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ABSTRACT 
The distribution of long-horizon idiosyncratic returns to individual stocks is strongly 

asymmetric, in contrast to both the distribution of shorter-horizon returns and the intuition 
of the Central Limit Theorem. The lower tail of the distribution is much fatter than the 
upper tail. One reason for this asymmetry is a modest, extremely persistent negative relation 
between a stock’s return and its future idiosyncratic return volatility. The long-run relation 
between returns and volatility is driven by two balance-sheet effects that work in opposite 
directions. One is the leverage effect: a higher asset/equity ratio corresponds to both greater 
idiosyncratic volatility and greater exposure to common risks. The other appears to be an 
asset-mix effect. A higher book/market ratio corresponds to both less idiosyncratic volatility 
and less exposure to common risks. This result is consistent with the idea that book/market 
is correlated with the proportion of a firm’s assets that are lower-risk assets-in-place instead 
of higher-risk intangible assets such as growth options. The leverage effect induces a negative 
relation between returns and volatility, while the asset-mix effect induces a positive relation. 
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1 Introduction 

Extensive research documents the properties of daily and monthly returns to individual 

stocks. Thus we know, for example, whether the distributions of these returns are typically 

symmetric and whether the tails of the densities look Gaussian.1 Researchers have also 

studied key features of the short-run dynamics of these returns, such as the persistence in 

volatility and the correlation between returns and future market betas. 

However, we know little about the properties of returns to individual stocks over horizons 

of a year or more. Our ignorance is partially a consequence of limited data. It is hard to say 

much about the tails of the density of a particular firm’s stock return over, say, a two-year 

horizon when no security in the Center for Research in Security Prices files has more than 40 

observations of nonoverlapping two-year returns. This gap in our knowledge is unfortunate 

because dynamic asset pricing theories often have strong implications for distribution of 

long-horizon stock returns. For example, structural contingent-claim models for pricing 

credit-risky instruments (e.g., Merton (1974)) posit joint dynamics of firm value and debt 

that largely determine the distribution of long-horizon stock returns. Models of dynamic 

project choice by firms (e.g., Berk, Green, and Naik (1999)) also generate distributions of 

long-horizon stock returns, as well as implications for the relation between returns and future 

exposure to market risks. More generally, models that characterize long-run dynamics of 

short-horizon returns have implications for the behavior of long-horizon returns. To take the 

simplest case, the assumption that short-horizon log returns are stationary and independent 

implies (using the intuition of the Central Limit Theorem) that the distribution of long-

horizon log returns is symmetric. 

Although data limitations prevent us from estimating with precision the behavior of 

long-horizon returns to particular stocks or the market as a whole, in this paper I exploit 

the information in a broad panel of stock returns (1.6 million monthly observations) to 

study the behavior of long-horizon returns to a typical stock. These long-horizon returns 

consist of common and idiosyncratic components. Because the panel has no information 

about the behavior of common components that cannot be gleaned from studying portfolio 

returns, I focus on two particular issues here. First, what is the shape of the distribution 

of idiosyncratic multi-year returns? Second, what is the relation between yearly returns to 

stocks and the stocks’ future aggregate risk exposures (betas)? 

I find that the distribution of idiosyncratic five-year returns is wildly inconsistent with the 

intuition of the Central Limit Theorem. The lower tail of the distribution is much fatter than 
1At the daily horizon returns to individual stocks are positively skewed. At the monthly horizon returns 

are close to symmetric and have fatter tails than the Gaussian distribution. 
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the upper tail. For example, the lower and upper one percentiles of five-year idiosyncratic log 

returns for a typical firm listed on the NYSE are about −350 and 240 percent, respectively. 

This asymmetry contrasts sharply with the nearly symmetric distribution of idiosyncratic 

monthly returns. 

This asymmetric return distribution is, in part, a consequence of an asymmetric relation 

between returns and idiosyncratic return volatility. I find that when a stock’s price falls, 

the volatility of idiosyncratic returns rises modestly for the next few years. This persistent 

negative relation conflicts with what we know about asymmetric volatility in other contexts. 

At the aggregate level, volatility rises sharply after a decline in stock prices but quickly 

returns to its earlier level. At the firm level, the relation between returns and volatility is 

positive in the very short run. 

Asymmetric volatility is simply a statistical property; the important economic question 

is what drives it. I find that changes in a firm’s capital structure are closely associated with 

changes in volatility. There are two competing balance-sheet effects at work. The first is 

the leverage effect. As others have documented, a decrease in a firm’s stock price increases 

its debt-equity ratio, and changes in debt/equity are positively associated with changes in 

return volatility. New to this paper is evidence of a book-to-market effect. A decrease in a 

firm’s stock price increases its book-to-market ratio, and changes in a firm’s book/market 

are negatively associated with changes in return volatility. This latter relation is consistent 

with an asset-mix effect, in which assets-in-place (proxied by book equity) are less volatile 

than intangible assets such as real options. 

These empirical links between idiosyncratic volatility and balance sheets have their nat-

ural counterparts in links between betas and balance sheets. An increase in a firm’s leverage 

corresponds to an increase in its future stock return volatility owing to common factors, while 

an increase in its book-market ratio corresponds to a decrease in this common component of 

volatility. The net relation between a firm’s stock return and its exposure to common risks 

is weak. This weak relation appears inconsistent with earlier evidence that “winners” subse-

quently have lower risk premia than do “losers.” However, in the context of the three-factor 

of Fama and French (1993), there is no contradiction. A winner’s exposure to common risks 

shifts from factors with high risk premia (small-cap and high book-to-market factors) to a 

factor with a low risk premium (a large-cap factor). 

The outline of the remainder of this paper is as follows. Section 2 discusses how this 

paper fits in with the earlier literature. Section 3 explains how I construct idiosyncratic 

returns across different horizons and then discusses the empirical distributions of these re-

turns. Section 4 investigates the relation between stock returns and future return volatility. 

Concluding comments are in the final section. 
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2 Related research 

To date there is no direct evidence on the behavior of long-horizon returns to individual 

stocks. There is, however, a large literature on short-horizon returns–daily and monthly. If 

we had an accurate descriptions of the distribution and dynamics of short-horizon returns 

we could infer the behavior of long-horizon returns. 

Since the 1960s, researchers have studied the probability distributions of short-horizon 

returns. Textbook treatments of empirical distributions include Fama (1976). He argued 

that distributions of monthly returns to firms’ stocks are approximately Gaussian, while 

distributions of daily returns are skewed and highly leptokurtotic. Subsequent research 

has expanded our knowledge of these distributions, but not altered the way we interpret 

the contrast highlighted by Fama.2 Campbell, Lo, and MacKinlay (1997) state the standard 

intuition: “Since all moments are finite, the Central Limit Theorem applies and long-horizon 

returns will tend to be closer to the normal distribution.” (p. 19) In other words, tail events 

of short-horizon returns have only a modest impact on longer-horizon returns. 

Taken to its extreme, this Central Limit Theorem (CLT) argument implies that log 

returns over multi-year horizons are Gaussian. But the CLT intuition applies to situations 

in which random variables are (sufficiently close to) independent. There is no question that 

short-horizon returns are not independent, although it is not clear whether the degree of 

dependence is enough to overturn the CLT. Aside from the conclusion that short-horizon 

returns exhibit strong volatility persistence, there is no generally-accepted description of 

their dynamics. An important stumbling block is that key features of these dynamics have 

signs that depend on the return horizon. Cho and Engle (1999) and Duffee (1995) find that 

at the daily horizon, return volatility rises after a firm’s stock price rises. At the monthly 

horizon, Braun, Nelson, and Sunier (1995) and Duffee (1995) find no clear pattern between 

a firm’s stock returns and future volatility. At the daily horizon, Cho and Engle (1999) find 

a negative relation between a firm’s idiosyncratic stock return and its future market beta. 

The relation disappears at the monthly horizon (Braun et al. (1995)). The role of financial 

leverage in the short-run dynamics of firm-level stock returns has been extensively studied,3 

but the link, if any, between leverage and long-horizon returns is unknown. 

Prior research into the behavior of long-horizon returns has focused on portfolio-level 

returns. There is evidence of time-variation in both means and covariances with common 

factors. Analyses of conditional means follow DeBondt and Thaler (1985) and Jegadeesh 

2Much of this research considered whether stock returns are better described by a finite-variance or 
infinite-variance distribution. See Chapter 1 in Campbell et al. (1997) for references. Simkowitz and Beedles 
(1978, 1980) characterize more precisely the statistical description of firms’ monthly stock returns. 

3Recent studies include Bekaert and Wu (2000) and Figlewski and Wang (2000). 
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and Titman (1993), who document horizon-specific serial correlation patterns of returns. 

Attempts to understand these patterns emphasize time-varying covariances with common 

factors. Chan (1988) and Ball and Kothari (1989) find that stocks that were “winners” 

during a multiyear “ranking period” had higher betas in that ranking period than they 

did during the subsequent “performance period.” Grundy and Martin (2001) refine these 

results by considering multifactor models and by conditioning on the factor returns. Related 

evidence is in Fama and French (1996). They find that risk premia, as measured by their 

three-factor model, are higher for stocks that have decreased in price over the past few years. 

In addition, there is a large literature on time-variation in betas that focuses on the variation 

of betas with aggregate variables.4 

Option prices provide a little indirect evidence on the distribution of long-horizon stock 

returns. Lauterbach and Schultz (1990) find that prices of warrants (long-dated options) 

are more consistent with a constant elasticity of variance pricing model than with the Black 

and Scholes (1973) model. This result suggests that the distribution of long-horizon stock 

returns is asymmetric, with the lower tail fatter than the upper tail. In principle, prices of 

corporate debt should contain substantial information about the distribution of long-horizon 

stock returns. However, the empirical accuracy of existing structural models is too low to 

trust the models’ implications for this distribution.5 

In a nutshell, our knowledge of the behavior of long-horizon returns to individual stocks 

is fairly sparse. In the next section I begin to fill in the gaps by examining the distribution 

of long-horizon returns. 

3 The distribution of long-horizon returns 

3.1 Theory 

To motivate the empirical analysis of long-horizon returns it is useful to look at a simple 

model. Assume that we can write the log excess return to stock i from the end of period 

t − 1 to the  end of period  t as 

J� 
ri(t) =  αit + βjitrj (t) +  i(t), Vart[ i(t)] = σit 

2 . (1) 
j=1 

4See, for example, Jagannathan and Wang (1996) and its references. 
5See Eom, Helwege, and Huang (2002) for an empirical analysis of a variety of structural models. They 

conclude “. . . all of the models have substantial [credit] spread prediction errors.” 
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In (1), there are J common components to stock returns rj(t). Think of them as returns 

to mimicking portfolios for some underlying factors. Time-varying parameters are given 

time subscripts. A subscript of t indicates a variable known at the end of t − 1. The time 

dimension of returns is indicated with parentheses; the return ri(t) is not  known until  the  

end of t. The log excess return to this stock over T periods is denoted ri
T (t) and is the sum 

of short-horizon returns from t to t + T − 1: � � 
T−1 J T−1� � � 

T T T ri (t) ≡ αi(t+k) + βji(t+j)rj(t + k) + i (t),� i (t) ≡ i(t + k). (2) 
k=0 j=1 k=0 

Because the use of log returns creates some complications later, it is useful to recall the 

motivation behind their use. The intuition of the CLT is based on the behavior of sums 

of random variables. Unlike log returns, long-horizon simple net returns are not the sum 

of short-horizon simple net returns. Thus there is no reason to believe that the density 

of longer-horizon simple returns should be symmetric. In fact, it cannot be; a stock price 

cannot fall below zero, but is unbounded above. 

If we faced no data limitations we could determine the statistical distribution of long-

horizon returns ri
T (t) by constructing a histogram from a large number of nonoverlapping 

draws of these returns. However, for T greater than a few months, the available time series 

are too short to construct a reliable histogram for ri
T (t) for a given stock i. 

The approach I adopt is to construct a histogram across both stocks and time. This 

panel approach gives us additional information about the distribution of long-horizon stock-

specific shocks but cannot tell us anything new about long-horizon market returns. Therefore 

I focus on the distribution of i
T (t). To construct this distribution the common components 

must be removed from ri
T (t), which requires specifying the common factors and estimating 

each stock’s loadings on the factors. In the empirical work that follows I use the three 

Fama-French factors as the common components. Since these factors are not the universe of 

common components to stocks, the use of the term “idiosyncratic” is a little strained, but 

it is easier to use than “the part of stock returns that is not captured by the Fama-French 

factors.” 

The focus on idiosyncratic returns instead of total returns is not an important limitation 

because idiosyncratic components dominate the volatility of individual stock returns. For 

example, the standard deviation of log returns to a typical stock on the NYSE is about 

13 percent per month, while the standard deviation of the idiosyncratic component of this 

return (i.e., after removing Fama-French factor loadings) is about 11 percent. 

There are two critical choices to make when constructing the empirical distribution of 

long-horizon returns. First, we must decide how to combine information about returns to 
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stocks that differ in their return variances. Second, we must decide how to treat truncated 

returns—returns to stocks that do not have a complete history of returns over the T -period 

horizon. I address these two choices in order. 

3.1.1 Standardizing returns 

The idiosyncratic returns i(t) have different variances across stocks i. If the returns are not 

adjusted for these differences, the resulting distributions of i(t) and  i
T (t) are completely 

unconditional distributions: we do not condition on either i or t. These are well-defined 

distributions, but they are not particularly interesting given the goals of this paper. One 

objective is to see if the intuition of the CLT holds when we compare long-horizon return 

distributions to short-horizon distributions. The theorem breaks down when there is suffi-

cient dependence between successive short-horizon returns. If we do not scale i(t), there is 

an obvious reason for dependence: successive returns are generated by the distribution for 

a given stock i. Put differently, the distribution of long-horizon returns will have fat tails 

simply because there are some stocks with large return variances. 

Cross-sectional differences in variances could be removed if we could scale i(t) by its  

standard deviation conditioned on i. However, we do not observe these stock-specific stan-

dard deviations, and scaling by estimates of these standard deviations turns out to have 

highly undesirable consequences. (I discuss these consequences in Section 3.2.) In addition, 

scaling by stock i’s unconditional standard deviation (more precisely, the standard devia-

tion conditioned on i but not on t) does not adjust for variations over time in the volatility 

of stock i’s return. Although these variations are much smaller than cross-sectional varia-

tions in volatility, they have the same qualitative effect on the distribution of long-horizon 

returns: the distribution will have fat tails because there are some time periods in which 

return variances are large. 

If we could observe the conditional standard deviations σit, we could construct standard-

ized returns 

zi(t) =  i(t)/σit, zi
T (t) =  i

T (t)/σit. 

I adopt this method (using an estimate of σit), but it is an imperfect solution when there is 

mean reversion in σ2 Although Vart[zi(t)] = 1 for all i and t, Vart[z
T (t)] depends on whetherit. i 

σit is above or below its mean (conditioned on i). If, say, the volatility of stock i’s return 

is temporarily low, we expect it to rise in the future and therefore the conditional variance 

Vart[ i(τ)/σit], τ  > t, is greater than one. Thus the variance of long-horizon scaled returns 

will tend to be high when σit is low. The resulting distribution of long-horizon returns will 

still be a mixture of high-variance returns and low-variance returns, although the mixture 
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will not be as extreme as it would be if we scaled by unconditional standard deviations. 

3.1.2 The treatment of truncated returns 

The second critical choice is how to treat long-horizon returns that are truncated. The most 

common reasons for truncation are merger, delisting, or liquidation. There is no obvious 

way to consistently treat truncated and non-truncated returns. One method is to treat them 

identically. In other words, we can construct the distribution of idiosyncratic returns over 

the holding period from t until either the end of the return horizon T or until the stock price 

is unavailable: 

τ −1� 
T 
i (t) ≡ i(t + j), τ  = min(T, index of first missing obs in[t + 1, t  + T ]). (3) 

j=0 

This corresponds to the distribution of returns to an investment strategy that borrows 

at t to buy a stock, hedge out the market return component, and hold the position until the 

end of the return horizon or until the stock disappears. (It is essential to include the stock’s 

delisting return in this strategy, which leads to a set of problems that are discussed below.) 

However, I am more interested in understanding the dynamics of equity valuation than 

in returns to investor strategies. When a firm’s stock is no longer publicly traded, the equity 

value does not necessarily disappear. Instead, it is unobserved because it trades privately or 

is incorporated in the equity of a different firm. In such situations the distribution of (3) is 

not the distribution of long-horizon returns to equity. To illustrate this point, consider the 

two-period return to a stock. Each period’s return is normal with variance one. However, at 

the end of period one, the firm’s stock may stop publicly trading because the firm is merged 

into another firm. This event occurs with probability one-half. If mergers are independent of 

the period one returns, the distribution of two-period returns using (3) is nonnormal (it is a 

mixture of normals). But in another sense, the distribution of two-period returns is normal 

with variance two, and observed two-period returns are censored. We can recover the latter 

distribution of two-period returns by scaling up the truncated returns by the square root of 

two. 

More generally, we could construct long-horizon returns by scaling (3) to account for the 

shorter horizons of the truncated returns: 

τ−1� � 
T 
i (t) ≡ T/τ  i(t + j), τ  = min(T, index of first missing obs in[t + 1, t  + T ]). (4) 

j=0 � 
Scaling by T/τ  implies that that the unobserved portion of the truncated long-horizon 
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return is drawn from the same distribution as the observed portion of the truncated return. 

Therefore this scaling is appropriate if we assume that the events that lead to truncation 

are independent of past returns. Of course, this assumption is false. Stocks often disappear 

precisely because of their history of returns; bankruptcy is an obvious example. As we will see 

in the empirical work later in this paper, truncated long-horizon returns have higher variances 

and are more negatively skewed than non-truncated long-horizon returns. Therefore scaling � 
by T/τ  exaggerates the negative tail of long-horizon returns. 

Yet not scaling truncated returns underestimates the variance of long-horizon returns 

because it effectively assumes that idiosyncratic returns after truncation are identically zero. 

In addition, not scaling underestimates the size of the negative tail of long-horizon returns. 

Since returns tend to be truncated after stock prices fall to some barrier, observations of stock 

prices below the barrier are censored. In short, (3) underestimates and (4) overestimates the 

variance and lower tail of long-horizon returns. We cannot say more without putting some 

structure on the joint dynamics of returns and the event of truncation. Such modeling is 

beyond the scope of the present paper, thus I report information about both distributions 

in the paper. 

The main points of Sections 3.1.1 and 3.1.2 are (1) returns should be scaled to adjust for 

differences in conditional variances across stocks and time, and (2) any method used to scale 

long-horizon returns based on the length of time over which they are observed is problematic. 

In the next subsection I discuss the mechanics of constructing these returns. 

3.2 The construction of returns 

3.2.1 Estimation of factor loadings 

I use monthly stock returns from CRSP. If the stock has been delisted I augment the CRSP 

return series with a final month’s return equal to the delisting return, if available. I then 

form returns in excess of the riskfree rate by subtracting from the log monthly return the 

continuously-compounded yield on a three-month Treasury bill as of the end of month t− 1. 

A few of the delisting prices on CRSP are zero.6 (Of course this is not a transaction price.) To 

handle these prices, I adopt an ad hoc rule that replaces a minus infinity log monthly return 

with a −400 percent log monthly return. This has little effect on the results emphasized here 

because there were too few zero prices in my sample to affect the tail behavior of long-horizon 

stock returns at the percentiles that I examine (0.05, 0.01, and 0.005). 

6Delisting returns on CRSP are subject to much more error than returns based on exchange transactions. 
See Shumway (1997) and Shumway and Warther (1999) for details on problems associated with CRSP’s 
delisting returns. 
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The next step is to remove common components from firm i’s stock monthly return. I 

assume that these common components are captured by the three Fama-French factors.7 I 

use rolling regressions to estimate each stock’s one-month-ahead factor loadings. (The use 

of rolling regressions is motivated later.) The regression is 

ri(t) =  b0it + b1itRM (t) +  b2itSMB(t) +  b3itHML(t) +  ei(t), (5) 

where ri(t) is the excess log return for stock i, RM (t) is the Fama-French market return 

deflated by the riskfree rate, SMB(t) is the small-stock factor, and HML(t) is the book-to-

market factor. The regression used to construct the month-t residual is estimated on data 

from month t − 60 to month t − 1. The regression is not estimated if ri(t) is missing or if 

fewer than 55 observations are available to estimate this regression. A convenient byproduct 

of the use of rolling regressions is that the results are unaffected by the treatment of delisting 

stock prices that are reported as zero. Since the regression is estimated for stock i and month 

t only when a valid return exists for month t, we know the stock price did not fall to zero 

prior to month t. 

3.2.2 Estimation of mean returns 

Given these rolling regressions, perhaps the most obvious way to construct idiosyncratic re-

turns is to form one-month-ahead residuals with êi(t) =  ri(t)−b̂0it −b̂1itRM (t)−b̂2itSMB(t)− 

b3itHML(t). However, the noise in b̂0it accumulates over the T months in the long-horizon 

return and thus adds substantial noise to this long-horizon return.8 My approach is to as-

sume that exposure to the common factors are the only priced risks, so that theory can be 

used to determine the value of the constant. Because we are working with log returns, this 

value is not  zero.  

Under the assumption of joint log-normality of short-horizon returns and the stochastic 

discount factor, standard arguments imply that 

1 
Et(ri(t + 1))  =  − Vart(ri(t + 1))  − Covt(m(t + 1), ri(t + 1)). (6)

2 

where m(t + 1) is the log of the stochastic discount factor. The Jensen’s inequality term on 

the right side of (6) plays a nontrivial role in the results of this paper.9 It implies that if 

7The factors were introduced in Fama and French (1993). Thanks to Ken French for making these data 
available. 

8In practice, the resulting distribution of long-horizon idiosyncratic stock returns has a very large standard 
deviation relative to the distribution of monthly idiosyncratic stock returns. 

9The precise form of the Jensen’s inequality term in (6) relies on log-normality. As we will see, the 
empirical distribution of monthly log returns is reasonably close to normal, thus its use is appropriate here. 
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two stocks have identical covariance risk but differ in their idiosyncratic volatility, the stock 

with the larger idiosyncratic volatility will have a lower expected log return—investors get 

more of their expected return in the form of volatility. If we ignore this fact and assign the 

two stocks equal expected returns, we will introduce a spurious source of negative skewness 

in stock returns. High-volatility stocks will tend to have negative returns, adding weight to 

the lower tail of the distribution. 

At short horizons, correcting for Jensen’s inequality has only a small effect on the dis-

tribution of returns. A typical standard deviation of monthly returns is around 13 percent. 

This corresponds to a Jensen’s inequality term of 85 basis points per month, which is small 

relative to the monthly standard deviation. At long horizons, the correction is important 

because the Jensen’s inequality term grows linearly with the horizon while the standard 

deviation grows with the square root of the horizon. A standard deviation of 13 percent 

per month corresponds to a Jensen’s inequality term of 51 percent over a five-year horizon, 

which is over one-half of the corresponding standard deviation of 101 percent. 

The difficulty of correcting for Jensen’s inequality is that we do not observe the condi-

tional variances of returns. I use sample variances from a rolling 60-month window to proxy 

for these unobserved conditional variances. Therefore the idiosyncratic return to stock i in 

month t is constructed as 

1 
êi(t) =  ri(t) +  c + Var� 

t(ri(t)) − ̂b1itRM (t) − ̂b2itSMB(t) − ̂b3itHML(t). (7)
2 

(No Jensen’s inequality terms are needed for the Fama-French factor returns because they 

are not log returns.) The residuals êi(t) are the empirical counterpart to the idiosyncratic 

shocks i(t) in (1). The constant term c has no effect on the shape of the distribution of 

idiosyncratic returns. It is constant across stocks and time, and is chosen to set the grand 

mean idiosyncratic return (across stocks and time) equal to zero.10 Its only role is to simplify 

the interpretation of the results. 

The use in (7) of rolling sample covariances instead of true (unobserved) conditional 

covariances biases the shape of the distribution of long-horizon returns. The sign of the 

bias depends on whether the rolling covariances overreact or underreact to absolute return 

shocks. The extreme case of overreaction is when covariances is constant over time, so that 

variations in sample covariances are entirely noise. Then the bias works to reduce the lower 

tail of the return distribution relative to the upper tail. For example, if êi(t) is large in 

absolute value, sample conditional variances for the next 60 months will tend to be high. 

The Jensen’s inequality correction will bias up subsequent monthly returns. Therefore long-

10Depending on the sample, this constant ranges from about 1 to −7 basis points per month. 
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horizon returns that are large in absolute value will tend to have positively biased returns. 

At the other extreme, a large absolute êi(t) may correspond to a correspondingly large 

Vart(ei(t+1)). The rolling sample covariances adjust sluggishly to this large absolute idiosyn-

cratic return, hence subsequent monthly returns will be biased down. Therefore long-horizon 

returns that are large in absolute value will tend to have negatively biased returns. The net 

effect of these offsetting biases is unknown. 

3.2.3 Scaling 

The construction of idiosyncratic returns is completed by scaling the residuals. Monthly 

return residuals are scaled by the standard error of the estimate from the rolling regression 

(5): 
êi(t) 

ẑi(t) =  . �SEit 

Idiosyncratic returns over T months are denoted êT
i (t) and are the sum of the T residuals 

êi(t + j), j  = t, T − 1. If any of the returns ri(t + 1), . . . , ri(t + T − 1) are missing (say, the 

stock disappears from the CRSP tape after month t + 2), the sum is truncated at month τ 

immediately preceding the first missing value. Standardized long-horizon returns, denoted 

ẑi
T (t), are transformations of êi

T (t). The transformation depends on whether I scale truncated 

returns. 
êT (t) 

no scaling of truncated returns: ẑi
T (t) =  √ 

T 
i � 

, (8) 
SEit � êT (t)

scaling of truncated returns: ẑi
T (t) =  T/τ √ 

T 
i � 

. (9) 
SEit √ 

Divison by T in (8) and (9) facilitates comparison of the distribution of long-horizon returns 

to the distribution of short-horizon returns. 

3.2.4 The motivation for rolling regressions 

This rolling regression procedure may seem overelaborate. A much simpler approach is to 

estimate (5) over the entire sample of a stock’s monthly returns, then standardize the in-

sample residuals by the standard error of the estimate. There are two major problems with 

this approach. First, factor loadings vary through time. Second, and more important for the 

purposes of this paper, this methodology biases long-horizon idiosyncratic returns to zero. 

By construction, in-sample residuals sum to zero, thus long-horizon idiosyncratic returns 

constructed with these residuals will be close to zero. An alternative is to estimate (5) over 

the entire sample but without the constant term. The residuals can be standardized by the 
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standard error of the estimate, and T -period returns can be constructed by summing the 

monthly standardized residuals. This may appear to be similar to scaling by the uncondi-

tional standard deviation of stock i’s return, which is one of the potential scaling methods 

suggested in Section 3.1. However, this scaling method is also flawed. I illustrate this point 

with a hypothetical example. 

Consider two stocks that, as of time t, have the same price and identical conditional 

return distributions that are independent of each other. Then the returns realized on these 

two stocks over, say, the next five years are independent draws from the same distribution 

of five-year returns. After time t, the two stock prices will diverge. Because the volatility of 

returns is inversely related to past returns, the stock with the lower price will have higher 

realized volatility along its sample path. As we will see, this inverse relation between returns 

and volatility is the reason why the density of long-horizon returns that has a fat lower tail 

relative to its upper tail. But if we standardize the realized monthly returns over this five-

year period by the realized volatility in this same period, we will erase the cross-sectional 

evidence of fat lower tails. Put differently, this standardization improperly implies that the 

two stock returns did not have identical conditional return distributions as of time t. The  

moral of this example is that returns need to be standardized by a volatility measure that 

is not contaminated by future returns. 

3.3 Sample selection 

Stock return data are from the 2001 version of the CRSP monthly NYSE/Amex/Nasdaq 

file. The analysis is restricted to common stocks of domestic firms. (These are securities 

with CRSP sharecodes of 10 or 11 over their entire sample.) The first date in the sample 

is July 1927, which is the first month for which the Fama-French factors are availabe. The 

number of listed firms has grown dramatically over the sample period, especially since the 

incorporation in the early 1970s of thousands of small-capitalization stocks traded on Nasdaq. 

It is possible that the distribution of long-horizon returns of small-cap firms differs from the 

corresponding distribution for high-cap firms. To allow for this possibility, I report results 

for two samples of stocks. The complete sample includes all stocks. The restricted sample 

drops stocks with market capitalization below the 20th percentile of NYSE-listed stocks. 

I produce empirical distributions of both monthly and five-year returns (T = 60 months). 

The complete sample of monthly returns is the set of all non-missing ẑi(t). The restricted 

sample is the set of non-missing ẑi(t) for which the market capitalization of stock i at the 

end of month t − 1 is at least as large as the 20th percentile of market capitalizations of 

NYSE-listed stocks as of that month-end. The sample of five-year returns is the set of 

12 



non-overlapping returns, and is constructed as follows. 

Let month t0 be the first month for which stock i has a non-missing observation of ẑi(t). 

(For the restricted sample, this month must also satisfy the requirement that at month-

end t0 − 1, the market capitalization of the stock was not below the 20th percentile of 

market capitalizations of NYSE-listed stocks for that month.) Then ẑi
T (t0) is included in 

the distribution of five-year returns. The next potential non-overlapping draw of a five-year 

return for stock i is ẑi
T (t0 + 60). If zi(t0 + 60) is nonmissing (and, for the restricted sample, 

if the market cap at month-end t0 − 59 is not below the 20th percentile), then ẑi
T (t0 + 60) is 

also included in the empirical distribution. This procedure is followed until stock i exits the 

CRSP tape or until January 1997, which is the last month for which a five-year return can 

be calculated. 

3.4 The empirical distributions 

3.4.1 Monthly idiosyncratic returns 

I first examine the distribution of monthly idiosyncratic stock returns. Table 1 reports 

summary statistics and Fig. 1 displays the empirical densities. The main conclusions to 

draw from this information is that monthly returns are nonnormal, but the tails of the 

densities are close to symmetric. Before I get to the evidence supporting these conclusions 

it is helpful to discuss certain features of the data in more detail. 

The sample of idiosyncratic returns to all stocks has more than 1.6 million observations 

across nearly 13,000 stocks. The sample of returns to large-cap stocks has about half the 

number of observations and stocks. The table reports that the mean monthly standard 

deviation of idiosyncratic returns, as estimated by the rolling regressions, is 13 percent for 

the entire sample and 11 percent for the large-cap sample. Sample moments for demeaned 

standardized returns are also reported. The term ‘demeaned’ requires some explanation. 

By construction, the mean monthly idiosyncratic return is zero (this is the role of c in (7)). 

Therefore the mean standardized return depends on the relation between the conditional �standard deviation SEit and the idiosyncratic return êi(t). They are slightly negatively 

correlated in these samples, resulting in mean standardized returns of 0.011 and 0.002, 

respectively. To simplify interpretation of the percentiles of the distributions I remove these 

means from the standardized returns. �The standard deviations of standardized returns are a little larger than one, thus SEit 

underestimates the standard deviation of êi(t). There are two potential explanations for this. 

First, the conditional standard deviation �SEit, which is based on returns from t− 60 to t− 1, 

is estimated only for survivors; stocks that exist at time t. Survivorship probably imparts 
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a negative bias to the conditional standard deviation. (It also imparts an upward bias to 

the mean return, but any such bias is removed when returns are demeaned.) Second, there 

has been a steady increase over time in the variance of idiosyncratic returns, as documented 

in Campbell, Lettau, Malkiel, and Xu (2001). The higher moments in the table, which are 

standardized by powers of the sample standard deviation, are reported for completeness. 

Because they are strongly influenced by extreme outliers I do not focus on them. 

The shape of the empirical return distributions is evident from the selected percentiles of 

the distributions reported in the table and the densities plotted in Fig. 1. To aid in the in-

terpretation of these densities, densities of normal distributions (dashes) and t distributions 

(dots) are also plotted.11 It is clear from the figure that the distributions are nonnormal. 

The t distribution is a better description of the data. The tails are approximately symmet-

ric, in line with the view of Fama (1976). For example, the largest difference between the 

lower-tail absolute percentiles and upper-tail percentiles occurs at the one percentile stan-

dardized return for the entire sample of stocks. The lower tail is −2.95 and the upper tail 

is 3.13. Evaluated at the mean standard deviation of monthly returns of 13 percent, these 

standardized returns correspond to stock returns of about −38 and 41 percent, respectively. 

The symmetry apparent in Fig. 1 appears to contradict the negative skewness coefficients 

reported in the table. However, given the extremely high kurtosis of the distributions, these 

coefficients are simply describing a few observations. We would like a formal statistical test 

of whether the tails of the distribution of monthly returns are symmetric. Statistical tests 

of symmetry are quite sensitive to the choice of the null symmetric distribution used to 

construct them. Rather than picking a particular theoretical distribution, I assume that the 

true distribution is symmetric around zero and that the true density of absolute returns is 

identical to the empirical density. I then use a bootstrap approach to construct confidence 

intervals for the percentiles reported in Table 1. 

Consider, for example, the distribution of returns to the entire sample of stocks. I ran-

domly draw (with replacement) 1,633,649 absolute returns from the empirical density of 

absolute returns. I then randomly assign each of these absolute returns a sign (with equal 

probabilities for positive and negative returns) and determine various percentiles of the re-

sulting distribution of returns. I repeat this exercise 10,000 times, producing a distribution 

of percentiles. The standard deviations of the bootstrapped 0.005, 0.01, and 0.05 percentiles 

are reported in parentheses in the table, underneath their respective percentiles. By con-

struction, these are identical to the standard deviations of the bootstrapped 0.995, 0.99, 

11These distributions are transformed to have the same standard deviations as the empirical distributions. 
The t distribution in the top panel has four degrees of freedom and the t distribution in the bottom panel 
has five degrees of freedom. 
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and 0.95 percentiles. I also calculate the standard deviation of the difference between the 

absolute lower-tail percentiles and the upper-tail percentiles. These standard deviations are 

reported in parentheses underneath their respective upper-tail percentiles. 

The bootstrapped standard errors allow us to reject the hypothesis that the distribution 

of monthly idiosyncratic returns to all stocks is symmetric. For example, the one percentile 

values of −2.95 and 3.13 differ by 0.18. The standard error is 0.014, thus the difference is 

nearly 13 standard deviations away from zero. The distribution of monthly idiosyncratic 

returns to large-cap stocks is statistically indistinguishable from a symmetric distribution. 

3.4.2 Five-year idiosyncratic returns 

Table 2 reports selected statistics for distributions of five-year idiosyncratic returns. There 

are 29,000 observations for the entire sample of stocks and slightly more than half that 

number for the sample of large-cap stocks. As with monthly returns, the means of these 

standardized returns are slightly different from zero, so I demeaned the series before calcu-

lating the statistics. The fraction of these returns that were truncated prior to five years 

ranges from 20 percent (large-cap stocks) to 30 percent (all stocks). The first six rows in 

the table are based on returns defined by (8), which means that truncated returns are not 

scaled up to account for their shorter horizons. For expositional purposes I refer to these 

as “unscaled” returns, as indicated in the second column in the table. The final two rows 

are based on “scaled” returns, which use (9) to scale up the variance of truncated returns. 

Because the behavior of truncated returns drives the interesting features of the distribution 

of five-year returns, the table also breaks the results down by truncated versus non-truncated 

returns. 

There are two main conclusions to draw from these results. First, the distributions of 

five-year returns are strongly asymmetric: the lower tails are much fatter than the upper 

tails. Second, most of the asymmetry is driven by the returns to stocks that disappear before 

the end of the five-year period. I discuss these conclusions in turn. 

The best way to see the asymmetry is to compare the upper and lower percentiles of 

the empirical distributions. For example, we see from the first and fourth rows of the table 

that the lower one percentiles of the unscaled distributions are about 1.5 times the size (in 

absolute value) of their corresponding upper one percentile values. As discussed in Sec-

tion 3.1, the asymmetry in the distribution of unscaled long-horizon returns underestimates 

the asymmetry in the true distribution of long-horizon returns. From the seventh and eight 

rows, we see that for scaled returns the ratio is even larger. In every case, the hypothesis 

that these upper and lower percentiles are equal in absolute value is overwhelmingly rejected. 

(The bootstrapped standard deviations are produced using the same methodology described 
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for monthly returns.) 

It is perhaps more intuitive to discuss this asymmetry in terms of returns rather than 

standardized returns. To illustrate the asymmetry of returns, consider returns to large-

cap stocks. Using the percentiles of the unscaled distribution and an 11 percent monthly 

standard deviation of returns, the one percentile lower tail corresponds to a return of −328 √ 
percent (−3.85 60 × 11). The one percentile upper tail corrresponds to a return of 231 

percent. For scaled returns to large-cap stocks, the one percentile five-year returns are −366 

percent and 245 percent. 

Fig. 2 and Fig. 3 plot the densities of standardized five-year unscaled and scaled returns, 

respectively. Densitites of t distributions with four degrees of freedom are also plotted.12 

The difference between these two figures arise from the treatment of truncated returns. The 

sharp peaks in Fig. 2 are attributable to the returns that are truncated within a few months. 

These returns tend to be small in absolute value. When scaled up, these returns contribute 

to the flattening of the overall distribution of returns seen in Fig. 3. 

The treatment of truncated returns has a large effect on the overall distribution of returns 

because most of the asymmetry in these five-year returns is attributable to truncated returns. 

This conclusion is obvious from a glance at the empirical densities for truncated and non-

truncated returns in Fig. 4 (all stocks) and Fig. 5 (large market-cap stocks). In these figures 

the truncated returns are unscaled. Conditional on a stock surviving through the five-

year period, the distribution of its return is closer to a symmetric distribution than is the 

unconditional distribution of returns. This is verified by the percentiles reported in Table 2. 

Conditional on truncation, the return is highly volatile and strongly asymmetric. For the 

entire sample of stocks, the mean truncated return is negative. None of these facts are 

particularly surprising. What is a little surprising is that the mean truncated return for the 

sample of large-cap stocks is slightly positive. 

It is clear from a comparison of the distributions of monthly returns and five-year returns 

that the simple intuition of the CLT does not fit the facts. Since this intuition relies on 

the independence of short-horizon returns, a natural place to look for an explanation is in 

potential dependencies among returns. Given the asymmetry in the distribution of long-

horizon returns, a promising source of dependence is asymmetric volatility: The tendency of 

volatility to vary with past returns. 

12These distributions are transformed to have the same standard deviations as the empirical distributions. 
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4 Aymmetric volatility 

Asymmetric volatility is best known in the context of aggregate stock returns. A large 

literature (Black (1976) and French, Schwert, and Stambaugh (1987) are early contributions) 

documents a strong inverse relation between returns and future volatility. As discussed in 

Section 2, the relation at the firm level is more ambiguous. A negative relation between 

returns and future volatility will result in negatively-skewed long-horizon returns even if 

short-horizon returns are symmetric. If period t’s return is positive and large, the probability 

of another large positive return declines because the conditional variance of returns declines. 

If period t’s return is negative and large, the probability of a large negative return rises. 

The most obvious source of asymmetric volatility is a firm’s balance sheet. Balance-sheet 

effects can induce either a positive or negative relation between returns and future volatility. 

Rubinstein (1983) shows that a positive relation is produced when firms hold assets with 

different levels of risk. Christie (1982) formalizes the negative relation produced by financial 

leverage. A simple theoretical model illustrates these two effects. 

4.1 A model of asymmetric volatility 

Assume that a firm has a risky asset-in-place with market value F (t). It also holds an 

intantible asset with market value G(t). We can think of this informally as a growth option, 

although careful modeling of growth options is beyond the scope of this paper. The asset 

values evolve according to the continuous-time processes 

dF 
F 

dG 

= µF dt + v IF dZf (t) +  v CF dZc(t), 

= µGdt + v IGdZg(t) +  v CGdZc(t)
G 

I
F and vI

G are the where dZf (t) and  dZg(t) are independent shocks to the two asset values, v 

responses of the log asset values to these shocks, dZc(t) is a shock common to all firms’ 

assets’ values, and vC
F , vC

G are the responses of log asset values to this common shock. The 

C
F 

working hypothesis here is that the volatility of the return to the intangible asset exceeds 

= kvI
G 

I
F 

C
Gthat of the return to the assets in place, or v = kv , k >  1., v 

The firm has issued default-free floating rate zero-coupon debt with market value D(t). 

The dynamics of D(t) are  
dD 

= rdt. 
D 

The market value of the firm’s equity is S(t) =  F (t) +  G(t) − D(t). (The firm pays no 
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dividends.) Equity dynamics are �   
dS F (t) G(t) D(t) I I C = µF + µG − r dt + v (t)dZf (t) +  v (t)dZg(t) +  v (t)dZc(t)FS  GS SS S(t) S(t) S(t) 

where equity volatilities are 

I F (t) I vFS  (t) =  vF (10)
S(t) 

I kG(t) I v v (11)GS(t) =  FS(t) 

C F (t) +  kG(t) C vS (t) =  vF . (12)
S(t) 

We are interested in how the firm’s stock return volatility varies with its stock price. It 

is fairly easy to see that the sign of this relation is ambiguous. There are three effects at 

work. They are the standard leverage effect (inducing a negative relation), the asset-mix 

effect (inducing a positive relation), and diversification (ambiguous; positive if the higher-

risk asset is less valuable than the lower-risk asset, negative otherwise.) To clarify these 

effects, consider a stock-price increase. The increase lowers the leverage of the stock and 

thus lowers its return volatility. However, the increase in price is more likely the result of an 

increase in the value of the high-volatility asset than in the value of the low-volatility asset. 

Thus on average, an increase in stock price corresponds to an increase in the proportion of 

the total assets of the firm that are high-volatility, raising the stock’s return volatility. If, 

however, the high-volatility asset is a small contributor to the firm’s overall asset volatility, 

an increase in its value can decrease the stock’s volatility through greater diversification. (Of 

course, the opposite can hold; if the high-volatility asset is the major contributor to overall 

asset volatility, an increase in its value lowers diversification.) 

Diversification has no effect on exposure to the common component. Therefore the asset-

mix effect implies that an increase in the value of the intangible asset relative to the value of 

the tangible asset unambiguously raises the sensitivity of the stock’s return to the common 

shock. The effect of this relative change on the stock return’s idiosyncratic volatility can be 

greater or less than its effect on exposure to the common component, depending on whether 

the change decreases or increases diversification. 

This model implies that if the ratio of tangible to intangible assets is held constant, 

an increase in financial leverage corresponds to higher idiosyncratic volatility and higher 

common-factor exposure. In addition, holding leverage constant, an increase in the ratio 

of intangible to tangible assets raises common-factor exposure and (assuming no strong 
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diversification effects) also raises idiosyncratic volatility. The net relation between returns 

and either idiosyncratic volatility or common-factor exposure is unsigned. However, if the 

relation is negative, it suggests that the leverage effect outweights the asset-mix effect. 

I test these hypotheses using annual measures of stock returns, idiosyncratic stock return 

volatility, and balance sheet data. The data are summarized in the next subsection. 

4.2 Data construction and summary 

Balance sheet information is from Compustat annual files. The available data limit the 

analysis to fiscal years from 1961 through 2000. Firm i’s book value of equity for year-

end t, denoted BEi(t), is constructed using the definition in Table I of Fama and French 

(1995). Book values less than zero are ignored. Book value of debt, Di(t), is the sum of 

short-term liabilities, long-term liabilities, and preferred stock. I do not require that firms 

have December fiscal year-ends, therefore balance sheet information for fiscal year t can be 

realized as late as the end of May in calendar year t + 1. Accordingly, I define the market 

value of equity for fiscal year t, MEi(t), as the market capitalization of firm i’s stock as of 

the end of June in calendar year t + 1.  

The accounting variables that I use are (1) assets/equity measured using market value of 

equity; (2) assets/equity measured using book value of equity; and (3) book equity/market 

equity. Because the extremely high asset/equity ratios of financial firms might skew the re-

sults, I dropped financial firms (SIC codes 6000-6999) from the sample. I trimmed outliers of 

book equity as follows. Consider the universe of observations of assets/book equity available 

on Compustat across all non-financial firms and all years. If the observation for firm i and 

year t is in the upper 1/2 percent of this distribution, I set the observation of book equity 

to a missing  value.  

I also construct yearly excess returns, yearly estimates of the variance of idiosyncratic 

returns, and yearly estimates of Fama-French factor loadings for each year from 1961 through 

2001. For consistency with the dating of market capitalization, I define the excess return to 

stock i during fiscal year t as as the sum of monthly excess returns to the stock from the 

end of June in calendar year t to the end of June in calendar year t + 1.13 Therefore the 

accounting ratios for year t are realized by the beginning of the period over which year t+1’s  

return is measured. If there any months without valid stock returns I set this annual return 

to a missing  value.  14 The annual return is denoted Ri(t). 

13This is the sum of monthly returns in levels, not logs. This definition of yearly returns follows Grundy 
and Martin (2001). 

14The year 2001 begins at month-end June 2001 and ends with month-end June 2002. Since I use the 
2001 CRSP tape, stock returns for the final six months are unavailable. Therefore the 2001 “year” of stock 
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Year t’s variance of annual idiosyncratic returns is estimated by the sum of squared 

monthly idiosyncratic returns. The monthly idiosyncratic returns are produced using the 

methodology of Section 3. This estimate is denoted Vi(t). Note that this is a measure of 

realized volatility, not a conditional estimate formed in year (t − 1) of the volatility of year 

t’s return. If any of these monthly returns are missing I set the variance to a missing value. 

Annual estimates of loadings on the Fama-French factors are constructed with regressions. 

For each stock and each year, I estimate a regression of the firm’s monthly excess stock return 

on the factors using the twelve observations in the year. If any of the monthly returns is 

missing I set the estimates of the loadings to missing values. As with stock return variances, 

these are measures of realized factor loadings, not conditional factor loadings. 

Because I use a panel data approach with fixed effects, the explanatory power in the 

data lies in the time-series variation for a given stock. Thus I drop all stocks for which 

there are fewer than 15 yearly observations available to estimate a regression of volatility on 

the previous year’s stock return and balance sheet ratios. This filter restricts the sample to 

stocks of 1,620 firms. These firms have, on average larger market capitalizations than the 

typical firm. More importantly, the sample of firms is largely drawn from survivors. As we 

saw in Section 3.4, long-run stock returns that are not truncated (i.e., they are the returns to 

surviving stocks) exhibit much less extreme behavior than do long-run stock returns that are 

truncated. Thus the selection criteria focuses our attention on firms for which asymmetries 

are muted. More generally, the focus on survivors limits our ability to say much about the 

dynamics of stock return behavior of firms that get into trouble. 

Table 3 presents summary information for the stock return variables and balance-sheet 

ratios. For example, the mean annual excess return to a stock is 10 percent with a standard 

deviation of 36 percent. This standard deviation, like all the standard deviations reported 

in this column, is calculated by first removing both time and cross-sectional fixed effects. 

Annual returns exhibit a small amount of negative serial correlation. The AR(1) coefficient 

is calculated after removing both sets of fixed effects, thus these coefficients are subject to 

a fairly strong small-sample bias. (Effectively the AR coefficient is a cross-sectional mean 

of individual AR coefficients, which are based on an average of 30 annual observations per 

stock.) 

The table reports that the annual volatility estimates are moderately persistent; the 

AR(1) coefficient is 0.32. This coefficient is downward biased both because of the small-

sample bias and because of the errors-in-variables problem associated with using an estimate 

of annual volatility on the right-hand-side instead of true annual volatility. This errors-in-

variables problem is especially apparent in the annual estimates of factor loadings. These 

returns consists of six monthly observations. 
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estimates are very noisy because they are taken from a regression of 12 observations using 

four explanatory variables (a constant and the factor returns). The substantial noise in the 

estimates shows up in the small AR(1) coefficients. 

The mean balance-sheet ratios indicate that the typical firm has less debt than equity 

and higher market equity than book equity. All the ratios have mean AR(1) coefficients of 

about 0.7. Again, these coefficients are downward biased because of the small sample sizes. 

4.3 The relation between returns and idiosyncratic volatility 

In this subsection I test for the presence of asymmetric volatility. The regression is �   
1/2 1/2

log Vi (t) − log Vi (t − 4) = b1 + b2Ri(t − 2) + b3Ri(t − 3) Ri(t − 1) �   

+ b4 + b5Ri(t − 3) Ri(t − 2) + b6Ri(t − 3) + gi(t). (13) 

The log change in realized idiosyncratic volatility from year t − 4 to year  t is forecasted by 

the annual returns in the years t − 1, t − 2, and t − 3. Volatility in year t − 4 plays  the role  

of the baseline. The predicted values of Vi(t) can be thought of as year t − 1 conditional 

variances for year t idiosyncratic returns. The cross terms are suggested by the theoretical 

model. To see this clearly, drop the intangible asset from the model so that it is a model of 

pure financial leverage. Then the regression coefficient on year t−1’s return should equal the 

negative of the firm’s debt/asset ratio as of year t−1. Holding all else constant, if year t−2’s 

stock return was positive, the year t − 1 debt/asset ratio will be lower, thus the coefficient 

on year t− 1’s return should be closer to zero. This logic implies that the coefficients b1, b4, 

and b6 should be negative, while the coefficients b3, b4, and  b5 should be positive. 

There are 41 years of data for use in estimating (13). Therefore t ranges from 1965 

through 2001. I estimate the regressions jointly for each stock using a panel data approach. 

Fixed effects are included in the regression, which explains the lack of a constant term. The 

standard errors are calculated assuming that the residuals of the volatility regressions are 

uncorrelated across stocks and time. In practice, this assumption is too strong, even when 

cross-sectional and yearly fixed effects are included in the regressions. For example, industry 

and size effects will produce correlated residuals for firms that are similar to each other. 

Therefore the results are subject to the caveat that the standard errors underestimate the 

true variability in the parameter estimates. 

The results are in Table 4. Four sets of results are presented, depending on whether 

the cross-terms are included and whether firm-specific fixed effects are included. (All re-

gressions include annual fixed effects.) The latter results are included for completeness, but 

21 



the inclusion of cross-sectional fixed effects is problematic. First, because the dependent 

variable is a change in volatility rather than a level, the firm-level fixed effects are not par-

ticularly useful in this regression. Second, their use can magnify a predictive regressions bias 

(Stambaugh (1999)). Because returns and changes in idiosyncratic volatility are positively 

contemporaneously correlated (see Panel B of Table 3), there is a finite-sample negative 

bias in a regression of changes in volatility on lagged returns. With firm-level fixed effects, 

the regression equation is effectively estimated on a smaller sample, magnifying the bias. 

Third, firm-level fixed effects produce the same problem discussed in Section 3.2.4. Stocks 

that were winners (losers) over the sample period tended to exhibit declining (increasing) 

volatility over the period. Including firm-level fixed effects eliminates this information from 

the sample. 

There are two main conclusions to draw from these results. The first conclusion is that 

there is a modest (but statistically strong) and persistent negative relation between returns 

and future idiosyncratic volatility. The results indicate that if a firm’s stock price rises in 

a given year, idiosyncratic volatility will be higher for at least the next three years. To 

get a sense of the magnitude, compare the implications for volatility of a year t return of 

either 36 or −36 percent. (This is one standard deviation.) Using the results of regression 

[1], the implied standard deviation of idiosyncratic returns in year t + 1 given a return of 

−36 percent is only 1.026 times the corresponding standard deviation given a return of 36 

percent. (exp[(−0.36 × −0.036) − (0.36 × −0.036)]). The implied standard deviations in 

years t + 1  and  t + 2 are more sensitive to this return, but the magnitudes still seem quite 

small. This behavior strongly contrasts with asymmetric volatility at the aggregate level. 

The aggregate relation is negative, very strong at short horizons, and dissipates quickly.15 

The second conclusion is that the interaction between returns is in the direction implied 

by the leverage hypothesis. Volatility in year t is more sensitive to year t −1’s stock return if 

the stock fell in value in years t − 2 and  t − 3. For example, if Ri(t − 2) = Ri(t − 3) = −0.36, 

the responsiveness of year t’s log volatility to year t − 1’s return implied by the estimates of 

regression [2] is −0.077. If the returns in years t − 2 and  t − 3 were 36 percent instead of 

−36 percent, the implied responsiveness is only −0.013. 

Since Black (1976), researchers have proposed a host of theories that link returns and 

volatility.16 It is almost certain that there are multiple effects at work. Without multiple 

effects, it seems impossible to explain why there exist simultaneously (a) a large and short-

lived inverse relation between aggregate returns and aggregate return volatility; (b) a positive 

15The short-lived nature of the aggregate relation is documented in Figlewski and Wang (2000) and Duffee 
(2002). 

16I do not attempt a review here. Duffee (2002) discusses some of this literature. 
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and short-lived relation between short-horizon returns and idiosyncratic return volatility 

(documented in Duffee (1995, 2002)); and (c) a small and long-lived inverse relation between 

returns and idiosyncratic return volatility documented in this paper. The long persistence of 

the latter relation is suggestive of balance-sheet effects. The link between the balance sheet 

and volatility is explored next. 

4.4 Idiosyncratic volatility and balance sheets 

The basic approach here is to forecast the change in realized idiosyncratic volatility from 

year t − 2 to year  t using variables realized in year t − 1. The main regression is 

1/2 1/2 Di + MEi
log Vi (t) − log Vi (t − 2) = b1Ri(t − 1) + b2∆ log  (t − 1)

MEi 

BEi 
+ b3∆ log  (t − 1) + gi(t) (14) 

MEi 

where ∆x(t − 1) = x(t − 1) − x(t − 2). As with (13), the predicted values of Vi(t) are  year  

t−1 conditional variances for year t idiosyncratic returns. The asset/equity ratio is included 

to pick up variations in financial leverage and the book/market ratio is designed to pick up 

variations in the ratio of assets-in-place to intangible assets such as growth options. The 

model of Section 4.1 assumes that these intangible assets are riskier than tangible assets. If 

the model is correct, the negative relation between returns and future idiosyncratic volatility 

documented in Section 4.3 is a consequence of the leverage effect outweighing the asset-mix 

effect. 

The range of t is 1963 through 2001. I estimate (14) across all stocks using annual fixed 

effects. In results not reported here, I also included cross-sectional fixed effects. They had 

little effect on the results, which is likely a consequence of the fact that all of the balance-sheet 

variables are in logs and first-differenced. 

Estimation results are in Table 5. There are two main conclusions to draw from these 

results. The first conclusion is that conditional volatilities depend on leverage. Consider, for 

example, regression [2] in the table, which excludes the book/market ratio. The elasticity 

of idiosyncratic volatility with respect to the asset/equity ratio is about 0.2, and is strongly 

statistically significant. This result is consistent with earlier research that finds a positive 

relation between leverage and volatility at shorter horizons. A typical result for short-horizon 

returns is that changes in leverage cannot completely explain the inverse relation between 

returns and volatility.17 But at the annual horizon examined here, changes in the asset/equity 

ratio capture the negative relation between returns and future volatility: the coefficient on 

17See, e.g., Bekaert and Wu (2000) and Figlewski and Wang (2000). 
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returns in [2] is actually positive. 

A well-known criticism of regressions like (14) is that most of the action in leverage ratios 

over time is in the denominator. Since we know that volatility rises after stock prices fall, 

any variable included on the right-hand-side that has the stock price in the denominator 

is likely to be positively associated with volatility. Therefore it is possible that financial 

leverage matters only to the extent that it allows the regression to pick up a nonlinear 

relation between returns and future volatility. To investigate this possibility, I replaced the 

market value of equity in the numerator and denominator of asset/equity with the book 

value of equity. This measure of asset/equity emphasizes fluctuations in leverage owing to 

changes in the firm’s debt load over time. The results for regression [3] in the table indicate 

that this proxy for the asset/equity ratio also forecasts realized volatility. The additional 

noise in this proxy results in a smaller estimate (an elasticity of 0.13), but the estimate 

remains strongly statistically significant. 

The second conclusion to draw from Table 5 is that conditional volatilities depend on 

book/market. When book/market rises, future volatility declines. Regression [4] in the ta-

ble reports the estimated elasticity as −0.08. Since returns and book/market are negatively 

contemporaneously correlated, this effect runs counter to the overall negative relation be-

tween returns and future volatility. Put differently, the negative relation between returns 

and future volatility is stronger when book/market is held constant, as in regression [4]. 

The results of regression [5], which includes both assets/equity and book/market, can be 

interpreted as follows. An increase in a firm’s stock price in year t − 1 implies a contempora-

neous decrease in both its leverage and its book/market ratio. (See Panel B of Table 3.) The 

decrease in leverage corresponds to lower volatility of year t’s idiosyncratic return, while the 

decrease in book/market corresponds to higher volatility. These effects largely offset each 

other; the coefficient on the lagged stock return in [5] is almost identical to the coefficient 

on the lagged stock return in [1], which excludes the balance-sheet variables. 

These results provide support for the model sketched in Section 4.1. If the model is 

correct, we should see the same kind of patterns in exposure to marketwide risks. Lower 

leverage should be associated with less exposure to common factors, while lower book/market 

should be associated with greater exposure to these factors. 
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4.5 Factor loadings and balance sheets 

The regression approach here is the same I used above. For example, a stock’s conditional 

year-t loading on the Fama-French market factor is expressed as 

Di + MEi
βi,M (t) − βi,M (t − 2) = b1Ri(t − 1) + b2∆ log  (t − 1)

MEi 

BEi 
+ b3∆ log  (t − 1) + gi(t) (15) 

MEi 

I also estimate versions of (15) with different dependent variables. I use the SMB factor 

loading, the HML factor loading, and a measure of the total return volatility owing to the 

Fama-French factors. This measure is log(βitΣβit)
1/2 , where Σ is the observed variance-

covariance matrix of monthly returns to the factors from January 1961 through December 

2001. The final dependent variable I consider is a measure of the total risk premium owing 

to these factors. This measure is βitP , where  P is the observed mean return vector to the 

Fama-French factors from January 1961 through December 2001. To conserve space, I report 

results using only two combinations of explanatory variables: the year t− 1 stock return by 

itself and all three variables. The results are displayed in Table 6. 

Perhaps the most surprising result in the table is that stock returns are (weakly) posi-

tively associated with future volatility owing to common factors. The coefficient of 0.018 is 

statistically indistinguishable from zero, but the news is that the coefficient is not strongly 

negative. Chan (1988) and Ball and Kothari (1989) find that at the portfolio level, betas of 

“winners” tend to decline, while betas of “winners” tend to increase. Part of the explanation 

for the divergence in results is that Chan and Ball-Kothari estimate their “before” betas over 

the same period for which they define winners and losers. In results I do not report in detail 

here, I find that betas and returns are positively contemporaneously correlated. A stock 

that is a winner in year t− 1 has a higher exposure to market risks in year t− 1 than it had  

in year t − 2; in year t, this exposure returns to its original level. 

Although a stock’s total common-factor exposure does not fall after its price rises, its risk 

premium (as measured by F-F exposure) does fall. The reason is that its factor exposure 

shifts away from the high-premium SMB and HML factors to the low-premium market 

factors. This is consistent with the results of Fama and French (1996) discussed in Section 2. 

Put differently, the results here do not resolve the momentum puzzle. 

For the purposes of evaluating the balance sheet model of volatility, the important regres-

sion is the regression of changes in total common-factor exposure on the three explanatory 

variables. The results of this regression are close to the results for changes in idiosyncratic 

volatility. The elasticity of total common-factor exposure with respect to the asset/equity 
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ratio is about 0.2, while the elasticity with respect to the book/market ratio is about −0.1. 

Controlling for these balance sheet variables, the relation between stock returns and future 

total factor exposure is statistically indistinguishable from zero. In other words, total factor 

exposure and idiosyncratic return volatility respond to these variables in almost the same 

way. 

5 Concluding comments 

In this paper I make three contributions to our knowledge of the long-run behavior of stock 

returns. First, I show that long-horizon log idiosyncratic returns to a typical stock have 

much fatter lower tails than upper tails. This result is surprising, because distributions of 

shorter-horizon idiosyncratic returns are nearly symmestric (and to the extent that they 

are not, they have slightly fatter upper tails than lower tails). Second, I show that yearly 

idiosyncratic stock returns exhibit highly persistent asymmetric volatility. Third, I link 

changes in firms’ stock return volatility to changes in their balance sheets. Theory tells 

us that both the leverage effect and the asset-mix effect should affect the return–volatility 

relation, and the theory is supported here. Evidence of the link to leverage reinforces earlier 

work, while evidence of the link to book/market (proxying for variations in asset mix)is new. 

These results naturally lead to a large question that I do not attempt to answer here. Is 

the magnitude of asymmetric volatility observed in long-horizon returns sufficient to explain 

their asymmetric distributions? A careful answer to this question requires estimation of a 

realistic model of firm-level asset dynamics that combines leverage and asset-mix effects. The 

goal of the current paper is to document features of long-horizon returns without imposing 

much overidentifying structure. Therefore I defer this question to later research. 
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Sample Obs �SEit Std. Dev. Skew Kurtosis 0.005 0.01 
Percentiles 
0.05 0.95 0.99 0.995 

All stocks 

Large-cap stocks 

1633649 

861908 

0.133 

0.108 

1.195 

1.131 

−1.409 

−0.387 

51.153 

20.755 

−3.61 
(0.013)a 

−3.46 
(0.016)a 

−2.95 
(0.008)a 

−2.89 
(0.010)a 

−1.75 
(0.003)a 

−1.75 
(0.004)a 

1.85 
(0.005)b 

1.79 
(0.006)b 

3.13 
(0.014)b 

2.90 
(0.016)b 

3.75 
(0.022)b 

3.42 
(0.027)b 

Table 1: Summary statistics for standardized monthly stock returns 

Rolling regressions of 60 months are used to estimate stock return betas and corresponding standard deviations of idiosyncratic 
returns for stocks in the given samples. The parameter estimates are used to construct standardized one-month-ahead idiosyn-
cratic returns. The table reports the grand means (across stocks and months) of the parameter estimates from these regressions. 
It also reports the first four moments and selected percentiles for the distribution of demeaned one-month-ahead standardized 
returns. 
a Bootstrapped standard errors for the given percentile, assuming symmetry in the distribution. 
b Bootstrapped standard errors for the difference between the given percentile and the absolute value of the corresponding 
lower-tail percentile, assuming symmetry in the distribution. 
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Percentiles 
Sample Scaled Obs Mean Std. Dev. Skew Kurtosis 0.005 0.01 0.05 0.95 0.99 0.995 

All stocks N 29066 0.000 1.273 −1.577 13.491 −5.44 −4.08 −2.05 1.76 2.70 3.06 
(0.153)a (0.072)a (0.027)a (0.044)b (0.117)b (0.248)b 

Truncated rets N 8224 −0.156 1.491 −2.719 18.342 −7.37 −6.10 −2.82 1.51 2.34 2.77 

Non-truncated rets N 20842 0.062 1.170 −0.513 6.119 −3.87 −3.19 −1.82 1.84 2.76 3.17 

Large-cap stocks N 16764 0.000 1.246 −1.695 16.160 −5.10 −3.85 −1.97 1.72 2.71 3.08 
(0.163)a (0.093)a (0.029)a (0.049)b (0.152)b (0.262)b 

Truncated rets N 3092 0.025 1.543 −3.837 28.806 −8.08 −6.60 −2.67 1.55 2.28 2.65 

Non-truncated rets N 13672 −0.006 1.169 −0.535 6.001 −3.88 −3.32 −1.90 1.77 2.75 3.17 

All stocks Y 29066 0.000 1.604 −3.583 53.587 −7.61 −5.78 −2.32 2.01 2.99 3.42 
(0.254)a (0.141)a (0.031)a (0.051)b (0.229)b (0.408)b 

Large-cap stocks Y 16764 0.000 1.433 −4.440 103.602 −6.25 −4.30 −2.04 1.89 2.88 3.27 
(0.284)a (0.093)a (0.033)a (0.055)b (0.151)b (0.459)b 

Table 2: Summary statistics for standardized five-year idiosyncratic stock returns 

Non-overlapping five-year idiosyncratic stock returns for stock i are constructed by summing monthly idiosyncratic returns for 
60 months. If any of these returns is missing the return is truncated at the month τ preceding the first missing observation. The√ 
returns are divided by the product of the conditional standard deviation of the first month’s idiosyncratic return and either 60� 
(unscaled) or min(60, τ) (scaled). This table reports the first four moments and selected percentiles for the entire distribution 
of five-year returns across all stocks in the sample. 
a Bootstrapped standard errors for the given percentile, assuming symmetry in the distribution. 
b Bootstrapped standard errors for the difference between the given percentile and the absolute value of the corresponding 
lower-tail percentile, assuming symmetry in the distribution. 



Panel A. Univariate statistics 

Variable Obs. Mean Median Std. Dev. AR(1) 

Excess returns 48306 0.100 0.077 0.362 −0.027 

SD of idiosyncratic returns 42721 0.310 0.270 0.124 0.319 

β (market) 48306 0.849 0.899 1.120 −0.012 

β (SMB) 48306 0.681 0.502 1.800 0.000 

β (HML) 48306 0.245 0.243 1.969 0.013 

log (D+ME)/ME 48308 0.436 0.309 0.293 0.765 

log (D+BE)/BE 48000 0.511 0.423 0.308 0.760 

log BE/ME 45528 −0.391 −0.325 0.534 0.695 

Panel B. Correlations of first differences (returns in levels) 

Excess log log log 
returns idio SD (D+ME)/ME BE/ME 

Excess returns 1.00 

log idio SD 0.11 1.00 

log (D+ME)/ME −0.57 0.02 1.00 

log BE/ME −0.79 −0.07 0.47 1.00 

Table 3: Summary statistics for annual stock returns and balance sheet ratios 

The sample consists of 1620 publicly-traded firms with at least 15 years of selected annual 
balance sheet ratios during 1961 through 2001. Annual excess stock returns, yearly estimates 
of the stocks’ loadings on the Fama-French factors, and the standard deviation of annual id-
iosyncratic returns (i.e., after removing the Fama-French factor components) are calculated 
from monthly data. Balance-sheet ratios are (debt+equity)/equity measured with both mar-
ket equity ME and book equity BE, and book equity/market equity. The table reports the 
number of observations (across years and stocks) for each variable, their unweighted means 
and medians, standard deviations, and AR(1) coefficients of the variables. The standard 
deviations and AR(1) coefficients are calculated after removing annual and stock-specific 
fixed effects. These fixed effects are also removed before calculating correlations. 
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Regression number 
Regression coef [1] [2] [3] [4] 

b1 −0.036 −0.045 −0.031 −0.040 
(0.007) (0.007) (0.007) (0.007) 

b2 - 0.049 - 0.050 
(0.011) (0.011) 

b3 - 0.041 - 0.043 
(0.012) (0.012) 

b4 −0.066 −0.078 −0.060 −0.073 
(0.007) (0.007) (0.007) (0.007) 

b5 - 0.066 0.065 
(0.011) (0.011) 

b6 −0.072 −0.084 −0.063 −0.075 
(0.007) (0.007) (0.007) (0.007) 

Table 4: Conditioning volatilities of annual idiosyncratic stock returns on past returns, 1965 
through 2001 

The realized variance of firm i’s idiosyncratic stock return in year t, denoted Vi(t), is esti-
mated by the sum of squared monthy idiosyncratic returns in year t. The change in this 
variance from year t− 4 to year  t is explained by excess annual returns to the stock in years 
t − 1, t − 2, and t − 3. �   

1/2 1/2
log Vi (t) − log Vi (t − 4) = b1 + b2Ri(t − 2) + b3Ri(t − 3) Ri(t − 1) �   

+ b4 + b5Ri(t − 3) Ri(t − 2) + b6Ri(t − 3) + gi(t). 

A panel data approach is used to estimate the regressions across 1620 firms and 41 years 
(including lags), for a total of 35539 non-missing observations. Regressions [1] and [2] includes 
only annual fixed effects. Regressions [3] and [4] include both annual and cross-sectional fixed 
effects. Standard errors are in parentheses. 
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Lagged Regression number 
explanatory [1] [2] [3] [4] [5] 
variable (39080 obs.) (38864 obs.) (36761 obs.) (36801 obs.) (36761 obs.) 

Stock return −0.034 0.037 −0.019 −0.093 −0.036 
(0.006) (0.007) (0.006) (0.010) (0.010) 

∆ log asset/equity - 0.219 - - 0.209 
(market value) (0.012) (0.014) 

∆ log asset/equity - - 0.133 - -
(book value) (0.011) 

∆ log book/market - - - −0.077 −0.086 
(0.009) (0.009) 

Table 5: Conditioning volatilities of annual idiosyncratic stock returns on past returns and 
balance sheets, 1963 through 2001 

The realized standard deviation of firm i’s idiosyncratic stock return in year t is estimated 
by the square root of the sum of squared monthy idiosyncratic returns in year t. The  log  
change in this standard deviation from year t−2 to year  t is explained by excess annual stock 
returns to the stock in year t − 1, the change in the log asset/equity ratio from year t − 2 to  
year t − 1, and the change in log (book equity)/(market equity) from year t − 2 to year  t − 1. 
The asset/equity ratio is measured using either market equity or book equity. A panel data 
approach is used to estimate the regressions across 1620 firms and 41 years (including lags). 
The regressions include annual fixed effects. Standard errors are in parentheses. 
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Lagged 
explanatory 
variable Market beta 

Dependent variable 
SMB beta HML beta log SD Premium 

First regression 
Stock return (only) 0.089 

(0.022) 
−0.258 −0.019 
(0.033) (0.006) 

0.018 
(0.009) 

−0.026 
(0.003) 

Second regression 

Stock return 

∆ log asset/equity 

∆ log book/market 

0.206 
(0.039) 

0.130 
(0.052) 

0.068 
(0.033) 

−0.294 −0.529 
(0.007) (0.036) 

0.401 0.199 
(0.079) (0.086) 

−0.159 0.048 
(0.050) (0.055) 

0.002 
(0.016) 

0.216 
(0.022) 

−0.103 
(0.014) 

−0.015 
(0.005) 

0.026 
(0.006) 

0.002 
(0.004) 

Table 6: Conditioning betas on past returns and balance sheets, 1963 through 2001 

Year-t loadings of the return to stock i on the three Fama-French factors are estimated using 
monthly returns during year t. An estimate of the log monthly standard deviation of returns 
owing to these common factors is log(βitΣβit)

1/2 , where the loadings are stacked in the vector 
βit and Σ is the unconditional variance-covariance matrix of monthly returns to the factors 
from January 1961 through December 2001. The implied annual risk premium is βitP , where  
P is the vector of mean returns to the factors from January 1961 through December 2001. 

For each of these variables, two regressions are estimated. The first is a regression of the 
change in the variable from year t − 2 to year  t on the stock’s excess return in year t − 1. 
The second adds as explanatory variables the change in the log asset/equity ratio from year 
t − 2 to year  t − 1 and the change in log (book equity)/(market equity) from year t − 2 to  
year t − 1. A panel data approach is used to estimate the regressions across 1620 firms and 
41 years (including lags). The regressions include annual fixed effects. Standard errors are 
in parentheses. 
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Figure 1: The density of standardized monthly idiosyncratic stock returns 

Idiosyncratic monthly returns are constructed for each stock and month, then standardized 
by estimates of their standard deviations. Empirical densities of the returns are calculated 
across all stocks and months (top panel) and across all stocks with market capitalizations at 
or above the 20th percentile of NYSE-listed stocks (bottom panel). The dashed and dotted 
lines are densities for the normal and t distributions, respectively. They are adjusted to have 
the same standard deviations as the empirical distributions. The t distribution in the upper 
panel has four degrees of freedom and the t distribution in the bottom panel has five degrees 
of freedom, adjusted to have the same standard deviations as the empirical distributions. 
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Figure 2: The density of long-horizon idiosyncratic stock returns, standardized by a five-year 
horizon 

Idiosyncratic monthly returns are constructed for each stock and month. The long-horizon 
return for a given stock and month is the sum of the next five years of monthly idiosyncratic 
returns unless any monthly stock returns in this period are missing (typically because of 
delisting). In this case, the horizon is the time to the first missing observation. Long-horizon 
returns are standardized by the conditional standard deviation of the first month’s return 
times the square root of sixty. The solid lines display the empirical densities. The bottom 
panel excludes returns of stocks with market capitalizations below the 20th percentile of 
NYSE-listed stocks. The dotted lines are densities of t distributions with four degrees of 
freedom, adjusted to have the same standard deviations as the empirical distributions. 
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Figure 3: The density of long-horizon idiosyncratic stock returns, standardized by their 
actual horizons 

Idiosyncratic monthly returns are constructed for each stock and month. The long-horizon 
return for a given stock and month is the sum of the next five years of monthly idiosyncratic 
returns unless any monthly stock returns in this period are missing (typically because of 
delisting). In this case, the horizon is the time to the first missing observation. Long-horizon 
returns are standardized by the conditional standard deviation of the first month’s return 
times the square root of the horizon of the return. The solid lines display the empirical 
densities. The bottom panel excludes returns of stocks with market capitalizations below 
the 20th percentile of NYSE-listed stocks. The dotted lines are densities of t distributions 
with four degrees of freedom, adjusted to have the same standard deviations as the empirical 
distributions. 
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Figure 4: The density of long-horizon idiosyncratic stock returns, standardized by a five-year 
horizon 

Idiosyncratic monthly returns are constructed for each stock and month. The long-horizon 
return for a given stock and month is the sum of the next five years of monthly idiosyncratic 
returns unless any monthly stock returns in this period are missing (typically because of 
delisting). In this case, the horizon is the time to the first missing observation and the return 
is called a “truncated” return. Long-horizon returns are standardized by the conditional 
standard deviation of the first month’s return times the square root of sixty. The top panel 
reports the distribution of truncated returns and the bottom panel reports the distribution 
of non-truncated returns. The solid lines display the empirical densities. The dotted lines are 
densities of t distributions with four degrees of freedom, adjusted to have the same standard 
deviations as the empirical distributions. 
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Figure 5: The density of long-horizon idiosyncratic stock returns to large-cap stocks, stan-
dardized by a five-year horizon 

Idiosyncratic monthly returns are constructed for each stock and month. The long-horizon 
return for a given stock and month is the sum of the next five years of monthly idiosyncratic 
returns unless any monthly stock returns in this period are missing (typically because of 
delisting). In this case, the horizon is the time to the first missing observation and the return 
is called a “truncated” return. Long-horizon returns are standardized by the conditional 
standard deviation of the first month’s return times the square root of sixty. The top panel 
reports the distribution of truncated returns and the bottom panel reports the distribution 
of non-truncated returns. Returns of stocks with market capitalizations below the 20th 
percentile of NYSE-listed stocks are excluded. The solid lines display the empirical densities. 
The dotted lines are densities of t distributions with four degrees of freedom, adjusted to 
have the same standard deviations as the empirical distributions. 
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