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A firm’s instantaneous probability of default is modeled as a translated square-
root diffusion process modified to allow the process to be correlated with default-
free interest rates. The parameters of the process are estimated for 161 firms. An
extended Kalman filter approach is used that incorporates both the time-series and
cross-sectional (term structure) properties of the individual firms’ bond prices.
The model is reasonably successful at fitting corporate bond yields, while key
features of the term structures of yield spreads are captured in the signs and
magnitudes of the resulting parameter estimates.

The risk of default affects virtually every financial contract. Therefore the
pricing of default risk has received much attention; both from traders, who
have a strong interest in pricing transactions accurately, and from financial
economists, who have much to learn from the way such risks are priced in
markets. The standard theoretical paradigm for modeling credit risks is the
contingent claims approach pioneered by Black and Scholes. Much of the
literature follows Merton (1974) by explicitly linking the risk of a firm’s de-
fault to the variability in the firm’s asset value. Although this line of research
has proven very useful in addressing the qualitatively important aspects of
pricing credit risks, it has been less successful in practical applications.1

The lack of success owes to the difficulty of modeling realistic boundary
conditions. These boundaries include both the conditions under which de-
fault occurs, and in the event of default, the division of the value of the firm
among claimants. Firms’ capital structures are typically quite complex and
priority rules are often violated.

In response to these difficulties, an alternative modeling approach has
been pursued in a number of recent articles, including Madan and Unal
(1994), Duffie and Singleton (1995, 1997), and Jarrow and Turnbull (1995).2

I thank Torben Andersen, Mark Fisher, Dilip Madan, Ken Singleton, and Chunsheng Zhou for helpful
conversations, and Kaushik Amin, Ravi Jagannathan (the editor), Francis Longstaff, two anonymous
referees, and seminar participants at the 1997 Western Finance Meetings, Ohio State, and an NBER
Derivatives Project meeting for helpful comments. The analysis and conclusions of this article are those
of the author and do not indicate concurrence by other members of the research staff, by the Board of
Governors, or by the Federal Reserve Banks. Address correspondence to Greg Duffee, Mail Stop 91,
Federal Reserve Board, Washington, DC 20551, or email: gduffee@frb.gov.

1 One illustration of this lack of success is that very few articles have even attempted to price particular
instruments. The standard reference is Jones et al. (1984), who find that, even for firms with very simple
capital structures, a Merton-type model is unable to price investment-grade corporate bonds better than a
naive model that assumes no risk of default.

2 Researchers also continue to extend Merton-style models to address these problems. Recent examples are
Longstaff and Schwartz (1995) and Zhou (1997).
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At each instant there is some probability that a firm defaults on its obliga-
tions. Both this probability and the recovery rate in the event of default
may vary stochastically through time. The stochastic processes determine
the price of credit risk. Although these processes are not formally linked to
the firm’s asset value, there is presumably some underlying relation, thus
Duffie and Singleton describe this alternative approach as a reduced form
model.

This class of models is much more tractable mathematically than Merton-
type models, raising hopes that it will be useful in practical applications.
However, empirical implementation of this type of model is in its infancy.
The few analyses that have been done to date fit such models to aggregate
yield indexes, hence the ability of these models to price accurately the credit
risks associated with particular instruments is unknown.

This article is an effort to determine, on a broad scale, whether one
such model can describe the behavior of individual corporate bond prices
successfully. The data consist of month-end observations on noncallable
corporate bonds from January 1985 through December 1995; in total, more
than 40,000 bond-price observations across 161 firms. The vast majority of
the bonds are rated investment grade.

I follow Pearson and Sun (1994) by fitting the default-free term struc-
ture to a translated two-factor square-root diffusion model (although unlike
Pearson and Sun, I estimate the model using the extended Kalman filter);
translatedmeans that a constant term is included. The model is extended
to noncallable corporate bonds by assuming that the instantaneous proba-
bility that a given firm defaults on its obligated bond payments follows a
translated single-factor square-root diffusion process, with a modification
that allows the default process to be correlated with the factors driving the
default-free term structure. Realistically there are a number of factors other
than default risk that drive a wedge between corporate and Treasury bond
prices, such as liquidity differences, state taxes, and special repo rates. Here
all of these factors are subsumed into a stochastic process called a “default
risk” process.

There are two goals to this exercise. The first is to determine how well
such a model describes corporate bond yields, and in particular, to deter-
mine which features of the data are well-described by this model and which
are not. The second is to see what the parameter estimates tell us about the
behavior of individual firms’ bond yields. Indexes of corporate bonds have
been well-studied, but relatively little is known about the properties of in-
dividual firms’ corporate bond yields, especially their time-series behavior.

On average the model fits corporate bond yields well. For the typical firm,
the root mean squared error in yields is less than 10 basis points. However,
not surprisingly, the model has difficulty matching certain features of the
data. For example, there appear to be persistent fluctuations in the volatilities
of yields (GARCH-like effects) that are not captured by the model. Perhaps
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more importantly, the parameter estimates for a typical firm rated, say,
Baa, are different in important ways from the corresponding estimates for
a typical firm rated Aa. This suggests parameter instability as firms’ credit
qualities change.

The parameter estimates reveal some important firm-level features of
bond yields. For the typical firm, default risk is mean reverting under the
true (physical) measure, but mean averting (i.e., nonstationary) under the
equivalent martingale measure. Default risk is negatively correlated with
default-free interest rates, although the strength of this negative correlation
is weaker than reported elsewhere. In addition, for the typical firm, the
instantaneous risk of default has a lower bound that exceeds zero. In other
words, even if a firm’s financial health dramatically improves, the model
implies that yield spreads on the firm’s bonds remain positive.

This article is not the first to examine empirically the pricing of credit risk
using models of instantaneous default risk, although its use of individual
bond data and the specification questions it addresses are new. Nielsen and
Ronn (1996) analyze both corporate bond yield indexes and indexes of swap
spreads. Indexes of midmarket swap spreads are also studied by Grinblatt
(1995) and Duffie and Singleton (1997), although Grinblatt argues that this
relation is driven by a liquidity yield to Treasury securities instead of default
risk. Madan and Unal (1994) estimate a model of yields on certificates of
deposit issued by roughly 300 thrift institutions.

Section 1 describes the model. The data are discussed in the Section 2
and the estimation procedure is discussed in Section 3. Section 4 reports
the basic results, while Section 5 disaggregates the results by credit rating.
Section 6 contains some specification tests of the model. Section 7 concludes
the article.

1. A Model of Corporate Bond Prices

This model is adapted from Duffie and Singleton (1995, 1997), although
Lando (1994) and Madan and Unal (1994) have similar frameworks. First
consider default-free interest rates. The instantaneous nominal default-free
interest rate is denotedrt . Denote the timet price of a default-free bond
that pays off a dollar at timeT as P(t, T,0). (The third argument is the
bond’s coupon payment, which is zero.) The price of this bond is given by
the expectation, under the equivalent martingale measure, of the cumulative
discount rate betweent andT :

P(t, T,0) = EQ
t

{
exp

[
−
∫ T

t
rudu

]}
. (1)

I follow Pearson and Sun (1994) by assuming thatrt equals the sum of a
constant and two factors,s1,t ands2,t , that follow independent square-root
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stochastic processes.

rt = αr + s1,t + s2,t ; (2)

dsi,t = κi (θi − si,t )dt + σi
√

si,td Zi,t , d Z1,t ,d Z2,t independent. (3a)

Under the equivalent martingale measure, these processes can be repre-
sented as

dsi,t = (κi θi − (κi +λi )si,t )dt+σi
√

si,tdẐi,t , dẐ1,t ,dẐ2,t independent.
(3b)

As is well known, the combination of Equations (2) and (3b) imply a closed-
form solution for zero-coupon bond prices in which the bonds’ yields are
linear in s1,t ands2,t . Details can be found in Pearson and Sun (1994) or
Duffie (1996a).

Default is modeled as an unpredictable jump in a Poisson process. The
intensity of the process for firmj at timet under the equivalent martingale
measure is denotedhj,t . In other words, the probability, under the equivalent
martingale measure, that firmj defaults during the time(t, t + dt), condi-
tional on the firm not defaulting prior tot , ishj,tdt. Throughout this article I
use the terms “instantaneous probability of default” and “instantaneous de-
fault risk” interchangeably; they both refer tohj,t . It should be emphasized
thathj,t will not equal the true instantaneous probability of default as long
as the market price of risk associated with the Poisson process is nonzero.

Now consider the price of a zero-coupon bond, issued by firmj , that pays
a dollar at timeT unless firmj defaults at or beforeT . In the event of default,
the bond pays nothing. Denote the price of this bond asVj (t, T,0,0). (The
third argument is the bond’s coupon; the fourth is the recovery value in the
event of default.) The price of this bond is given by the expectation, under
the equivalent martingale measure, of an adjusted cumulative discount rate
betweent andT . This adjusted discount rate isrt +hj,t . Therefore the bond
price is

Vj (t, T,0,0) = EQ
t

{
exp

[
−
∫ T

t
(ru + hj,u)du

]}
. (4)

The key modeling assumption in this article is the form of the default in-
tensity process. I model the processhj,t as a translated single-factor square-
root processplus two components tied to thedefault-free interest rate factors:

hj,t = αj + h∗j,t + β1, j (s1,t − s1,t )+ β2, j (s2,t − s2,t ); (5)

dh∗j,t = κj (θj − h∗j,t )dt + σj

√
h∗j,td Zj,t . (6a)

Under the equivalent martingale measure, the process forh∗j,t can be written
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as

dh∗j,t = (κj θj − (κj + λj )h
∗
j,t )dt + σj

√
h∗j,tdẐj,t . (6b)

This setup is designed to capture, in a tractable way, three important
empirical features of corporate bond yield spreads. The most obvious is
that the spreads are stochastic, fluctuating with the financial health of the
firm. Theh∗j,t process captures this fluctuation.

The second feature is that yield spreads for very high-quality firms are
positive, even at the short end of the yield curve. This fact suggests that
regardless of how healthy a firm may seem (i.e., how lowh∗j,t is), there
is some level below which yield spreads cannot fall, hence theαj term is
included in Equation (5). Nonzero yield spreads for very safe firms are
likely a reflection of features unrelated to default risk, such as liquidity
effects or state taxes. (Nonetheless, all these features are impounded into
the “default risk” processhj,t .) Such spreads can also reflect the risk that
even the healthiest-looking firm can default if a sudden large event occurs,
such as an unfavorable court decision exposing the firm to billions of dollars
in claims.

The third feature is that yield spreads, especially spreads for lower quality
bonds, appear to be systematically related to variations in the default-free
term structure. A theoretical justification for this relation is in Longstaff
and Schwartz (1995) and supporting empirical evidence is in Duffee (forth-
coming). The stochastic process drivingh∗j,t is assumed independent of the
stochastic processes driving the default-free term structure; the correlation,
if any, between default intensities and default-free interest rates is entirely
captured by theβ1,t andβ2,t coefficients. This setup admits closed-form
solutions for default-risky zero-coupon, no-recovery bond prices, in which
the bonds’ yields are linear in the variablesh∗j,t , s1,t , ands2,t . Details are
contained in the Appendix.

A more comprehensive discussion of the link between default-risky and
default-free term structures will be helpful in comparing this type of default-
intensity model to a more structural model of default risk such as Longstaff
and Schwartz (1995). Consider two hypothetical firms that have identical
parameters in Equations (5), (6a), and (6b), except for their respective values
of β1, j . This difference will not affect the mean ofhj,t becauseβ1, j is
multiplied by a mean-zero term.3 The firms will then have identical mean
values ofhj,t equal toαj + θj .

However, we could have written Equation (5) as follows:

hj,t = α∗j + h∗j,t + β1, j s1,t + β2, j s2,t (5′)

3 The termsi,t is used in Equation (5) instead ofθi (the long-run mean ofsi,t ) for estimation-related reasons
made clear in Section 3 of this article.
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This alternative form is observationally equivalent to Equation (5) be-
cause the constant termα∗j will absorb the−βi, j si,t terms. But if we use
Equation (5′) to perform the same comparative static exercise of varying
β1, j while holding the other parameters fixed, we find that a higher value of
β1,t corresponds to a higher meanhj,t as long as the mean ofs1,t is positive.

The proper conclusion is that such a comparative static exercise is mean-
ingless here. The model is not rich enough to allow us to infer from corporate
bond data whether a firm with a highβ1, j has a high meanhj,t because of
this highβ1,t [as in Equation (5′)] or because it happens to have a highαj

[as in Equation (5)].
By contrast, in Longstaff and Schwartz, there is an unambiguous relation

between a firm’s likelihood of default implied by bond prices and the corre-
lation between default-free interest rates and the value of the firm’s assets.
In their model, a firm will have a lower implied likelihood of default if,
holding all else equal, it has a more negative correlation between the value
of its assets and the instantaneous interest rate. If this correlation is negative,
an unexpected decline in the firm’s assets (which pushes the firm closer to
default) is typically accompanied by an increase in instantaneous interest
rates, which pushes the growth rate of the firm’s assets higher (thus pushing
the firm further away from default). Therefore the value of the firm’s assets
is more stable if this correlation is negative than if this correlation is positive,
and the likelihood that the firm defaults is correspondingly reduced.

The inability of the default-intensity model to capture the effect described
by Longstaff and Schwartz is not the only limitation of this model. Equa-
tions (5) and (6a) allow for negative default intensities, either through a
negative value ofαj or negative values ofβi, j (si,t − si,t ), i = 1,2. The em-
pirical section to follow documents that for the typical firm,αj exceeds zero,
but β1, j andβ2, j are typically negative. Thus if default-free interest rates
are sufficiently high, default intensities will be negative. This conceptual
problem is a fairly common one in term structure modeling (both default-
free and default-risky), and is largely ignored if the model accurately prices
the relevant instruments.

Recall that Equation (4) is the price of a zero-coupon corporate bond
that pays nothing in the event of default. However, modeling payments to
bondholders in the event of default is of great practical importance because
the amounts recovered are large. Moody’s finds that, on average, senior
unsecured bondholders receive approximately 44% of par in the event of
default. Consider a senior unsecured zero-coupon bond issued by firmj
that promises to pay, at timeT , one dollar. This article follows Jarrow et al.
(1997), among others, in assuming that the bond pays a fixed dollar valueδ

at timeT in the event of default at or prior toT .
This assumption is equivalent to assuming that in the event of default, the

bond pays, at the time of default, a fixed fractionδ of an otherwise equivalent
default-free bond. For coupon bonds (the focus of this article), the price of
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such a default-free bond will, on average, be close to par. Therefore, in line
with Moody’s evidence, I assume thatδ = 0.44.

The price of a zero-coupon bond with recovery rateδ is denotedVj (t, T,
0, δ). The absence of arbitrage requires that after default, the price of this
bond equals the price of a default-free zero-coupon bond payingδ and
maturing at timeT . In addition, no arbitrage requires that, prior to default,

Vj (t, T,0, δ) = δP(t, T,0)+ (1− δ)Vj (t, T,0,0). (7)

Therefore zero-coupon bonds with recovery value in the event of default
can be easily priced in terms of default-free and default-risky, no-recovery
zero-coupon bonds. The empirical work that follows uses bonds that pay
coupons semiannually. The prices of such bonds are simply the sum of the
prices of the individual cash flows associated with the bonds, although the
yields on such bonds are no longer linear functions of the state variables.
Details are in the Appendix.

Given that this article is looking at primarily investment-grade firms,
the assumption of a constant recovery rate is harmless because it is an
arbitrary identification assumption. Ifδ were allowed to vary stochastically
over time and firms, the empirical tests that follow could not distinguish
between variations inδ and variations inhj,t when the truehj,t is small.4

This indeterminancy is explicitly recognized in Duffie and Singleton (1995,
1997), who model the product(1−δ)h instead of separately modelingδ and
h. The inability to observeδ directly provides another reason (other than
liquidity and tax-related differences) to be cautious in literally interpreting
h as the equivalent martingale probability of instantaneous default.

2. Data Description

Corporate bond data are taken from the Lehman Brothers Fixed Income
Database, which consists of month-end data on the bonds that make up
the Lehman Brothers bond indexes. This dataset, which is discussed in
more detail in Warga (1997) and Duffee (forthcoming), covers primarily
investment-grade firms. I consider only noncallable, nonputable, senior un-
secured straight bonds with semiannual coupons, no variation in promised
coupon payments over time, no sinking fund provisions, and original ma-
turities of under 35 years. All bonds in the dataset have at least one year
remaining to maturity. Bond price observations that are calculated using a
matrix are dropped. Therefore all prices are indicative bid prices quoted by

4 For very risky instruments (largehj,t ), the assumption ofδ = 0.44 is restrictive because Equation (7)
imposes a lower bound on corporate bond prices ofδP(t, T,0). This bound can be violated for an
instrument issued by a firm near default for which the recovery rate is actually substantially less than
0.44. I am grateful to a referee for pointing this out. Also note that Madan and Unal (1994) use prices of
multiple classes of banks’ obligations to separateδ from h.
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Table 1
Summary statistics for 161 firms’ noncallable bonds

Across 161 firms
Firm-level statistic Minimum Median Maximum

Months of data 38 92 132

Mean number of fitted bonds
per month 1.37 2.47 7.36

Mean years to maturity of
fitted bonds 1.97 7.22 22.54

Minimum years to maturity of
fitted bonds 1.00 1.04 14.29

Maximum years to maturity of
fitted bonds 3.00 14.96 29.96

Mean coupon of fitted bonds 0 8.75 12.06

Each firm has at least 36 month-ends during January 1985 through
December 1995 for which yields on at least two noncallable bonds were
priced by Lehman Brothers traders.

traders. Relatively few noncallable bonds were issued prior to 1985, hence
I examine only the period beginning January 1985 and ending December
1995.

I use a sample of 161 firms, where a firm is defined as any entity with a
distinct six-digit CUSIP.5 There are 96 industrial firms, 50 financial firms,
and 15 utilities in this group. Each firm has at least 36 months in which
at least two trader-quoted bond prices are observed. The list of firms is
available from the author.

Firms sometimes issue a number of bonds with very similar maturity
dates. Yields on such bonds are typically closely linked. To reduce the size
of the estimation problem, in these cases I use a selection of bonds. To
illustrate the selection procedure, consider a firm’s bonds outstanding as of
some month. Of the firm’s bonds with a remaining maturity in the range
[n years,(n+ 1) years),n an integer, all but the most recently issued bond
is dropped. If multiple bonds share the same most recently issued date,
all but the shortest-maturity bond is dropped. After dropping these similar-
maturity bonds, each of the 161 firms considered here has at least 36 months
in which at least two trader-quoted bond prices are observed, and many of
the firms also have months during which a single trader-quoted bond price
is observed.

Summary statistics about the bond data used in this article are presented
in Table 1. The median number of observations for each firm is 92. Eleven
of the firms have valid bond prices observed in every month, for a total

5 Parents and their subsidiaries may have different six-digit CUSIPs. To take the most extreme example,
my sample includes Ford Motors, Ford Motor Credit, Ford Capital B.V., and Ford Holdings as separate
firms.
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of 132 monthly observations. For any one firm, the number of bond prices
observed varies over time. The mean number of bond prices (computed over
those months for which the firm has at least one bond price) is calculated
for each firm j , and summary statistics about this firm-specific mean are
reported in the second row of Table 1. Across all firms, the lowest mean
number of bonds is 1.4 per month, while the median is 2.5 and the maximum
is 7.4. Therefore, although across all firms and all months this article uses
40,270 bond prices, the term structure of any one firm is estimated with a
relatively small number of bonds. This paucity of data will be reflected in
substantial uncertainty in the parameter estimates.

Table 1 also reports that for the median firm, the minimum bond maturity
is 1 year, the mean is 7 years, and the maximum is 15 years. The median
firm’s mean coupon is 8.8%, paid semiannually. Two firms issued only
zero-coupon bonds.

The Treasury yields are from the Center for Research in Security Prices
(CRSP). At each month-end from January 1985 through December 1995,
prices of seven different noncallable Treasury instruments are observed.
They are the second most recently issued bills with maturities of 6 and 12
months, and the second most recently issued notes and bonds with maturities
of 2, 3, 5, 10, and 30 years.6 The most recently issued instruments are not
included so as to avoid capturing any special liquidity premium that such
instruments can have. In particular, these instruments (also known as on-the-
runs) are often on special in the repo market, which distorts their observed
yields. See Duffie (1996b) for a discussion.7

3. Estimation Methodology

There are a number of methods that can be used to estimate this model
using both the cross-sectional and time-series properties of bond yields. I
adopt the extended Kalman filter approach used by Chen and Scott (1995),
Geyer and Pichler (1996), and Duan and Simonato (1997) in their analyses
of Treasury yields.

6 There are two slight complications. First, the computer programs used to conduct the estimation require
that a bond have a constant coupon over time. Some Treasury bonds have odd first coupons. If the second
most recently issued bond has an odd first coupon and has not passed the first payment date, the third most
recently issued bond is used (with the same caveat for that bond). The second complication is that 30-year
bonds appear in the sample beginning with February 1985, and there is not a second most recently issued
30-year bond until August. Until that time, 20-year bonds are used.

7 Because on-the-runs trade more frequently than off-the-runs, it is possible that the use of second most
recently issued bonds can introduce noise owing to stale prices. I looked for evidence of such noise
by estimating my model of default-free yields twice; first with on-the-runs and then with second most
recently issued bonds. I then compared the two sets of root mean squared measurement errors in bond
yields. There was no evidence that the errors were smaller in magnitude for on-the-runs than for the bonds
I examine in this article.
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Firm j ’s bond prices depend on the processes fors1,t ands2,t as well as the
process forh∗j,t . Thus it would be more efficient to estimate the default-free
interest rate and default probability processes jointly instead of separately.
Unfortunately it is infeasible to jointly estimate the default-free processes
and all 161 default probability processes. An alternative is for each firm
to jointly estimate the default-free processes and the default-risky process
for that firm. However, this alternative has the unsatisfying feature that it
produces as many different estimated default-free processes as there are
firms. I therefore estimate the default-free processes once, using only Trea-
sury yields. I then use the resulting parameter estimates and corresponding
predicted values of the unobserved state variabless1,t ands2,t to separately
estimate the parameters of each firm’s instantaneous default process. In
other words, 162 different extended Kalman filter problems were solved,
one for the default-free term structure and one for each firm’s term structure.

3.1 Default-free parameter estimation
At time t we observe Treasury yieldsYt = (y1,t , . . . , y7,t )

′. Denote the un-
observed state variables bySt = (s1,t , s2,t )

′. Suppressing the dependence of
the model on the parameters to be estimated, the measurement and transition
equations are

Yt = z(St )+ εt , Et−1
(
εtε
′
t

) = H

St = d + T St−1+ ηt , Et−1
(
ηtη
′
t

) = R(St−1).

The functionz(St ) maps the two state variables into seven yields. For
zero-coupon instruments (the bill yields), this mapping is linear. For a
coupon bond, this mapping is implicitly given by numerically solving for
the yield corresponding to the coupon bond price implied bySt . The H
matrix is an 7× 7 diagonal matrix withHi,i = 6i . The transition equation
componentsd andT are given by

d =
(
θ1(1− e−κ1/12)

θ2(1− e−κ2/12)

)
, T =

(
e−κ1/12 0

0 e−κ2/12

)
(8)

andR(St−1) is a 2× 2 diagonal matrix with elements

Ri,i (St−1) = κ−1
i σ 2

i [si,t−1(e
−κi /12− e−2κi /12)+ (θi /2)(1− e−κi /12)2].

This notation introduces seven new variables6i , i = 1,7, which are the
variances of the measurement errors of the yields.
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The nonlinear functionz(St ) is linearized around the 1-month-ahead
forecast ofSt andR(St−1) is evaluated at the contemporaneous prediction
of St−1 (i.e., the recursion’s prediction ofSt−1 given bond yields through
t − 1).8 The standard Kalman filter recursion is then used. Becausez(St )

is nonlinear and the transition equation innovationsηt are nonnormal, the
recursion’s prediction ofSt−1 conditioned on montht − 1 information is
not the conditional expectationE(St−1|Yt−1,Yt−2, . . .). Therefore the re-
cursion’s 1-month-ahead variance ofSt , which depends on the recursion’s
prediction ofSt−1, is not the correct 1-month-ahead variance ofSt . Thus
the usual equivalence between the Kalman filter and quasi-maximum like-
lihood (QML) does not hold. Nonetheless, Monte Carlo evidence in Duan
and Simonato (1997) suggests the procedure is reliable in the context of
this class of models. Their article also contains a more detailed discussion
of the properties of this methodology.

The Kalman filter requires an initial distribution of state variables. The
unconditional distribution is used for the default-free process, which implies
that the mean-reversion parametersκ1 andκ2 are required to be positive (so
the unconditional distribution exists).

3.2 Default intensity parameter estimation
A firm’s bond prices depend on both the firm’s default intensity process
and the default-free process. To estimate the default intensity process, the
default-free process, estimated as described above, is assumed to be the true
process. In addition, the values ofsi,t , i = 1,2 predicted by the Kalman filter
recursion (the smoothed estimates, based on information through the entire
sample) are assumed to equal the true values ofsi,t , i = 1,2. Denote these
predicted values bŷsi,t . Then for any firmj , the only unobserved variable
is h∗j,t . An extended Kalman filter procedure is used to extract information
about this variable.

Firm j has bond yields observed over a set of months in [January 1985,
December 1995]. The means ofŝi,t , i = 1,2 are computed over this set of
months and are used assi,t , i = 1,2 in Equation (5). I use this sample mean
instead ofθi , i = 1,2 so that the means of the last two terms in Equation (5)
are identically zero for all firmsj . This simplifies the interpretation ofαj .

Consider a given firmj . At time t , we observeNj,t corporate bond
yieldsYj,t = (yj,1,t , . . . , yj,Nj,t ,t )

′. The prior observation of the firm’s bond
prices occurred att − τ . Owing to missing observations,τ need not equal
1 month. The measurement and transition equations are (again suppressing

8 It is possible for the predicted value ofSt−1 to have a negative component, which is inconsistent with its
stochastic process. If this occurs, the algorithm replaces this negative component with zero. This situation
did not arise at the final parameter estimates, although it occasionally occurred at other sets of parameter
estimates that were attempted during the optimization routine.
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dependence on the parameters to be estimated)

Yj,t = zj,t (h
∗
j,t ; ŝ1,t , ŝ2,t )+ εj,t , Et−τ

(
εj,tε

′
j,t

) = Hj,t

h∗j,t = dj (τ )+ Tj (τ )h
∗
j,t−τ + ηj,t , Et−τ

(
η2

j,t

) = Rj (h
∗
j,t−τ , τ ).

The functionzj,t (h∗j,t )mapsh∗j,t into Nt yields. This mapping is implicitly
given by numerically solving for the yield corresponding to the coupon
bond price implied byh∗j,t , si,t = ŝ1,t , ands2,t = ŝ2,t . The Hj,t matrix is
anNt × Nt diagonal matrix with each diagonal element equal to6j , which
is the common measurement error variance of the yields. A common error
variance is used because for a given firm, both the number of bonds and
their maturities vary over time. The transition equation componentsdj (τ )

andTj (τ ) are one-dimensional versions of Equation (8) withκi replaced
with τκj . The conditional varianceRj is given by

Rj (h
∗
j,t−τ , τ ) = κ−1

j σ 2
j [h∗j,t−τ (e

−τκj /12−e−2τκj /12)+(θj /2)(1−e−τκj /12)2].

Unlike the assumption made for the default-free process, I do not assume
that each firm’s default intensity process is stationary. Therefore I cannot use
the unconditional distribution ofh∗j,t to initiate the Kalman filter recursion.
Instead, I use a least-squares approach to extract an initial distribution from
the firm’s first month of yield observations. Denote this first month as month
0. Then

zj,0(h
∗
j,0) ≈ zj,0(θj )− Zj,0θj + Zj,0h∗j,0,

whereZj,0 is the linearization ofzj,0 aroundθj :

Zj,0 =
∂zj,0(h∗j,0)
∂h∗j,0

∣∣∣∣
h∗j,0=θj

Assuming that this linearization is exact, we can write the measurement
equation for the firm’s month 0 bond yields as

Yj,0 = z0(θj )− Z0θj + Zj,0h∗j,0+ εj,0.

This equation is rewritten in terms ofh∗j,0:

h∗j,0 =
Z′j,0(Yj,0− z0(θj )+ Z0θj )

Z′j,0Zj,0
− Z′j,0εj,0

Z′j,0Zj,0
.

Therefore the distribution ofhj,0 is assumed to have meanZ′j,0(Yj,0 −
z0(θj )+ Z0θj )/(Z′j,0Zj,0) and variance6j /(Z′j,0Zj,0). Given this initial dis-
tribution of the unobserved variable, the extended Kalman filter recursion
proceeds as described for the default-free process.
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Table 2
Extended Kalman filter estimates of a two-factor square-root model of
Treasury bond yields, January 1985–December 1995

i κi θi λi σ 2
i κi θi κi + λi

1 0.474 1.003 −0.011 0.000180 0.47491 0.463
(0.032) (0.048) (0.004) (0.000034) (0.04184) (0.032)

2 0.032 0.060 −0.015 0.002017 0.00192 0.017
(0.009) (0.056) (0.021) (0.001592) (0.00160) (0.016)

Bond Measurement error Mean error (actual
√

Mean square error
maturity variance(×106) − fitted, basis points) (basis points)

6 months 12.189 −14.52 34.56
(1.444)

1 year 4.199 −12.80 20.11
(0.423)

2 years 0.101 0.46 1.80
(0.049)

3 years 0.229 0.31 4.20
(0.051)

5 years 0.720 1.75 8.08
(0.157)

10 years 0.297 −1.83 4.03
(0.087)

30 years 0.781 1.50 7.77
(0.157)

The instantaneous interest rate is

rt = αr + s1,t + s2,t .

The dynamics are

dsi,t = κi (θi − yi,t )dt + σi
√

si,t d Zi,t (true measure)

dsi,t = (κi θi − (κi + λi )yi,t )dt + σi
√

si,t dẐi,t (martingale measure).

Month-end yields of the second most recently issued 6-month and 12-month
Treasury bills and 2-, 3-, 5-, 10-, and 30-year coupon bonds are observed with
normally distributed measurement errors independent across time and instruments.
The value ofαr is fixed at−1.00 because, although the estimated value was
below this value, the improvement in fit given by a smaller value was negligible.
The standard errors (in parentheses) are computed assuming the Kalman filter
linearization is exact.

4. Results

4.1 The default-free process
Estimation results for the default-free process are displayed in Table 2.
Although the gradient of the Kalman filter likelihood makes it clear thatαr is
negative, the data are unable to pin down the value ofαr with any reliability.
Pearson and Sun (1994) also faced this problem using different data and
a different estimation technique. I follow their approach and arbitrarily set
αr equal to a lower bound. I useαr = −1 because the improvement in fit
given by substantially lower values ofαr was minimal.
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Standard errors for the resulting restricted model are computed as with
QML, although their validity is questionable given the nonlinearities. The
first factor is closely related to (the negative of) the spread between long
and short bond yields. The correlation between the predicted values ofs1,t
(based on information through the entire sample) and the spread between
the 30-year bond yield and the 6-month Treasury bill yield is−0.97, while
the correlation between first differences of these two series is−0.84. This
factor exhibits significant mean reversion; its half-life is slightly less than 1.5
years. The second factor is closely related to long bond yields. The predicted
values ofs2,t (again, based on information through the entire sample) move
almost in lockstep with the Treasury’s 30-year bond yield. (The correlation
of first differences is 0.97.) With a half-life of over 20 years, this factor is
close to a martingale.

The interpretation of one factor as the slope of the Treasury yield curve
and the other factor as the level of Treasury yields is standard. Chen and Scott
(1995), Geyer and Pichler (1996), and Duan and Simonato (1997) produce
similar results using the same technique over different periods, while Chen
and Scott (1993) produce similar results using a different technique over a
different sample period.

Because a negative value ofαr implies the possibility of negative interest
rates, it is worth exploring what features of the data generate this negative
estimate. Ifαr is zero (or positive), the model is limited in its ability to
generate both steeply sloped term structures and flat, low term structures
with reasonable volatility behavior.

We explain this limitation in two steps. First, consider how the slope
of the term structure is related to the state variable associated with (the
negative of) the term structure,s1,t . When the term structure is flat,s1,t is
larger than it is when the term structure is steeply sloped. Recall thats1,t
cannot be negative, regardless of the slope of the term structure. Therefore,
if the model fits accurately the slope of the term structure both when it is
steeply sloped and when it is flat,s1,t will be relatively large at those times
when the term structure is flat.

Now consider how well the model will fit yields when the term structure
is both flat and low. Ifαr = 0, the model can get the slope right, but may
be unable to match the level. The observed yields may be too low to be
consistent with the large value ofs1,t necessary to fit the slope, even ifs2,t
is set to zero. Duffie and Singleton (1997) encounter this problem. Even if
there is a value ofs2,t consistent with the low yields, this value might be
very small. In this square-root diffusion model, a small value ofs2,t implies
long maturity yields have very low volatility, which is a strong restriction
on the model.

If a negative constant term is included in the default-free process,s2,t can
be large even when yields are low, allowing for a better fit. This flexibility is
especially important over the period examined in this article, which exhib-
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ited both very steep term structures (in the early 1990s) and flat, very low
term structures (in 1995). In the context of the model, as long as the con-
stant term is sufficiently negative, the precise value ofαr is not particularly
important. Therefore the estimation routine has great difficulty pinning it
down.

This two-factor model does a rather poor job of pricing bills, but does
reasonably well at pricing long-maturity instruments. As Table 2 indicates,
fitted yield curves are consistently higher than actual yields at the short end.
The mean error (actual less fitted) for 6- and 12-month bills are−14 and
−13 basis points (b.p.), respectively. The root mean squared errors (RMSE)
in the bill yields are between 20 and 34 b.p. For longer maturity instruments,
mean errors are all less than 2 b.p. and RMSE’s are all less than 9 b.p.

For the purposes of this article, the inability of the model to accurately
price short-maturity instruments is not an important concern. Our ultimate
goal is to price corporate bonds, and all of the corporate bonds examined
in this article have more than 1 year to maturity. Thus over the range of
maturities relevant for pricing corporate bonds, the default-free process
estimated here adequately prices Treasury bonds.

Careful consideration of the estimated default-free rate process is beyond
the scope of this article. However, there is evidence of misspecification be-
yond the failure of the model to fit accurately the short end of the yield curve.
The model assumes that the process fors1,t is independent of the process
for s2,t , but the fitted values are negatively correlated. The correlation of
monthly changes in these fitted values is−0.37.

4.2 The default intensity processes
Table 3 summarizes the parameter estimates of the firms’ default intensity
processes. The table reports the median and interquartile range of each
estimated parameter (there are 161 estimates of each parameter, one for
each firm). It also reports the median and interquartile range of three firm-
specific values: firmj ’s meanĥj,t , the firm’s meanĥ∗j,t , and the square
root of the mean of the squared differences between the actual and fitted
yields on firm j ’s bonds (RMSE). In contrast to the way the fitted state
vector was defined for the default-free process, here the fitted value ofhj,t

is the filtered prediction from the Kalman filter (the prediction based on
information throught), not the smoothed prediction (information through
the entire sample). This choice is made to simplify the specification tests
performed in Section 6.

Before discussing the individual parameter estimates in detail, it is worth
noting that the differences between the parameters’ lower-quartile estimates
and higher-quartile estimates are quite large. Although it is possible that
these large differences reflect substantial cross-firm variation in the true
parameters, another likely explanation is imprecision in the estimates. As
noted earlier, any one firm’s term structure is fitted using relatively few
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Table 3
Summary of extended Kalman filter estimates of 161 firms’ default
risk processes implied by corporate bond yields

Variable 1st quartile Median 3rd quartile

100· αj 0.396 0.749 1.175
κj 0.023 0.238 0.600

100· θj 0.072 0.559 2.814
λj −0.485 −0.235 −0.050
σj 0.051 0.074 0.104
β1, j −0.242 −0.096 0.000
β2, j −0.080 −0.009 0.062

100· κj θj 0.020 0.103 0.306
κj + λj −0.150 −0.033 0.118

100·
√
6j 0.082 0.101 0.121

Mean fittedhj,t · 100 1.086 1.359 1.876
Mean fittedh∗j,t · 100 0.238 0.573 1.079

RMSE of yield to
maturity (basis points)a 7.39 9.83 11.05

The instantaneous default-free interest rate is given byrt = αr + s1,t +
s2,t , wheres1,t ands2,t are independent square-root processes. Firmj ’s
instantaneous default risk is given by

hj,t = αj + h∗j,t + β1, j (s1,t − s1,t )+ β2, j (s2,t − s2,t ),

where h∗j,t follows a square-root process that is independent of the
processes forsi,t , i = 1,2:

dh∗j,t = κj (θj − h∗j,t )dt + σj

√
h∗j,t d Zj,t (true measure)

dh∗j,t = (κj θj−(κj+λj )h
∗
j,t )dt+σj

√
h∗j,t dẐj,t (martingale measure).

Month-end yields on firmj ’s noncallable coupon bonds are all observed
with i.i.d., normally distributed measurement error with mean zero and
variance6j . The estimation period is January 1985–December 1995,
although most of the firms do not have data over this entire period.
a The square root of the mean of the squared differences between the
actual and fitted yields to maturity on firmj ’s bonds.

bonds, and no firm has more than 11 years of monthly observations. There-
fore the individual parameter estimates are subject to substantial uncertainty.
Accordingly, in this discussion I focus on the median parameter estimates
across all 161 firms.

The median estimate of the constant termαj is 0.0075. To get a sense
of how this term affects yield spreads, assume that the default-free states
si,t , i = 1,2 are at their mean fitted values. Then, regardless of how healthy
the firm is (at the extreme,h∗j,t = 0), this estimate implies that the yield
spread on a near-zero-maturity zero-coupon bond can be no lower than 41.9
b.p., points, assuming a 44% recovery rate.

As discussed in Section 1, it is tempting to interpret this term as a constant
bond premium unrelated to default risk. But it is important to note that the
positive estimates ofαj are not based on any liquidity premium or state tax
effect imposed on the model. The features of the data that give rise to these
positive estimates will be discussed in the next section.
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The median estimate ofκj is 0.24. Thus, even though stationarity is not
imposed, default intensities appear to be stationary, with a half-life of less
than 3 years.9 The median estimate ofλj is negative, implying that investors
require compensation for variations in default risk. Put another way, assets
that pay off when firms’ default probabilities rise are highly valued by
investors. The estimates ofλj are typically larger in absolute value than those
of κj , hence the median estimate of mean reversion parameter under the
equivalent martingale measure,κj+λj , is negative. Negative mean reversion
implies that under the equivalent martingale measure, instantaneous default
risk is explosive, in the sense that higher levels of risk correspond to more
rapid growth in risk. The next section explains what features of the data
generate these negative estimates.

Table 3 also documents a modest negative relation between default inten-
sities and the default-free term structure. The median estimate ofβ1, j implies
that a 100-b.p. decline ins1,t lowershj,t by 0.00096, which, given a recovery
rate of 44%, corresponds to a decline in yield spreads on near-zero-maturity
instruments of 5.4 b.p. The median estimate ofβ2, j is economically close
to zero. The estimate implies that a 100-b.p. decline ins2,t corresponds to a
decline in yield spreads on near-zero-maturity instruments of only 0.5 b.p.

Also shown in Table 3 is the median firm’s mean fitted instantaneous
default probability, which is 1.4% per annum. The constant term accounts
for most of this default risk; the median firm’s mean value ofĥ∗j,t is less
than 0.6% per annum. It is worth noting that default probabilities based on
observations of actual defaults are smaller than even the latter value. The
bulk of the firms in my sample are rated either A or Baa by Moody’s. Fons
et al. (1994) report the historical probability of a Baa-rated firm defaulting
within 5 years is only 2%, while the historical probability for an A-rated
firm is less than 1%.

The final point to take from Table 3 is that this model fits corporate bond
prices well. The median estimate of the standard deviation of measurement
error in bond yields,

√
6j , is only 10 b.p. Similarly, the median root mean

squared error (RMSE) of yields is slightly over 9 b.p., and for three-fourths
of the firms the RMSE is no greater than 11 b.p.

5. Results by Credit Rating

In this section we break down the model’s estimates according to the credit
rating of the bonds’ issuers. There are two reasons for this. First, an exami-
nation of the disaggregated results will help evaluate the consistency of the

9 The estimates ofκj can be used to illustrate the great uncertainty in a single firm’s parameter estimates.
Standard errors for each firm’s estimate ofκj were constructed using the standard QML assumptions
and assuming that the estimates from the default-free process (both the parameters and the values of
si,t , i = 1,2) were known. The median standard error was 0.309.
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model in a way that cannot be captured through analyses of bond pricing
errors. Second, this examination will help explain why the data produce
estimates ofαj that are typically positive and estimates ofκj + λj that are
typically negative. We shall see that the signs of these parameter estimates
are crucial to fitting basic features of the data.

To understand how this disaggregation conveys information about the
consistency of the model, consider some firmj with a credit rating of, say,
Aa at timet . (Following standard practice, we define a firm’s credit rating
as the rating on the firm’s senior unsecured bonds.) Imagine that over time
the firm’s credit quality declines such that at timeτ > t the firm’s credit
rating is Baa. The model of default risk used here says that this change in
credit quality is impounded entirely in the state variablesh∗j,t , s1,t , ands2,t .
The parameters of the default intensity process in Equations (5), (6a), and
(6b) are fixed as the firm’s credit quality changes.

We might think to test directly for instability in this firm’s default inten-
sity parameters. However, for any single firm, the parameters are estimated
with so little precision that tests of parameter instability will have mini-
mal power. An indirect test is to look for systematic variation in estimated
parameters across firms with different credit ratings. If there were any sys-
tematic relation, it would suggest that as a firm’s credit quality changed, the
parameters of its default intensity process would also change.

This argument is not foolproof. The bond pricing model used here is
consistent with a systematic relation between parameters and credit ratings
as long as this relation is determined prior to the first time bond prices are
observed. For example, firms with default intensity parameters that fall into
a certain range may typically choose to set their capital structure so that
their initial default intensityh∗j,0 is relatively high. But if the firm alters
its choice when it has outstanding bonds, the model’s parameters will be
unstable.

The results displayed in Table 4 tell us what a firm’s credit rating actually
conveys about the firm’s default intensity process. Credit ratings are from
Moody’s unless a bond had no Moody’s credit rating in the dataset. In this
case an S&P rating was used. Panel A of the table reports median estimates
of the parameters of firms’ default probability processes, sorted by each
firm’s “initial” credit rating, which is defined as a firm’s credit rating as of
the first month of data used to estimate the instantaneous default process
for the firm.

A graphical representation of Table 4, panel A is in Figure 1. This figure
displays the term structure of yield spreads for three hypothetical firms,
where the default intensity parameters of the firms are given by the median
estimates in panel A for Aa-, A-, and Baa-rated firms. A term structure
for Aaa-rated firms is not included because their median estimate ofθj

is improbably high. (The implied Aaa spread curve starts below the other
spread curves, but quickly rises above the curves for Aa- and A-rated firms.)
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Table 4
The relation between credit ratings and estimated default probabilities

Panel A: Median parameter estimates grouped by firms’ initial credit ratings

Variable Aaa Aa A Baa

Number of firms 7 39 79 36
100· αj 0.594 0.637 0.739 0.961
κj 0.269 0.186 0.242 0.212

100· θj 1.730 0.499 0.559 0.628
λj −0.130 −0.216 −0.257 −0.307
σj 0.077 0.074 0.078 0.059
β1, j −0.056 −0.077 −0.090 −0.171
β2, j 0.000 0.001 −0.033 −0.006

Mean fittedh∗j,t · 100 0.337 0.440 0.537 0.864
RMSE of yield to

maturity (basis points) 6.95 8.41 9.38 9.76

Panel B: Estimated instantaneous default risk behavior, sorted by
contemporaneous credit rating

Month t Number of Median values (×100) of:

credit rating observations ĥj,t σj (ĥ∗j,t )
1/2 [V̂ art−1(ĥ∗j,t )]

1/2

Aaa 440 0.793 0.417 0.123
Aa 2,351 0.969 0.462 0.131
A 7,937 1.231 0.428 0.125

Baa 3,615 1.834 0.709 0.204
Ba 34 1.293 0.896 0.335

Parameters are defined in Table 3. In panel A, a firm’s initial credit rating
is defined as the credit rating on the firm’s senior unsecured bonds in the
first monthly observation used to estimate the firm’s default process. In panel
B, fitted monthly values are denoted with hats. The final column in panel B
reports the 1-month-ahead variance of the fitted value implied by the Kalman
filter recursion.

The instantaneous default riskh∗j,t is set to the appropriate median fittedh∗j,t
reported in the same table. The parameters of the default-free process are
taken from Table 2 and the factorssi,t , i = 1,2 are set to their mean values
over 1985 through 1995.

The spread curves in Figure 1 are consistent with stylized facts about
term structures of yield spreads. Earlier research has shown that on av-
erage across investment-grade bonds, the term structure of yield spreads
is upward sloped.10 Litterman and Iben (1991), Fons (1994), and Duffee
(forthcoming) find that this positive slope is stronger for lower-rated bonds
than higher-rated bonds, which is also consistent with Figure 1. For exam-
ple, Fons (1994) finds that yield spreads for Aaa-rated coupon bonds are
essentially flat across maturities, while yield spreads for Baa-rated coupon
bonds increase about 2 b.p. for each additional year to maturity.

10 The focus here is on investment-grade bonds because the dataset has little information on speculative-
grade bonds. The slopes of term structures of yield spreads for speculative-grade bonds are examined
by Sarig and Warga (1989), Fons (1994), and Helwege and Turner (1997). On balance, the evidence
concerning the slope of the typical speculative-grade term structure is mixed.
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Figure 1
Term structures of yield spreads
This figure displays hypothetical term structures of zero-coupon corporate bond yields less zero-coupon
Treasury bond yields implied by a two-factor translated square-root model of Treasury yields and a
translated square-root model of instantaneous default risk. The default-risk parameters for each credit
rating are the median estimates across those firms with the given rating. The two default-free factors are
set equal to their mean values over the sample period 1985–1995.

In Table 4, the median estimate of a firm’s mean fittedh∗j,t rises monoton-
ically as the firm’s credit rating falls. This is part, but not all, of the reason
why lower-rated firms have higher yield spreads in Figure 1. Median esti-
mates ofαj are also higher for lower-rated firms. For example, in Figure 1,
the short end of the Aa-rated yield curve is 42 b.p. lower than the short end
of the median Baa-rated yield curve. Of this amount, slightly more than half
is the result of the difference in the two values ofh∗j,t used to construct the
curves. The remainder owes to the differences inαj .

Similarly, part of the differences among the slopes of the various spread
curves are explained by differences inh∗j,t , with the remainder explained
by variations in parameter estimates. In order for higher values ofh∗j,t to
correspond to steeper average yield spread slopes,κj +λj must be negative.
When this sum is negative, investors price corporate bonds as if they expect
h∗j,t to rise over time, inducing a positive slope to the term structure of yield
spreads.11 Moreover, for a fixed negativeκj + λj , a higher value ofh∗j,t
implies a steeper yield spread curve.

Although negative values ofκj + λj are important in capturing the vari-
ations of yield spread slopes as credit quality changes, they induce fairly
steep yield curves for even high-quality firms. Roughly speaking, the role of
a positiveαj is to dampen the overall steepness of the yield spread curves.

11 This is strictly true only for a stochastich∗j,t . If h∗j,t = κj θj = 0, h∗j,t is fixed at zero and thus the yield
spread will depend on onlyαj and the two terms related to the default-free factors.
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Without theαj parameter, the model would generate yield spread curves for
highly rated firms much steeper than those found in the data.

To see this clearly, imagine settingαj to zero. Thenh∗j,t andθj would
have to be increased byαj in order to hold bothhj,t and expectations of
future values ofhj,t fixed. But under the equivalent martingale measure,
this increase inh∗j,t would imply a more explosive default risk process, and
thus a steeper yield spread curve. For example, consider the yield spread
curve for Aa-rated firms in Figure 1, which rises from 60 b.p. at the short
end to 88 b.p. at 15 years. If the estimate ofαj were set to zero while
adjustingh∗j,t andθj by the appropriate amount, the resulting yield spread
curve would rise from 60 b.p. to 134 b.p. over the same maturity span.
Without αj > 0 andκj + λj < 0, this model could not simultaneously
match two fundamental features of the data: low, nearly flat term structures
when firms are very creditworthy and high, steeper term structures when
firms are less creditworthy.12

Variations in estimates ofκj + λj across credit ratings also contribute
to the pattern of steeper yield spread slopes for lower-rated firms. Because
κj + λj is more negative for the lower-rated firms, default risk is more
explosive under the equivalent martingale measure for low-rated firms than
for high-rated firms. For example, in Figure 1, the spread between the Aa-
rated spread curve and the Baa-rated spread curve widens from 42 b.p. at the
short end to 92 b.p. at 15 years. If the Aa-rated spread curve were constructed
using the Baa-rated firms’ median value ofκj + λj , the spread between the
curves at 15 years would be only 60 b.p. Thus most of the difference between
the slopes of the Aa-rated spread curve and the Baa-rated spread curve owes
to the difference inκj + λj .

The final point to take from panel A of Table 4 is lower-rated firms’
greater sensitivity to the slope of the default-free term structure. The me-
dian estimates imply that ifs1,t increases by 100 b.p., yield spreads on
Aaa-rated, near-zero-maturity instruments fall by instantaneous default in-
tensities by only 3 b.p., but yield spreads on otherwise equivalent Baa-rated
instruments fall by nearly 10 b.p. Across all credit ratings, default intensi-
ties respond very weakly to changes ins2,t . The general pattern of greater
sensitivity for lower-rated firms is consistent with the empirical behavior of
yield spreads documented in Duffee (forthcoming), but the magnitudes of
the implied inverse relations between yield spreads and default-free interest
rates reported here are uniformly weaker than reported there.

Panel A of Table 4 disaggregated parameter estimates by firms’ initial
credit ratings. A different type of disaggregation is used in panel B. Fitted
values ofhj,t are sorted according to firmj ’s time t credit rating instead of
firm j ’s time 0 credit rating. As expected, these values are inversely related to

12 This failure was confirmed in an earlier version of this article which did not includeαj .
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firms’ credit ratings. Firms rated Aaa have a median estimated instantaneous
default probability of 0.79%; this median estimate rises to 1.83% for the
Baa firms. (A few observations of Ba-rated firms are available, for which
the median estimate ofhj,t is less than that of Baa-rated firms. This anomaly
is likely created by the sample size.)

The panel also reports a general pattern of higher default risk volatility
for lower-rated firms. Volatility is measured in two ways: the implied instan-

taneous standard deviation ofh∗j,t , which isσj

√
h∗j,t , and the 1-month-ahead

standard deviations of the fitted values ofhj,t produced by the Kalman filter
recursion. Median values of both measures are lowest for Aaa-rated firms
and highest for Baa-rated firms. (They are even higher for Ba-rated firms,
but the limited number of observations makes these estimates unreliable.)
This pattern is, however, violated by the relative ordering of the volatilities
of Aa-rated and A-rated firms.

On balance, the disaggregated estimates from the default-risk model
suggest that the model is misspecified in certain ways. Although part of
the variation, across credit ratings, in term structures of yield spreads is
simply the result of variations inh∗j,t , the estimates also capture part of this
variation in systematic variations in parameters across credit ratings. Of
course, it is possible that the model is not misspecified. Instead, the median
parameter estimates in Table 4 may be poor estimates of the true parameters
for typical firms. More formal specification tests are considered in the next
section.

6. Specification Tests

In this section we consider whether the stochastic process forh∗j,t specified
in Equation (6a) is an accurate description of the behavior ofh∗j,t implied by

corporate bond prices. Recall thatĥ∗j,t is the Kalman filter’s estimate ofh∗j,t
based on information throught . The filter also produces a one-step-ahead
expectation and variance of this estimate. (One step is usually 1 month, but
if there are missing values, a step will be multiple months.) Therefore we
can construct normalized one-step-ahead innovations inĥ∗j,t , denotedζj,t .
If the model of instantaneous default risk is correctly specified, neitherζj,t

nor |ζj,t | should be forecastable using information dated prior tot .

6.1 Persistence
We first test for the presence of autoregressive components inζj,t by fitting it
to an AR(3). Note that under the null hypothesis, the estimated coefficients
are equal (to zero) across all firms, as are the variances of the regression
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residuals. Therefore I can estimate the AR(3) equations jointly across allj :

ζj,t = b0+
3∑

i=1

bi ζj,t−i + ej,t ,

E(ej,t) = 0, E(e2
j,t ) = Ä,

E(ei,tej,t) = ρÄ, i 6= j, E(ei,tej,t−m) = 0,m 6= 0, ∀i, j . (9)

Under the null hypothesis that the model of instantaneous default risk is
correctly specified, the AR coefficients should equal zero. I estimate Equa-
tion (9) simultaneously across all firms using QML. I assume that the resid-
uals from the regression are contemporaneously correlated across firms and
uncorrelated across time. The QML procedure maximizes the likelihood
function associated with Equation (9), assuming that the errors are jointly
normally distributed. The standard errors are then adjusted to account for
nonnormality of the errors. In Equation (9), note that the coefficients are not
indexed byj ; the estimated parameters are assumed to be equal across allj .

The results of estimation of Equation (9) are reported in panel A of
Table 5. Some specification error is evident. The first AR term is 0.22
and is statistically significantly different from zero. Thereforeζj,t exhibits
persistence, indicating that estimated values ofκj do not capture completely
the mean reversion in̂h∗j,t . Of independent interest is the cross-correlation of
innovations in firms’ instantaneous default probabilities. The point estimate
of ρ is 0.29, and as thet-statistic indicates, it is estimated very precisely.
This point estimate implies that variations in firms’ default probabilities
have common components, but these common components are not very
large compared to idiosyncratic components. This result is not altered by
sorting firms by their senior unsecured credit ratings. In results that are not
detailed here, I find that QML estimation of Equation (9) broken down by
major credit rating (Aaa, Aa, etc.) produces similar estimates ofρ.

Panel A of Table 5 also reports a test of the accuracy of the volatility
specification of Equation (6a). In Equation (6a), the only source of persis-
tence in the volatility ofh∗j,t is the persistence in the level ofh∗j,t . There
are two issues of interest. First, are there persistent variations in volatility
(GARCH-like effects) that are not accounted for by variations in the level of
h∗j,t? Second, does the square-root specification capture the true relation be-
tweenh∗j,t and innovations inh∗j,t? (Is the “level effect” correctly modeled?)
I estimate Equation (10) jointly across all firms with QML:

|ζj,t | = b0+
3∑

i=1

bi |ζj,t−i | + b4ĥ∗j,t−1+ ej,t . (10)

The volatility of ζj,t is measured with absolute values. This choice is
based on Davidian and Carroll’s (1987) conclusion that when distributions
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Table 5
Specification tests of the default-risk model

Panel A: Forecasting default-risk innovations and their volatilities

Dependent Explanatory variables

variable Lag 1 Lag 2 Lag 3 ĥ∗j,t−1 ρ

ζj,t 0.223 −0.008 −0.020 — 0.286
(9.97) (−0.58) (−1.37) (7.78)

|ζj,t | 0.134 0.026 0.020 0.136 0.157
(8.04) (1.90) (1.88) (0.56) (3.81)

Panel B: Relations between default risk and default-free interest rates

Month t − 1 Number of Explanatory variables
rating observations 1ŝ1,t 1ŝ2,t 1ŝ1,t−1 1ŝ2,t−1 ρ

Aaa 430 −11.19 3.03 9.73 13.61 0.208
(−0.53) (0.16) (0.55) (0.76) (2.94)

Aa 2,308 −15.18 −17.81 16.50 27.84 0.302
(−0.95) (−1.04) (1.13) (1.74) (8.36)

A 7,807 −7.18 −29.79 10.19 16.27 0.316
(−0.46) (−1.88) (0.71) (1.22) (7.78)

Baa 3,536 −17.09 −23.87 2.44 13.40 0.295
(−1.00) (−1.27) (0.17) (0.82) (7.40)

The stochastic component of firmj ’s instantaneous default risk that is independent of
the default-free term structure ish∗j,t . The fitted monthly valueζj,t is the normalized
innovation in the fitted values ofh∗j,t , where the normalization uses the one-period-ahead
variance in fittedh∗j,t implied by the Kalman filter recursion. In panel A, bothζj,t and

|ζj,t | are fit to an AR(3). The fitted level̂h∗j,t−1 is included in the latter regression. There
are 13,583 observations. In panel B,ζj,t is regressed on the current and lagged first
differences of the fitted default-free interest rate factors. These differences are denoted
1ŝi,t , i = 1,2. Observations are sorted by firmj ’s month t − 1 credit rating and the
regression is estimated separately for each group. The regressions are estimated jointly
across firms with QML, where the correlation between different firms’ regression errors
isρ, assumed to be constant across firms and time. Noncontemporaneous innovations are
assumed independent.T-statistics are in parentheses.

are characterized by fat tails, it is often more efficient to estimate volatility
functions using absolute values of residuals instead of squares. The variance-
covariance matrix of the residuals from Equation (10) is assumed to have
the same form as that for Equation (9).

The results in Table 5 indicate moderate GARCH-like effects inζj,t . The
AR(1) coefficient for|ζj,t | is 0.13 and is strongly statistically significant.
These results indicate that in the data there is some source of persistence
in the volatility ofh∗j,t that is not captured by the level ofh∗j,t . On the other
hand, the results in Table 5 indicate that the square-root form of the level
effect is an adequate characterization; the level ofh∗j,t−1 is insignificantly
related to|ζj,t |.
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6.2 The relation between default risk and default-free rates
The model of default risk used in this article is designed to capture any cor-
relation between default risk and default-free interest rates solely through
the coefficientsβ1, j andβ2, j . The bond pricing formulas used to compute
zero-coupon corporate bond prices rely on the assumption thath∗j,t is in-
dependent of the components of the default-free interest rate,s1,t ands2,t .
Here I investigate the appropriateness of that assumption.

I regressζj,t on the contemporaneous and lagged changes in the fitted
values ofs1,t ands2,t :

ζj,t = b0+ b1ŝ1,t + b2ŝ2,t + b3ŝ1,t−1+ b4ŝ2,t−1+ ej,t . (11)

Observations are sorted by firmj ’s montht − 1 credit rating and Equa-
tion (11) is estimated with QML separately for each group. The variance-
covariance matrix of the residuals is again assumed to have the same struc-
ture as Equation (9).

The results are reported in panel B of Table 5. From the perspective of
statistical significance, they are encouraging. Across all four credit rating
groups, no coefficient is individually significant at the 5% level. In addition,
the economic significance of the coefficients is small. For concreteness, con-
sider the results for Baa-rated firms. Imagine thats1,t increases by 100 b.p.
The point estimates in Table 5, combined with the median standard devia-
tion for Baa-rated firms reported in panel B of Table 4, imply an increase
in near-zero-maturity yield spreads of 2 b.p. The implied responsiveness of
Baa yield spreads to changes ins2,t is greater, but the point estimates indi-
cate that this responsiveness is quite transitory—most is reversed within a
month.

6.3 Stale bond prices
Information that affects a firm’s value should be immediately impounded
into both the firm’s stock price (if it has publicly traded stock) and its bond
prices. But because the bond prices used in this article are not transaction
prices, but rather indicative prices supplied by traders, it is possible that the
bond prices respond to the information with a lag. If so, stock returns should
predict future bond returns. Using a different dataset of indicative bond
prices, Kwan (1996) documented that weekly changes in bond yields lagged
stock returns. Here I examine the importance of lagged responsiveness at
the monthly frequency.

To test for stale bond prices, I regress the monthly normalized innovation
ζj,t on lags 0–3 of the firm’s monthly stock returnπj,t . The stock returns
are from CRSP and are available for 128 of the 161 firms:

ζj,t = b0+ b1πj,t + b2πj,t−1+ b3πj,t−2+ b4πj,t−3+ ej,t . (12)

Observations are sorted by firmj ’s montht − 1 credit rating and Equa-
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Table 6
The relation between firms’ estimated instantaneous default probabilities and their
stock returns

Credit Number of Stock return
rating observations Lag 0 Lag 1 Lag 2 Lag 3 ρ

Aaa 124 −3.521 −0.876 −3.767 0.426 −0.275
(−2.20) (−1.06) (−3.73) (0.32) (−2.06)

Aa 1,591 −0.859 −0.979 −0.685 −0.673 0.263
(−2.12) (−2.29) (−2.01) (−2.04) (7.48)

A 5,781 −0.640 −0.655 −0.577 −0.338 0.299
(−2.40) (−3.25) (−3.34) (−2.06) (8.34)

Baa 2,993 −1.424 −0.877 −0.767 −0.613 0.247
(−4.18) (−3.22) (−2.59) (−2.81) (6.96)

The stochastic component of firmj ’s instantaneous default risk that is independent of
the default-free term structure ish∗j,t . Normalized innovations in the fitted values ofh∗j,t
are regressed on current and three lags of firmj ’s monthly stock returns, where the
normalization uses the 1-month-ahead variance in fittedh∗j,t implied by the Kalman filter
recursion. Observations are sorted by firmj ’s montht−1 credit rating and the regression is
estimated separately for each group. The regressions are estimated jointly with QML, where
the correlation between different firms’ regression errors isρ, assumed to be constant across
firms and time. Noncontemporaneous innovations are assumed independent.T-statistics
are in parentheses.

tion (12) is estimated with QML separately for each group. Again, the
variance-covariance matrix of the residuals is the same as that in Equa-
tion (9). The results for rating categories Aaa through Baa are reported in
Table 6. Those for Aaa-rated firms are based on very few observations (the
sample is almost entirely composed of data for General Electric) and thus
they will not be discussed further here.

As expected, for all credit rating categories, stock returns and default
probabilities move in opposite directions. More importantly, the results
provide strong evidence of stale bond prices. Of the total response, in a
regression sense, ofh∗j,t to lags 0–3 of firmj ’s stock returns, between 27%
(Aa-rated firms) and 39% (Baa-rated firms) of the response occurs in the
contemporaneous month. The remainder is spread out fairly evenly over the
lagged months. For all rating categories (excluding Aaa), the response to
each lagged stock return is statistically significant from zero at the 5% level.

The strength of the inverse relation between stock prices and instan-
taneous default probabilities is larger for Baa-rated firms than for either
Aa-rated or A-rated firms. This result is generally consistent with models
of default risk in the style of Merton (1974), which imply that the change
in default risk for a given stock-price change is larger for firms that are
close to the default boundary than for firms that are far away from the
default boundary. The results in Table 6 indicate that a one standard devi-
ation positive stock return in montht for a typical Aa-rated firm (which is
6.6% for this dataset) corresponds to a decline in the firm’s montht + 3
instantaneous default probability of roughly 0.00027, which corresponds to
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a decline in near-zero-maturity yield spreads of 1.5 b.p.13 A one standard
deviation stock return in montht for a typical Baa-rated firm (8.5% for this
dataset) corresponds to a decline in the firm’s montht − 3 default proba-
bility of roughly 0.00062, or a decline in near-zero-maturity yield spreads
of 3.5 b.p. This magnitude is 2.3 times the corresponding magnitude for
Aa-rated firms.

7. Concluding Remarks

This article uses the extended Kalman filter to fit yields on bonds issued
by individual investment-grade firms to a model of instantaneous default
risk. The results are encouraging in a number of respects. First, the average
error in fitting corporate bond yields is less than 10 b.p. Second, the model’s
parameter estimates imply that regardless of how much the financial health
of a typical firm improves, yield spreads for that firm will not be driven to
zero. This suggests that the model is successfully capturing the presence of
a liquidity component (or more generally, a nondefault component) in yield
spreads, even though the estimation procedure incorporated no information
about the relative liquidities of corporate and Treasury bonds. Third, the
model naturally produces an important feature of observed yield spreads;
term structures of spreads for lower quality firms are more steeply sloped
than are term structures of spreads for higher quality firms.

The model is by no means a complete success. There appears to be some
parameter instability as firms’ credit qualities change, although it is impos-
sible to tell whether this indicates misspecification or simply randomness
in parameter estimates. In addition, the model implies that the volatility of
instantaneous default risk follows a square-root process, but the data indi-
cate the presence of an additional form of persistent variation in volatility.
Finally, the model is fit to observations on firms’ bond yields that are them-
selves flawed. The yields, which are traders’ indicative bid prices, appear
to react very slowly to information in the firms’ stock prices.

The results here can be used both as benchmarks for models of corporate
bond pricing and as directions for future research. More generally they
provide support for the idea that the class of instantaneous default-risk
models can price default-risky claims successfully.

Appendix: Corporate Bond Pricing

The manner in which Equation (5) incorporates correlations between the default-free
term structure and the default process allows default-risky zero-coupon, no recovery

13 This computation convertsζj,t into predictions of changes inh∗j,t using the median standard deviation of
h∗j,t for Aa-rated firms in Table 4 and then discounting changes inh∗j,t at the medianκj also reported in
Table 4.
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bond pricesVj (t, T,0,0) to be decomposed into three independent components. For
each firm j , define “adjusted” riskfree rate processess∗i,t = si,t (1 + βi, j ), i = 1,2,
where under the equivalent martingale measure

ds∗i,t = [κi θ
∗
i − (κi + λi )s

∗
i,t ]dt + σ ∗i

√
s∗i,t dẐi,t , (A1)

θ∗i = θi (1+ βi, j ), (A2)

σ ∗i = σi

√
1+ βi, j . (A3)

ThedẐi,t in Equation (A1) is identical todẐi,t in Equation (3b), and therefore the
instantaneous innovations in the adjusted riskfree factorss∗1,t ands∗2,t are independent of
each other and of the innovation inh∗j,t . The prices of corporate zero-coupon bonds with
no recovery in the event of default can be written as the following expectation under the
equivalent martingale measure:

Vj (t, T,0,0) = exp

[
− (T − t)(αr + αj − β1, j s1,t − β2, j s2,t )

]
· EQ

t exp

[
−
∫ T

t

s∗1,udu

]
EQ

t exp

[
−
∫ T

t

s∗2,udu

]
· EQ

t exp

[
−
∫ T

t

h∗j,udu

]
(A4)

Standard multifactor bond pricing techniques can be applied to produce closed-form
solutions for Equation (A4) given the adjusted processes of Equations (A1), (A2), and
(A3). See, for example, Duffie (1996a).

I useP(t, T, c) to denote the price of a default-free bond that pays a couponc at T
(in addition to the principal payment) and every 6 months prior toT . Similarly, denote
the price of a default-risky bond issued by firmj that promises a semiannual couponc,
but pays nothing in default, asVj (t, T, c,0). Simple no-arbitrage arguments reveal that
the price of a coupon bond is the sum of the prices of the individual coupon payments
and principal payment. If coupon payments are promised at timesτi , i = 1, . . . , N, the
bond prices are

P(t, T, c) = c
N∑

i=1

P(t, τi ,0)+ P(t, T,0), (A5)

Vj (t, T, c,0) = c
N∑

i=1

Vj (t, τi ,0,0)+ Vj (t, T,0,0). (A6)

Finally, consider a coupon bond issued by firmj , maturing at timeT , with recovery
rateδ. Denote its price byVj (t, T, c, δ). I assume that in the event of default at time
τ , the bond pays offδP(τ, T, c). (This is equivalent to assuming the bond paysδc at
each coupon payment date after default, and an additionalδ at maturity.) Given this
assumption, a modification of Equation (7) will hold:

Vj (t, T, c, δ) = δP(t, T, c)+ (1− δ)Vj (t, T, c,0). (A7)
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Thus standard corporate bonds, which pay coupons and have recovery value in the
event of default, can be priced with Equation (A7) using default-free coupon bond prices
[Equation (A5)] and the prices of defaultable bonds with no recovery value [Equa-
tions (A4) and (A6)].
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