
py lemma 8.3.1. for all ¢, G(t) is compact. Now X is a subset of

the product {z(0)} x 11:=1 G(t), which is a product of compact sets, and so
compact in the product topology, by Tychonoff's theomm.(l) Since a

closed subset of a compact set must be closed, it is therefore enough to

show that X is closed, in the product topology.

Suppose that feX (n=1,2,...) and that 2" +z* as n » =, Then

1(0) + z*(0), and, since 2%(0) = z(0) (each n), it follows that z*(0) = x(0).
Also, for all n,t, (::"(t-l), a:ni'tb e X(t), and, as n + =,

n

((-1), 2'(t)) » (z*(t-1), z*(t} By (A.2) X(t) is closed, and so

(z*(t=1), z*(t)) ¢ X(t) (t = 1,2,...). Therefore x* ¢ X.
The next assumptions is rather more restrictive:-

(A.%). For each pair 8,t with s < t, X(+,*,8,t) is a continuous
correspondence,
It was seen that (A.2) alone implies that X(-,-,8,t) is upper—-semi-

continueus. (A.4) adds lower semi-continuity. Roughly speaking, this means

ee Kelley (1955), p. 143, or Berge (1963), pp. 79-80.
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(a,b), and if there is a feasible path x' such that x'(s) = a', ='(t) = b,

re is such a feasible path which is also near to z. This is
(1)

then the

jllustrated by the dotted path in the diagram below.

"\Lan;LC‘t

*_""6'
’
B T 1

_ ,,.--)(0"' - :

N '

(.L( o '

N B .

(" ]
g
+
w
+
]
T
N
Lo
]
pe—— -

time

(A.4) can probably be justified in much the same way as (A.2) was,
namely as a harmless restriction on the mathematical approximations X(t)
to the true feasible sets, which are finite. Of course, if X(t) is

finite, for all t, then X(-,-,8,t) is automatically a continuous correspondence.

—

)
for a formal definition of lower-semi-continuity, see Debreu (1959),
Pp. 17 - 18, or Berge (1963), p. 109.
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sssumptions Concerning the Utility Functions.

3."‘-_
rhe choice function D'q for the horizon H on the underlying set
t|# of H-period capital streams corresponds to the H-period utility
function:=

Wizlan = 1, vit-1), =(t),¢).

i) 2

1t is convenient to assume that each utility function v(+;*,t) is
continuous. Then each lﬂ(-) is continuous. Since X is compact, there is

then, for each horizon H, an H-period optimum 2 whioh maximizes W (x)

over X.

It may seem possible to justify continuity of the functions v(*,*,t)
by an argwient similar to that used in 8.3. to justify certain topological
assumptions concerning the feasible set. Nevertheless, it has been common
in theory of optimal growth to admit utility functions which are not
continuous at every point. Discontinuities occur when consumption is
forced to zero - or, more generally, to a "subsistence" level. There it

is common to have utility equal to - =, and so di.seonti.nuity.(l)

Now utility functions which take on the value - « for certain options
are not proper utility functions. ievertheless, they correspond naturally
to a choice function, and so we may allow such utility functions. They
will be called extended utility fimetions; their formal properties are

set out in section A.ll of appendix 1. Notice that an extended utility
function may be continuous, in a natural sense. The only difficulty

arises if v(x(t-1), z(t), t) = - =, Say that v(-,*,t) is continuous at

1) ... .

This discontinuity could be removed by redefining welfare as W' = o
But we shall assume that, becauseof the additive form of W, only affine
transformations are allowed.

|
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point if, whenever (£ (t=1), z'(t)) is a sequence of points in X(t)

A

ghich tends to (z(t=1), x(t)) as n + =, then v(x

such 3

(t-1), (), t) » - =
s n + = Say that the extended utility function v(-,+,t) is continuous

i{f it is continuous at every point of X(t).
The assumptions which will be made now are as follows:-

(A.5) For each t, v(+,+,t) is a continuous utility function, or a
continuous extended utility function, on the set X(t).
An obvious consequence of (A.5) is that each of the functions, or

extended functions, WT(‘), is continuous.

)

(A.6) If b ¢ int G(T , then there exists x ¢ X such that z(T) = b

and # (z) = [3_ vlz(t-1), 2(t), t) is Finite.

(A.6) is an assumption which restricts the points at which utility can become
minus infinity, It is an assumption which is satisfied, so far as I know,
by all the problems which have been considered in the optimal growth

literature. Its explanation is a little involved.

Suppose that b € int G(T) and that, for all z ¢ X{=(0),b,0,T),

Wz) = - =, Now there exists b’ ¢ int G(T) such that b’ > b, To provide
the extra capital stock b' presumably involves even greater sacrifices

of consumption during the periods 1,2,...,T than does the provisioca of b.
So, there presumably exists an x ¢ X(z(0),b,0,T) and an z' € X(z(0),b’,0,T)
such that x' is definitely worse than x. But HTf:c) is already - =, so to
nake ir:'(x') < VT(..-':) is impossible. Choice can no longer correspond to a

utility function. (A.6) rules out this possibility.

(1) .
int 5 denotes the topological interior of the set S.
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] Capital Accumulation - Existence.

cction 7.4., a feasible option x* was defined as optimal if,

i inf [x"r:*; - f/"(..—:)] > 0.

fvidentl, this criterion can be applied to infinite-horizon capital

streams. The question which then arises is whether there exists a capital
.+rear which is optimal in this sense, There are, in fact, two powerful
existence theorems. The first concerns "valuation finite economies", and
does not involve finding the optimal path; the second can only be used when
a potentially ontimal path has been characterized - then it demonstrates
sufficient conditions for the path to be optimal. Both theorems apply

when the zssumptions of sections 8.3. and 8.4, are satisfied.

For the first result, say that an economy - represented by the

feasible set X and the utility functions v(+,*,t) - is valuation finite(l)

| for each ¢, there exists a finite upper bound v(t) such that,
whenever r ¢ X, v(x(t-1), z(t), t) :_;(t).

There exists x € X such that

= I o=

. Er:(t-z), B(t), t) - a(t)]

converges.

Evidently, after redefining the utility functions v(+,*,t) by

Subtracting the constants »(t), a valuation-finite economy has the

” properties:-

___ “uci economies have been considered by Mirrlees (1968), Brock and
ale (1503), and McFadden (1973). They are a logical development of
the "s00d" paths considered by Gale (1967).
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‘or each t and each x € X, vl’x(t—l), x(t), t) < 0.

(17

(7) There exists ¥ € X such that:-

W2 = [, v@E(-1), (L), t)

is well-defined.

Tre following existence theorem can now be proved.

Theorem 8.5.1.
-ﬂﬂ-

Suppose *that an economy is valuation-finite, and satisfies assumptions
(a,1), (A.2), (A.3) and (A.5). Then there is at least one optimal
capital stream.
Proof

The prvof is an elementary consequence of lemma 2, p. 236 in Brock

and Gale (1359). An alternative proof emerges in chapter 10,

The second result concerns a path which is "competitive". Say
that z* ¢ X is competitive if there exist dual vectors p(t) (t = 0,1,2,...)

such that, for each t, (z*(t=1), z*(t)) maximizes

v(x(t=1), =(t), t) + p(t) z(t) = p(t=1) z(t=1)
subject to (z(t-1), :r(t}) e X(¢t).
This is, effectively, the discrete time version of Pontryagin's

maximum principle., The following result is easy to pr'ove.(l)

(1)

It appears that this theorem was first proved by Weizsacker (1965), in
the one good case; on p. 91, he notes that the condition that the value
O capital tends to zero, together with competitiveness, is a special
case 2:’ the sufficient conditions he demonstrates.
. if:fjw_condkion that the value of capital tends to zero - that
o1-/x%I) + 0 as T + = - is often called the "Malinvaud condition", because
L{-a:}n'-'au; used it to establish the efficiency of a competitive path. See
“alinvaud (1953), (1969), lemmas 5 and 5'.
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(1) “or each t and each x € X, v(:r:(t-U, x(t), t:) < 0.
(2) There exists T £ X such that:-

o

23 = ][, v(E(t-1), 2(t), t)

is well-defined.

Tre following existence theorem can now be proved.

Theorem 8.5.1.
—————

Suppose that an economy is valuation-finite, and satisfies assumptions
(a,1), (A.2), (A.3) and (A.5). Then there is at least one optimal

capital stream.

Proof

The proof is an elementary consequence of lemma 2, p. 236 in Brock

and Gale (1259). An alternative proof emerges in chapter 10.

The second result concerns a path which is "competitive". Say
that z* ¢ X is competitive if there exist dual vectors p(t) (t = 0,1.2,...)

such that, for each t, (x*(t—l), z"(t)) maximizes

v(z(t-1), z(t), t) + p(t) z(t) - p(t-1) z(t-1)
subject to (.r(t—-]), :r(t)) e X(t).
This is, effectively, the discrete time version of Poiiiryagin's

(1)

maximum principle. The following result is easy to prove.

(1)

It appears that this theorem was first proved by Weizsacker (1965), in
the one good case; on p. 91, he notes that the condition that the value

of capital tends to zero, together with competitiveness, is a special

c@se of the sufficient conditions he demonstrates.

() =f:¢"”.ondition that the value of capital tends to zero - that

il ') +0 as T » = - is often called the "Malinvaud condition", because
;a;.}n"'aui‘ used it to establish the efficiency of a competitive path. See
Jallnvaud {1?53)’ (1969)' lemmas 5 and sl"
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uppose that an economy satisfies (A.1), and that x* ¢ X is a

] stream, which is competitive at non negative prices p(t), and

capi T

suppose that p(T) x*(T) + 0 as T + =, Then x* is optimal.

Pronf
et

et £ ¢ X be any other path.

hen I.; EJ(.‘:(t—IJ, z(t), t) - v(x4(t-1), z*(t), t)]

< L., wee) (z2(t) = 2(t) = p(t-1) (z*(¢-1) = z(t-1)))
- (1) (=*(1) = =(T) = p(0) (z*(0) = z(0))

< pi{T) z*(T)

because p(T) > 0, =(T) > O, and z*(0) = z(0) = (0).

So tim inf [HT (%) - W (a:)] 2 bom nf [— p(T) :c"(TJ:|= 0

as required.

Lven if there is no optimal path, there may be a maximal path, as
defined in section 7.4. - i,e. an x* for which there is no other path x

such that:-

lim inf ]:.«" (z) - W (z")] > 0

H+m

Despite the above two powerful results on the existence of an optimal
path, there remains a large class of economies for which there is no
eptimum - and, indeed, no maximal path. The theoretical literature

on ontimal growth abounds with them. For present purposes, it is enough

* -

© ¢pive just one example which seems f)articularly disturbing, because it

Matr

@7 well happen that there is a fairly obviously appropriate infinite-
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. choice, even though the chosen path cannot be maximal.

'he example is presented in the next section.
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1)

Maximal Capital Accumulation - Non-Bxistence.(

For this example, we change from discrete to continuous time. This

~akes no real difference; it is just that the equations are easier to

analyse.

The model is the standard one-good case. There is a single good

which is used for both consumption and investment. At time ¢, the flow

of net output is a function f(k(t)) of the capital stock k(t). Investment
i the residue of this output after consumption has been taken away. So

the rate of increase of the capital stock, kit), is equal to f(k(t)) - e(t).
If the horizon is H, the welfare function is assumed to be a simple

integral of the form ]H u(e(t)) dt. It is assumed that the functions

f and u are both twiceodiffemntiable, and that f(0) =0, f' >0, f" < 0,

u' > 0, u" < 0 everywhere.

(2) Although they concern a grossly

These are standard assumptions.
over-aggregated economy, they are not totally implausible. In particular,
if difficulties are encountered in such a simple model, it is hard to

believe that they can always be avoided in more realistic, and so more

complicated, models.

Shortly, we shall assume tha: the functions f and u take very
special forms. But, for the time being, there is nothing to Le gained

by departing from the general case.

By
This section relies heavily on the paper of Hammond and Mirrlees

fl’?’m), and some of the results for which Professor Mirrlees was
primarily responsible.

(2)

They were first exploited by Ramsey (1928).
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‘onsider the planning problem which arises when the horizon is

H
to be H. The the objective is J u(e(t)) dt, and the constraints
o
ek f(k) (=0 toH)
(0) < k(0) (given)
3) k(K) > O,
Procecding non-rigorously, one can set up a Lagrangean as follows:-

oH H : - i
A= ute) dt - J Me + k = f(k)) dt = u(k(0) = k(0)) + v k(H).
10 0

Integrating by parts,

H H ,
JAkdc=[}k]g-Jhkdt.
0 0
Therefore:-

f. .’j'. - -
A = JI {ule) = Xle = f(k)) + Xk} dt + A(0)k(0) - A(H)k(H) - u(k(0) - k(0))
0

+ v k(H),
Given our assumptions, the constraints k(0) < k(0) and k(H) > O are both
binding, and so v > 0, u > 0,

Thus uw = XM(0), v = A(H) and the Lagrangean becomes simply:-

f .':f.

= | fule) = Ale - £(k)) + Ak} dt + u k(0).
Jo

It is now sufficient to find a global maximum ofx.(n The first order

conditions - which, because of concavity of the functions u and f, are

sufficient - pive:=

-

u'(e(td - A(t)

M) FUR(E)) + A(t)

0
(t =0 to H)

o

hic

iis, of course, is Pontryagin's maximum principle, which has been
ve< heuristically.
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i sadition, Kk(t) = f(k(t)) - e(t) (t = 0 to H).

in

1+ is easy to verify that these equations are all satisfied if and only

wule) + (f(k) = e) u'(e) = constant.
hich is the famous Keynes-Ramsey equation.(l) Moreover, it is easy to
show rigorously that any path satisfying this equation, together with

k = [(k) - e, 18 a solution to the finite-horizon optimization problem.

In general, the solution to the differential equations depends on
e(0) = y, tne initial level of consumption. Remember that k(0) = 1-1(0)
is piven, as the other initial condition. The solution path, then, is
elt,y), k(t,y), A(t,y). Moreover, for y > 0, e¢,k,\ are all continuous

functions of y, and as y increases:-

2 strictly increases
A strictly decreases

k strictly decreases,

Moreover, if for any tos o(tol' > f(k(to)J, then k(t) < 0 for all t > to.(z)

By choosing y large enough, thereforer- e.g. y > f(k(0)) - it is
possible to ensure that k(t,y) steadily decreases over time, eventually.

Horeover, since k is bounded away from zero, there exists a finite time T

such that k(T,y) = 0 . Then the path is feasible up to time T, but no

further,

Now, if the time horizon is H, the optimal path is found by choosing

V= v(H), where k(H,y(H)) = 0. Of course, y(H) is unique. To show.that

vee Ramsey (1928), section 1, equations (4) and (5).

“ee the appendix to Weizsacker (1965).
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ath is optimal, notice that:-
> v(i), then k(t,y) = O for some t < H, and so the path is
e~asible, for the horizon F.
, < yi/#), then e(t,y) < elt,y(H)) for all t, and so the path

rting with @(0) = y cannot possibly be optimal, because there is

ther feasible path on which consumption is always higher.

‘e, finally, that as the time horizon ¥ lengthens, so y(H)
ecreases, As A + @, there are two possibilities:-
(i) y(£) 0 as H+ =
(ii) y(H) » y* > 0 as H + =,
(ii) is the more interesting, because e(¢,v*) is a viable consumption

plan, and toe limit of the finite horizon choices.

Now w ask two questions:-
(a) When does y(iH) + y* > 0 as H + = ?
(L) If y(#) - y* > 0, is e(t,y*) a maximal consumption path, for the

infinite horizon?

Consider the path given by:-
ule) + (f(k)=c) u'(e) = A
. all ¢
k = f(k) - ¢

Lemma 8.6,1.

I there exists k such that u(f(k)) > A, then k < C eventually

land so Ek(t)

"

0, for some finite t).

Proof

.

“uppose k > 0, for all time.
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-0) u'(e) = A - ule)

< ulf(k)) = ule) :
< (f("::)-c) u'(e)
, because ¢ is concave.
f(k) < f(k) (a1 t),

| so k(t) ‘ﬂk‘ii,ast-&-"

, + c* for some c*,

wu"(e)

But — 77T = g? log u'(e) = = f'(k)

* - (2 1 R
Therefore, as t + = ¢ -+ LI(k*) u'(e*) | 0
u"(e*)

This contradicts e(t) -+ c*.

Lemma B.F.Z.

If A > u(f(k)), for all k, then / > 0, for all t, and k(t) + =,

——

Proof

Notice that

ule(0)) + (f(k(O)) - 0(0.9 u'(e(c)) =4 > u(f(k(O);p
and that this is only possible if e{0) < f(k(9)).

Suppose that c(t) = f(k(t)), for some t.
Then ufle(t)) = A = u(}(k(t}i), a contradiction,

A sluilar argument establishes that k(t) -+ k* for finite k*, is impossible,

Lemma 8.5, 3,
———e

Either (1) u(f(k)) is unbounded above, as k - = and then y(H) + 0 as H + =

.

or (2) There exists A such that

4= swp (ul(f(k)) | k > 0}



s+ y*as l + @

vt} + (_“.”Eft)))-—y“) u'(y*) :A(l}.

“(x)) is unbounded above, then, hcwever y > 0, and so A, are
‘nosen, by lemma 8,6.1. k(y,t) = O for some finite t. So for all
" > 0, there exists H s.t. y(H) < y*%,
v > v*, as defined,then, by lemma 8.6.1., k(y,t) = 0, for some
finite t. But if y < y*, then k(t) + =, and so y < y(H), for all H.

Therefore y* = 1;f y(H).

This answers question (a) - u(f(k)) must be bounded above.
There are *wo ways in which u(f(k)) can be bounded above,
(i) ul(e) may be bounded above - ule) < B for all finite ¢. There
is strict inequality because u'(e) > O for all c. B is Ramsey's
"bliss" level of utility.(z)
(ii) f(k) may be bounded above - f(k) < b for all finite k. Again,
there is strict inequality because f’(k) > 0. The bound on net
output may arise because of some unspecified scarce resource, in
fixed supply. For example, production uses emergy, and as long as

we remain earthbound, we are effectively limited to the supply of

energy from solar radiation, and from the stock of energy resources

within the earth,

fart (2) of this result is effectively the same as theorem 3, p. 296,
of Hammond and Mirrlees (1973), and is due to Mirrlees.

(2)

“ee Ramsey (1928),
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sup

i5 bounded above - B = u(e) = then the path given

n

¢+ S(k)=c) u'(e) = B, k f(k) = e, is optimal, provided that

u'le(t)) k(t) +0as t +» =

is analogous to that of theorem 8.5.2., and will bpe

dotice that this result cannot help if it is f which is bounded
above and if, when b = akup f(k), wu'(b) > 0. For then, the obvious
candidate for the optimal path has the property that k(t) + o and

e(t) » ¢ so that u'(e(t)) k(t) » » as t + », Nor can theorem 8.5.1.
help very easily. The obvious upper bound to take is u(t) = u(b).

T T T .

But J’) {(u(b) - ule)} dt = ]0 (f(k) = e) u'(e) dt > L} k u'(b) dt,

which tends to infinity as 7 + =,

fin irportant and disturbing non~existence result is the following:-

Define a(k) = b = f(k) (> 0, for all k)

vuppose that, for some u such that 0 < u < 1,

im inf g(k) _
F + o %{;k)dzu)o

Then there is no maximal path-(l)

_ ihis result, and its proof, are based on example (3), pp. 286-287,
0t llammond and Mirrlees (1373). The example is due to Mirrlees.
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o there is a maximal path, and let ¢ be one,
t be true that, for each #, clt) (0 < t < H)
l—f:
sen | uld(t)) dt subject to:=
A+ ko< (k) (t =0 to H)

k(0) (given)

I A

k(H)

| v

therwise there would be an alternative feasible path e(t), with

a(t) = e(t) (t > H) , such that
 [ulz(e)) = ule(t))] dt > 0

. ""I _I‘”{,

T
and so “ T Y J [u(c(t)) - u(c(t))] dt >0 -
0

. - L
y| -

which contradicts the maximality of c.

Now, by a similar argument to our earlier one, it follows that

ule) + (f(k)=e) u'(e) = constant (A, say) and this must be true for all
time. #y lemma 8,6,1,, it must be true that 4 > u(b). But, if A > u(b),
then, by reducing A to u(b), we could increase consumptiorn at all times,
and 5o increase welfare. Therefore,

ule) + (f(k)=c) u'(e) = u(b)

Also, of course, k = f(k) - e,
‘' is encugh to show that this path is inefficient, in the sense that, at a

certain time )» we can reduce the capital stock k(toJ to h(ta) = uk(to)

and et

“ nairtain the consumption stream e(t) for all t > t,. For then it

5 possible to enjoy extra consumption before t,, without sacrificing

consumption after t..

0



~now this, consider the path of the capital stock, A(tj, if e(t)
inec¢. It satisfies:-

ho=f(h) —ec (allt > to)

s enough to show that if 2 > yk , and ¢ 2 t, , then h - uk > 0.

flh) = uf(k) = (1-u)e

Fluk) = uf(k) = (1=-u)e

| v

ug(k) = gluk) + (1-u)y

]

=b - c,
ulh) = wulh=y) (f(k)=e) ; g(k)
o v u'(b=u) ) Y S —;—
But we xnow that ¥y = 0 as t + », so the left hand side =+ 1 , and
g(x)
— +0as t + =,

4

Also k =+ = as t + », So we can choose to large enough so that, for all

t > ¢
L_,I:"

g(k) > ag(uk)

v > g(k) {1 — ug) (where we have taken a < 1)

o= uk > au gluk) = gluk) + Hﬂf;“‘l’
>0

as required.

This result is troubling because it is not obvious how to exclude

production functions f(k) with the property that lim tnf g&é%% > 0,

k + o

For axample, if f(k) = b = (a+k) ™y

then g(k) = (a+k)™"

(k) _ (a+k)™" m .
and{—ﬂm m*u as k +» =,



Conclusions

1is chapter has presented two useful positive results on the

ex “tence of an optimal infinite horizon plan of capital accumulation.
ilso presented a disturbing negative result, An economic model

of the kind considered in section £.6. is toc cimple, because it is too

ited, But unless any planning rule we are intending to use works well

" a model, it is hard to see how it will work well in other, more
re:listic models. The conclusion suggested by the economy of lemma 8,6.5.
is that the rule of choosing an optimal path does not always work well
enough., Nor does that of choosing a maximal path. In that economy there
is no ontimal path, nor even a maximal path. Yet there is a path satisfying
the reynes-Famsey equation, and moreover this path is the limit of the

sequence of finite horizon optima, as the horizon ¥ tends to infinity.

Such a limit path has been called "agreeable". It is the purpose
of the next chapter to see what kind of infinite horizon planning rules
lead to the choice of such limit paths, and to relate these rules to

the notion of agreeability.



Chagter 9.
INFINITE HORIZON OVERTURE CHOICE.

~ter 7, it was suggested that it might be advantageous to consider
,rizon choice, as a relatively simple and clear method of

incertainty about the true time-horizen. But, in chapter 8,

f infinite horizon choice ran into difficulties. It

¢}

it is too easy for there to be no maximal plan, in the sense

arter 7. In the example of section 8.6., not only was there no

lan; more worrying, there was no maximal plan in a situation

, sensible infinite-horizon choice seemed possible.

(1)

..ce th= prohlem of non-existence was first recognized, there
, 2 . nter of suggestions for overcoming it. Chakravarty
| that it is really a finite horizon plan which is being sought, but

, . (2 ; " .
horizon is unknown. ) Nevertheless, if the horizon 1s long

the optimal choice in the early years may not be sensitive to tne

3) N . . "
If it is not, there may be an "insensitive™ plan - one which

sptimal", regardless of the horizon.

make this view more precise, we must clarify what is meant by

:itive", and by "nearly optimai'. Suppose that, as in chapter 8,

o)y
tryvine *o choose a program of capital accumulation = = <Il5))t’=0.

by Tinbergen (1960) and Chakravarty (1962a).

Ly,
course, is the point from which chapter 7 starts,

. first to have been realized by Modigliani and Hohn (1955).
ied discussion, see Chakravarty (1962b), (1966) and
“Fa), (1966b).




Ys2.

the notation :ET for the ‘truncated sequengce <x(t)>, _

(1)

#|T tne T-cverture of x.

.uppose that, for each finite horizon #, there 1s a uniqus

F

n & o " H y
cum o which maximizes the welfare function W . Of course,

trong assumption, but it is one which could be weakened without

Hy,

nan to make the following argument more complicated, & |

i H
.-overture of the optimum x .

t netation, we can now define "insensitiv.ty", Suppose that a
/-periods is to be chosen - i.e. a T-overture. Then, roughly,
um is not sensitive to the horizon if there is a small set N such
; . : H _
i ¢ N for all H - or, at least, T |T € ¥ for all large enough //.
esurption is that if any overture in N is chosen, then the mistake

not - large. By time T, the path the economy has followed will

have deviated very far from the true optimum,

There are two difficulties with this idea of"insensitivity". The

+

hat it is not clear how small N has to be. But this is easily
with., It is more precise to say that a particular I-overture x*|T
_— ‘ H : s .

is nsencitive if ' |T tends to z*|T as H + =. Then, given any neighbourhood
. H " r . g m =
%7, £ |T eventually lies in N. The limit overture x*|T is
t.ve to any required degree, ir. effect, provided that the horizon
enough. fNne can then go on to say that an infinite hcricon program

- : . re i ‘o (2)

ensitive, provided that each of its overtures 1s insensitive.

cond difficulty with insensitivity is more fundamental. The

nf insensitivity to choice is far from clear. A plan may be

is due to Bliss (1971).

(1971) for a full discussion cf insensitive propgrams in
nodel of capital accumulation.
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tive without being optimal, or even nearly optimal, in
hle sense. Or, at least, we need to check to see how naarly

s:tive plan is. Otherwise, we cannot be sure tnat there

ther program which is preferable to the insensitive program,

ternative choice procedure which does consider the optimality -

g . . . » . (
ality - of its choices, is that of finding an "agreeable plan",

:liernative approach which recognizes that the horizon is
unknown, and suggests a program which is nearly optimal",
ess of the horizon. But, whereas an insensitive plan x* is one

7]
y

. - 1
, its T-overture capital stream z*|T near to the optimum x |T

lor large iinite horizons, an agreeable plan is one which is nearly as

Jo0U as the optimum, according to the welfare function HH.

7/ lenote the welfare WH(xH) derived from the optimum for the

Y

‘inite horizon H. Let HH(:]T) denote tue maximum possible value of W

nd £ is optimal.

fich can be achieved after following the T-overture z |7, In general,

y - . : .
‘47 < W7, because z|T is the "wrong start" when the horizon is H,

(2) Following z|T was a mistake: the welfare loss

ncurrec is W1 — Hﬁﬁ:1T) » assuming that the optimum is chosen after

>0, a plan x* is agreeable provided that for each T,

~emmond and Mirrlees (1973).

T ce M " ;
rourse, this is always true if £ is the unique optimum, but
“lax this assumption now. We only need

unique.



~*|7) + 0 as H + ’-(l) (2) That is, a plan is a;tl-net_-' le provided

welfare loss from the wrong start becomes insignificant as the
to infinity. It is a plan which pecple ~ith diiicrent
true distance of the horizon can agree to - provided the
wought to be very distant. When a person agrees to x*, he
resumes, certain extensions of the overtures x*|T in mind. The
prefers depend on his views about the horizon. Another
‘.fferent extensions in mind. Nevertheless, there mav be

the appropriate T-overture, for each [, «ud it seems quite

t.e that there will be, if there is an agreeable plan.

wugh they may be found appealing, there is still a posc=ihble
‘ection to agreeable plans. Suppose I happen to believe that the true

con is certain to be H. Then, I can agree to r* as a provisional

The units of welfare are not defined, so no meaning caen Le attached

V' - ¥'(z|T). But the property A - Hﬁfx*|T) + 0 is invariant wder

interesting suggestion for measuring welfare lcscec is contained
in Mirrlees and Stern (1972). But "fairly good plans" go beyond the
scope of this study, because their justification is the saving in
corputational effort.

There 1s no necessary logical connection between agreeable plans and
:sensitive plans, as can be seen from example 10.2.2. below., So
cereeanle plans are more than a possible justification for insensitivity,
@vertieless, as will be seen in chapter 10, there are many cases in
= .. .0 égreeahle plans are insensitive, and vice versa.

imilar notion is koé' "e-horizon", see Los (1967), (1971) and
11973). This work considers purely terminal objectives - e.g.
11y the final capital stock x(H) is of concern. Nevertheless, it
arrive at a similar definition for the more general problem.

:“horizon for the plan x* if, for all T, P - HH(I‘|T; < €

2 T+K, 1If there is an e-horizon for x* however small ¢ is,
agreeable; but the converse is false. X is the number of
ore the mistake becomes insignificant. It is possible that

3
.

Y
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that is almost optimal, provided that I believe it will "¢ -ome

-

m

vy recognized, at some time I", that H is the true horizor, and
also believe that T is early enough, and 4 late enough,
» loss W - WH(x*IT) to pe acceptably small. But can
»pected to believe all this? Is it likely that there will
knowled,e of what the horizon will turmn out to be before we are
of it? In other words, can I really be sure that, in

an "agreeable" plan, I am not accepting a welfare loss which

T.ese questions may not be very precise - and tc attempt to meet them
WU “volve a discussion of when a welfare loss is "too large' a1 of
« nuci notice of the true horizon (if there is one) we are likely to have.

wut they onlv arise if we insist on the welfare losses being small. Now

]
i sav be lLupossible to ensure that welfare losses in fact turn out to be
mall, even if there is an agreeable pian. Nevertheless, we can ~till ask

Wnat an appropriate plan is, and it turns out that we can justify agreeable

ans, and generalizations of them, on other grounds.

The central point is that we shall find ourselves choosing some
wverture r*|T7, in the end. This is true for each T up to the true

7. Such a choice cannot be avoided. So, how is a T-cverture

e chosen? If x* is an agreeable plan, then x*|T may wesll be an
dte choice. But, to discuss this, we should consider overture
veneral. Throughout this study, we have used the notion of a

siction to discuss any choice problem which has arisen. We will

hi=erae
ali nere,

1.2, considers T-overture choice functions, for any fixed

* main concern is with infinite nhorizen choice, we are Le



ider infinite horizon T-overture choice, for any fixed
ection 9.3. Section 9.4. is a discussion of cons|
wo “inds of consistency. The first is

at which choice is made changes: this was *he kind of

discussed in chapter 4. The second kind is consistency of

cing choice as the length of the overture, T, varies, An
section 9,5, shows that this second kind of consistency may
. procedure for rectifying this inconsistency i. suggested

.6. Section 9,7, looks a little mor

between this new procedure and the infinite hoice

O
s}
=
N
o]
b |

>f chapter 7.

:in. of this chapter, then, is to consider the purely choice-
spe-ts of infinite horizon overture choice. Chapter 10 will
sroblems of existence, uniqueness, and ‘he characterization

“e horizon overture choice, with particuiar :eference the

iccumulation problem of chapter 8,



_ I'-overture Choice,

adt s -overture :|T is to be chosea. T.i: fa
on. It is a special kind of the partial choice sirtuatior
in section A,1l0 of appendix 1, The feasible set is ¥. The
.3ible T-overtures is:-
| o = o -
.::"'I 3“’;’::0 e X s.t. .rt= .rt(tzu to
~ture Z|T € X|T, define:-
Az|T) = {zx e X | z|T = Z|T}
= {xex | z, = Et (t =0 to 7))
, J(z17) is the set of feasible paths with EIT as T-overture,
Now “.e feasible set X can be partitioned as foliows:-
X =U{x(z|T) I z|T e Xx|T}
i partitioned into subsets of paths which share the same 7-overture.
=n any 2|T C X|T, define:-
X(BiT) = {z e X | z|T ¢ B|T)
= Jxtz|7) ! z|T € E|T)
9y 11710) is the set of feasible paths having a T-overture in B|T,

-~pCsc that C is a coherent choice function on the underiying set X,
that, whenever B|T is a finite subset of X|7, C(x(8|T)) is
iien, by theorem A.10.1 of appendix 1, a coherent partial

icilon C,, can be defined on the underlying set & |7, as follows:-

(z|7 | cx(8|7)) O X(z|T) # 8} (each E|Tc ¥I7).

the choice set CT(B[T) if adonly if there is an extensi

2. a path y € X such that y|T = z|7 sucii that y X(




1 nossible choice if the feasible set is the set «

extensions of overtures in B|T.

1+ choice *function C,_ is called the T-overture cho:-ec

rrcsponding to O,

in addition, ¢ corresponds to a welfare function /. the

= »

.10.2., C,, corresponds to a T-overture ueclfare ‘function W
s

as fcllows:-

") = max {(W(x) x e X, I‘I’T = x

is simply the maximum possible welfare wnich can b ichieved,
-cverture x|T has been followed. Thus the welfare

-cverture depends upon the possibilities of extending it

an optimum - i.e. maximizes W(x) over / - then x*|7
¥, (x|T) over X|T. Conversely, if *|T maximizes »,_(r!7) ove:
there is an extension I of z*|T which mawirizes w(r)
consequences of the results on partial cho unctions deri
-on 4.10 of the appendix. Accordingly, if it is c.ear what

-rom Y is appropriate, then the choice of a T-overture is a4 trivi

hould be remembered, however, that we started to consider
-hoice because there are situations in waich the appropriate
rore A is not clear. This was true, for example, 1n section 8.6,
‘e 1< an optimal plan for each finite horizon, and these opt:
“re to a limit as the horizon tends to infinity. The limit

as though 1t might be an appropriate choice, yet it was

(]

-» and so the appropriate infinite choice was unclear. And.

igreeable plan is one which, it i aimed, is an appro



justification rests on

it may be

[te-norizon cheice, its
mall welfare losses, This suggests that i

© overture choice than to find an appropria:

DD orliat




finite horizon T-overture Choice.

moose .0at wve have the kind of choice situation descri:

¢ 8. That is, for each finite horizon #, there

. A : . . .
ton {' on the underlying set X. But, because the horizon

ve are led to consider infinite-horizon choice.

1 each T < H, there is an overture choice function 7.,
rrom (U as in section 9.2. Then, toc, were is ar o Pture

1 o : . . :
W;,derlned on X|T, which is derived from the wel fare

. H o ~
1. ¥'. We shall assume that ¥ has the additive form:-

Ls=1 ut(xtz

the funtions u (+) are independent of 4. Thiz was the assumption

chnapter 7, the form of the underlying set was deliberat

;2it out very precisely. So the arguments of t chapter apply
. - X ; CH : :
il rorce to overture choice functions p on the urderlying set

cordingly, thestrict I-overtwrepreference relation F|0 is defined

follows:—
T Pl blr iff 3”” ":f |-_VH(a|TJ a{,’,rbjf')] > 0
" T-overture preference relation R|T is defined as follows:-

Rir blr ief Liminf [Nﬂfa|2') (u —[ 20

H » = 4

]

7iT 1s irreflexive, asymmetric, and transitive,
nd transitive. But, as with R in section 7.4., R|7 may

nnected.




et 0_(8|T) = {z|T ¢ B|T 1|7 ¢ 6| implies &|T R|T

't of optimal T-overtures in #|7.

maximal T=-overtures 1in 54?.

worth noting that, by theorem A.8.4., ot appendix 1 e re

verture choice funection CT such that, for all #|7 i

8'7) ¢ CplB|T) ¢ Mp(BIT).

ac in chapter 7, infinite horizon choice nas uot been uniquely

nstead, there are upper and lower bounds on the choice set.

this stage, in such a general choice situaticn, we _an

ationship between agreeable plans and infinite-horizoen 7-overture

an agreeable plan, then, for all T, r* 7 n optimal

mal T-overture choice generalizes agreeable plus. ine
in example in which there is no agreeable plan, and yet

L]

i »lan x* such that, for ~ach T, z*|T is an optimal T-overture:-

« it X = A28 B yass)
tree structure is:-

{z} (t

—
n

1,2,¢04)

t) = {z"} (it = 1,2 h=1,¢

dyglige ey



hoice is effectively possible only at time 0,

H ., HF . ! .
uppose too that ¥ (x) = i, dj(al} =mn(2H, 2h),

. " H 1, h . -
r al T > 1, Wo(z) = H, L"'r:i:: ) = min(Zil, 2h)

inf H, | lim 1n . ;
’ th’?.f':x H’H P ‘J* 4 {6 = mni2n, 2on)}

a+ o™ H + =

=+ =, whenever 7 >

clearly the unique optimal T-overturs

freeable, because iﬂ = 2H,

'I.‘.‘T .‘"i"."" (‘:}‘. - h‘;{x)_*l = 4+ ™

°f course, in example 9.3.2,, there is no agreeable plan, When
tiere 1s an agreeable plan, then any other plan, whose overtures ape

fach optima., is agreeable.

Theorem 9,3, 3,
i . 81

chose r* is an agreeable plan, and that x is 20, _ hep plan sucl

> each T, x|T is an optimal T-overture. Then = i. agreeable,

any fixed T:-

- A';fEITJJ <

T
Ztm T’:f EJH [..JF(J:*[T,’-J! (because 7 15 sptimai )

¥ > Wniz|T)  (each H), it follows that

Af{QIT) = U, as required.

=0 (because z* is agreeal
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rvonn .f there is an agreeable plan, there may be another plan,

-

ires are each maximal, and yet is disagreeable, as the fo

B

z,u}, and the tree structure is simply described as follows:-

e —— » .
XD x(2) 7(3)

“.\‘_" > — - - = .
Yy j{l) Jl‘&)

e welfare functions WH are such that:-

‘;.:) =0 (all1 #)
H, . _=H (H odd)
W)=\ o even)

n W o= J, so r is agreeable, but ¥ is not. Neverthcless, each

‘ure v|T of ¥ is a maximal T-overture, because:-

o Mrzlﬂ - V;(ylﬂ] =0

o -+

is false that z|I' P|T y|T.

‘he Iirst property of infinite horizon T-overture choice functions
wvestigated is consistency. Remember, after all, that the object
te horizon choice is to achieve consistency which would otherwise
It turns out that checking consistency is of crucial
€, Cecause tunere is one consistency property which the choice
may violate. Infinite horizon overture choice will have tc

to take account of this.



Consistent Overture Choice.

t be tre feasible set, with tree structir

, 3s in gsection 4.3. Nota that, .n the tat

, then K1) = X(xz|8) (each xl8 ¢ X!l
- ~overture choice function indi
node n, The underlying set for thi
(27 |3z ¢ X(n) s.t. z|r = x|
't of T-overtures of paths in X(nJ). Of course
then & T-overture has already been choren anc

"~ordingly, assume that & < T, so thet genuine

» - L. Lop=aiddil 10O L

> two kinds of consistency propertie. whi-h seem de

soverture choice functions CT(n)_ The first iz dynami
ned in section 4.4. Suppose that n Prn' (i, e, receds

anch r of X), and that n' = z'(a8'), where

~m) (A(m)|T), Now consistency demands that, .f x

to node n'- as it may be - then the choire set at

i

nat part of the original choice set which is stil]

r

and z!7T ¢ Cpn) (A(n)|T), then, for -.: AlT ¢

Am')|T) = Atn?)|T N Cp(n) (A(n)|1).

)T = (uwlT ¢ A|T p|s = xls, n = xle) = yizs) (some

1d consistency property is one we nave : g%

it happens as the length of an overt.-



r

erture choice set., This is a clear inconsistenes,

ease notation, ignore the depender.ce on the node

« ¢ho ece function C,(n) becomes simply (, . Fe the

vy,  later, when we want to cee a n whet han

reintroduce the full notation.

now that I’ > T, that A|T is the set nf feasible

o set of feasible options. Write
course,
next that }!T' € C.,(BIT') , but tl

‘

"-overture is chosen first, instead

can eventually be chosen, e¢v 1OUE

—

man, planning one week ahead, decided to ezt an
week, but, planning one day ahead, reifused to

irst day.

the other hand, suppose that x|T ¢ C_(B|T), b . there
i

T') such that 2|T = z|T. Then z|7 is a

‘~overture were chosen instead, x|7 would n-ver

-2 Is a clear incensistency. It is as thoush a man,

anezd, decided not to eat an apple, but, pl ng ons

iways eat an apple on the first day.

~ule out such inconsistencies, we impnse the follo

and B8 = X(B|T),

C.(RIT)

m

. . . -m P
P27 € Cpy(BiT') such that Z|T = z|7.



inct > (n.).5u~nose tidat, at t tot i n nl L
L
1 tonat taere 4a ev rlan is nade hbased t.1e overtur
(/e terx raat t X 1itin C i
+ + e 1ar 111 ¢ - + G pp——
L LIlE 13 chn ouLld L oAt i L C q CliO LC LS
tne overture ciholce Iunction o ( /.« in otiier Wor Liie OUTCON

~lannins orocedure sihould not depend on the preclse dates at

:de, nor o.. how lony the nlannin nterval is. Tnis should

“or all tvres of vlanninc - five-‘ear nlans, rolliny ~lans

i:ntial rlanninc revision, etc. “hat we nave is tne followl

(i1) 51 = 2(t) irnlies x\T € C(n) (B(n)\T)

s -

~ondition £ = A(:\;) is needed because, if & = A(p{1), then

i ‘cl. are feasible, if it is known that some overture Iror
{'scussion of such nlanning rules, see Goldman (1968), (196y).




ne cther condition arises as follows. Suppose that

Y('Bj:) as Lefore. Suppose too that x|t ¢ C (n J(h|1

b & s) +AS

s ~hosen with some extension vy in
it 1f, at time t, a T-overture is to

uble choice problem; w|T

3 1 , for instance, i< an a

(men we have the following condition:-
Fe? R =

', B = X(Blt),and =z|t ¢ Ct(n()fr

#(n) |T) is non-empty, where n = x

oL |

the following result:-

e

palsr of conditions (a) and (B) are togeather

=Y, '.\_-‘ 1lent

cor‘itions (y) and (§).

sppose that (a) and (B) are satisfied, that

i that B = X(Blt).

(i) If )T ¢ C¢(no}(B|T), then x|t ¢ Cyln,)(B]:

11) Also, if n = x(t), it is easy to see that r
(by (a)), because n5 Prn, and z|7 ¢ 5/} IT 1 C_(n
(1) Om tne other hand, if z|7 ¢ Ct(no){n!rJ ther

exists vIT ¢ CT(nOJ(B|T) such that v |t = rlt.

let n = x(t) = y(t).

i) If, in addition to (i), z|T ¢ C,.(n)(B(n) then,

z|T ¢ Bmi|T 0 Cp(ny) (B|T). In particui-
logether with (a), this verifies (y).

' Again, because of (i), and by (a):-
' (n)(B(n)|T) = Bm)|T NN C(n ) (B|T). Since
] T 0

t

. follows that ¥|T ¢ CT(HJ(B(H;"




npose, conversely, that (y) and (&) are satisiied,

Y(=|{t), where 0 < t < T,

) is verified. Suppose x| ¢ (,, il 1B - e Le

By (y), zlt ¢ c‘rno)(slt). Now if, v|T ¢ C,.(m)(B(n)IT),

then ¥(t) = n. So y|t = z|t, and, by (y), it follows tha

1T ¢ CTI':ONEITJ-

onversely, if ¥|T ¢ B(n)|T N Cplny) (BiT), th

IT ¢ UTfn)fB(ﬂ)lT), because y(t) =

.i) Taking (i) and (ii) together gives:-

il Bin)|T) = B|T) as required.
{,Tm)l’d(r” ) = Bn)|T N CT”‘o” |7 Jui re

+ Last, (B8) is verified.,

(i) Suppose that z|t € thno)(Blt). Then, by (&), there exists

¥IT ¢ CT(n)(B(n)lf), where n = z(t). Then u(r! = n, and

x|t € Ct(no)(3|t). By (y), it foliows that
/T ¢ CT(nn)i’BIT). Just take x|t = »|i.
(ii) Conversely, suppose that z|T ¢ CT(nO){rif'. Then, by

z|t ¢ Cf(no)(Blt), and so just take F|:

This completes the proof.

* next result shows that (y) and (6) - and sco, of course, (a) and
~» both satisfied in the important special case wh=2n the overtuve

nztions CT(H) are derived from a consisten® dynamic chon

.-{,-f:fo

4,2,

) is a consistent dynamic choice function, then its sssocia
~rnoice functions CT{n} satisfy conditions (y) and (4
ving the proof of this theorem, we note ~ie following r

2ful for the proof:-




o VL .3
LI e
—
(|t} = B, and n = x(t), where x ¢ B, then X(5m)\T) (n),

whent

(n)|\T)

s.t. ¥|T = 2|T.

t. y|T = 2|T and z|t = z|¢t
tand 2z € B s.t. y|T = z|T.

= *andycX(BiT)-'-'B

Proof of Theorem 9,.4.2,

i

-2n, ~‘vhout loss of generality, assume the fir-t choice occurs

2t tre ini1ial node n,, Suppose that O<t<T, and F = X(B|t),

(1) First, (é) is verified.
Suppose z|t € Ct(no)(Blt). Let n = z(t). Then there =oxists
7-.’!1;) (8) () X(n), because of the definition of cver-ure choice,
and because B = X(B|t). Now y ¢ C(no)(B) N B(n), because
50 X(») = B(n)., By dynamic consistency, it follcws that
“(n)(B(n)). So, by lemma 9.4.3., ¥y € C(n)(X(B(m)|T)) (} X(x|T).
Therefore v |T ¢ CT(n)(B(nilT), which verifies (4).
Now (v) is verified.
£ z|T ¢ CT(nO)(B|T), then there exists y ¢ f(no)(BJ(W X(z|7).
' Then y ¢ FrnoJ(B)(T X(x|t), and so z|t ¢ ftfnu}ffit).
) Alse, if n = xz(t) = y(t), then, by dynamic consistency,

¥ ¢ C(n)(B(n)). Since B(m) = X(B(n)|T),by lemma S.4.3., anc

/& X(z|T), it follows that z|T e Cin)(B(n)|T).
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1f x|t € C,(ny)(B|t), n = x(t), and z|% ¢ Cp(BO)|T), <

there exist y and 2z such that ys:C(nOJ(H)fW X(x|t) an

2 ¢ con)(Bm)) N X(z|T). Soy e Clny(8) N Din)e By «iuani

on-istency, it follows that C(n)(B(n) = C(no)(ﬁj?w B(n). Theref

€ ano)(BJ N X(z|T), and so =|T ¢ CT(nn)(FgTJ, as required.

a generalized version of Bellman's "Principle of Optimality"
saamic choice is consistent, any chosen (or optimal) plan can be
: by choosing an appropriate (optimal) overture, and then in

iate (optimal) completion to the plan.

e now in a position to see that adopting finite horizcu cvertire
5 likelv to be naive. Suppose that we start with a plan indicated

) -or some finite H. This is not the end of planning, of course.

snen pericd T has been reached, at the latest, a further “hoice has to

There is no guarantee that the new choice will be cono. i=nt
old - in the sense of conditions (a) and (2) - unless the

! remains unchanged. On the other hand, unless % ‘s changed,

in the end come up against the horizon #, and be forced to change

to avoid eventual inconsistency, overture choice, like ordinary

nas to be based cn an infinite horizon.

is infinite horizon overture choice itself consistent” Recall
iz tne dvnamic consistency condition of section 4.4, In section

aw how the dynamic set function om)1'?) is consistent, but the

iman {1957).

.= a set function, rather than a choice function, because O(n)
mpty even when A is finite,

=y

1)



choice function {M(m)} is no more than weakly consistent, in

But there is a consistent dynamic ~hoice firction {C 4}
rdinai components, such that, whenever 4 C X(n/,
n)(A) € M(n)(A). The same is true of the dynamic overture

wnctions {OT(n}} and {MT(n)}, defined in zaction 9.3. The argument
vely the same as in section 7.5. and so there is no need to
iwre. So, as regards (a), infinite horizon overture choice

same consistency properties as the wore ¢. ' 'ox infinite

ron choice of chapter 7.

_ondition (B), however, creates a serious new problem, as *the

example in the next section shows.



An Example of Inconsistent Overture Choice.

e owne» «f some newly cleared land is deciding whether 1o make

nara or & vineyard of it. If he decides on an orchard, he cannot

~vert it to a vineyard. Nor can he convert a vineyard into an

hard #ill produce £1000 worth of apples each year, starting
itter the apple-trees are planted. The vineyard will produce
7.2 harvest of grapes, one year after the vines are planted. The

‘ed grapes will then be used to preduce 1000 bottles of vin

L @UT,

“here are an infinite number of different types of vin mystérieuz.
-ype m matures steadily for m years, then deterioriates. Provided that
it ape @ is not greater than m, a bottle of type m vin rmyotérieux will
sell for i2a. But if the age a exceeds m, the price o. type m vin

(1)

witérieur is less than £2m,

e owner of the land wants to maximize the total present value of

“s sales of apples and of wine. The rate of discount is zero.

415 options can be described as follows:-

‘m = leave land idle for T years, then plant apples,

STI_-leave land idle for T years, then plant vines, and produce
type m vin mystérieur, to be sold in year T + m

-~ leave land idle for ever.

lec sion tree can be depicted as follows:-

cice price is irrelevant, because it never pays to keep
o térieur after its age is m.
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vhe r-ve from any node to the next takes one year.

wiere

' is his pevenue, in thousands of rounds, when the horizcn is H.

H=-T

"

- H
Thus W (yTJ

2m (if H >T +m+ 1)

Wﬂl'zT,m)

li rne norizon is H, the optimum is to plant vines imnediately, and

tren produce type (H=1) vin mystérieur. SO o= 208-1).

‘1 values of the various possible T-overtures are as follows:-

i7T) = H-3S (s <7T)

2(4-1-1) (§ > 7T)

©., © 5 < T, then apples have already been planted in year 5, and soO

venue is £(H=S) = 1000, But, if S 27T, and the horizon is H, it is

rc plant vines at onee and produce vin mystérieux which does not

ture until H at the earliest.
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? 2(H-T) (s = 1-1)
" |'zs, T} = 2(5+m) (S < T~1, H > S+m)
2(8-1-1) (S > 7T)
for, . r-1, the vines have already been planted, and type m vin
™ uzr produced. If § > T-1, it is still possible to produce vin

r which matures right up to the horizon. Whea 5 = P-1, there
-5 year in which the wine can mature because the grapes will

. have been harvested at time T.

[+ follows that the optimal T-overture is to plant vines at time
~.7. The assumption is that the horizon is known at time T, and so it will
.z -.:=i le to decide the appropriate type of vin mystérieux th=n. But

if the horizon kK is, in fact, not known at time T, the decision to

-

slant vines turns out to be premature,

It is clear that choosing an optimal T-overture vioiales the
consistency condition (8). The optimal policy, too, seems clear. Assuming
is w2 do, that the horizon K will be known at some time T, and that # is
large enough, it is optimal to leave the land fallow until the horizon is
own, and then to grow vines and produce an appropriate type of vin
metérieur. Such a plan is called overiure optimal, and is studied in

section 9.0,

n the other hand, there is an infinite horizon optimal plan fer

.k

‘< example. It consists of planting apple trees at once.

"
-3

- A
or: - L (yOJ - E’H(yT)

iy - W (z H-2m (if H > T+m)

T,m)

+ o as H + =,
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‘s an example in which there is an infinite horizon optimal plan
noet agresable.
.‘-‘-' ;';»{
ndee b - J - 2” - m
1deec T(yol.'i') 4

+ @ ags [ + =,

, and so the optimum is infinitely disagreeable. In fact, the
cf the optimum are extremely unsatisfactory, because, for the
ich involves never planting anything,

G IT) = Walyp|T) = 2(8-1-1) - &

+ 2 a8 H+o

In secticn %,6,, we shall see that this means that yy is not even

"overture maximal".
Notice that, if T' > T, then:-

#}’{ZT'-I,M

|7*) - wﬁ,(a I7*)

Ir-1,m

2(H-T') = 2(T-1+4m) (if H > T=7+r)

+® as H + =
ifereas

A1,

P eT-1,m 1) = 0

fiopos ) = Hing

-°, whether the horizon is going to be revealed at time 7 or time 7',
i no worse to set off on an optimal T'-overture than on an optimal

‘~overture, and it may be very much better. Given the uncertainty about

tha

'orizon and when more about it will be known, the optimal 7'-overture
“fivitelr superior. That is, the more farsighted choice is superior.
‘rue generally, and suggests a way of overcoming violations of

<. is the topic to which we now turn our attention.



A Procedure for Consistent Infinite-Horizon Overture Choice.

ot us recapitulate. Suppose that, for each horizon /, there is an

e wel€are function:-
H, _ ¢l
Pz = Joog uy(z,)

H

7. and each H > T, there is a T-overture welifare function W,

e

{7, the underlying set of T-overtures, as follows:-

s;(EiTJ = max {Hb(x) ‘ zeX z|T =z

there are infinite-horizon T-overture preference relations defined

3¢ Ffnllows:=

=17 P|T y|T iff Z;”*‘:f B’,(:clr) - s/;".(ylr)_' >0
m }
AT Rir y|T iff 1;}’"*‘2"’ E/;.(xl T) - "’Hr(*’m_] > 0.

for each T, one can then define optimal aud maximal 7-overtures, A4S was

done in section 9.3.

simple procedure would be to select T arbitrarily, find an
optiral T=overture (assuming there is one), and follow it., Unfortunately,
as was seen in section 9.5., this is not always consistent, in the

»

> of property (B):-

" T' > T and B = X(B|T),

L .1_-"4‘ C
) € T(BlT)
21" ¢ CT,fB|T') such that Z|T = x|T.
, there may be an optimal T-overture z|T, such that, for any

.

-overture Z|1'', the corresponding T-overture x'T is different

Then, the question arises as to which should be chosen - the
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~timal T-overture, or the optimal T'-overture, or something e€lse entirel

‘- section 3.5., we saw that there were advantages to lery

cqe OVErtunt wi.iCR was being chosen. If the horizon becomes known

Sef ~ime T, then the choice of an optimal T-overture, to be followed

.- horizon is known, is the best that can Le done, it seems. But
.izon does not become known until after time T, the choice

-imal T-overture could turn out to be disastrous.

sppose that r ‘and y are two possible paths. Luprose that their
covertures z|T and y|T satisfy z|T R|T yl|T, bur that, for all 7' > T,
57’ z|T'. Suppose, too, that the horizon 7 bacomes known at
time 7' > 7. Then, provided that H is long enough after 7', y|T turns
..+ o ne a better choice of T-overture than z|T does. Indeed, for
.

a1l M, AL, wiTh) > Hg,(xlT') provided that # is large emough. It

20llows that until more is known about the horizon, i. i5 beuier to

follow the path y than it is to follow Z.

. tice that we are comparing two paths again, rather rhan T-overtures.
s .s inevitable, if we wish to ensure consistency, in the sense of
sroperty (8). In principle, we must choose arbitrarily long overtures,
<5, in the end, entire paths. But the choice criterion is different
any of those in chapter 7. This is because paths are being compared
Leir overtures, with extensions of these overtures in mind. Section
- ows that there is a fundamental difference between optimal paths
Sual sense, and agreeable or overture optimal plans, as considered
napter. It is a difference which we shall explain further in
:.7. Notice, however, that we may be faced with something of a
o we follow the optimal plan or the agreeable plan? ‘ne

. sends upon how likely it seems that ther¢ will be advance notil
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o true horizon. Fortunately, as will Le seen in chapter .U, in
cases it is not a dilemma which actually arises, because a ptimal

is also agreeable.

.

it is realised that entire paths have to be compared, through
~srerties of their overtures, the form of choice criterion becomes

We wish to define new preference relations R and P. These

-he limits, as T tends to infinity, of the original preference

+s T and P|T. That way, we compare ove: ' .r~s of infinite

++h - i.e. entire paths - by looking at the T-overtures, In order

-~ ensure continuity within finite product subspaces, we shall proceed

similar lines to those of section 7.4. and define F, P a. ollows:-

J

0

*h

-

) _ 1im i o s ..
I u. if ;?*?:f [ig“+12f [%g(x|T) - Wgﬁsu.u

F g
—

L

= ... Llim inf |lim inf Hoovo ! .
Py iff oo H o+ H§(3|T) - #le[.ij! (
's far as consistency property (B8) is concernec . ihene 1s now no
“5lem, because an entire path is effectively being cno:sen anyway. As
or nroperty (a), dynamic consistency, it is easy to check that the
relations P and P are consistent. The proofs are virtually identical

those 5¢ section 7.5.

Say that a plan x* € X is overture optimal if, for all x ¢ X,
ol . Say that z* € X is overture maxrimal if there is no x ¢ X

tnat x* P .

i~ section 7.5., to choose an overture optimal plan at each
t of time is dynamically consistent: to choose an overture

may not be. But, provided there is always an overture
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al plan, consistent dynamic choice is possible. Also, if there
ique overture maximal plan at each moment of time, then tn

it ertainly dynamically consistent,

11y, it is worth noting the following result:=-

x* ¢ X be a plan such that, for alli, =~ in optima.

ecp. maximal) T-overture (as defined in section 7.3.) Then z* is

ve-ture optimal (resp. maximal).

-, because of theorem 7.3.1l., an agreeable plan is

overture optimal,
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4 Note on Double Limits.

Section 9.5. brought out the difference between choosing
i1 choosing an overture optimal plan. [t 15 worth noting
1s another instance in which the order in which one carries

jiniting processes may matter.

‘r two paths, £ and ¥, and the associated values of their

ped the overture relation R as follows:-

T » o

5., iff lim inf sz -:f [PﬁrxlT} _ yﬁ{ng) >0

supoese we reverse the order of the two limits, and define R+ L,

_ﬂ'-.m an

: R* y iff lim inf I'Lm lnf' [ﬁﬂ(-‘rli") - ﬁﬂ(UIT)_!
for all T > H, Hgf:lf? is simply Hﬂfx), and wﬁ(yl?) = hﬂ(u)

Sor Ry iff Im ‘:f qu - w"(_.;)jl > 0.

» 7' is the relation "catches up to" of section 7,u4,, aad, by
reversing the order of the two limits, we are back with the usual

optimality criterion.

, when the horizon is #, Hﬁ(r) and H?(y;. Now, in section 9,6,
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A Note on Double Limits,

Section 9.5. brought out the difference between clhicosing
3] plan i1 choosing an overture optimal plan. [t .5 worth noting

15 another instance in which the order in which one carries

jimiting processes may matter.

‘r two paths, £ and ¥, and the associated values of theirp
, when the horizon is #, Hg(r) and Hﬁ(y,. Now, in section 9.6.,

ped the overture relation R as follows:-

"li

=L, izg LTminf lim Inf | H o o]
2 v f oy w ¥ % [};(x]T) - Hg{g|T)j >0

suppeso we reverse the order of the two limits, and define R#* L,

- m o

- R% y iFf zif" nf Z”" ""f [w”(xl'r) - hﬂ(ul"’)_l > 0.

for all T > H, HgleT) is simply HH(zJ, and wﬁ(yl?) = ).

Sor P*u iff Z‘“” ""f Lw”(:) - w”r,.,ul > 0,

“us 5% is the relation "catches up to" of section 7.4,, aad, by
reversing the order of the two limits, we are back with the usual

optimality criterion.



Conclusions.

“his chapter has developed an altermative infinite horizor ‘
srocedure. I+ is an alternative to that of chapter 7. The point is
that . we accept that some T-overture has to be chosen, which one do
” +> choose? This was the starting point of our search for a

procedure, and infinite horizon T-overture choice was de fined
9.3. But, in checking the consistency of this procedure, we
& a setback in section 9.5. This showed t! = cannot avoid
csing an entire path, in the end, because we have to contemplate
oosing arbitrarily long overtures. Section 9.5. suggested a criterion

-+ covparing paths in the light of their overtures, and the fi.

rizon extensions of these overtures. The resulting overture choices

;a1 be made dynamically consistent.

We are left with a number of important theoretical quest ¢ @' =
(1) When is there a plan which is

1) overture maximal, (b) overture optimal, (c} asrceable?

[his question is important, because our search was motivated by
the trouhlesome example 8.6., in which there is no ordinarv maximal plan.
search was fruitless unless we can now handle such problems.

() dhen is there a unique overture maximal plan?
is question is important for two reasons. First, the set of
27i7al plans is an upper bound on the limit choice set, as was seen in
’.3. Thus, overture maximality is necesgarv for a plan tc be ar
iite choice; we cannot be sure that it is sufficient uniess there
rure maximal plan only. Second, there is no dynamic consistency

<hen there is a unique overture maximal plan.
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it possible to characterize an agreeable, overture opti

,r overture maximal, plan - in a way which makes it fairly

find in practice?

s to these questions which chapter 10 is addressed.




Chapter 10.

AN TNTRODUCTION TO THE THEORY OF OVERTURE PLANNING.

‘uction.,

“ne end of chapter 9, three questions were raised:-
w.» is there an agreeable plan, an overture optimal plan, or
‘erture maximal plan *

n is there a unique overture maximal plan

Can we characterize an agreeable plan, an overture optimal plan,

or an overture maximal plan?

(ne other question, suggested by example 9.5.1,, and of some
importance, is:=-

\4+) Wnen is an optimal plan agreeable, etc.?

These questions will not be answered separately. Instead, - shall
consider a number of different situations in which we can say something
serul about several of these four questions. The situations can be

cescriped as follows:=-

() The economy is described by a one-good model of capital accumulation,
“ith a concave production function, and strictly concave utility runctions
his case, as described in section 8.6., has been discussed °n

(1) Here, the main results are summarized:-

~cable Plans",
.. Tnere is an agreeable plan if and only if there is a locally optimal
«th (i,e, one that maximizes ZZ'O ut(ct), given initial and terminal

iwital stocks, for all T ) on which consumption is always positive

)7, 2t any rate, on which ut(ct) is always finite).

— S —

ection 8.6., and in "Agreeable Plans", time was continuous, whereas
discrete. 'This makes no real difference.
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1€ there is an overture maximal plan, it is the unique locally

o

>ptimal path on which consumption at each moment of time i

maximized. Moreover, it is agreeable. (Thi: is not proved direcuiy.

“ut, given the assumptions, any overture maximal plan is unique,
‘heorem 10.6.3. Also, the "maximal" locally optimal path is
zable.)

Lere is an optimal plan, it is agreeable. But an agreeable plan

nay not even be maximal, as was seen in section 8.6.

T™ere is a path r* such that, for some sequence of finite horizon
H Hl A|m .
spiimax, T IT *+X |? as H + =, for all T (or, there is a subsequence of

} '
firite horizon optima xH(n’ such that xH(n)lT + z*|T as n + =),

“his case, the "insensitivity" case, is discussed in section 10.2.

©+ .'11 be swen that z* is agreeable (or overture maximal) provided that

LR

. satisfies a certain flexibility propert. This demonstrates sxistence,

and also provides a characterization.

) There is an cptimal path x*, whose existence can be demonstrated in
‘ne of the two standard ways discussed in section 8.5. That is, either
the economy is valuation-finite, or x* is a price-competitive path,

satisfying the Malinvaud conditicn.

This case is discussed in section 10.3., 10.%., and 10.5. We shall

- %

rhat x

is then an agreeable plan. Again, this demonstrates existence,

5 provides a characterization. In addition, of course, it shows

ahlao

certein important cases, an optimal plan is agreeable

. economy has the property that X is a convex set, and each one
tility function v(+,*,t) is strictly concave. This is shown to

Ak e aa

~hat, if there is an overture maximal cian, then it is unique.
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50, if there is an agreeable plan, then it must be the limit of the
sequence of unique finite horizon optima xr as # + =. This case is
:1dered in 10.6. Some remarks on the price decentralization of

COll

ins are .50 made in’ section 10.7.

P

is assumed throughout that we are in the model of capital
iion of chapter 8. In particular, we make the assumptions (A.l)
of that chapter, although some of these assumptions are only

sed for one or two of the results.
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Insensitivity, Agreeable Plans, and Overture Maxima.

In section 2.1., a plan x* was said to be insensitive if, for
f.r the sequence of finite horizon optimal plans xh,
. -+ 7 as H + =, An economy with an insensitive plan of capital
ation was discussed in section 8,6. We are now in a position to
- though there is no maximal plan even, the insensitive plan
~1o. Indeed, we can prove that an insensitive plan is agreeable

very general conditions. But before doing sc, let us consider two

xamples in which the insensitive plan is not agreeable, or even overture

maximal.

(1)

Example 10,2.1.

There s a single good, cake, of which the initial supply is one.

wCif

faxe can uever be produced. If z, is the stock of cake at time t, and

L]

» is the consumption of cake in period t, then Typg = Fp = Cype (Saxe

W

ices not po mouldy.) The welfare function is HH E Ei-n ufctJ, where
%« is strictly concave, and u(0) = - =, Clearly, the optimal finite

sorizon plan, if the horizon is H, is to eat equal quantities of cake,

, in each period up .to the horizor. In the limit, as H + =, this

nvolves eating no cake at all., But this is infinitely worse, even in an

sverturc sense, than any plan which involves eating positive quantities
cake each period. So the insensitive plan, of eating no cake, is

certainly not overture maximal even.

fact, there can be no overture maximal plan in this example. For,

anv hope of being overture maximal, a path (rc‘, ct*f must have

, ‘cr all t. Consider the alternative path with ct z % c; (each t).

a.e (1967), example 2, p. 4.



> .r,;. (each T > 0). So

Witz|7) - M;ra:*m

4

- ]
T | ¥ ‘ gy z3\1
I Lbi(t a*) = * - 4_
= oo 4k o) u(ct) + Et i L(,{_T u{ 37 |

u -
AT

- X,
= Wix) - H?(x*J + (H=T) |u (y:%)

= z3 z,
1) | v=d A b=/ ERE "\ 77
—

-bwaSH

lim inf [hﬂ{xh‘) - hﬂ(:*|T)]

H =+ o

+
8

whenever T > O,

o there is no infinite horizon plan of any kind which one can

sscommend. This failure seems inevitable. The horizon is crucial; some
kind of proo-rility distribution over the possible hcrizons is required

sefore sengible choice is possible.

It might be thought that, provided minus infinite utility is
ex~1u7cd, an insensitive plan would be at least overture maximal. In the

cake-eating example, if u(0) is finite, then it is easy to see that to

fut the following is an example in which an insensitive plan is not even

ovarture maximal,

‘re are two capital goods, 1 and 2, Good 2 is also a consumption
is like the cake of example 10.2.1. Good I is needed in order
s00d 2 - in fact, for each unit of good 2 consumed in period t,

fiere must be a unit of good 1 available. Good 1 is infinitely durable.

ad

‘eI are constant returns to scale.
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Initially, there is one unit of good 1. In.period 0, some or all

»f this can be converted into good 2, unit for unit. Thereafter, no

Q

conversion either way is possible.

follows that the consumption stream (e(1),e(2),...) is feasible if
ar v 1f

50 (t) units of good 1 are made available, at least

. elt) +sup e(t) < 1.

The welfare function, if the horizon is 4, is

A [ elt).

. 7
“lad

1f the horizon is H, the optimal consumption stream satisfies the

equations:-
[ £ H H
// = A, zé‘l c(t) =1- ¢ (H).
At =
222 22

Thus 222 = ffz + 3H,
-."Iﬂ'ef')fe ’_"”‘rt): m%} (t = 1 to H}.

. (H+1),

wo L
=/ ZTE+3)

H
, e (t) + er(t)

0,

0

Py
—‘:‘_-u—‘:.—' *
73 " xlft)

-7 - x?(l) +z3(1) = 1.
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5o the insensitive path involves converting all of good 1 into good 2
ipitially. But, for all # and T, Hg(c*|T) = 0, because, with zero
srovision of good I, no consumption is ever possible, So the insensitive
sla .5 Cicdrly not agreeable - indeed, ;i: V- Wg(c*|T} T+

~* is infinitely disagreeable,

Morecver, ¢®* is not overture maximal. To show this, consider the

., consumption program:-

e(t) = 4-t.
cgether with
z,(t) = '/,
1-t
s _1-4

i, at time 7, the horizon is discovered to be #, the best plan is to

switen to a path e'(t) on which

Tt H )
/?m = A and Zt=T e'(t) = Iz(T),

mis iz feasible provided that c¢'(H) :_I/ , which will be true if # is

‘arge enough.

o'(t) = £, a2 z (1) = (BT)(ETEL)
22 2 2
et z,(T)

i 1y = o
Sy o )1 =5 F

H , { b
1?;0!T) = Et=§ t. 2 by 3 2
) o
1] = /Iza,sTa-u'

~ie@r that:-



. 10/8.

. . 5 . . I
tmowny lim T.—ﬂf ll'{:(clTJ - H‘i(citT;' = 4+ @
L L‘ T o

T + @ H+

{s infinitely "overture inferior" to e.

HIT*:*iT as H »=

» example 10.2.2., although it is true that x
iiculty is in getting back near the path xh after following z*.

this is impossible, because none of good 1 has been provided.

vartheless, it is possible to see the cases in which, although
. z*|7 as H + » for each T, x* is not agreeable, as special cases.

- can be ruled out by making an assumption.

first, recall the definition of F(s,a,t) in section 8.3. 1if s < ¢,

Flos o = 4b | 3 <xlr)>t s.t. z(s=1) = a, =(t) = b

n=s-1
and (x(t=1),x(r)) € X(r) (r = g to t)}
Cay that a feasible path x is flexitble if, for all 8, there exists

.uch that x(t) ¢ int F(s,z(s),t). 1)

Notice that, for a given path x, if 8' < s

=t/ ¢ int F(s,x(s),t), then

r(t) € int F(s',x(a'),t)
Fl(s,=(s),t) € F(s',xz(8'),t).
‘cular, z(t) € int G(t), where
= °(0, xz(0), t), and T(0) is the initial capital stock. By
n (A.6), this implies that there is a path i, with x(0) = %(0),

wt) , such that Htfi) is finite.

~e¢ the term "flexible" to Geoffrey Heal and his forthcoming book,
373 ).
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Suppose that each capital pood is either freely disposable, or can
iisposed at some cost in terms of current resources. In other words,

se that if (a,b) € X(t), and a' > a, then (a',b) € X(t). Then

SUI

flexirility is equivalent to:=-

r 211 8, there exists t > g and b > x(t) such that b ¢ F(s,x(s),t).

“re words, given enough time, it is possible to produce more

capital good.

it may be worth comparing flexibility with a number of other concepts
. capital theory, such as "nontightness".(l} First, however, it should
¢ rezlized that concepts such as nontightness refer to net output vectors,
zether than to stocks of capital. The most closely related concept seems
0 we Kurz's "capable of output increase" condition.(z) A corresponding

wicept is the following:=-

Say that a path z* in X is capable of stock increase if, for every
fanc every t such that O < & < t, there exists a number k(t) > 1 and a

#th r © X such that:-

z(t)

k(t) x*(t)

anc  xr(r) = x%(r) for all r < 8 and all r > t.

‘ere Is free dizposal, flexibility is equivalent to:-

.

or cvery 3, there exists some t > 8, a number k > 1, and a path

izh that:=

’

x(t) k x*(t)

v,

z*(r) for all r < & and all r > t.

© “alinvaud (1962), (1969), Kurz (1969) and Kurz and Starrett (1970).

srz (1969), definition 8, p. 270.
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S0, for x* to be capable of stock increase is considerably stronger
than flexibility. In fact, if a plan is capable of stock increase, it
nay well necessarily involve inefficient storage. To see this, take
¢ =5 + 1. and suppose that good 1 is a four-period old machine, while
200 .+ a five-period old machine. Since the only way of producing
~rind old machines is to keep a four-period old machine for a
lod, x5(8+1) j.x;(s), if x* is feasible. Suppose storage is
, so that I§(8+I) = x;(a). Then it is impossible to find a

> 1 such that the path x with:-

x(s+1) = k(e+1) x* (s+1)
and z(r) = z*(r) (all r < & and all r > s+1)
is feasinle. So x* is not capable of stock increase. Yet it may be
flexible, because it may be possible to increase the number of machines of

2ll ages ave.lable at time t, by producing more machines far enough in

advance,

Flexibility does, however, imply that goods which can never be
sroduced must eventually have their stocks reduced by more than is

necessary. But, as example 10.2.2. showed, capital goods which cannot be

produced may well cause trouble.

It 1s worth remarking that, in the svandard one good model of

sectica 2,6., a path is flexible if and only if there is an infinite set

f periods in which the capital stock is reduced either by consumption,

by disposal. Fer, with just one capital good, and ignoring depreciation,

'1s rlexible if an only if, for every 8, there exists ¢ > 5 and a feasible
T such that:~-
x(t) > z*(t)

ang z(r) = z*(r) for all r < 8 and all r > t.
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s, =* is flexible if and only if, for every s, there exists t' > &

;nd a feasible path x such that:-
z(t') < x*th), x(t'+1) > z*(t'+1)

.sth r exists if and only if the capital stock is reduced in

L]

Uclhl «

serr .. t' on the path x*.

- aow prove that flexibility is sufficient to ensure that an

-.~ive path is agreeable.

‘hecrem 10,2,.3.

Suppose that z* is flexible, and that, for all T, :H|T + z*|T as

7+ =, Then x* is agreeable.

rroof

———

For any 7, there exists S > T such that
z4(S) ¢ int F(T, z*(T), S).

Tor this S, consider the correspondence X(+,-,T,5) defined in section
.3. as follows:=-
X(a,b,T,8) = {x ¢ X | x(T) = a, 2(S) = b}

3y (A,4), it is lower semi-continuous. Since zH{S) + x*(S), and

-

* ¢ X(z*(T), z*(S), T, S), it follows that there exists a sequence of paths
" and a number HO such that, whenever A 3-H0’ yH ¢ X(z*(T), xH(S), L iy

"
and v o =+ x*

S. Moreover, we can take y”!T = x*|T, for all H 2 &O’

betine the path zH for all H Z.Ho by:-

) = (yfee) (¢ < 8)

2(e) (t > S)

e .-"TI
+¥ s rT

Koty s o, sut W - Waf) = i) - Wal),

R =i = y . . . &g
»x*|5, 2 |S » z*|S, Also, since x* is flexible, WS(°) is finite

(z*|T) 3_HH(2H). Therefore, it remains only to show that
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=f i, H é
nd so continuous at x*. Therefore - (z') » 0, as required,

These -~onditions are powerful. The only cases in which they
are nct saiisfied are:-
. ere is no insensitive path. This means that there exists TO
. that, for all T > To, the sequence ;cH|T fails to converge

+ @,

ithough there is an insensitive path z*, x* is inflexible.

There is little to be done in the second case, as examples 10.2,1.
and 10.2.2. showed. But the first case is more easily dealt with.
because X is compact, there is at least one path x*, and a sequence of
rorizons #(n), such that Hm | + z*|T as n + », for all 7. Should z*
be inflexihle, we are back with case (2) again. But, as will shortly
te seen, 1f there is such a limit plan x* which is flexible, then x*

ic a4t least overture maximal.

first, however, let us show that the problem is not wvacuous, by
produsing an example with no insensitive plan.

Example 10.2.4.

There are two types of capital good - blighted blackberry bushes
and cleared land. Initially, there is one unit of land uniformly covered
v blignted blackberry bushes. Each unit of land left to blackberry
bushes provides E-t units of food in period ¢, On any piece of land,
@t aiv time, the blackberry bushes can be burnt down costlessly, and
“"7er the land can be used to produce a stream of food output
1,0, 1,0,1,...) per unit area (i.e., O just after initial planting,

farvest time, and so on). Assume that food can be stored for one

“ostlessly, and that initially % unit of food is in store. Then,
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given a strictly concave utility function u(e(t)) of food consumption

in period t, it is enough to maximize total food output.
Feasible paths of food output are convex combinations of:-

(0,1,0,1,0,1,...) (blackberry bushes removed at once

(1,0,1,0,1,0,...) ( " " " after one period)

(i,%,0,1,0,1,000) " " y after two periods)

(1, ‘F.%poa 1,0,...) ( " . " after three periods)
etc.

.vidently, of these, only yl and y2 are undominated. If the horizon is H,

2

tne the optimum is yl if g is odd, and y“ if j is even.

Indeed, :«H-’yl) = (%(H+1) (H odd)
X H {H even)
%) =, (¥(4+1)  (H even)

{%H (Hodd o, H > 3)

S0, for any undominated path y = )«yl + wy“ (where A + u = 1, and A\,u > 0),

Wy

{J; (H+\)  (H odd)

k(H#u) (H even)

-

%(H+1)

There is nc insensitive path, Also, because:-

V- = (m (H odd)

E7Y (H even)

“ere 1o no agreeable path either. But any path y = AyI + uyg is

f¥ertire maximal, because if y* = 1‘.‘11 + l’..'!gsthe“
o - A " e
“{y) = (=1)" %(x = A\%), so that the Iim inf as H + =

i8S certsa;

-@inly not positive,
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Now for the result:- -

Theorem 10.2. Se
e

Let ¥{n) be any sequence of horizons. Suppose that, for each /g

S 7 5 z#|T as n + =, Suppose too that x* is flexible, Then z*

ture maximal.

It is more than sufficient to prove that, for all T,

ko dng [E"" - t.f;’,(:*lr)] z 0 (A)

secause then, for all T and for all paths z € X,

'm inf { ,
I;,”* : [H;.(;cli"x - lu/;(x“li")] < 0.

sut to prove that (A) is true, it is only necessary to show that

v [0 A @) = o

¥] -0

The proof of this is so close to that of theorem 10.2.3. that it is not

worth setting out here.

We can now see that a necessary condition for the non-existence
¢ an overture maximal plan is that every limit path (there is at least

one, because X is compact) of the sequence :H must be inflexible.

There is one case of some importance in which there is certain to be
an overture maximum, Suppose that, for all ¢, X(t) is a finite set, Give
i “he discrete topology, i.e. the topology in which every subset is open.
1.1 the assumptions are satisfied, and every path is flexible, for all
tire. Hence there is at least one limit path of the sequence xH. and tnat

(init patn is certainly overture maximal.
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These results suggest ways of finding agreeable or overture maximal
~lans, even when there is no ordinary infinite-horizon optimum. For
N H : : s s
example, one could find x , for all horizoms 4, find a limit x*, and

see whether x* was flexible., This would perhaps not be very easy in

pro. ~.ce, but it may suggest better methods.
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10.7. Disagreeable Infinite-Horizon Optima.

The example in 9.5. was an instance of an infinite-horizon optimum
«hich is mot agreeable. But, in that example, there were an infinite
weber of capital goods - vin mystérieur of different ages and types.
Als . :nere was no agreeable plan. In the following example, there are

‘nite number of capital goods, and there is both an infinite horizon

.-+imal plan and an agreeable plan, yet these two plans are different.

xarple 10,3.1.

There are two capital goods, good O and good 1. Initially, there
is iust one unit of good 0. This can either be held for ever, producing
one unit of consumption each period, or converted into an equal quantity
of good 1 immediately. If it is converted into good 1, the stock of
good 1 doubles each perind, as long as no consumption takes place. Good I
can be consumed, and each unit yields one unit of consumption. But, if

any of good 1 is consumed, it all disappears.

The possible consumption streams are therefore:-

o

2% = (1,1,1,...)
and ol = (0,1,0,0,0,00.)
e? = (0,0,2,0,0,00.)
s° = (0,0,0,4,0,...)
etc.

+

5o »° is the consumption stream which results from converting good (o)
into good 1 initially, and then holding good I until period t * 1, whereupon

exhausted and ydields thz units of consumption.

Assume that the welfare function, for the horizon H, is simply:-

|




-y
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Wie) = z!t!—l e(t)

i,e. total consumption.

o g : ; . o
Now, the infinite-horizon optimal plan for the economy 15 e 5

t
pecauss for any other ¢ ,

1ém |, o t, | _ lim . .
H“[f{c)-lﬁt’c)}-”*_fﬂ-ZJ-w.

~r.e horizon is H, the optimal plan is to convert to good I, and
,ume it units in period H. So o= 23-1. There is an agreeable plan,
hich consists of converting to good 1 and never consuming anything.

This is agreeable, because lf;.(c*lT) = 2'1"_'I = #! whenever H > T.

It is also possible that there is no agreeable plan at all, even
though there is an infinite-horizon optimum, as the following example

shows =

ixample 10.3.2.

There are three capital goods, 0, 1, and 2. Initially, there is just
one unit of good 0. This can be held forever, producing one wnit of
consumption each period. Alternatively, it can be converted immediately
into an equal quantity of good I, or inte an equal quantity of good 2.

's long as no consumption takes place, each unit of good 1 becomes {(wo
nits of good 2 one period later; each mmit of good 2 becomes two units of
07 1 one period later. Good 1 can be consumed; good 2 cannot. Each
nit 5 good 1 yields one unit of consumption, but if any of good 1 is

ned, it all disappears.

e possible consumption streams are precisely the same as for

#anp.e 10,3.,1, If t is odd, ot is achieved by converting initially into




-

10/18.,

4 15 if t is even, ct is achieved by converting initially into good 2.

o

Taking the same welfare function:-

H, . _tH
Wile) = It:f e(t)
+ follows that c° is still the unique infinite-horizon optimum. But
no« there is no agreeable plan. There are two paths cn which consumption
sero for all time - on one, the initial conversion is into good 1, and

the other, the initial conversion is into good 2. Call these paths

* and dg respectively.

H-1

Then V;(dIlT) = \2 (H even)

2H-2 (H odd)

If ¥ is even, then, in period H, there will be QH-I

units of good 1
available for consumption., But, if H is odd, period H-1 is the last
period in wnich good 1 is available, and so the best that can be done is
to consume the 2H-2 units which are available then.

similarly, H';'.fdzm = {2”' I (g odd)

2H-2 (H even)

Since Qﬁ = 2H-1, it follows that neither dJlT ncr dziT is agreeable.

0f course, both are overture maximal.

%6 it is only special typ:s of infinite horizon optima which are

agreeable. Which special types?

There are, in fact, two special types, at least. In section 8.5. it
42+ oocerved that there are two standard ways of proving the existence of
an infinite horizon optimum., What can now be shown is that, if either

“nese ways of proving existence works, then any infinite horizon optimum

sreeable, The two ways of proving existence are:-
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(1) Show that the economy is valuation finite

(2) Find a competitive path, for which one can show that the value
of the capital stock tends to zero as time tends to infinite (the

Malinvaud condition).

Fach of these cases is now discussed in turn,




-
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10,4, Valuation-finite Economies.

a——

The economy, in which we are trying to choose a plan of capital
sccumulation, is said to be valuation finite if:-
(1) There exist upper bounds v(t) (t = 1,2,...) such that, whenever z ¢ X,
v(z(t=-1), z(t), t) < B(t).

) There is a path T € X such that the sum

Lo E)(:'Ert—z), z(t), t) - 5(t{|

(1)

(of nonpositive terms) converges.

In such an economy, we can prove that an infinite horizon optimum exists,
and that £t is agreaable. In fact, we can prove rather more - there is
2 subsequence of horizons H(n) such that (1) the corresponding finite-
horizon optima xﬂ(n) tend to a limit path z* as n + =, (2) the limit z*

is optimal. (3) hﬂ(u)(zﬂfn)) - WH(’”(:*) +DQasn »=, (4) z* is

agreeable,

Because of the valuation-finiteness assumption, we can subtract the
constants v(t) from each one period indirect utility function v(*,*,t),
to get a new one period indirect utility function which is nonpositive for

all plans in the feasible sct. Since

Wiz) = {5::1 v(z(t-1), z(t), t), it follows that, for the
correspendingly redefined welfare sums:-
v () _<_VTf:r) 1HT_I(x) S eee LHI(:) <0

forall re X, and all T,

———

e Mirrlees (1968), Brock and Gale (1969), McFadden (1973).
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5o the sequence WT(::) either converges, or else diverges to =- =, In
either case, we can define

m _ lim

) 2 [ W ()
where .t is understood that W(x) = - = if the sequence VT(:) diverges.
But, in fact, for some ze X, Wiiz) is finite. Let W denote W (2).

Mow we can prove the results mentioned above, via a series of lemmas.

Lemma 10,401

Let .rH denote an optimum if the horizon is H. Let 'B?H = WH(x”)
Then, in a valuation finite economy, iﬂ is a nonincreasing sequence
which converges *o a finite limit W%,

Proof

Eﬁ%] = ;"f'*((:ﬂff}

< Ml{{xﬂﬂJ (because ”H is a sum of nonpositive terms)

< VH(:H) (by definition of xﬂ)
=i
“oreover, for each H,
A > #(z) > W

where ¥ is finite. Therefore W' converges to a limit W* > W,
Lomma 10.4.2,

‘ny limit point x* of a sequence of finite horizon optima .rH has
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Proof

*_"uppcse .‘L'H(nJ + x4,

Now, whenever H(n) > T, ﬁﬂ(n) < WT(::H(")}

0

=H(n)
nut"

by continuity of VT('J.

+ W* as n + =, by lemma 10.4.1. So, as n + =, #¥* < HT{:B*J,

Suppose that there exists ¢ > 0 such that
W (z4) > W4 + ¢ (all T).
Now thiere exists n, such that, whenever n 2 N,
:ﬂfn) < W% + ke
Also, ‘fr’(n) (x*) > W + ¢
S an){z“} 5 ph’(n) 3
contradicting “he definition of E,H(n)

Therefore -VT(:.") + Wt as T » =,

Lemma 10,4,3,
In a valuation finite economy, a path x* is optimal if and only if

Tz = W (unere W = M),

Proof

(1) Suppose W (z*) = W%,

Then, for any path z € X,
.?,ur.- 1-:f Ifq(zdj - Iﬁ(::}]

. lim inf
H =+ =®

: m mf Eﬂ VH(::)] (because lﬁ + W*)

> 0, by definition of B

Wt - Fﬂ(z):l (because WH(I‘J + W2)

So r* is optimal,
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(7) Notice that there is a path x* such that W (z*) = W*, because is
compact, so the sequence a:H has a limit point, and this point serves
as =* by lemma 10,4.2,

gy part (1), there can be no path z such that W [z) > W*,

m. the other hand, if W (x) < W* then x cannotbe optimal, because:-

_';,P i:f’ E.H(I‘) - !fH(a:)J = WA =W (x) > 0. .
i L

>

if r is optimal, then W (x) (which is defined for every x € X) must

- equal to W4,

Lemma 10.4.4.

In a valuation-finite economy, any infinite-horizon optimum is

agreeable.

Proof

Suppose xz* is an optimum. By lemma 10.4.3., Wo(x*) = WA

So .Eff W--ﬂ(:')]:h"-h":o

which shows that x* is certainly agreeable.

It is worth noticing that, if one is satisfied with arbitrarily small
welfare lcsses as the horizon tends to infinity, there is no need ever
to deviate from an agreeable plan z* which is optimal in a valuation
finite economy. By remaining on the optimal path x*, the welfare losses

tend to zero as the horizon tends to infinity in any case.

_lim <H

These lemmas might be summarized as follows. Let W* = B ¥ o

¥* is finite (lemma 10.%.1). Now define the following sets:-
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: the set of limit points of some sequence of finite horizon
optima x

: the set of infinite-horizon optima

: tne set of paths with W (z) = W*

che set of agreeable plans.

_:'IS‘C_?S =53€S4.

Notice that, in a valuation finite economy, any limit point of the
zequence xﬂ is agreeable. This is a stronger result than those obtained
in section 10.2., in a number of respects:~

(1) There is no need to assume flexibility,
(2) Any limit point is agreeable, rather than merely overture maximal.
(3) The sufficient condition for agreeability, xH + x*, has been

weakener: to xH(nJ + x*,
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10.5. Competitive Paths.
Weo-

I+ is usual to investigate competitive paths in an economy with a
convex feasible sct, and quasi-concave preferences. However, competitiveness

ss 2 sulfictent condition for optimality does not require any such

asswmcions, as will be seen.

let x:(:h::o be any path of capital accumulation. Say that it is
_iicive if, for each t, there is a nonnegative price vector p(t},
a1l to the capital stock vector z(t), such that, fcr ¢ = 1,2,...

(a*,b*) = (z(t=1), z(t)) maximizes

vla,b,t) + p(t)b - p(t-1) a

subject to (a,b) € X(t).

This is just the discrete-time version of Pontryagin's maximum principle.

Now we have the following simple result:-

Theorem 10.5.1.

If z* ¢ X is competitive at prices <p(t) ’::0 such that
p(t) z*(t) + 0 as t + =, then x* is both infinite horizon optimal and

agreeable,

Proof

If z is any feasible path, then:-

iz) - Wiz

= Z}::l EJ(:cft—I),z(t),t) - v(a:‘l't-l),:“(t),t)]

-

< I E?(t)x‘(t) - p(t-FeA(t-1) = p(t)z(t) + p(t-l)z(t—I)J

—_ Lé=
= ==

= p(H) (z*(H) - :(u)) - p(0) (fz“(O) - 3(09
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put £*(0) = x(0) = X(0), the historically given initial capital stock

Iiﬂ_’i:f' ‘_;ﬂ(xnt) - WH(;cq > p(H) z(H) > 0
H L -

Thus x* is optimal.

T = :.."H, then:-

h

Also, 1

W =iz <pi) (@) - zom)
scing “he iimit as # + =, it follows that
7 - wlize) + o0,

Se r* is agreeable.

Once again, there is no need to depart from the agreeable plan

ever, if one is content to have welfare losses which tend to zero as

The condition that the value of capital - p(t) x*(t) - tends to

zero, is familiar from the work of Malinvaud.
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The Convex Economy.

As was mentioned at the end of chapter 9, uniqueness is an

imnortant property for infinite horizon choice, of all the various kinds.
In gernc~al, however, there is no reason to expect a choice set to concist
54 . single option. Uniqueness is a property which only holds under
.wtain conditions. One particularly important set of conditions is

> following. Suppose that A is a convex subset of a linear space.
suppose that the choice function C corresponds to a utility function u
wnich is strictly quasi-concave, Then, as is well known, C(A) consists

of a single utility-maximizing option = assuming it is non-empty.

The result is so frequently seen that it might be called the
"fundamental uniqueness theorem", In this section, we shall present
extensions of it to the type of infinite horizon choice function considered
in chapter 8 and in this chapter, in connectiors with planning capital

accumulation.

The convexity assumptions we shall make are:-
(A.7) X is convex

(A.8) For each t, v(+,*,t) is strictly coucave.

Assumption (A.8) deserves some comment. For it is usual to assume
that utility is a strictly concave function of consumption bundles.
v(*,*,t), however, is an indirect utility function, defined on pairs

‘apital stock vectors as follows:-

v(a,b,t) = max {ula,b,e,t) | (a,b,e) € ¥(t), e € Q(t,a)}

e 7(t) is the set of triples (a,b,c) which are technologically

»o25inle in period t, and Q(t,a) is the consumption set in period t.

—

(1)

:e sections 8.1. and 8.2.
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Now, the usual assumptions would be:-
(1) ¥(t) and Q(t,a) are convex (for each t and a 2 0)
(2) ulayby* st/ is strictly concave, as a function of e, and u(+,*,*,7/
is concave, as a function of (a,b,c).
7o .-sume that u is strictly concave in all of (a,b,c) together involves
ious loss of generality, because u may well be independent of
+, at least, of several components of (a,b). From these

ssumptions, it only follows that v(*,*,t) is concave - it does not follow

enat vl+,*,t) is strictly concave. Nevertheless, even with these more
cual assumptions, it is possible to prove uniqueness of the chosen
consunption stream, and so to derive results similar to those below. It

is only to simplify the analysis that the more rigorous assumption is made.

Another point is that the customary assumption would be:-
For each H, lﬂ(-} is strictly quasi-concave.
This is clearly weaker than strict concavity of the functions vis,,t)

Nevertheless, the difference does not seem tocoimportant in practice.

Civen assumptions (A.7) and A.8), we have the following simple
and well-known results:-

Theorem 10,6.1.

For each H, the optimum :a:lII for this tinite horizon is unique.

: H
If z, .rH are different paths, then

o o ugf) > v i) + 5 W@,

7
anc so r and E” cannot both be optima.
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Theoren 10.6.2.
-._-_#

If there is an infinite-horizon maximal path, then it is umique

(and so, @ fortiort,if there is an optimal path, it must be unique).

Proof
Suopose that :.cf and :5 are two different infinite horizon maximal
ths. Then .ra = %f.r; + xg) is feasible. Also, for some finite T,

sone € > O

e o

~

T (zh) - % HT(:::;) - % Hrfz:é) > €
[t follows that, whenever H > T,
Fag) - it - izp) 5 e

and so it is not possible for both xI‘ and zé‘ to be maxima after all.

The following shows comparable uniqueness of overture choice:-

Theorem 10,6,3.
If there is an overture maximal path, then it is unique (and so,
@ fortiori, if there is an overture optimal path, then it is unique; and

if there is an agreeable plan, it is unique).

Proof
—_—

Suppose that zi‘ and .r; are two different overture maximal paths.

Then z7 = §(z] + x3) is feasible. Also, there exists T, and = > O such

that, whenever T > TO

nr"xa) > % {HT(:;) + WT(::gl} + €

4t 7. denote a path which maximizes Wi(z) subject to

z|T = .'r:_EIT andz e X (i=0,1,2; H>T),

w._ T H,
"rite "W (z) for Z{::T” v(.r(t-l),c{t),t).
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Then x'; maximizes ~W (x) subject to x|T = .:l‘,‘5|T and = ¢ X,

Bt ¥ (zg + x;i, 2) is feasible, piven these constraints. Therefore:-
Tﬁ.':“{l_,g j > (x +_x;{,2))
) - Tw(,,f;z))
e g o T
5 ErTrz;) + Jr;g{l te+k |:T;/’(x§.1) + T (e )
EJH(:.\:*|T) + w"r:»m] ‘e

vhenever I > To.

This contradicts:=

o o
Lam inf ..'LM 1.:3“ [ 3*|T) = HHTrz‘ElTa :{J (i = 1,2)

T b o

and so it is impossible for both .r; and ::'2' to be overture maximal.

Under assumptions {A.7) and (A.8), it is also possible to say something
more about the relationship between insensitive plans and agreecble or
overture maximal plans, provided an extra minor assumptions is made:-

(£.9) If either vfc},%,t) or v(az,bz,t) is tinite, and if

> >0, u>0, \ *+u =1, then v(kaz + ua Abl + ubz, t) is tinite.

23

This is very close to (A.8) but, given the possibility that

v, t) may be ==, is not implied by it.
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enmd 10.6,4.
:'_'___,__...—-——-

Suppose that .z:; is a path such that, for each T, x”(n) |7 -+ I;!T

n + =, Let .:: be any feasible path, other than x}, for which Hffx,‘{)

Ffind+ i * = 4 *
- finite. Llet zj H:I + xz).

- ™ n + «

p ominf lim inf H}I(n) =417 ""';-(n)“‘é"”:l _—

{*h

Tase T » *
let T, be such that :::IITO # .1:2]1'0

(1) Note that there exists € > O such that, whenever T > T :-

i d Eﬂ’(xa) -5 ™) g w"u;;] > ¢

for if ETl';:d(n)) + -» as n + =, this is true for arbitrary ¢ > 0

Lecause HI‘(.r,f,) is finite by hypothesis, and so HTf:.ea) is finite by (A.9).
On the other hand, if VT(::H(")J%’ -=, then WT(z;) must be finite, and so

;-{:H(,,)) + VT(:;). Then just take € = HTO(::a) - % wTO(z;J - % V:ﬂofng.

(2) Introduce the notation :g.i and Tﬁﬂ(x) as in the proof of theorem

10.6.3. Then, for each T > TO' there exists n(7T) such that whenever

n >n(T):-
Al

W (.:c'lT)

4

W zg) + T " )

|v

=k A, % luq.(") (:“,:IT) + ke

lf;’.(")(.r'z'lr) + ¥e as required.

Iv




Theorem 10.6.5.
A

r* is agreeable only if, for all T, J:HIT - J:“‘Tas H o+ =,

H
~hose that, for some TO' x ITO-,lp:r‘|TO. Since X, the set of

- _.» paths, is compact, there is a sequence I!Hn; and a path x

J - -
M) oz asn - ®, and r|To ? z*|TO.‘1‘hen zp = k(z + z*)

»2-ible, and by lemma 10.6.4:-
T + =@ n + o

bt [ i - B ]

e ]

lim I'ﬂt’ﬁ)‘. *|7) - -ﬁ-,HI'nJ:l -

Together, these contradict VHT{n) (.-“.'5[?) _f_#”").

Theorem 10,6.6,

If, for all T, a:HIT o ::‘lT as H + = then x is overture maximal oniy

r szt

Proof

Suppose Z is overture maximal, but £ # z*. Then VT(EJ is certainly

finite, for all T, So, by lemma 10.6.4., there is a path :55 = k(z ¢ z*)

such that:-
tin inf lim inf Eﬂfxom - W(&INJ >0

L.e. |7 ie not overture maximal after all,

=




10/313.

We can now summarize the results of this section. First, recall

+heorems 10.2.4, and 10.2.6. - .if :cH + z* and x* is flexible, then
-* is agreeable; if J.'H(n) + r* is z* is flexible, then x* is overture
saximal. With this remark, the diagram on the following page becomes

se. [ ~explanatory.

“1~ in the case when every one of several limit paths xg is
L..ible is there really anything left to say. Such a case seems

-smewhat farfetched.
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0.7, Local Optimality and Price Decentralization.

A path x* ¢ X is said to be locally optimal if, for all T, and for

t‘
™
l:'<
H
L
|
~

L1}

z*(T) implies W (z) < W (z*).
Irn other words, x* 1is locally optimal unless there is an alternative
which is preferable, but which has the same capital stock at all
ciently distant times. If a path is not locally optimal, it can be
;imply by altering its T-overture, for some finite I'. It seems

~iy undesirable to follow such a path.

In fact, it is very easy to show that none of the suggested infinite
..o choice procedures allows one to choose a path which is not locally

optimai. Local optimality t8 a necessary condition for a path to be

zaosen.

In the convex economy of section 10,6., this may well allow price
ecentralization of a chosen path, There are fairly general condirions
under which a locally optimal path in a convex economy is cOmpetitive,(l;
ir the sense that there exist nonnegative price vectors p(t) at each
tire t (¢ = 0,1,2,.0.), such that, if (a*,b*) = (z(t-1);x(t)), then

2*,b*) max v(a,b,t) + p(t) b - p(t=1) a

subject to (a,b) € X(t),

ior each t (t = 1,2,444/0

Moreover, because X(t) is convex, and v(+,*,t) is strictly concave,
maximum is unique. So it would be possible to announce prices so tha®
rcisions taken separately, one period at a time, led tc the chosen path
followed. Of course, finding such prices is far from easy, but the
c=tical possibility may be useful in suggesting ways of getting near

“re ideal choice.

»~, for example, Gale (1967).
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10,6, Conclusions.

In the special case considered in section 10.6., when X is convex

ind each v{+,",t) is strictly concave, we have been able to answer fairly

comprehensively the first three questions raised at the start of the

The aim of the chapter was to see how sensible overture choice

't o in practice. In the special case, it is almost equivalent

-.ng an insensitive path. But it works more generally, and

< c¢primality properties are guaranteed.

mce we allow nonconvex production sets, or non strictly quasi-concave

“

‘are functions, there are plenty of problems even when there

is a
finite horizon,

So the failure to find similarly comprehensive answers

our original questions is perhaps excusable. Nevertheless,we still

xnow that a flexible insensitive path is agreeable, and sections 10.2.,

3., 10.4., and 10.5. all contain partial answers to some of the
original questions.

Iinally, it should be emphasized that we have not shown that

overture choice generalizes the earlier infinite horizon choice
srocedures. While, in many cases, the two approaches yield identical

results, they still remain essentially different, as sections 9.7. and

. 2. emphasize. If there is an advantage to overture choice, it is

t the cases in whicn the choice set is empty seem more farfetched
¢ less paradoxical.




CONCLUSIONS

[

. A Procedure for Consistent Dynamic Social Choice.

Warnock  1s suggested that

"... any awount of morality must be mistaken which does

not yield the consequence that moral judgment is sometimes,

and may be often, exceedingly difficult."(l)

This was to support his argument that Utilitarianism cannot really
se attacked on the grounds that there is so much which it must take
into account. The same applies to welfare economics, which is

virtually utilitarianism applied to questions of economic policy.

This thesis has attempted to suggest general methods for
Qunounting some of the difficulties which arise in a welfare analysis,
particularly one in which time is important. The particular difficulties
which have received most attention here are endogenous tastes,
endogenous population, and the time horizon. All these difficulties
have previously been discussed. But much of the earlier discussion,
quite naturally, has concentrated on special cases, Here I have
attempted to devise a procedure which can handle all these difficulties

together, in a more systematic fashion,

Economists, on the whole, have apparently been reluctant to
suggest procedures which lead to a social choice function, even in
sutline. But it seems that most economists, when they discuss policy,
have at the back of their minds a certain procedure, which I shall call

the "orthodox procedure". It runs through two stages:-

) yarnock (1971), p. 29.
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(1) Individuals' own tastes are estimated, on the basis of their
own choices, or their own expressions of preference,
(2) These tastes are amalgamated in some way into a Bergson social

welfare function.

Of course, it has been generally realized that such a procedure
rests on special assumptions., Nevertheless, suggestions for modifying

the procedure, when the assumptions are violated, are hard to find.

First, let us note some rather obvious objections to the two

parts of the orthodox procedure:-

(1) (a) Individuals' tastes are ill-defined, because they change over
time and are subject to influence.

(b) Even where tastes are well-defined, actual choice and expressions
of preference may fail to correspond to tastes. The individual may
indulge in naive or sophisticated dynamic choice, which corresponds
to tastes only in some complicated manner. The individual may
deliberately act out of accord with his tastes, because he has a
higher set of ethical values, or for other reasons. Or he may
simply be irrational.

(2) (a) Certain tastes should be ignored or overruled, on ethical grounds.

(b) Tastes are not the only factor affecting the desirability of
economic policies. Indeed, for some policies which involve life

and death, they may not be relevant at all.

To meet such objections, less emphasis must be placed on tastes and
individuals' own choices. This is not to suggest that they should be
overruled lightly; rather, it is to recognise that sometimes they are

wiinformative., Accordingly, an alternative to the orthodex procedure
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+i11 now be suggested. It is one which is designed specifically to

,andle intertemporal problems.

(1) Estimate, by whatever means seems most appropriate, the interests
. of the individuak who are, will be, or may be, members of the society.
(2) For each large time horizon, /i, aggregate these interests, via a
dynamic constitution, into a consistent dynamic social welfare

choice function {CH(HJ}.

(3) To allow for uncertainty about the true horizon #, choose an
agreeable plan, if one exists; if not, choose an infinite horizon

overture maximal plan.

This procedure needs explaining and amplifying.

(1) At each moment of time, the individual has certain tastes. It is
then assumed that there is a "temporary" welfare choice function which
gives those choices one would make with the individual's interests
in mind. This temporary WCF may or may not correspond to the

individual's tastes. It is certainly coherent (as defined in 2.4.).

(2) Because both tastes and the set of living individuals are changing,

% - it is not enough to have a single constitution to determinz a

social WCF. Instead, one needs a dynamic constitution, whi.ch
aggregates the temporary WCF's of relecvant individuals (section 5.3.).
! The social WCF is constructed to be both dynamically consistert and
coherent. This involves a form of "intertemporal liberalism"

(section 4,10.).

Notice that it is not, in general, appropriate to find a single WCF
‘or each individual, representing his intertemporal interests, and to

izrrepate individuals' intertemporal WCF's into a social WCF. This
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"netastatic" approach does not allow the weighting of different
:ndividuals' interests to depend upon the inconsistent temporary WCF's
underlying the intertemporal WCF's. Nor is it appropriate, in general,
+o aggregate individuals' temporary WCF's at one time into a temporary
<ocial WCF at the same time, and then to construct a consistent dynamic

<ocial WCF from these temporary social WCF's, This was illustrated

Ly examples in sections 5.2. and 5.3.

This procedure appears to meet the objections (1)(a) and (1)(b) -
in principle, at least. (2)(a) is also met, to some extent. (2)(b)
remains, but although indiviuuals' interests are not all that matter
in justifying economic policies, and although it is hard to think about
the interests of those about to be borm or to die, the force of the

objection has been somewhat blunted.

(3) This part of the procedure deals with the time-horizon. Because
it involves technical problems, and because there had previously
been much discussion of infinite horizons, there was a lengthy
discussion in chapters 7,8,9 and 10. The proposal is to choose
an agreeable or overture maximal plan, rather than the usual
infinite-horizon optimum, for two redsons.

(i) An agreeable or overture maximal plan is likely to exist even
though an infinite horizon optimum does not. See, for instance,
the example of section 8.6., and compare the relative strengths
of the general conditions under which existence has been proved,
as set out iu sections 8.5., 10.4., 10.5., and 10.6.

(ii) Provided, at least, that there is sufficient notice of horizon
for significant changes of policy to be possible before the
horizon is upon us, a policy which starts off with an agreeable

or overture maximal plan, is, by definition, no worse than any

other (chapter 9).
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justifying this procedure.

11/5.

This thesis has been directed towards explaining and

In the process, some results, which may

.o of interest in themselves, have emerged.
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11.2. Some Incidental Conclusions.

(1) The unenimity principles acquire a somewhat stronger justification,
when formulated in terms of interests. Also, when choice is not ordinal,
they can be strengthened (sections 3.2., 3.3., 3.%., < [y 18

(2) Unless some ethical values not directly related to individuals'
interests - such as egalitarianism - are relevant, an additive form of
sergson social welfare function can be justified quite generally
(section 3.6.).

(3) Naive and sophisticated dynamic choice are coherent if and only
if they coincide, and this occurs if and only if there is no "essential
inconsistency" of the kind noted in the potential addict example
(section 4.9.).

(4) Weizsacker's suggestions for making welfare judgments when tastes
are changing endogenously are valid only for some special individual
intertemporal WCF's. In effect, then, Weizsacker suggests what may be
a useful way of ruling out some of the many intertemporal WCF's which
can be derived from a given set of inconsistent temporary WCF's (section
6.1.).

(5) The Average Utility Principle, for evaluating population policy,
is dynamically inconsistent. Nevertheless, one can maintain the spirit
of the principle, because there is a dynamically consistent welfare
function which is homogeneous of degree zero in the population stream
(section 6.3.).

(6) Choosing infinite horizon maxima, rather than optima, may be
dynamically inconsistent. There is, nonetheless, a consistent infinite
“orizon dynamic choice function (section 7.5.).

(7) Bellman's "Principle of Optimality" aﬁplies to any coherent

consistent dynamic choice function, in the sense that choosing first on
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wverture, and then the remainder of a path, is equivalent to choosing
sn entire path (section 9.4.).

(3) For the two general cases in which it is possible to show.that
there is an infinite horizon optimum, such an optimum is apreeable
(sections 10.4., 10.5.).

(9) Providing that an insensitive plan - i.e. the limit of a sequence
of finite horizon optima, as the horizen tends to infinity - is
flexible, in a certain sense, it is agreeable (section 10.2.).

(10) When utility each period is strictly concave, and the feasible
set is convex, any of the infinite-horizon choice procedures considered
sives a unique choice. Also, if there is an agreeable plan, it is
insensitive. If there is an insensitive plan, no other plan can be

overture maximal (section 10.6.).




1 .

11,2, A Final Note on Uncertainty.

-

On the whole, we have chosen to ignore the problem of uncertainty,

so that we could concentrate on intertemporal and dynamic problems
without this additional complication. It is, however, worth noting
that the most common approach to welfare economics when there is
uncertainty can be subsumed within the theory developed in the earlier

chapters.

The most usual approach to uncertainty is that developed by Arrow
and Debreu. There is a set of consequences, X, and of states of the
world, S. The underlying set X is the Cartesian product ns:S Ks of
granbles involving the possible consequences, X. As before, welfare

choice functions are defined on X. It is usual to assume that they

correspond to von Neumann Morgenstern expected utllities:-

zses ps Ug (ka)

where = 1 (by normalization), and ps is the subjective probability

3eS ps

of state 8.

This approach to welfare economics is based upon ex-ante expected
utilities, and so it will be called the ex-ante approach. At first, it
seems appropriate when there is a single, once-and-for-all, choice of
nlan to be made. But as soon as we admit dynamic features of choire, it
Lecomes rather more questionable. For example, individuals adjust
their estimates of the relative probabilities of different events in
the light of new information, and modify their policy accordingly. Is
this not like a change of tastes? However, both changes of taste and
adaptation of subjective probabilities in the light of new evidence
can be handled in the welfare theory of chapter 5 - at least, in

“rinciple - and formally both problems are identical. Each x € X can

L
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‘nclude a description of random influences on subjective probabilities -
~uch as the outcome of certain experiments, or other sources of
information. Dynamic consistency involves anticipating receiving such

-ew information - one rapidly becomes involved in adaptive control
~yoLlems, The ex-ante approach can still survive, although it is much more

~omplicated.

It must also be recognized that future tastes are uncertain.
“ut again, this can be allowed for. Each x ¢ X must also include a
lescription of the way tastes depend upon the state of the world, and
the number of states of the world must be expanded to include different

"ssychological states'".

Population may also be uncertain. But, just as endogenous
population was no more difficult, formally, than endogenous tastes, so

is random population no more difficult than rendom tastes.

So, formally at least, uncertainty is no problem, it seems at first.
It is always possible to define consequences and states of the world
to allow for it, whatever form the uncertainty takes. On the other
nand, there are very real problems in thinking about appropriate welfare
choice functions in such complicated environments. Again, we have a power-
ful approach which sweeps the important problems out of sight. While
it is helpful to know that the problems can be solved in principle, such
<nowledge is no more than a spur for detailed investigation of tractable
snecial cases. This is particularly true of uncertainty, but it is also

true of everythi-g which has been done in this work.

However, the above discussion of uncertainty has made an implicit
ssumption, which obscures all the real difficulties. The assumption is

7at each individual in the economy, and the person contemplating
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.conomic bolicy, will find out what the true state of the world is in
-ne end. . Without this assumption, many new problems arise, even in a
static framework.(l) Individuals may be able to mislead one another,
1 also any planner carrying out a welfare analysis. The planner may
» able to mislead individuals in a way which is of benefit to them.
1+ follows that individuals and planner find themselves in a kind of
-ame situation - using "game" in the von Neumann-lorgenstern Sense.

‘ndeed, it is not even strictly a game, because the players do not know

sne another's tastes. To analyse such problems would be a vast

sxtension of the existing study, and must be left for later work.

(L) As has been shown in a number of papers, notably by Arrow (1970),
chs. 5, 6, 8 and 93 Akerlof (1970), Mirrlees (1972b), etc.




APPENDIX 1

CHOICE FUNCTIONS AND THEIR PROPERTIES.

t.1, Definition.

In section 2.2., a choice function was defined as a mapping
- \--}. X) +.?-"(X), where: -
1) X is the underlying set,
b) .P(X) is the set of subsets of X,
c) ForallAC X, CfA)C A .
i) Whenever A is a finite subset of X, C(A) is non-empty.

Then C is said to be defined on (the underlying set) X.

We shall also have cause to onsider functions which are similar to
choice functions, but violate (d) above. So, a set function on X is a

mapping c:@(x) +QX), where (a), (b) and (c) above are satisfied.

4.2, Coherence.

In section 2.4., the following definition was made:-

A choice function C, defined on X, is coherent if, whenever

BC ACX, B=C(B)c A~-C(A).

The following lemma concerns the existence, for a given choice
function C, of a coherent choice function C' which is "finer" or "more
selective" than C:-
f::ma A.2%

Let C be any choice function defined on X. For each Ac X, define:-

c'A) ={x e A | VB zeBcA implies x € C(B)}
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CHOICE FUNCTIONS AND THEIR PROPERTIES.

A.1. Definition.

In section 2.2., a choice function was defined as a mapping
.E\j.&?~>§%x), where: -
1) X is the underluying set.
b) jD(X) is the set of subsets of X,
c) ForallAcC X, ClA)C A .
¢) Whenever A is a finite subset of X, C(A) is non-empty.

Then C is said to be defined on (the underlying set) X.

We shall also have cause to onsider functions which are similar to
choice functions, but violate (d) above. So, a set function on X is a

mapping C:GD(X) *-ﬁ%x), where (a), (b) and (c) above are satisfied.

A.,2, Coherence.

In section 2.4., the following definition was made:-

A choice function C, defined on X, is coherent if, whenever

BCACX, B=C(B)c A=C(A).

The following lemma concerns the existence, for a given choice
function C, of a coherent choice function C' which is "finer" or "more
selective" than C:=
:g:ma A.2.

Let C be any choice function defined on X. For each Ac X, define:-

“'4) ={rehA |VB xeBcA implies x € C(B)}




(a) C'(A) € C(A) (each A ¢ X).

(b) If, whenever A is finite, C'(A) is non-empty, then C': ‘7,')()() - I:{’(J()
is a3 coherent choice function.

(¢) If there exists a coherent choice function C" defined on X,
such that, whenever A € X, C"(A) < C(4), then, whenever A C X,

C"(A) ¢ C'(A).

Proof

a) Take B = A in the definition of C'(4).

b) Evidently, under this hypothesis, C' is a choice function. To verify
coherence, suppose that Bc A, and ¥ € B - C'(B)., Then there exists
a set S such that x € S¢ B, but z £ C(S). It follows that
z e A=-C"(A), because x ¢ 5 € 4 as well.

c) Suppose that & € A = C'(A), for some A C X. Then there exists a set
B such that r € BC€ 4 and x £ C(B). It follows that x ¢ B = C"(B).

Since C" is coherent, x ¢ A = C"(A). So x £ C"(A), as required.

A.3. Preferences.

The preference relations 2, P, I, on X are preferences revealed
by choice on pair-sets, and are defined as follows:-
Let A denote the pair {x,v}
Then x R v iff = ¢ C(A)
x Py iff y ¢ C(A)
x ITw iff C(A) = A.
lotice that, because C(A) is non-empty,
(1) Either x R y, or ¥ R x, or both.

The other usual properties of preference relations are easily verified:-




(2) xR =z (tak:; A = {z,x})

(3) xRy iff noty P x.

(4) x Py iff (x Ry and not ¥ Rx)
(5) x Ty iff (x Ry and ¥y R x)

etc.

A.4, Binary Choice.

For the (weak) preference relation R on the set X - where R is

reflexive and connected - define
C(4) = {x € Aly € A implies = R y}

Say that the choice function C, defined on X, is binary, and that
it corresponds to the weak preferenmce relation R, if C(A) = CR{A), for
all AC X. Then CR(A) must be non-empty whenever A is finite. Then R
is the weak preference relation revealed by choice on pair sets. Also,
if P is the correspending strict preference relation, then P must be
acyclic, otherwise C(A) would be empty for some finite A.

Lemma A.u4.

If the choice function C, defined on X, is binary, then it is coherent.
Proof

If Bc Ac X and x € B - C(B), then there exists y € B such that

v Pz, Since y € A and x € A, it is evident that x ¢ A - C(A}, as required.

A.5., Ordinal Choice.

Say that the choice function(, defined on X, is ordinal, if:-
a) ¢ is binary,

) The weak preference relation R which corresponds to C is transitive.




<o, ordinal choice corresponds to the usual kind of weak preference

relation - one that is reflexive, connected, and transitive.

Say that the choice function C on X is effectively ordinal if
there exists a transitive weak preference relation R such that, for
eact Ag X :-
tither (1) C(A) = Cp(A) = {z € Aly € A implies z R y}

or (2) C(A) is empty.
9f course, since C is a choice function,C(A) is non-empty whenever A is
finite. Therefore, if C is also effectively ordinal, C(A) = CR(A)
whenever A is finite.

A useful result is the following:=
Lemma A.5.1.
Suppose that C is a choice function on X with the property that,

whenever BG A € X and C(A) N B is non-empty, then C(B) = BN C(A).

Then C is effectively ordinal.

Proof

.

Define the preference relations R, P, I by choices on pair sets,
as in section A.3.

(1) C(A) € CplA).

Suppose x € C(A) and ¥ € A, Take B = {z,y}. Then x e B N c(a),
and B A. So, by hypothesis, C(B) = B Nc(A) . Thus = € C(B), and = R y.

(2) R is transitive.

Suppose not. Then there exists a triple S = {z,y,2} such that & Ry,

wR 3, and 2 Px. SoZ £ C(s), by (1).
(a) Suppose y € C(S) . Take B = {z,y}. Theny € B N ¢(s), and BC S.

By hypothesis, C(B) = B Nc(s). Thus x ¢ C(B), contradicting = R y.




(b) Suppose y £ C(S5). Since C(5) cannot-be empty, 2z e C(S).
Therefore, z R ¥, by (1). Take B = {y,z}. Then z ¢ B C(5),
and BC S. By hypothesis, C(B) = B Nc¢(s). Since v ¢ C(B),
this is obviously a contradiction.

So, in either case, we have a contradiction, and F must therefore

be transitive,

(3) If C(A) is non-empty, then CR(A} < C(A).

Suppose that x ¢ CR(A) and ¥y € C(A). Then x R y, and, because of (1),
w Rz, Take B = {z,y}. Then v ¢ B(1C(4), and BC A. By hypothesis,

then, C(B) = BNC(A). But x ¢ C(B). Therefore x € C(A} as required.

An immediate corollary is the following:-
Lemma A.5.2.
If C is a coherent choice function on X, and if, for all A ¢ X,

C(A) has no more than one member, then C is effectively ordinal.

Proof

It is enough to verify the property in the statement of lemma A.5.1l.
Suppose, then, that B¢ A € X and x € C(A) A 2, Then C(4) = {z}, by
hypothesis. Also C(B) = {z}, because, by coherence, x ¢ C(B). Therefore

{z} = ¢(B) = c(A) () B, as required.

In this case, too, the preference relation R corresponding to C is

2 strong ordering - i.e. for each z, v ¢ X, either x Py, ory P x, or

23y,
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A.6. Choice Indicator Functions.

N

A chotce indicator function (or CIF)is a mapping u:X~ &, It

corresponds to the choice function C defined on X as follows:-

C(A) = {x € Aly € A implies u(x) > u(u)} (each A C X),
If u corresponds to the choice function €, then C must be ordinal,
because C corresponds to the transitive weak preference relation R
defined by:-
x Ry iff ulz) > ulyl.
Utility functions and welfare functions are, of course, special kinds

of choice indicator functions,

A.7. Quasi-Ordinal Choice.

(1)

The choice function C, defined on X, is said to be quasi-ordinal
if it is binary, and the associated strict preference relation P is
transitive,i.e. x P ¥y and ¥ P z together imply that = P z., Then the

weak preference 1elation R is said to be quasi-transitive.

A.8. Proper Weak Preferences, OUptima, and Maxima.

When preferences are merely quasi-transitive, rather than transitive,

N
it is often convenient to consider a restricted form RF of the weak

-~

oreference relation R, such that R is transitive. Such a relation R can

always be found; one way is the following:-

(1)

Define the indifference relation I as follows:-

~

x Iy iff [Ir Pz iff y Pz) and (2 Px iff 2z P yi]

Thig definition is suggested by Walsh (1970), p.79.




=t
So x I y if and only if interchanging x and ¥ makes no difference to

the strict preference relation P. lNow define 7 as follé;s:—
xR v iff (x Py or & f;;).
~
Obviously, if x R ¥, then x R y because if ¥ P x, then neither x P v nor

B
x I v 1is possible,

-~ -~
Notice that K is transitive if and only if I = I ; then R = R,
and R is connected. In general, however, F is not connected, as
example A.B8.2. below will demonstrate.

Of course, R is reflexive, and the following lemma proves that

R is transitive:-

Lemma A.8.1.
~ ~
If R = P U I, where
x Iy iff Eﬁ Pz iff y Pz)and (3 Px iff 2 P yﬂ
then R is transitive.
Proof
~ ~
Suppose that z R ¥ and ¥ R z
(2) If z Py and ¥y P z, then x P 2, because P is transitive.

-

~F ~
(b) 1fx Py andy I zor if x I y and ¥y F 2z, then, by definition of

~

I, it follows that x P z .

~ ~t ~
(¢c) Finally, if x Ty and y I z, it is rlear that = I 3.

~J
This particular weak preference relation R is only one cf several
with the following essential properties:-
(1) R is reflexive and transitive
~ -
(2) x Py iff (x Ry and not ¥ R x)

(1)

Given any transitive asymmetric strict preference relation P,

~
say that R is a proper weak preference relation corresponding to P if

(1) p is asymmetric iff (z Py implies not y P x).




~

7 satisfies properties (1) and (2) above.
Define for each 4 € X the following two sets:-
O0(A) ={x e A |y eé implies = R v}

M(A)

{x €A |y €A implies not ¥ P z}.

Evidently O(A) ¢ M(A) , with inequality in general. Say that each member
of 0(A) is optimal in A, and that each member of (A)is maximal in A,
given these preference relations. As A varies over the subsets of X, M(-)
defines a binary choice function. But this is not true of O(+), because
it is possible tc find a finite set A such that O(4) is empty. For

example:-

Example A.8.2.

Suppose that X = {a,b,c} and that a Pb, b I c, andec I a .
Suppose that R is a proper weak preference relation corresponding to P.
Then a R b, but not b R a. Now:-

~ o~
(1) Suppose ¢ R a. Then, since R is transitive, ¢ R b. Since ¢ P b is

false, b Erc . Since R is transitive, it follows that b'E a -
a contradiction.
(2) Suppose a R c. Then, since a P ¢ is false, ¢ ﬁfa. But this
contradicts (not b E'a), by (1).
It follow that ﬁJcannot be a connected relation.
lext, we show that O(X) is empty. Evidently, b £ 0(X), so:-
(3) Suppose a ¢ O(X). Then a R c. This gives a contradiction, because
of (2).

~
(4) Suppose ¢ € O(X). Then ¢ R a. This gives a contradiction,

because of (1).

It follows that O is not a choice function, in this case.

Example A.8.2. suggests the following result:-



Theorem A.8.3,

O(+) is a choice function on X if and only if R is transitive.

(1) Suppose that R is not transitive., Then there exists a set A = {x_,u,z]
of three options in X such that x ® ¥, ¥ # 3, and 2 P x. (Remember
that 2z P x iff not x R z.) Because P is transitive, it must be true
that x I ¥ and ¥ I 2. Then, by analogy to example A,8.2,, 0(4)
is empty, and so O(+) is not a choice function.

(2) If R is transitive, then R = E“, and O(A)= M(A) for each Ac X,

so that 0(+) is a choice function.

Finally, the following result is useful in demonstrating the
existence of a chcice function having certain properties. It is true even
if the correspondence between R and P is weai:er than that considered

previously in this section.

Theorem ﬁ.B.'-I».(l)

Suppose that R is a transitive weak preference relation, and P is
a transitive strict preference relation. Suppose too that if x ;y,
then x:EEJy and not y Ez.
Define 0(A) = {x e A | ¥ € A implies x R y)

M(4) = {x e A | y € A implies not ¥ Ex}.

Then there exists an ordinal choice function C(+) such that, for each
AcC X, 0(4) €C(A) < MA).

Define E by x f v iff (x E ¥ and y f?'.r) - then ﬁIJ is an equivalence

i~
relation, Denote the equivalence classes in X/I by Er:] » Where x ¢ [:r]

i While this theorem is close to Arrow (1963), lemma 4, pp. 64-68, itk
not identicalj also, the present proof is shorter than Arrow's.
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efine the relation P*on X/I as follows:-
i.r} P“[_u] iff Jx ¢ [x], ¥ € _u] s.t. & Py,
‘hen P* is asymmetric and acyclic, becaise if

[:.rI-J B* Lrg] P‘...P“[.rnj P*l:::}], for any finite n,

then there exist x, z! ¢ |.rt.| (i = 1 to n) such that
r B T o5 T ot D > F ot D T oot
xIPxQngszfst... Pxnf.rnP.r}I.rJ

because R is transitive, it follows that x, R .:cj' , which contradicts
o

-1' P Ty So there can be no such cycle,

Let P be the transitive completion of P*, i,e. the relation

defined by:-
[1 3 b] iee 3,0, [lueeen ] € 27 st
[x] P# [21] PA [32] pP* ... P“[:an]P“[y_l

Then P is transitive and asymmetric. By a slightly modified version
(1)

of Szpilrajn's theorem, there exists a connected reflexive transitive

relation R such that:-
[:.c] P [y] implies ([.r_] R [y] and not [y] R rx])
Now define R on X as follows:-
xRy iff [x] R [y]
Clearly R is a connected reflexive transitive relation.
Also if x P y, then not v ﬁ.r (for if x Py, and vy R r, then there
exists Bpseees3, S.to T R 2, ”f’i‘ z, R ces R 2, RyRzx
with at least one R a P-a contradiction),
Finally, if = P Y, then [x] P [y] and so (x # ¥ and noty R x ). This confirms
that, if C is the ordinal preference relation corresponding to R, then

0(A) ¢ C(A) ¢ M(A) (each A ¢ X).

) Szpilrajn (1930).
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4.9, Dynamic Consistency

In section 4.3., a dynamic choice function {C(n)} was defined
sn ar underlying tree X, with tree structure {X(n)}. Moreover, in
;cct;on 4.4,, a dynamic choice function {C(n)} was defined to be
wnatstent if and only if, for each A € X, and whenever n Prn' (nis a
node which precedes n') and

An') N c(m) (A(n)) is non-empty:-=

Cn') (A(n')) = Am') N cn)(A(n)).

In this section, consistency of dynamic choice functions will be
related, as far as possible, to consistency of corresponding preference

relations.

First, define a dynamic weak preference relation {R(n)} on the
underlying tree X as a collection of weak preference relations on X(n/),
fop each n € N(X). It will be assumed that each component 7(n) is

reflexive and transitive, but not necessarily connected, even on X(n).

Similarly, define a dynamic strict preference relation {F(n)}
on the underlying X as a collection of strict preference relations on
%(n), for each n ¢ N(X). It will be assured that each P(n) is

asymmetric and transitive.

The definition of consistency for these dynamic preference relations
seems fairly obvious:-
(R(n)} is comsistemt if and only if, whenever n Pr n' and a, b € X(n'),
a R(n') b iff a R(n) b
(P(n)} is consistent if and only if, whenever n Pr n' and a, b e X(n')

a P(n') b iff a P(n) b.

Given the dynamic weak preference relation {R(n)}, define a dynamic

et function (i.e. a dynamic choice function, with the requirement that
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C(n)(A(n)) must be non-empty whenever A(n) is finite removed) {0(n)}
on the underlying tree X as follows:=
O(n)(A) = {x ¢ A | ¥ ¢ A implies x R(n) v} (each A c X(n)).
S50 0(n)(A) is just the set of optima in 4, given the transitive weak
preference relation R(n). {O(n)} may not be a dynamic choice function,

because it is possible that O(n)(4) is empty even though A4 is finite.

Although {0(n)} may not be a dynamic choice function, consistency
can still be defined as it was for dynamic choice functions, and it
retains much of its appeal. Say that {0(n)} is consistent if:-
(1) For each 4 € X, whenever n Pr n' and A(n') N\ 0(n)(A(n)) is non-empty,
then o(m')(A(n') = A(n') N O(n)(A(n)).
(2) For each A € X(n), 0(n)(A) = Orno){A),

where no is the initial node of X.

Usually, part (2) of this definition is unnecessary, as was seen
in section 4.4, But here it is needed, because set functions have
weaker properties <+han choice functions. In particular, it is too easy
for O(n')(A(n')) to be empty. Part (2) plays a crucial role in the
following useful result:-

Theorem A,%.1.

{0(n)} is dynamically consistent if and only if (R(n)} is a

consistent dynamic weak preference relation,

(a) Suppose that {O(n)} is consistent. Suppose that n Pr n', and that
ry, ¥y € X(n')., Write A = {x,v}. Now:-
x RMn) vy iff x € 0(n)(A) iff x ¢ O(no)(.d) iffx € C(n')(A) iff £ R(L') y

as required.
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(r) Conversely, suppose that {#(n)} is consistent.
(1) IfFAc X, n Prn', and & ¢ A(n') N O(n)(A(n)) , then:=
(i) If ¥ € O(n')(A(n’)), then ¥ R(n') &, and so, by consistency,
y R(n) x. But, given any 2 ¢ A(n), z R(n) z. Since R(n) is
transitive, ¥ R(n) z, and so ¥ ¢ o) (A(n)).
(ii) If v ¢ A(n') N o(n)(A(n)), then, whenever z ¢ A(n'), because
2z e Afn) 2 A(n'), it follows that ¥ R(n) z. Since {R(Mm)} is

consistent, ¥ R(n') z. Therefore ¥ ¢ om')(A(n')).
Thus 0(n')(A(n')) = A(n') N Cn)(A(n)).

(2) If A ¢ X(n), then:-
xr e On)(A) iff =x R(n) y  whenever ¥ € A

iff «x R(no) y whenever ¥ ¢ A (because of
consistency)

iff & E O{no) (A)o

Thus oMm)(A) = O(no){A).

——e e

So, to choose the set of optima wherever possible is dynamically
consistent if and only if the (transitive) dynamic weak preference

relation is consistent. This result is used in chapters b, 7 and 9.

Given the dynamic strict preference relation {P(n)}, define a

dynamic choice function {M(n)} on the underlying tree X as follows:-

Mn)(A) = {zx e A | ¥y € A implies not y P(n) z} (each AC X(n)).
M(n) is the set of maximal options in A, given the transitive

strict preference relation P(n)

Even if {P(n)} is consistent, {M(n)} may not be, as the following

example shows:-




Example A.9.2.

Suppose that the underlying tree X has tranches a, b, ¢ and the

following structure:-

L

Suppose that ¢ P(no) b, but otherwise there are no strict preferences.
Then {P(n)} is dynamically consistent. Also:-
M(no)(X) = {a,c}
but M(nj){X(nl)) = {a,b}
So even though a ¢ X(nj) n M(no) (x),
it is false that M(n )(X(n )) = X(n ) N\ M(n ) (X) and so (M(n)}

is not consistent.

However, as will shortly be shown, {M(n)} does have a weak
consistency property. Say that a dynamic choice function {C(n)}is
weakly consistent if:-

(1) Whenever A C X and n Pr n’,
Cn')(A(n')) 2 A(n') O C(n)(A(n)).
(2) cm)(a) = C{no) (A) (each A C X(n)).
Part (2) is as for full consistency. Part (1) has been weakened so that
some options in A(n') may be chosen at the node n', even though they were

ot chosen at the preceding node n.
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Theorem A.9.3.

{M(n)} is weakly consistent if and only if {P(n)} is consistent.

Proof
(a) Suppose that {/(n)} is weakly consistent. Suppose that n Pr n’
and that z, ¥ e X(n') . Write A = {x,y}. Now:-
x P(n) y iff y £ M(n)(A) iff y £ .’,’(no)(A) iff u £ M(n')(A) iff x P(n') y
(b) Conversely, suppose that {P(n)} is consistent.
(1) Suppose that A € X, n Prn', and x € A(n') N\ M(n)(A(n)).
Suppose too that, for some y € A(n'), y P(n') z.
Then v € A(n), and, by consistency, ¥ P(n) z.
This contradicts x ¢ M(n)(A(n)). Therefore x € M(n')(A(n')).
(2) If Ac X(n), then
x € MMm)(A) iff not y P(n) x, whenever y € A
iff not y P(no) x, whenever y € A

iff x ¢ M(no} (A)

as required.

An especially important case arises when M(n)(A(n))happens to
contain a single option. In other words, there is a unique maximal
aption. Then, if {P(n)} is dynamically consistent, it must be consistent
to choose the single option in M(n)(A(n)) at node n.

More generally, we have the following result:-

Theorem A.9.4.

Suppose that {R(n)} and {P(n)} are consistent dynamic preference
relations - weak and strong respectively - on the underlying tree X.
Suppose that, whenever a R(n) b, b P(n) a is false. Then there is a
consistent dynamic choice function {C(n)} such that, whenever

ne NX) and A € X(n):-
0(n)(A) € C(n)(A) € M(n)(A).



3

A.16.

Proof

By theorem A,8,4., there exists an ordinal choice function

C(no) on X such that, for each A C X:-

o(n,) (A) € Clny) (A) € M(ny) (A).
Because of consistency, and theorems A.9.1. and A.9.3., for any
n e N(X) and A € X(n):-

om)(A) = O(no)LA), and M(n)(A) = M(no){A).
Define, for each n € N(X), A € X(n):-

cm)(A) = C(no}ﬂﬂ).
Then {C(n)} is obviously a dynamic choice functior. Moreover, it is
consistent, because if n Pr n' and A(n') N C(n)(A(n)) is non-empty,
then A(n') N C{no)fﬂ(n) is non-empty, and so
because A(n') C A(n) and C(n,) is ordinal:-

Clny)(A(n')) = Aln') N cny)(An)).

Thepefore C(n')(A(n')) = A(n') N C(n)(A(n}), as required.

A.10. Partial Choice Functions,

Suppose that C is a choice function defined cn the underlying set X.
Now, in dynmamic choice, where X is an underlying tree, the agent need not
make his choice in one single step. Instead, he can choose a subiree
of the original underlying tree - by choosing an overture, say, as in

chapter 9. The final branch only emerges after a sequence of choices.

In chapter 8, we saw now it was enough first to choose a plan of
capital accumulation, and to leave the planning of consumption, labour
supply, ete., until a second stage. Of course, the second stage influences

the first, but one can draw a useful distinction between the two.
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Both these are examples of multi-stage choice, What concerns us
here is the early stages of a multi-stage choice procedure.(l) In these,
instead of choosing an option in X, the agent chooses one of a collection
of subsets of X. The choice from this subset is left till later. This
type of choice will be called partial choice . It is the subject of this
section. The definitions and elementary properties should come as no
surprise to those familiar with dynamic programming or with indirect

utility functions. Nevertheless, a formal statement is needed for parts

of chapters 8 and 9.

Let X be partitioned as follows:-

g L{qﬂ. X(y)

The partial choice function will be defined on Y, or on a subset of Y.
But in order to know which y to choose, an agent must know what is
feasible when he has chosen y. For instance, in choosing between £100
and $250, an agent in Britain wishes to know the terms under which he

can change the dollars into pounds, or into goods he desires.

Let the feasible set be fixed, then. It will ease notation,

without losing any generality, if we assume that X is the feasible set.

If the agent chooses y ¢ Y, his feasible options afterwards will
be X(y). This is what we mean when we say that the agent chooses }.
Assume - again, without loss of generality - that each X(y) is non-empty.

Then the feasible set of "partial options" is Y.

The agent's choice set is ((X). He is, therefore, presumably willing

to choose a partial optiony if and only if, after choosing y, he can still

(1) The last stage is an entirely orthodox choice problem, because the
final choice will be specified.
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proceed eventually to choose at least one option in C(X). Thus, the
agent's partial choice set is:-

wey|cNxwm ¢}

If the agent's choice set C(X) is clearly known, there is little
more to be said and, of course, there is no point really in looking at
partial choice anyway. The interest arises when C(X) is not known, as
with infinite-horizon choice in chapter 9 - or when it is easier if we
do not have to specify C(X), as with the choice of economic plan in
chapter 8, when it is easier to consider just capital accumulation. To

avoid having to consider C(X)itself, we consider partial choice functions.

let BC Y. Suppose that the feasible set of options is
X(B) = LL:B X(y), instead of X. Then the partial choice y must lie in B.

We can regard B as the feasible set of partial options.

If the feasible set of options is X(B), the agent's choice set is
C(X(B)). Presumably, then, he is willing to choose the partial option y
if and only if he can stillchoose at least one option in C(X(B))
afterwards. Thus the agent's partial choice set is:-

D(B) = {y € B | C(x(B)) N\ X(y) # ¢}

We shall now make an assumption , which concerns the nature of the
partition X = LL:Y X(y) , and is certainly satisfied if each X{y) is a
finite set. The assumption is that whenever B is finite, C(X(B))is

non-empty. Given this assumption , we have the following two results:-

Theorem Ay10.1.

If C is coherent on X, then D is a coherz=nt choice function on Y.

Proof
It is enough to show that:-

(i) If B is finite, D(B) is ron-cmpty.
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This is true because, by assumption, there exists x ¢ C(x(B))
Then there exists v ¢ B such that x ¢ X(y), and so ¥ € D(B).
(ii) D is coherent.
Suppose B ¢ B' and v € B N D(B'). Then there exists
x e C(X(B'"))N X(y). As ¥ ¢ Bandx € X(u), x ¢ X(B). Because C is
coherent, X(B) ¢ X(B'), and x ¢ C(x(B')), it follows thatx € C(X(B)).

Since x € X(v), it follows that y ¢ D(B) , as required.

Theorem A,10.2.

Suppose that C coresponds to the utility function u(+) defined on X,
Then D corresponds to the utility function v(*), defined on Y as
follows:-
v(y) = max {u(z) | = € X(y)}
Proof.
(i) Notice that v is well-defined, because u(+) corresponds to O
and C(X{y))is non-empty, by assumption.
(ii) Suppose that »* ¢ D(B), for some B C Y. Then there exists
z* ¢ C(X(B)) N X(y*). Now, whenever =z e X(B), ul(z*) > ulx).
Because x* ¢ X(y*) u(z*) = v(y*). For any other Y ¢ B, there exists
some x ¢ X(y), such that u(x) = v(y).Then =z € X(B),and so
v(y*) = ulx*) > ulx) = vyl
(iii) Conversely, suppose that ¥* € B and that, whenever y & B,

v(y*) > v(y). Then there exists x* € X(y*) such that v(y*) = u(x*).

Now, for all x e X(B), there exists ¥ ¢ B such that x € X(y). By
definition of v, u(x) < v(y). Therefore ufzx) <vly) <vly*) = ul(z*).
It follows that xz* ¢ C(X(B)). Since x* ¢ X(y*) also,y* € D(B).

This completes the proof.




Two other properties of partial choice functions seem desirable€:-
(P.1) If x € C(X(B)) and x ¢ X(u), then x ¢ C(X(y)). So, if we start
with the partiai choice # € D(BE), and then choose from C(X(v)) ,
the original choice x € C(X(B)) may emerge. It is easy to see
that (P,1) is catisfied provided that C is coberent, Also,(P.1)
is satisfied for all partitions of X and for all x € X and all

sets B only if C is coherent.

(P.2) If y ¢ D(B; and = ¢ C(X(y)), then x € C(X(B)). So, if we
start with the partial choice y € D(B), and then choose x ¢ C(X(y)),
xr is a possible choice from the original feasible set X(B). By
lemma A.5.1., it is fairly easy to see that both (P.l) and (P.2)
are satisfied, for all partitions of X, and for all z € X and all
sets B, if and cnly if C is effectively ordinal - i.e. ordinal

provided we disregard feasible sets A for which C(A) is empty.

A.11, Extended Utility Functions.

In section 8.4,, we introduced the notion of an extended utility
function. An extended utility function u(+) corresponds to a choice
function C(+) if

(1) for all x € X, either u(x) is a real number
or uf(zx) = ==
(2) for all 4 ¢ X,
CA) = {x e A | v € A implies u(y) < u(z)}

(where == < ), for all real A, naturally).

Say that the extended utility function u(*) is continuous if,

n_ ., . n
whenever <x > is a sequence of points of X such thatx -+ x as n + =,




A.21.

where x ¢ X, then:=
(1) if u(x) is real, then u(z') »ulzx) asn > =,

(2) if y(x) = -=, then u(x?) » == as n *> =,
A useful result is the following:-

Theorem A.1ll.1l.

Suppose that u(+) is a continuous extended utility function
corresponding to the choice function C. Suppose that A is any non-empty

compact set. Then C(A) is non-empty.

Proof

(1) If u(x) = ~= for all x € A, then C(A) = A.

(2) If there exists z° ¢ A such that u(z®) is finite, define
A° = (z e A | ulz) g_ufxo)}. Then A° is a closed subset of 4,
because u is continuous, and so A° is compact. So c(A°) is

non-empty. But C(A) = C(A°) and so C(A) is non-empty.
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KRPPENDIX 2

ALLATS, 'GENERALIZED SOCIAL PRODUCT', AND CONSISTENT
PREFERENCES

In Allais' "Economie et Interdt", there is an extension of the
notion of Pareto efficiency to take account of changes over time in

1)

individuals' intertemporal utility functions.( This appendix is an
assessment of Allais' contribution, in the light of the analysis of

intertemporal welfare in chapter 5 of the present work.

Following Allais, assume that there are only two periods.

In chapter 6, ("Interest and Social Product"(z)

), he defines "social
product" so that it is maximized by an allocation which is Pareto
efficient, given the tastes of the individuals in the economy (§54). He
states the usual results linking competitive equilibrium and Pareto
efficiency, for a given single instant of time (§55), and also over time,
when each individual has tastes given at the moment when he first
participates in tiie economy (§58). Then he extends the notion of

"social product" to take account of the possibility that the same
individual may have different utility functions at different moments of
time, and so Pareto efficiency is no longer well-defined (§60). These
utility functions, or "satisfactions" are denoted by SO and SI‘ and apply
to periods TO’ TI' whose starting points are to, tl' respectively. In

addition, he emphasizes that he is discussing a world of perfect foresight.

(1) I am grateful to E.M2linvaud and to T, de Montbrial for drawing my
attention to this part of Allais' work. In addition, they have each
published some comments on it - see Malinvaud (1972), ch. 10., A. §5,
and de Montbrial (1971), p. 156.

(2)
In the original, "Interet et Rendement Social.
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1)

Then, on pp. 163-164, we find the followinﬁ:-(

"...a priori, one perceives no logical reason for wanting to
maximize utility S, rather than utility e

"Even in the world of perfect foresight we are considering,
one certainly cannot say that the utility SO takes account of the
perfectly known utility SI of the individual, as we consider him
during his youth (To). Rather, what the indiviaual takes into
account is the utility he experiences at time t, at the prospect
of the utility he will experience at time tys and not this
utility itself.

"There is really as much difference between the utilities

SO and SI of the same individual considered at two different

moments, as there is between the utilities of two different

individuals considered at the same moment.

"We shall say that the 'generalized social product' of an
economic state, given perfect foresight, is maximized when any
potential modification of that state satisfying the constraints,
which augments the utility of certain individuals considered in
certain periods, necessarily diminishes the utility of other
individuals, or of the same individuals considered at other

moments of time."

So Allais is suggesting an extension of unanimity principles to
"dated individuals". An option x is ctrictly superior to an option ¥
if and only if every individual, at every moment of time - i.e. every
dated individual - prefers z to ¥. So, to apply this "Allais principle"
to individuals' own choices, there is no need to assume that individuals

have consistent dynamic choice functionms.

But it seems that Allais was not intending to apply his principle

to individuals' own choice functions. The second paragraph quoted above

(1) In my translation. The italicized parts correspond to parts in bold
type in the original.




suggests a form of anticipation of future utility which is akin to

intertemporal liberalism. This is borne out in appendix III, pp. 757-758.

Here, A and B are the only two goods in the economy; (AO,HO; AI’BI)
is the individual's two-period consumption stream. In the following,

I have simplified and changed the notation in order to maintain consistency

with that above.

"It is easy to show, supposing foresight its perfect, that the

functions SO and SI are not independent ...

"First, for given lcvels of consumption AO and BO’ it can
be seen that if a combination (AI,BI) is preferred to a combination
(A;,B;) at time t, (utility SI)' then allowing for perfect foresight,
it is equally preferred at timz ¢, (utility SO)' That is if, for
given consumption levels AO and BO’ the utility SI remains constant,
then the utility SO does the same, and consequently the utility
SO must be of the form:-

= "
Sy o (Aps By Sp)e

This form of utility function is, of course, precisely that which
results from intertemporal liberalism. So now the question arises: do

the utility functions 5, and §, represent different choices, and if so,

why does this difference matter?

In fact, Allais goes on to argue vhat SI must have the form:-

5, = zI (Ags By 5p)
and to make it clear that SI represents the choices which the individual,
at time t, would like to have made at time to. But because SO has the

form above, this decision is consistent with his choice at iime ¢,.

Now preferences concerning the past, such as those embodied in SI‘
do not correspord to real choices. They are a form of regret. So Allais

wishes to allow for such regrets in his generalized notion of "efficiency"



or "social product". It is not enough for superiority of x over y
that each individual prefers x to y at time 30’ because an individual
may be impatient, for example, and express preferences which he later

regrets. As Allais himself says (footnote (4), p. 758):-
"Perfect foresight is not the same as perfect forethought."

So, strictly speaking, the Allais principle, as Allais himself
saw it, is not generally applicable to dynamic social choice, as
considered in chapter 5. Of course, in principle, an individual's
intertemporal welfare function could be constructed to take account of
such regrets, and to embody the Allais principle. But something other

than mere intertemporal liberalism is involved.




Afriat,

Y 7 Tl
AWEPERZNCLDS

S.u. (19562) - Preference Scales and Exnenditure Systems
1 w >

(Econometrica, 30(2), April 1962, 305-323)

Akerlof, G.A. (1970) - The Market for 'Lerons': Qualitative Uncertainty

and the Market Mechanism, (Quarterly Journai of Lconomics, 8l (3),

Aug. 1970, 488-500)

Allais, M. (1947) - Economie ot intapat, (Imprimerie liationale, Paris)

Archibald, G.C. (1959) - Welfare Economics, Ethics, and Essentialism,

Arrov,

n

Arrovi,

Arrow,

Barry,

(Econonica (BE) 26, Nov. 1853, 316-327)

K.J. (1853) - Le role des valeurs boursidres pour la répartition
la meilleure des risques (Econometrie, 11, 1953, 41-48)

(translated as Arrow (1534)).

(1959) - Rational Choice Functions and Orderings (Economica
(3.8)26, Hay 1959, 121-7)

(1353) - Social Choice and Individual Values (2nd. edn.)

(Yale Univ, Press)

(1964) - The Role of Securities in the Optimal Allocation of
Risk-Bearing, (Review of Economic Studies, 31 (2), April 1964,
91-96) (reprinted as ch. 4 of Arrow (1970))

(1970) - Essays in the Theory of Risk-Bearing (North-lolland)

K.J. and Hainn, F.H. (1971) - General Competitive Analysis,

(Holden-Day and Oliver and boyd)

K.J., Karlin, S. and Suppes, P. (eds.) (1960) - Mathematical

Methods in the Social Sciences, 1959, (Stanford Univ. Press)

B.M. (1965) - Political Arpument, (Routledge and Kegan Paul)

Bellman, R. (1957) - Dynamic Programming, (Princeton Univ. Press)




Berge, C. (1983) = Topoloaical Vector Spaces (Oliver and Boyd)

Blackorby, C., Nissen, D., Priwont, D., and Russcll, R,PR, (1573) -

Consistent Intertemporal Decision Making, (Review of Feonomic

Studies, %0 (2), April 1973, 239-2u8,)

Blackwell, D. (1955) - Discounted Dynamic Prograrmming, (Annals of

Mathematical Statistics, 36 (1), Feb. 1965, 226-235)

(1967) - Positive Dynamic Programming, (Vol I. pp. 415-418
of Le Cam and lleyman (1967)).

Bliss, C.J. (1971) - Economic Efficiency in an Infinite Horizon iodel,

(pp. 65-72 of Bruckmann and Yeber (1971)).

Bowen, R. (1968) - A llew Proof of a Theorem in Utility Theory,

(International Economic Review, 9 (3), Oct. 1968, 374)

Brock, W.A. (1970a) ~ On Existence of Weakly Maximal Programmes in a
Multi-Sector Economy, (Review of Economic Studies, 37 (2), April
1970, 275-2¢0)

" (1370p) - An Axiormatic Basis for the Ramsey-Vleizsdcker

Overtaking Critecrion, (Econometrica, 38 (6), Nov. 1970, 927-29).

(1971) - Sensitivity of Optimal Growth Paths with Respect to &
Change in Target Stocks, (pp. 73-29 of Bruckmann and Weber (1971))

Brock, W.A., and Gale, D. (1969) - Optimal Growth under Factor Augmenting
Progress, (Journal of Economic Theory, 1 (3), Oct. 1959, 223-243)

Bruckmann, G. and Weber, W. (1971) (eds.) - Contributions to the Von lleumann

Growth Model, (Zeitschrift fiir lationalskonomie, Suppl. l. Springer-

Verlag)

Cass, v. (1965) - Optimum Growth in an Aggregative llodel of Capital

Accunulation, (Review of Economic Studies, 32 (3), July 1955, 233-2140)

Chakravarty, S. (1962a) - The Existence of an Optimum Savings Progranm,

(Econometrica, 30 (1), Jan. 1962, 1768-187)




Chakravarty, S. (1982b) - Optimal Savings with Finite Planning Horizon,

(International Economic Review, 3 (3), Sept. 1962, 338-355)

U (1966) - Optimal Savings with Finite Planning Horizon: A

Reply, (International Econonic Review, 7 (1), Jan.1956, 119-123)

Dasgupta, P.S. (1969) - On the Concept of Optimum Population, (Review of
Economic Studies, 36 (3), July 1969, 295-318)

Debreu, G. (135%) - Representation of a Preference Ordering hy a MNumerical
Function, (ch. 11l., pp. 159-165 of R.M.Thrall, C.H.Coorbs, and

R.L.Davis (eds.), Decision Processes (viley))

L (1959) - Theory of Value (VWiley)

N (1980) - Topological llethods in Cardinal Utility Theory (ch.2,
pp. 16-26 of Arrow, Karlin and Suppes (1960))

a (1964) - Continuity Properiies of Paretian Utility, (International
Economic Review, 5 (3),Sept. 1984, 285-293)

Fishburn, P.C. (1969) - Utility Theory for Decision Making (Wiley)

Fisher, Irving. (1930) - The Theory of Interest, (Macmillan, New York)

Fleming, J.M. (1952) - A Cardinal Concept of Welfare, (Quarterly Journal
of Economics, 66 (3), Aug. 1952. 366-384)

Gale, D. (1967) - On Optimal Development in a Multi-Sector Economy,
(Review of Economics Studies, 34% (1), Jan. 1967, 1 - 18)

Gintis, H. (1971) - Education, Technolegy and the Characteristics of Worker
Productivity, (American Econonic Review, (Papers and Proceedings) 61
(2), day 1971, 266-279)

(1972) - A Radical Analysis of Yelfare Economics and Individual

Developnent (Quarterly Journal of Fconomics, 86 (1), Nov. 1972, 572-99)




Goldnan, S.'M. (1968) - Optimal Crowth and Continual Plamming Revision

(Raview of Econonic Studies, 35 (2), April 1968, H=-154)

(1969) - Sequential Planning and Continual Planning

Revision (Journal of Political Economy, 77 (4, part I11), July/aug.

1969, 653-60M)

Gorman, W.M. (1957) - Convex Indifference Curves and Dininishing llarginal

Utility (Journal of Political Economy, 65 (1), Feb. 1957, #0-50)

(1968a) - Conditions for Additive Separability (Econonetrica,
36 (3-4), July/Oct. 1968, 605-609)

" (1968b) - The Structure of Utility Functions (Review of

Economic Studies, 35 (4), Cct. 1968, 3567-390)

Graaff, J de V. (1957) - Theoretical ielfare Economics (Cambridge Univ Press)

Guesnerie, R. (1971) - Equilibrium of Plans, Prices, Price Expectations:

Existence - Optimality - Applications (CORE Discussion paper No.7117)

van den Haag, E. (1967) - lormative and Analytical Welfare Economics;
Arrou's Pareto Principle (pp. 181-192 of S.Hook (ed.) - luman

Values and Economic Policy (lew York Univ. Press))

Hamnond, P.J. and Mirrleec, J.A. (1972) - Agreeable Plans (pp. 283-293
of Mirrlees and Stern {(1373)) (Submitted with the thesis)

Harsanyi, J.C. (1953) - Cardinal Utility in Welfare Economics and in the

Theory of Risk-Taking (Journal of Political Economy, 81 (5),
Oct. 1953, 434-u35)

(1954) - Velfare Lconomics of Variable ‘lastes, (Review of

Economic Studies, 21 (3), 1953-4, 204-213)

(1955) - Cardinal telfare, Individualistic Ethics, and
Interpersonal Comparisons of Utility (Journal of Political Economy,

63 (4), Aug. 1955, 309-321)




teal, G.lt. (1973) - The Thoory of Tcononic Planning (North=tolland)

flerzherger, H. (1971) - Ordinal Choica v. Rationality (mirmeo)

(Yconometrica, forthcominz)

Hicks, Sir John (1546) - Valua and Capital (2nd.edn.) (Oxford Univ. Press)

Houthakker, H.S. (1350) - Revealed Preference and the Utility Function

(Cconomica (MNS),17, iay 1950, 159-174)

Inagaki, #. (1970) - Optimal Economic Growth (North-liolland)

(1973) - Intertemporal National Optimality and Temporal
Social Preferences (to be published in Mirrlees and Stern (1973))

Keeler, E.B. (1973) = Horizon in a Simple Model of Economic Growth

(Econowetrica, forthcoming)

Kelley, J.L. (1955) - General Topology (van Nostrand)

Yermp, i.C. and Asinakopoulos, A. (1952) - A lote on 'Social Welfare
Functions' and Cardinal Utility (Canadian Journal of Economics and

Political Science, 18, May 1952, 195-200)

Koopmans, T.C. (1955) = On the Concept of Optimal Economic Growth,
(pp. 225-287 of The Econometric Approach to Development Planning

(Pontificia Academia Scientiarum, Rome)
" (1972a) - Representation of Preference Orderings with
Independent Components of Consumption (ch. 3 of McGuire and Radner
(1972))

(1272b) - Representation of Preference Orderings over Time

(ch. 4., of McGuire and Radner (1972))

Kurz, 1.(1968) - Optimal Economic Growth with Wealth Effects

(International Economic Review, 9 (3), Oct. 1968, 348-357)

(1963) - Tightness and Substitution in the Theory of Capital
(Journal of Econonic Theory, 1 (3), Oct. 1962, 244-272)




R.G.

-
Kurz, M. and Starrett, D.A, (197C) - Cn the Lfficlency of Competitive
Programmes in an Infinite lorizon Model (Review of Leonomic

Studies, 37 (4). Oct. 1970, 571-554)

Le Cam, L.M. and ieyman, J. (eds:)(1967) - Proceedings of the Tifth

Berkeley Symposium in Mathematical Statistics and Probability

(University of California)

Little, I.M.D. (1957) - A Critiaue of Yelfare Economics (2nd. edn. )

(Oxford Univ. Press)

¥o§, J. (1967) - Horizon in Dynamic Programs (Vol. I, pp. 479-430 of
Le Cam and Neyman, (1967))

" (1971) - The Approximative Horizon in von leumann Models of

Optimal Growth (pp. 99-106 of Bruckmann and Weber (1971))

Luce, R,D, (1956) - Semiorders and a Theory of Utility Discrimination
(Econometrica 24 (2), April 1956, 178-191)

Luce, R.D. and Raiffa, H. (1957) - Games and Decisions (Wiley)

McFadden, D. (1367) - The Evaluation of Development Programmes (Review

of Economic Studies, 3% (1), Jan. 1967, 25-50)

(1973) - On the Existence of Optimal Development Programs in
Infinite-Horizon Economies (to be published in Mirrlees and Stern
(1973))

McGuire, C.B. and Radner, R. (1972) (eds.) - Decision and Organization

(North-Holland)

lickenzie, L.W. (1968) - Accumulation Programs of Maximum Utility and the

von lleumann Facet (pp. 353-383 of J.N.Wolfe (ed.) - Value, Capital

and CGrowth (Edinburgh Univ, Press))

Malinvaud, E. (1953) - Capital Accumulation and Efficient Allocation of

Resources (ELconometrica 2l (2), April 1953, 233-268)




Halinvaud, E. (1962) - Efficient Capital Accumulation: A Corrigendun

(Econometrica, 30 (3), July 1962, 570-573)

1 (1959) - The corrected version of Malinvaud (1953),
reprinted as pp. 645-631 of frrow and Scitovsky (eds.) -

Readincs in Welfare Econonics (American licononic Association)

(1972) - Lectures in licrosconomic Theory (llorth-Holland)

ilaneschi, A. (1%6ba) - Optimal Savings with Finite Planning Horizon: A

Note (International Economic Review, 7 (1), Jan. 1955, 109~-118)

(1966b) - Optimal Savings with Finite Planning Horizon:
A Rejoinder (International Economic Review, 7 (1), Jan. 1966,

124-126)

tieade, J.E. (1955) - The Theory of International Economic Policy, Volume
Two, Trade and Welfare (Oxford Univ . Press)

Mirrlees, J.A. (1968) - Optimum Growth tunpublished lecture notes,
Nuffield College, Oxford)

(1972) - Population Policy and the Taxation of Family
Size (Journal of Public Economics, 1 (2), Aug. 1972, 169-1938)

(1972b) - lotes on Weifare Economics, Information, and

Uncertainty (mimeo., luffield College, Oxford)

Mirrlees, J.A. and Stern, N.H. (1972) - Fairly Cood Plans (Jcurnal of
Economic Theory, 4% (2), April 1972, 268-228)

" " (1973) (eds.) - Models of Economic Growth

(Maemillan)

fodigliani, F. and Hohn, F.L. (1355) - Production Planning Over Time and
the Nature of the Expectation and Planning Horizon (Economratrica,
23 (1), Jan. 1955, 46-66)




da Montbrial, T. (1971) - Lccnomie Théorique (Presses Universitaires

de France)

von MNeumann, J. and llorgenstern, 0. (1953) - Theory of Cames and

Economic Dehavior (3rd. edn.) (Princeton Univ. Press

Ng, Y.K. (1972) - Value Judgments and Econonists' Role in Policy

Recommendation (Economic Journal, 82, Sept. 1972, 1014-1018)

Pattanaik, P.K. (1968) - Risk, Inpersonality, and the Social Welfare
Function (Journal of Political Econony, 76 (6), Nov/Dec. 1938,
1152-1169)

" (1971) - Voting and Collective Choice (Cambridge Univ. Press)

Phelps, E.S. (1966) - The Golden Rule of Procreation (pp. 179-183 of

Golden Rules of Economic Growth) (ilorton)

Phelps, E.S. and Pollak, R.A. (1968) - On Second-Best National Savings
and Game-Equilibrium Growth (Review of Economic Studies, 35 (2),
April 1968, 185-193)

Pollak, R.A. (1968) - Consistent Planning (Review of Economic Studies,
35 (2), April 1963, 201-208)

Rader, J.T. (1963) - The Existence of a Utility Function to Represent
Preferences (Review of Economic Studies, 30 (3), Oct. 1963,
229-232)

Raiffa, H. (1968) - Decision Analysis (Addison Wesley)

Raiffa, H. and Schlaifer, R. (1961) - Applied Statistical Decision Theory
(H.I.T. Press)

Ramsey, F.P. (1928) - A Mathematical Theory of Savings (Economic Journal ,
38 (1928), 543-559) '

Rawls, J. (1958) - Justice as Fairness (Philosophical Review, 67, 1958,

164-194%)




“Varg]
1au]

o TP |
Rydar,

R.9O.

J. (1971) - A Theory of Justice (liarvard Univ. Press and Oxford

Univ, Press)

H.L. and Heal, G.H. (1373) - Optimun Crowth with Intertemporally
Dependent Preferences (Poview: of Fconomic Studies, HO (v,

Jan. 1973, 1 = 31)

Samuelson, P.A. (1347) - Foundations of Leononic inalysis (larvard Univ.

Press)

(1971) - Turnpike Theorems cven Though Tastes are Inter-
temporally Dependent, (Western Economic Journal, 9 (1), March

1971, 21-26)

Samuelson, P.A. and Solow, R.M. (1956) - A Complete Capital Hodel

Involving Heterogeneous Capital Coods (Quarterly Journal of

Econcnics, 70 (&), Nov. 1356, 537-562)

Schoeffler, S. (1952) - llote on ifodern lelfare Economics (American

Economic Review, 42 (5), Dec. 1952, 880-887)

Schwartz, T. (1970) - On the Possibility of Rational Policy Evaluation

(Theory and Dzcision, 1 (1), Oct. 1970, 83-106)

Sen, A.K. (1969) - Quasi-Transitivity, Rational Choice, and Collective

Decisions (Review of Economic Studies, 36 (3), July 1969, 381-393)

(1970a) - Collective Choice and Social Welfare (Holden-Day,
and Oliver and Boyd)

(1970b) - The Impossibility of a Paretian Liberal (Journal of
Political Economy, 78 (1), Jan/Feb. 1970, 152-157)

(1971) - Choice Functions and Revealed Preference (Review of

Economic Studies, 38 (3), July 1971, 307-317)

(1273) - On Economic Inequality (Oxford Univ. Press, forthcoming)




R.10,

Sertel, [1.R. (1972) - A Four-Flagced Lenma (Review of Feononic Studies,
33 (u), Cet. 1972, ne7-420)

Strotz, R.H. (1956) - ¥yopia and mconsistency in Dynamic Utility

Maximization (Review of Lcononic Studies, 23 (3), 1855-GC, 165-160)

Szpilrajn, E. (1930) - Sur 1'Cxtension de 1'Ordre Fartiel (fundamenta

Mathematicae, 16, 386-389)

Tinbergen, J. (1960) - Optirum Savings and Utility Mazimization Over

Time (Econometrica, 28 (2), fpril 1960, 481-482)

Uzawa, H. (196C) - Preference and Rational Choice in the Theory of

Consumption (ch. 9., PP. 129-148, of Arrow, Karlin and Suppes (1960))

Vickrey, W.S. (1960) - Utility, Strategy, and Social Decisicn Rules
(Quarterly Journal of Economics, 74 (%), Nov. 1060, 507-535)

Vickrey, Y.S. (1964) = lletastatics and Macroeconomics (Harcourt, Brace

and Yold)

Votey, H.L., Jr. (19629) - The Optimum Population: and Growth: A l'ew Look
(Journal of Cconomic Theory, 1 (3), Oct. 1989, 273-290)

Ly (1972) - The Optimum Population and Growth: Reply
(Journal of Economic Theory, E_(?), Oct. 1972, 280-284)

Walsh, V.C. (1970) - Introduction to Contemporary Microeconomics

(¥cGraw Hill)

Warnock, G.J. (1971) - The Object of Morality (ifethuen)

Weddepohl, H.N, (1970) - Axiomatic Choice llodels and Duality (Rotterdam

Univ. Press).
von Weizsicker, C.C. (1965) - Existence of Optimal Prograns of Accunulation
for an Infinite Time lorizom (Revicu of Economic Studies,gg_(Q),

April 1965, 85-104)

" (1971) - lotes on Endogenous Change of Tastes

(Journal of Econoiic Theory, 3 (4), Dec. 1671, 345-372)




CAMBRIDGE
UNIVERSITY LIBRARY

Atrention is drawn to the fact that the
copyright of this thesis rests with its author.

This copy of the thesis has been supplied
on condition that anyone who consults it is
understocd to recognise that its copyright rests
with its author and that no quotation from
the thesis and no information derived from it
may be published without the author’s prior
written consent.




	Hammond1.pdf
	Hammond2.pdf
	Hammond3.pdf
	Hammond4.pdf
	Hammond4a.pdf
	Hammond5.pdf
	Hammond6.pdf

