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abstract 

The high persistence of interest rates has important implications for the preferred 
method used to estimate term structure models. We study the finite-sample 
properties of two standard dynamic simulation methods—efficient method of 
moments (EMM) and indirect inference—when they are applied to an first order 
autoregressive (AR[1]) process with Gaussian innovations. When simulated data 
are as persistent as interest rates, the finite-sample properties of EMM differ 
both from their asymptotic properties and from the finite-sample properties of 
indirect inference and maximum likelihood. EMM produces larger confidence 
bounds than indirect inference and maximum likelihood, yet is much less likely 
to contain the true parameter value. This is primarily because the population 
variance of the data plays a much larger role in the EMM conditions than in the 
moment conditions for either indirect inference or maximum likelihood. These 
results suggest that, under Gaussian assumptions, indirect inference (if practical) 
is preferable to EMM when working with persistent data such as interest rates. 
EMM’s emphasis on the population variance strongly enforces stationarity on 
the underlying process, so this same reasoning suggests that EMM may be 
preferable in settings where stability and stationarity are important and difficult 
to impose. 
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Term structure estimation poses serious econometric challenges. The models 
are highly parameterized—empirical work often uses models with more than 
30 free parameters. In addition, in all but the simplest settings, the likelihood 
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functions of bond yields are intractable. Thus, models are often estimated using 
dynamic simulation methods, such as the method of simulated scores (including 
efficient method of moments, or EMM), indirect inference, or simulation-based 
approximations to maximum likelihood. 

Although dynamic simulation, and in particular EMM, has been successfully 
applied to a variety of economic models, Monte Carlo evidence casts some doubt 
on the finite-sample performance of EMM in a few specific term structure settings, 
such as the square-root diffusion model studied in Zhou (2001) and two-factor 
affine models studied in Duffee and Stanton (2004). Unfortunately, we do not know 
how much weight to put on this evidence. Finite-sample properties have been 
calculated only for models that are simultaneously both too complicated and too 
simplistic. Their complex structures make it impossible to determine which model 
features are difficult for EMM to capture, yet practical term structure estimation 
focuses on even more sophisticated (and thus more highly parameterized) models. 
Because we do not know which features of the relatively simplistic models create 
difficulties, we do not know if they carry over to models of greater practical 
relevance. 

Evaluation of the finite-sample properties of dynamic simulation methods 
thus requires the study of either much simpler or much more complicated models. 
This paper takes the first approach, focusing on the effects of the high persistence 
exhibited by interest rates. We ask how accurately EMM and indirect inference 
estimate a highly persistent Gaussian first order autoregressive (AR[1]) process, 
compared with a benchmark of maximum likelihood (ML).1 We find that, for 
reasonable sample sizes, statistical inference using EMM with confidence intervals 
based on the estimation criterion function is less reliable than using either indirect 
inference or maximum likelihood. 

This evidence needs to be tempered by the fact that our setting is so simple. 
In more complicated models, EMM is likely to be much more tractable than 
either ML or indirect inference, and it may have better small sample properties 
due to its heavy penalty for deviations from stationarity. Moreover, EMM has 
been updated as a Bayesian method based on a Laplace likelihood (Gallant and 
Tauchen, 2007). It is known from Sims and Uhlig (1991) that, under a Bayesian 
implementation, near unit roots do not cause problems with the criterion function. 
We defer comparison of Bayesian-EMM to other methods in more complicated 
models to future research. 

Our conclusion is surprising for two reasons. First, Gallant and Tauchen (1996) 
note that, if the probability distribution of the data implied by an auxiliary model 
is close to the distribution implied by the structural model, then simulation-based 
estimates should be close to those obtained using maximum likelihood.2 Second, 

1 Somewhat conflicting definitions of these techniques can be found in the literature. We defer a precise 
description of what we mean by EMM and indirect inference to Section 1. 

2 Previous Monte Carlo evidence generally finds that, in many practical settings, the finite-sample 
performance of these estimators compares favorably to tractable alternatives. Relevant research includes 
Andersen et al. (1999), Chumacero (1997, 2001), Michaelides and Ng (2000), and Monfardini (1998). 
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the methodologies that underlie EMM and indirect inference are similar. EMM 
matches the score vector of an auxiliary model, while indirect inference matches 
its parameters. 

The simple structure of the AR(1) model allows us to identify analytically 
key features of EMM that drive these results. The most important feature is that 
when the data are highly autocorrelated, the EMM criterion function is much more 
asymmetric than both the corresponding full ML criterion function (which is also 
asymmetric) and the indirect inference criterion function (which is symmetric). 
The intuition underlying the extreme asymmetry is straightforward. Given the 
parameters of an auxiliary model, the scale of the score vector depends on the 
variability of the data. This is a general property of auxiliary models. The EMM 
estimator evaluates the variability of the data using the data’s implied population 
variance. For persistence parameters close to one, the population variance is an 
extremely asymmetric function of the persistence parameter. By contrast, the 
indirect inference estimator uses the data’s sample variance instead of the implied 
population variance, eliminating the asymmetry. 

To illustrate our results, assume that an econometrician has 1000 weekly 
observations of an AR(1) process. The true half-life of a shock is six years, which is 
similar to the persistence of Treasury bond yields in the postwar period. Using a 
conditional Gaussian auxiliary model, the median length of the EMM-based 95% 
confidence interval percent confidence interval for the autoregression coefficient 
is more than 20 times larger than the median length of the ML-based confidence 
interval. Yet, even though the EMM confidence intervals are large, they are much 
less likely to contain the true coefficient. With these 95th percentile bounds, the 
empirical rejection rate of truth is about 10% for ML and about 75% for EMM. In 
contrast, indirect inference generally performs as well as, or better than, maximum 
likelihood. For this example, the empirical rejection rate for indirect inference 
using the same auxiliary model is almost identical to the asymptotic rejection rate 
of five percent. 

Although the simplicity of our setting allows us to draw analytic inferences 
about the estimators, it also necessarily limits the generality of our conclusions. 
We point out specific limitations at various points in the paper. Two are worth 
highlighting here. First, we specify the auxiliary models based on theoretical 
considerations. In practice, these specifications are often based on a data-
driven search for an accurate in-sample fit, such as a semi-nonparametric (SNP) 
specification search. Our approach allows us to disentangle the finite-sample 
properties of a dynamic simulation from the finite-sample properties of the search 
for an appropriate auxiliary model. But it also prevents us from studying the 
combined properties of a specification search and dynamic simulation. 

Second, in many practical problems, extreme asymmetry of the EMM criterion 
function in the neighborhood of nonstationarity can be an advantage of the EMM 
estimator. For example, as discussed by Tauchen (1998), asymmetry effectively 
forces the parameter estimates to lie in the stationary region. In an AR(1) setting, 
the econometrician knows the stationary region and can impose it directly on the 
parameter space (as we do). This is also a property of standard affine term structure 
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models, thus from our perspective it is an attractive feature of our setting. But for 
econometric problems where stability of the process is desirable but analytically 
intractable to impose directly on the parameter space, our results may paint a 
biased picture of the attractiveness of EMM. 

The next section describes the data-generating process studied throughout the 
paper. It also reviews the estimation techniques. Sections 2 and 3 describe the finite-
sample properties of estimating the autoregression coefficient of an AR(1) process. 
The estimation techniques examined in Section 2 use the full likelihood function, 
both in ML estimation and as the auxiliary model, while the techniques examined 
in Section 3 use more highly parameterized auxiliary models. Concluding remarks 
are offered in Section 4. 

1 OVERVIEW OF THE ANALYSIS 

This section describes the data-generating process examined in this paper, sets up 
notation, and briefly reviews the relevant estimation techniques. 

1.1 The Data-Generating Process 

The true data generating process is 

yt = ρ0yt−1 + t, t ∼ N(0, 1), (1) 

where |ρ0| < 1. Interest rate data are often studied at high frequencies relative 
to, say, data on macroeconomic performance. Accordingly, we interpret (1) as a 
process generating weekly observations of yt. Tauchen (1998) uses the same formal 
process to investigate some features of EMM estimation, although his focus differs 
from ours. 

The values of ρ0 we consider are motivated by the properties of interest rates. 
We use three different values. The smallest is ρ0 = 0.8522. This is a fairly low level 
of persistence. With weekly observations, this choice implies that shocks have a 
half life of only one month. Thus the estimation properties for this value are a good 
benchmark with which to compare the properties for highly persistent processes. 
The second value of ρ0 is 0.9868, which corresponds to a half-life of one year. The 
most persistent process uses ρ = 0.9978, which corresponds to a half-life of six 
years. This value is chosen based on the behavior of the five-year Treasury bond 
yield over the sample period 1960 through 2003.3 

The observed data are a sequence of interest rates YT ≡ {y1, . . . , yT}. Again,  
we use three different values of T. The sample sizes are 1000, 2000, and 10,000 
observations. With weekly data, these values correspond to about 19 years, 38 
years, and 192 years respectively. The shortest period is similar to those used 
to study the behavior of interest rates after the disinflation of the early 1980s. 
Research that spans multiple interest rate regimes often use samples that span 40 

3 An AR(1) regression using monthly observations of the CRSP five-year bond yield from 1960:1 through 
2003:12 produces an estimate of 0.98974, which corresponds to a half life of 5.6 years. 
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Table 1 Power of Dickey-Fuller test for nonstationarity. 

ρ0 

T 0.8522 0.9868 0.9978 

1000 1 0.936 0.157 
2000 1 1 0.315 
10000 1 1 1 

This table summarizes results from 5,000 Monte Carlo simulations. The true data-generating process is 

yt = ρ0yt−1 + t, t ∼ N(0, 1) 

For each simulation a sample of length T is generated. A Dickey-Fuller test (case 1) of the hypothesis 
that ρ = 1 is performed. This table reports the fraction of simulations for which the null hypothesis of 
nonstationarity is rejected at the five percent level. 

or 50 years, although the data are typically observed at a lower frequency than 
weekly. 

1.2 The Estimated Model 

The econometrician estimates the true process (1), but with an unknown parameter 
ρ replacing ρ0: 

yt = ρyt−1 + t, t ∼ N(0, 1). (2) 

The econometrician follows the dynamic term structure literature by assuming 
that interest rates are stationary. Although statistical tests often cannot reject the 
hypothesis of a unit root, stationarity is almost universally imposed in the empirical 
literature on dynamic term structure models. The assumption is motivated in 
part by its theoretical plausibility, as noted by Clarida et al. (2000). It is also a 
convenient restriction to impose in these models because the parameter restrictions 
that correspond to stationarity are straightforward. Here, of course, the restriction 
is simply |ρ| < 1. This restriction maintained on the admissible parameter space 
distinguishes our approach from that of Tauchen (1998). 

For many of the combinations of true persistence parameters ρ0 and sample 
sizes T that we consider, stationarity is easily verified statistically. Table 1 
summarizes Monte Carlo simulations that illustrate this point. Samples of length 
T are generated, then a Dickey and Fuller (1979) test is constructed to test the null 
hypothesis of a unit root in the data-generating process. The Dickey-Fuller test 
appropriate for (2) is their Case 1, which does not include a constant term. The 
table reports the fraction of simulations for which the null is rejected at the five 
percent level. Stationarity is statistically ambiguous only for ρ0 = 0.9978 with the 
sample sizes T = 1000 or T = 2000. 

Estimation is performed with ML, EMM and indirect inference. The remainder 
of this section reviews these techniques. 
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1.3 Full Maximum Likelihood 

We use the full (i.e., unconditional) likelihood function. Denote the mean log-
likelihood of YT given a candidate parameter ρ as QT(YT, ρ). The ML estimate of 
ρ is 

ρ̂ L,T = argmax QT(YT, ρ). (3) 
ρ∈(−1,1) 

Denote the derivative of QT with respect to ρ as hT(YT, ρ). This is the mean score 
vector (which here has a single element). ML test statistics considered in this paper 
are based on the mean outer product of the score, denoted Ŝ T. The Generalized 
Method of Moments (GMM) criterion function associated with the ML problem is 

JL,T(ρ) = ThT (YT, ρ) Ŝ −1hT (YT, ρ) . (4)T 

The null hypothesis ρ = ρ0 can be tested using this criterion function. 
Asymptotically, 

d
JL,T(ρ0) → χ2(1). (5) 

This is the standard score test in ML. It is also the GMM version of the likelihood 
ratio test. 

1.4 Auxiliary Likelihoods 

Both simulated scores and indirect inference estimation choose ρ to make sample 
properties of an auxiliary function close to the expected properties of the auxiliary 
function, where the expected properties are calculated using ρ. The econometrician 
chooses the auxiliary function to be both tractable and to fit the important dynamics 
of the data. With simulated scores, the auxiliary function is a likelihood function 
that is typically easier to work with than the true likelihood. Although indirect 
inference does not emphasize the use of likelihood functions as auxiliary functions, 
for comparability with simulated scores we restrict the focus of this paper to 
auxiliary functions that are likelihoods. 

We use auxiliary likelihoods associated with two auxiliary models. The first 
is the structural model (2), replacing the structural parameter ρ with the auxiliary 
parameter β. For this model we use the full likelihood as the auxiliary likelihood. 

The second auxiliary model is the more general AR(1) model 

yt = β0 + β1yt−1 + ξ t, ξ t ∼ N(0, β2), β = (β0 β1 β2) . (6) 

For this model we use the likelihood conditioned on the first observation. 
For notational convenience, the parameter vector for each model is a vector 

β, with  length  pa = 1 for the first auxiliary model and pa = 3 for the second. For a 
given auxiliary model, denote the mean auxiliary log-likelihood of YT given β by 
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Qa,T(YT, β). Denote the mean score vector by ha,T(YT, β). The estimate of β is 

β̂ T = argmax Qa,T(YT; β). (7) 
β∈B 

Denote by d̂ a,T the second derivative of the auxiliary log-likelihood at this estimate. 
As T gets large, the auxiliary likelihood no longer depends on the particular 

sample YT. It is simply a function of the true structural parameter ρ0, 

lim Qa,T(YT; β) = Qa,∞(ρ0, β). (8)
T→∞ 

In this limit, the auxiliary parameters that maximize the auxiliary likelihood 
converge to β0, defined  as  

β0 = argmax Qa,∞(ρ0, β). (9) 
β∈B 

Similarly, d̂ a,T converges to da,0. 
Denote the covariance of the mean score vector evaluated at β0 (and scaled by 

T) by  T. Formally, 

T(YT) = T Var ha,T(YT, β0) . (10) 

As T gets large, this converges to a fixed matrix . Then, from the Central Limit 
Theorem, the probability density of β̂ T converges in distribution to 

d√ 
T β̂ T − β0 → N 0, d−1 d−1 . (11)a,0 a,0 

In (11), da,0 and are unknown. The former can be replaced with d̂ a,T, which  
is a consistent estimate of da,0. Similarly, can be replaced with a consistent 
estimator. Throughout this paper we use the mean outer product of the auxiliary 
score vector to estimate . The outer product is a consistent estimator of if the 
auxiliary score vector is asymptotically serially uncorrelated. Both the auxiliary 
likelihoods we consider nest the true likelihood function, thus this property of the 
score vector is satisfied. 

1.5 EMM 

EMM is developed in Bansal et al. (1993, 1995) and Gallant and Tauchen (1996). 
Our implementation differs from the standard procedure, so we need to explain 
our approach precisely, and how it differs from the standard procedure. 

The standard implementation of EMM is a two-step process. First, a data-
driven search process chooses a reduced-form auxiliary model that best fits the 
data (by an appropriate metric). The reduced-form model is often in the semi-
nonparametric family. Second, the structural model is estimated using the method 
of simulated scores, which chooses the parameter vector to set the expectation 
of the auxiliary likelihood score vector as close to zero as possible. Gallant and 
Tauchen (1996) use the term EMM to describe the method of simulated scores 
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when the search process asymptotically produces an auxiliary likelihood that 
converges to the true likelihood. 

We do not perform the first step. Instead, we use pre-specified auxiliary 
models that nest the true model. This choice is motivated by two goals. First, we 
want to understand the finite-sample properties of the simulated score procedure 
without introducing complications associated with the finite-sample properties of 
the auxiliary model search. Second, we want to give simulation-based estimators 
the greatest opportunity to succeed. Poor performance on the part of an estimator 
cannot be blamed on a poorly-chosen auxiliary likelihood. We use the term 
EMM because our auxiliary likelihoods converge to the true likelihood, as in the 
standard implementation of EMM. Nonetheless, the finite-sample properties of 
our procedure will certainly differ from those of the two-step procedure, and it 
is conceivable that properties of the latter procedure are better than those of the 
former. 

A minor difference between the standard implementation and our procedure 
concerns the type of auxiliary likelihood. In the former case, the auxiliary likelihood 
function is a conditional likelihood function. Because we want to allow for the use 
of both full and conditional auxiliary likelihoods, our description of the simulated 
score methodology differs slightly from that in Gallant and Tauchen (1996). Denote 
the expectation of ha,T(YT, β) as  

Ha,T(ρ, β) ≡ E ha,T(YT(ρ), β) . (12) 

This expectation is taken over the density of YT, thus it depends on ρ. In  practice,  
Ha,T is computed by simulating the true data-generating process using ρ, unless  
the combination of auxiliary model and true process admits an analytic solution. 
The data generating process studied in this paper is sufficiently tractable that 
analytic solutions are typically available. 

The subscript T on Ha,T is necessary only if a full auxiliary likelihood is used. 
In this case, the expectation of the auxiliary score of the first (and unconditional) 
observation differs from the expectation of the auxiliary score of all other 
(conditional) observations. Therefore the expectation of the mean score depends 
on the number of conditional observations relative to the single unconditional 
observation. If a conditional auxiliary likelihood is used, all observations have the 
same expected score, hence Ha,T does not depend on T. 

The GMM criterion function associated with EMM estimation is 

JE,T(ρ) = THa,T ρ, β̂ T Ŝ 
a 
− 
,T 
1 Ha,T ρ, β̂ T . (13) 

In (13), Ŝ a,T plays the role of a consistent estimator of . The EMM estimate of ρ, 
denoted by ρ̂ E,T, minimizes this function: 

ρ̂ E,T = argmin JE,T(ρ). (14) 
ρ∈(−1,1) 
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The parameter vector is overidentified if the length of β exceeds one. Then 
asymptotically, 

d
JE,T(ρ̂E,T) → χ2(pa − 1). (15) 

This is a test of general model misspecification. The null hypothesis ρ = ρ0 can be 
tested with 

d
JE,T(ρ0) − JE,T(ρ̂E,T) → χ2(1). (16) 

This is the EMM counterpart of the ML test (5). 
An interesting special case is when the auxiliary likelihood is identical to the 

true likelihood. Then by the consistency property of ML, the EMM estimate ρ̂ E,T 
equals the ML estimate ρ̂L,T (and also equals β̂ T). Equality of ρ̂L,T and ρ̂E,T does not 
correspond to equality of the ML and EMM likelihood ratio statistics (5) and (16). 
In other words, the criterion functions (4) and (13) are guaranteed to equal each 
other only at the ML estimate of ρ, where both functions equal zero. 

1.6 Indirect Inference 

Indirect inference is developed in Smith (1990, 1993), Gouriéroux et al. (1993), 
and Gouriéroux and Monfort (1996).4 The setting here is more restrictive because 
only likelihood functions are considered. Estimation chooses ρ to minimize the 
difference between the sample estimate of the auxiliary model’s parameters and 
the expected parameter estimates. This difference can be expressed in terms of the 
binding function 

b(ρ) = argmax Qa,∞(ρ, β). (17) 
β∈B 

Asymptotically, the auxiliary model estimate β̂ T approaches the value of the 
binding function evaluated at ρ0. More precisely,  

T β̂T − b(ρ0) da,0 
−1da,0 β̂T − b(ρ0) 

a→ χ2(pa). (18) 

This result suggests an estimator for ρ, 

ρ̂I,T = argmin JI,T(ρ), (19) 
ρ∈(−1,1) 

where the criterion function JI,T is 

JI,T(ρ) = T β̂T − b(ρ) ˆ Ŝ−1 ˆda,T a,Tda,T β̂T − b(ρ) . (20) 

In (20), the unknown parameters da,0 and are replaced with consistent estimates. 
Gouriéroux and Monfort (1996) prove that indirect inference is asymptotically 

4 Although EMM is one of several estimators called ‘‘indirect inference’’ by Gouriéroux et al. (1993), we 
follow standard usage by distinguishing between EMM and indirect inference. 
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equivalent to EMM (when the same auxiliary function is used, as it is here), thus 
it necessarily achieves the same asymptotic efficiency. 

For the purposes of comparing the finite-sample properties of indirect 
inference with those of EMM, note that we can interpret the criterion function (20) 
as a quadratic  form  in  a vector of moments  d̂ a,T(β̂ T − b(ρ)). The weighting matrix is 
the inverse of Ŝ a,T, which is the same weighting matrix used with EMM estimation. 
Thus comparing the properties of Ha,T(ρ, β̂ T) with those  of  d̂ a,T(β̂ T − b(ρ)) will help 
us understand the differences in the finite-sample properties of the estimators. 

As with EMM, we can construct a test of model misspecification and a test of 
the hypothesis that ρ = ρ0. Asymptotically, 

d
JI,T(ρ̂I,T) → χ2(pa − 1), (21) 

and 

d
JI,T(ρ0) − JI,T(ρ̂I,T) → χ2(1). (22) 

The difficulty with indirect inference is in computing the binding function 
b(ρ). In some applications it is known analytically. One case is where the auxiliary 
likelihood is identical to the true likelihood. Then, by the consistency property of 
ML, b(ρ) = ρ. The indirect inference estimator is then ρ̂ I,T = β̂ T. In the absence of 
an analytic expression of the binding function, it is approximated with simulations. 
The indirect inference literature uses two alternative simulation approaches, one of 
which requires a slight modification to the derivation above. The existing literature 
uses the term indirect inference to refer to both approaches, but we modify this 
term to help distinguish between them. 

The first approach, which we call asymptotic indirect inference, defines a  
simulated version of the binding function, 

b∗(Ỹ 
τ (ρ)) = argmax Qa,τ (Ỹ 

τ (ρ), β), (23) 
β∈B 

where Ỹ 
τ (ρ) is  a  length-τ simulated sequence of data generated by the true 

model with parameter ρ. As  τ approaches infinity, this simulated binding function 
approaches b(ρ). Thus we also refer to the case where b(ρ) has an analytic 
expression as asymptotic indirect inference. 

The second approach, which we call finite-sample indirect inference, defines  a  
finite-sample version of the binding function. The function is 

H 

bH
T (Ỹ 

T 
1 (ρ), . . . , Ỹ 

T
H(ρ)) = 1 

argmax Qa,T(Ỹ h
T(ρ), λ), (24)

H β∈Bh=1 

where YT
h (ρ) is a length-T simulated sequence of data generated by the true model 

with parameter ρ. The sequences are independent. To simplify notation, denote 
this function by b̃ TH(ρ). As H approaches infinity, this function no longer depends 
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on the particular randomly generated samples, so we write 

b̃Hlim T (ρ) = bT(ρ). (25)
H→∞ 

For finite H, the criterion function must be modified to account for the 
randomness introduced by simulating the binding function. The adjusted criterion 
function is 

1
JF,T(ρ) = T β̂ T − b̃ TH(ρ) d̂ a,TŜ 

a 
− 
,T 
1 d̂ a,T β̂ T − b̃H

T (ρ) . (26)
1 + 1/H 

The subscript F refers to the finite-sample version of indirect inference. The 
finite-sample indirect inference estimator is 

ρ̂ F,T = argmin JF,T(ρ). (27) 
ρ∈(−1,1) 

The test statistics (21) and (22) also apply to finite-sample indirect inference, with 
JF,T replacing JI,T. 

Note that finite-sample indirect inference does not require a large value of 
H. For example, H = 1 is valid. Higher values of H reduce the uncertainty in the 
estimate of ρ because the variance of β̂ T − b̃ TH(ρ0) is proportional to (1 + 1/H). 

1.7 Tradeoffs Among These Techniques 

Gouriéroux et al. (1993) show that EMM and the two indirect inference estimators 
described above all have the same asymptotic properties. However, they differ 
markedly in their computational needs. Both indirect inference estimators require 
the auxiliary model to be reestimated for every set of simulated data. In contrast, 
with EMM, the parameters of the auxiliary model need to be estimated only 
once, on the original sample. For each simulated dataset, EMM requires only the 
computation of the auxiliary model’s score vector at the original set of auxiliary 
parameter values. This speed advantage is the primary reason why researchers 
use EMM more often than they use either indirect inference estimator. 

There is also a speed tradeoff with the two forms of the indirect inference 
estimator. The asymptotic indirect inference estimator requires only a single 
estimation of the auxiliary model’s parameters for a given structural-model 
parameter vector. The finite-sample version requires estimation of H sets of 
auxiliary model parameters.5 

Advocates of finite-sample indirect inference focus on the bias in point 
estimates. The use of simulated datasets of the same length as the original sample 
means that finite-sample indirect inference corrects some of the small-sample bias 
present in both EMM and asymptotic indirect inference. Indeed, Gouriéroux et al. 
(2000) show that, as H approaches infinity, the finite-sample indirect inference 
estimator provides the same second-order bias correction in the point estimates 

5 For the AR(1) model we examine, asymptotic indirect inference has an even larger speed advantage, 
because there is an analytic expression for the asymptotic indirect inference binding function. 
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as the bootstrap estimator of Efron (1979). While this result does not hold for 
finite H (unlike with a finite number of bootstrap replications), Gouriéroux et al. 
(2000) nevertheless show in simulations that the finite-sample indirect inference 
estimator reduces bias in point estimates as well as the exact median-unbiased 
estimator of Andrews (1993) for AR(1) models, and as well as the approximate 
median-unbiased estimators of Rudebusch (1992) and Andrews and Chen (1994) 
for AR(p) models. 

In the simulations that follow we confirm the bias reduction associated with 
finite-sample indirect inference. However, statistical inference depends on both 
point estimates and estimated standard errors. One of the surprising conclusions 
of this paper is that the small-sample properties of test statistics produced by finite-
sample indirect inference are generally inferior to those produced by asymptotic 
indirect inference. 

2 ESTIMATION USING THE FULL LIKELIHOOD FUNCTION 

This section focuses on estimation of ρ in (2) using the full likelihood function, 
both directly in ML estimation and indirectly as the auxiliary likelihood function. 
Although the calculations are straightforward, we go into a little detail to illustrate 
the differences among the estimation techniques. 

2.1 Setup 

The mean score vector is 

1 2)−1 22hT(YT; ρ) = ρ y1 − (1 − ρ + (T − 1) ytyt−1 − ρy . (28)t−1T 

The ML estimator, ρ̂ L,T, sets  hT(YT; ρ) to zero. We solve for this estimate using the 
Matlab root-finder ‘‘fzero.’’ The outer product of the score vector is 

1 2 
T 

22 2 2 2Ŝ T = ρ̂ L,T y1 − (1 − ρ̂ L,T)−1 + ytyt−1 − ρ̂ L,Tyt−1 . (29)
T 

t=2 

The second derivative of the mean log-likelihood is 

1 −2ˆ 2 2 2 2dT = y1 − 1 − ρ̂ 1 + ρ̂ − (T − 1)y . (30)L,T L,T t−1T 

Note that the unconditional variance of yt conditional on a candidate ρ is 

2 2)−1Var(yt|ρ) = E(yt |ρ) = (1 − ρ . (31) 

The auxiliary likelihood is the full likelihood of the true model, with the 
parameter ρ replaced by β. The  expectation of  ha,T is thus identical to the 
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expectation of hT and is given by 

Ha,T(ρ, β) = 1 
β 1 − ρ2 −1 − 1 − β2 −1 + (T − 1) (ρ − β) (1 − ρ2)−1 . 

T 
(32) 

Inspection of (32) reveals that it is identically zero for ρ = β. The asymptotic 
indirect inference binding function is b(ρ) = ρ. Therefore the estimate of ρ for both 
of these estimators is ρ̂ L,T. The finite-sample indirect inference binding function 
does not have an analytic expression. We approximate it with H = 4. This choice is 
sufficient to illustrate the advantages and disadvantages of finite-sample indirect 
inference. The Matlab root-finder ‘‘fzero’’ is used to find the finite-sample indirect 
inference estimate of ρ. 

2.2 Criterion Functions and Confidence Intervals 

For this setup, the GMM criterion functions for ML, EMM, asymptotic indirect 
inference, and finite-sample indirect inference are, respectively, 

JL,T(ρ) = ThT(YT; ρ)2/Ŝ T; (33) 

JE,T(ρ) = THa,T(ρ; ρ̂ L,T)2/Ŝ T; (34) 

JI,T(ρ) = T(d̂T(ρ̂L,T − ρ))2/Ŝ T; (35) 

and 

JF,T(ρ) = T 
1

(d̂T(ρ̂L,T − b̃ T 
4 (ρ)))2/Ŝ T. (36)

1 + 1/4 

We follow the recommendation of Gallant and Tauchen (1998), and construct 
confidence intervals for ρ by inverting the criterion functions.6 Hansen et al. (1996) 
conclude, based on Monte Carlo studies of various GMM estimators, that Wald-
type confidence intervals typically perform poorly. They find that confidence 
intervals based on inverting GMM criterion functions are more reliable. 

Define cζ as the probability-ζ critical value of a χ2(1) distribution: 

Prob(χ2(1) > cζ ) = 1 − ζ .  (37) 

For example, with ζ = 0.95, the probability is 5% that a random variable distributed 
as χ2(1) exceeds cζ . A confidence interval for ρ based on maximum likelihood is 

ζ -level ML confidence interval = ρ : JL,T(ρ) < cζ . (38) 

6 In particular, we do not calculate confidence intervals from asymptotic standard errors, including those 
calculated, as in recent implementations of EMM, using the MCMC methodology of Chernozhukov and 
Hong (2003). 
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Figure 1 Criterion functions for estimation of an autoregression coefficient. 

Confidence intervals for the other estimation methods are constructed similarly. 
Because these intervals are constructed from criterion functions instead of inverting 
asymptotic standard errors, they are not necessarily symmetric around the ML 
point estimate.7 In principle, this asymmetry is a nice feature of the confidence 
intervals, because it reflects the cost (in terms of the likelihood) of values of ρ near 
the boundary of stationarity. However, one of the main problems we document 
with the EMM criterion function is that it is excessively asymmetric when the data 
are highly persistent. 

Examples of the criterion functions and associated confidence intervals are 
displayed in Figure 1. We generate three samples of 1000 weekly observations for 
the different values of ρ0 discussed in Section 1.1.8 Panels A, B, and C contain 
criterion functions for ρ0 = 0.8522 (one-month half life of shocks), ρ0 = 0.9868 (one 

7 The intervals are not necessarily symmetric around the point estimate even if the criterion function is 
symmetric, because the intervals do not extend beyond the boundary of the stationary region |ρ| < 1. 

8 The samples  are constructed  with  the same underlying random numbers, generated using the Matlab 
random number generator randn. The seed for the sequence is zero. 
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year), and ρ0 = 0.9978 (six years) respectively. Panels D, E, and F are magnified 
views of the corresponding panel on the left. Criterion functions for full ML, 
asymptotic indirect inference, finite-sample indirect inference, and EMM are 
illustrated with solid lines, dashed lines, dotted lines, and dashed-dotted lines 
respectively. In the magnified panels, the point estimate of ρ is marked with an 
‘‘O’’ and the true value is marked with a ‘‘p’’. The points ‘‘L’’ and ‘‘U’’ are the 
lower and upper 95th percentile bounds on ρ constructed using the EMM criterion 
function. 

The criterion functions for ML, EMM, and asymptotic indirect inference all 
reach a minimum of zero at the same point—the ML estimate of ρ. The  point  
that minimizes the finite-sample indirect inference criterion function is random 
because of the finite number of simulations used to construct b̃ TH(ρ). 

2.3 The Asymmetry of the EMM Criterion Function 

The most interesting feature of these plots is the asymmetry in the EMM criterion 
function relative to the other criterion functions. The relative asymmetry increases 
significantly as the persistence of the data increases. A detailed discussion 
of the functions for which analytic expressions are available (i.e., not finite-
sample indirect inference) helps explain this pattern. Begin with the asymptotic 
indirect inference criterion (35). Inspection of this equation reveals the function is 
symmetric in ( ̂ρL,T − ρ), and in particular the function is quadratic. A comparison 
of the EMM criterion function (34) with (35) is simplified by ignoring the role of 
the first observation in the construction of both d̂T and Ha,T. Then the two functions 
are approximately given by 

2
JE,T(ρ) ≈ T (ρ̂L,T − ρ)(1 − ρ2)−1 /Ŝ T (39) 

and 
2

2JI,T(ρ) ≈ T (ρ̂L,T − ρ)y /Ŝ T. (40)t−1 

Both functions scale the difference between the ML estimate and the candidate ρ by 
a measure of the variance of the data. For the EMM criterion function, the variance 
measure is the population variance (31). For the asymptotic indirect inference 
criterion function, the variance measure is the sample estimate. When ρ > ρ̂ L,T, 
EMM scales the deviation ( ̂ρL,T − ρ) by a larger variance than when ρ < ρ̂ L,T. This  
asymmetry is more pronounced when ρ̂ L,T is close to one, because (31) is more 
sensitive to ρ at such points. 

A similar approximation illustrates the relation between the ML criterion 
function (33) and the EMM criterion function. The conditional maximum likelihood 

2estimate of ρ (i.e., dropping the first observation) is ytyt−1/yt−1. Ignoring  the  
difference between this estimate and the full ML estimate, the ML criterion 
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function is approximately 

21 T − 1 
JL,T(ρ) ≈ ρ(y2

1 − (1 − ρ2)−1) + (ρ̂L,T − ρ)y2 
t−1 /Ŝ T. (41)

T T 

Aside from the treatment of the first observation, this criterion function is identical 
to (40). The population variance (31) appears in the derivative of the log-likelihood 
of the first observation. Therefore the ML criterion function is asymmetric for the 
same reason that the EMM criterion function is asymmetric. But because the 
population variance affects only one of the T observations, the magnitude of the 
asymmetry is smaller than in (39). 

For the one-month half life, the asymmetry of the EMM criterion function 
is noticeable but small. In Panel D, the distance between the EMM lower 95th 
percentile bound L and the point estimate ρ̂ L,T is 0.0326. The distance between 
ρ̂ L,T and the EMM upper 95th percentile bound is 0.0223, or about two-thirds 
the length of the lower bound. The asymmetry is stronger with the one-year 
half life in Panel E, where the lower and upper distances between the bounds 
and ρ̂ L,T are 0.0213 and 0.0059, respectively. By contrast, the ML and asymptotic 
indirect inference criterion functions are almost indistinguishable in this panel. 
With a six-year half life, the asymmetry in the ML criterion function relative to the 
asymptotic indirect inference criterion function is clear (Panel F), but it is swamped 
by the asymmetry of the EMM criterion function. In fact, the lower bound of the 
EMM 95th percentile bound cannot be displayed in either Panel C or Panel F. It is 
ρ = 0.38. 

When ρ is close to one, the population variance (31) is both large and highly 
nonlinear in ρ. The asymmetry in the criterion function is created by the latter 
effect, not the former. Although our data-generating process does not allow us to 
distinguish between these effects, consider the more general DGP 

yt = ρ0yt−1 + t, t ∼ N(0, σ 2). (42) 

The magnitude of the population variance depends on both ρ0 and σ , yet  σ 
∗ ∗has no effect on any of our results. To see this, define y = yt/σ and = t/σ .t t ∗Dividing (42) by σ produces dynamics for y that are identical to (1). Thus allt 

calculations and conclusions regarding the estimation of ρ are unaltered aside 
from the substitution of yt/σ for yt. 

Asymptotically, the asymmetry of the EMM criterion function has no 
implications for test statistics based on the criterion function because the ML 
estimate converges to ρ0. In other words, all that matters is the behavior of the 
functions over the tiny range that encompasses both ρ̂ L,T and ρ0. But in finite 
samples, the asymmetries can have important effects. For concreteness, consider 
the functions for the one-year half life displayed in Panels B and E. At the ML 
estimate, the second derivative of the EMM criterion function (34) is close to those 
of (33) and (35). (By construction, the latter two have identical second derivatives 
at the ML estimate). Their ratio is 1.2. However, the third derivative of the ML 
criterion function at ρ̂ L,T is much closer to zero than is the third derivative of the 
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EMM criterion function. To simplify the interpretation of the third derivatives, 
divide them by the corresponding second derivatives. With this scaling, the third 
derivative of the ML function (33) is 23, while the third derivative of the EMM 
function (34) is 362. Thus, although the true value of ρ is very close to the ML 
estimate (0.9868 versus 0.9836), the ratio of second derivative of the EMM function 
to the second derivative of the asymptotic indirect inference function at ρ0 is 4.1. 
The corresponding ratio for the ML and asymptotic indirect inference functions is 
only 1.1. 

In summary, the evidence in Figure 1 suggests that with highly persistent 
data, the finite-sample properties of EMM confidence bounds and test statistics are 
likely to differ substantially from the corresponding finite-sample properties of 
both ML and indirect inference. The next subsection uses Monte Carlo simulations 
to document this claim. It also shows that the finite-sample properties of ML and 
asymptotic indirect inference are much closer to their asymptotic properties than 
are the finite-sample properties of EMM. 

2.4 Finite Sample Properties 

Bias in estimated autocorrelation coefficients, particularly when the data are 
persistent, is a well-known problem for most estimation techniques, not just those 
that are simulation-based (see, for example, Orcutt (1948), Quenouille (1949), 
Marriott and Pope (1954), Kendall (1954), or, for a more recent example involving 
non-linear processes, Ball and Torous (1996)). Because our focus is on persistent 
processes, it is not a surprise that the techniques we consider exhibit deviations 
between finite-sample and asymptotic properties. Our goal is to examine how and 
why these deviations differ across estimation methods. Relevant evidence from 
Monte Carlo simulations is reported in Tables 2 and 3. 

Table 2 reports means, medians, and root mean squared errors of point 
estimates for both maximum likelihood and finite-sample indirect inference. (The 
remainder of the table is discussed in Section 3.3.) The two conclusions to draw 
from these statistics are unsurprising. First, the ML estimate is downward biased. 
Second, the finite-sample indirect inference estimate is less biased than the ML 
estimate. These statements apply to each combination of ρ0 and T. 

Table 3 reports median lengths, across 5000 simulations, of 95% confidence 
intervals for ρ. This length is defined by (38) for ML and defined by similar 
equations for EMM and indirect inference. The table also reports empirical 
rejection rates for these bounds (i.e., for what fraction of the simulations is ρ0 
contained in the range defined in that simulation (38)). 

We draw two important conclusions from the results of Table 3. The first 
concerns EMM and the second concerns finite-sample indirect inference. 

2.4.1 Hypothesis testing with EMM. When the data-generating process is 
highly persistent, the finite-sample properties of EMM differ sharply from those 
of the other estimators. The EMM confidence intervals are much larger than the 
ML and indirect inference confidence intervals, yet the empirical rejection rates for 
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Table 2 Estimates of an autocorrelation coefficient. 

F-II EMM A-II F-II 
using w/cond w/cond w/cond 

T ρ0 ML true like Gaussian Gaussian Gaussian OLS 

1000 0.8522 0.8504 0.8518 0.8467 0.8504 0.8536 0.8486 
(0.8513) (0.8524) (0.8475) (0.8511) (0.8543) (0.8494) 
[0.0165] [0.0184] [0.0183] [0.0166] [0.0186] [0.0171] 

2000 0.8522 0.8515 0.8522 0.8496 0.8515 0.8531 0.8506 
(0.8517) (0.8525) (0.8500) (0.8517) (0.8535) (0.8508) 
[0.0119] [0.0133] [0.0125] [0.0120] [0.0134] [0.0121] 

10000 0.8522 0.8520 0.8521 0.8516 0.8520 0.8523 0.8518 
(0.8521) (0.8522) (0.8518) (0.8521) (0.8524) (0.8519) 
[0.0053] [0.0060] [0.0053] [0.0053] [0.0060] [0.0053] 

1000 0.9868 0.9849 0.9859 0.9733 0.9848 0.9883 0.9825 
(0.9859) (0.9874) (0.9809) (0.9859) (0.9893) (0.9836) 
[0.0060] [0.0062] [0.0314] [0.0062] [0.0066] [0.0053] 

2000 0.9868 0.9858 0.9863 0.9827 0.9858 0.9876 0.9847 
(0.9863) (0.9871) (0.9841) (0.9863) (0.9881) (0.9853) 
[0.0040] [0.0043] [0.0089] [0.0041] [0.0045] [0.0047] 

10000 0.9868 0.9866 0.9867 0.9862 0.9866 0.9870 0.9864 
(0.9867) (0.9868) (0.9863) (0.9867) (0.9870) (0.9865) 
[0.0016] [0.0018] [0.0019] [0.0017] [0.0019] [0.0017] 

1000 0.9978 0.9962 0.9972 0.9451 0.9961 0.9975 0.9929 
(0.9972) (0.9983) (0.9781) (0.9970) (0.9982) (0.9940) 
[0.0034] [0.0031] [0.0890] [0.0037] [0.0027] [0.0069] 

2000 0.9978 0.9969 0.9974 0.9748 0.9969 0.9980 0.9954 
(0.9974) (0.9981) (0.9930) (0.9973) (0.9984) (0.9960) 
[0.0021] [0.0020] [0.0435] [0.0022] [0.0019] [0.0034] 

10000 0.9978 0.9976 0.9977 0.9966 0.9976 0.9980 0.9974 
(0.9977) (0.9979) (0.9972) (0.9977) (0.9981) (0.9975) 
[0.0007] [0.0008] [0.0047] [0.0008] [0.0008] [0.0009] 

This table reports means, medians (in parentheses), and RMSEs (in brackets) from 5,000 Monte Carlo 
simulations. The true data-generating process is 

yt = ρ0yt−1 + t, t ∼ N(0, 1). 

For each simulation, a sample of length T is generated. The parameter ρ is treated as unknown, and is 
estimated with full maximum likelihood (ML), efficient method of moments (EMM), asymptotic indirect 
inference (A-II), finite-sample indirect inference (F-II) where the binding function is approximated with 
four simulations, and OLS. The auxiliary likelihood used with EMM and indirect inference is either the true 
likelihood or a conditional Gaussian likelihood. The OLS regression includes a constant term. 
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Table 3 Hypothesis tests of an autoregression coefficient. 

Actual 
Median length of rejection rate of 
95% conf bound 95% conf bound 

T ρ0 ML EMM A-II F-II ML EMM A-II F-II 

1000 0.8522 0.0646 0.0670 0.0646 0.0725 0.051 0.059 0.051 0.049 
2000 0.8522 0.0457 0.0466 0.0458 0.0512 0.055 0.059 0.056 0.055 
10000 0.8522 0.0205 0.0206 0.0205 0.0229 0.052 0.052 0.052 0.055 

1000 0.9868 0.0190 0.0383 0.0197 0.0217 0.058 0.145 0.058 0.079 
2000 0.9868 0.0140 0.0193 0.0141 0.0158 0.056 0.108 0.057 0.068 
10000 0.9868 0.0063 0.0067 0.0064 0.0071 0.051 0.066 0.051 0.054 

1000 0.9978 0.0066 0.5671 0.0066 0.0055 0.106 0.256 0.087 0.182 
2000 0.9978 0.0050 0.1629 0.0054 0.0050 0.075 0.213 0.071 0.129 
10000 0.9978 0.0025 0.0038 0.0026 0.0029 0.058 0.121 0.059 0.067 

This table summarizes results from 5,000 Monte Carlo simulations. The true data-generating process is 

yt = ρ0yt−1 + t , t ∼ N(0, 1). 

For each simulation, a sample of length T is generated. The parameter ρ is treated as unknown, and is 
estimated with full maximum likelihood (ML). Confidence bounds and test statistics are based on GMM 
criterion functions for ML, EMM, asymptotic indirect inference (A-II), and finite-sample indirect inference 
(F-II) where the binding function is approximated with four simulations. The true full likelihood is the 
auxiliary likelihood for EMM and indirect inference. Confidence bounds are constructed by inverting the 
criterion functions. Tests of the hypothesis that ρ = ρ0 are GMM versions of the likelihood ratio test. Under 
the null, all statistics have asymptotic χ2(1) distributions. 

EMM are much higher than those of the other estimators. For example, with 2000 
weeks of data and ρ0 = 0.9978, the median length of the EMM confidence interval 
is more than 30 times the median length of the ML or indirect inference confidence 
intervals. The empirical rejection rate at the 95th percentile level exceeds 20 percent 
for EMM, compared with between 7.5 and 7 percent for ML and asymptotic indirect 
inference. Differences between EMM and the other estimators are relatively large 
even with extremely long data samples. With 10,000 observations (192 years), the 
median length of the EMM confidence intervals is more than 50 percent larger 
than the median length of the ML and asymptotic indirect inference confidence 
intervals, and empirical rejection rates are twice as large. 

The problem with EMM is inherent in the sharp asymmetry in the EMM 
criterion function induced by the role that the population variance function (31) 
plays in the EMM moment condition. This problem is explained easily in the 
context of Figure 1. With highly persistent data, the EMM criterion function is 
extremely asymmetric. This asymmetry produces a confidence interval that covers 
a wide range  of  ρ below ρ̂ L,T, but covers too little of the range of ρ above ρ̂ L,T. 
Given this asymmetry, it is not surprising that almost all of the EMM rejections of 
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the hypothesis ρ = ρ0 occur when the point estimate ρ̂ L,T is less than ρ0. (This  fact  
is not reported in any table.) 

We emphasize that our point is not simply that EMM has poor finite-sample 
properties in this AR(1) setting. It is that EMM has poor properties relative to the 
alternative simulation technique of asymptotic indirect inference. In fact, the test 
statistic for indirect inference has better finite-sample properties than does the test 
statistic for ML. Moreover, EMM breaks down in cases where the hypothesis of 
a unit root is typically rejected. For example, with ρ0 = 0.9868 and T = 2000, the 
empirical rejection rate of the hypothesis ρ = ρ0 is almost twice as high with EMM 
as it is with ML and asymptotic indirect inference. Yet, as mentioned in Section 1.2, 
the power of a Dickey-Fuller test is extremely high for this combination of ρ0 and 
T. (The test rejects the hypothesis of a unit root at the 95 percent confidence level 
in 4999 of 5000 simulations.) Thus the finite-sample properties of EMM are poor 
relative to asymptotic indirect inference when the underlying process is highly 
persistent, but not necessarily statistically close to a unit root. 

2.4.2 Hypothesis testing with finite-sample indirect inference. When 
the data-generating process is highly persistent, asymptotic indirect inference 
outperforms finite-sample indirect inference in testing the hypothesis ρ = ρ0. For  
example, with 1000 weeks of data and ρ0 = 0.9978, the empirical rejection rates 
are 9 percent and 18 percent respectively. At first glance, this is a surprising result 
because finite-sample indirect inference point estimates of ρ are less biased than 
those of asymptotic indirect inference. We might be tempted to attribute this result 
to a low value of H, which creates uncertainty in the calculation of the finite-sample 
binding function. However, this poor performance is actually attributable to the 
smaller bias in the point estimate. 

To understand how the smaller bias affects statistical inference, note that 
the indirect inference test statistics (35) and (36) are derived from the following 
asymptotic results: 

ρ̂L,T − ρ0 d
lim → N(0, 1) 

T→∞ SE(ρL,T) 
(43) 

and 

lim 
T→∞ 

1 
1 + 1/H 

1/2 ˆ bHρL,T − ˜T (ρ0) d→ N(0, 1), 
SE(ρ̂L,T) 

(44) 

where the robust estimate of the standard error of ρ̂L,T is 

SE(ρ̂L,T) = ŜT/(T ̂d2 
T). (45) 

The statistics (35) and (36) are squared versions of (43) and (44). According to (43) 
and (44), ML estimates of ρ are asymptotically distributed symmetrically around 
ρ0 or b̃ TH(ρ) respectively. (Asymptotically, b̃ TH(ρ) converges to ρ0.)  Hence if we use,  
say, a 95% confidence level for the χ2(1) tests (35) and (36), then asymptotically 
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Figure 2 Hypothesis testing with indirect inference. 

half of the rejections should occur when the estimate of ρ exceeds ρ0 (or b̃ TH(ρ)) 
and half should occur when the estimate of ρ is less than ρ0 (or b̃ TH(ρ)). Of course, 
in finite samples this symmetry need not be observed. 

Visual evidence of this symmetry, or lack thereof, is in Figure 2. It is 
constructed using 5,000 simulations produced with the high-persistence parameter 
ρ0 = 0.9978 and T = 1000. Both panels A and B display the same scatter plot of ML 
point estimates and the corresponding estimate of its standard error. The mean 
point estimate is marked with an ‘‘O’’ on the horizontal axis. The true value ρ0 is 
marked with a ‘‘p.’’ It is the square root of (1 − ρ2

0)/T. For the points in Panel A 
labeled in grey, the asymptotic indirect inference test (35) rejects the hypothesis of 
ρ = ρ0 at the 95 percent confidence level. The test is not rejected at the points in 
black. 

Panel A illustrates three features of the ML estimates that affect the symmetry 
of the outcome of the asymptotic indirect inference test (35). First, the ML estimate 
is biased down; point ‘‘O’’ is less than ‘‘p.’’ All else equal, this bias generates 
more rejections in the region ρ̂ T < ρ0 and fewer in the region ρ̂ T > ρ0, simply  
because the ML estimates are less likely to occur in the latter range. Second, the 
ML estimates are negatively skewed—the distribution has a long left tail. All else 
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equal, this skewness also generates more rejections in the region ρ̂ T < ρ0, because 
the typical numerator in (43) is larger in magnitude in this region than in the 
region ρ̂T > ρ0. Third, there is a strong inverse relation between the point estimate 
of ρ and its estimated standard error. All else equal, this relation generates more 
rejections in the region ρ̂ T > ρ0, because the denominator in (43) is lower in this 
region than in the region ρ̂ T < ρ0. 

In combination, these three features produce empirical rejections of the 
hypothesis ρ = ρ0 that are almost evenly divided between estimates of ρ that 
exceed ρ0 and estimates that are less than ρ0. Using a 95% critical value, these 
ranges contain 4.5% and 4.2% of the total number of simulations, for a total 
rejection rate of 8.7%. 

Panel B contains similar evidence for finite-sample indirect inference. Rather 
than approximate the binding function at ρ0 with H = 4, we can use the Monte 
Carlo simulations to approximate the function with H = 5000. The point labeled 

b5000‘‘O’’ is not only the mean ML point estimate; it is also ˜ (ρ0). Thus we canT 
calculate the statistic (36) for H = 5000. For this test, the grey and black dots in 
Panel B have the same interpretation as the dots in Panel A. Rejections of the null 
hypothesis at the 95% critical value are no longer evenly divided. The upper and 
lower ranges contain 15.6% and 2.6% of the total number of simulations, for a total 
rejection rate of 18.2%. 

The difference between Panels A and B is that in Panel B, the effect of the 
biased ML estimate is removed. The test statistic is based on the difference between 
the ML estimate and the expected ML estimate, not the difference between the 
ML estimate and ρ0. As a consequence, the inverse relation between the point 
estimate of ρ and its estimated standard error dominates the distribution of the 
test statistic. Rejections thus increase in the region ρ̂T > ρ0. Because the probability 
density of ρ̂ T is high in this region, the null hypothesis is rejected for a relatively 
large fraction of the total sample. 

We do not know if the patterns in Panel A are a happy accident, or if there 
is something fundamental about the combination of the three features that affect 
the distribution of the asymptotic indirect inference test statistics. A more robust 
conclusion is that there is no theoretical reason to believe that finite-sample indirect 
inference produces more accurate test statistics than asymptotic indirect inference. 
The motivation for finite-sample indirect inference lies exclusively in correcting 
for bias in point estimates, not the size of statistical tests. In the setting here, 
correcting for biased point estimates has unfortunate consequences for the size of 
statistical tests. 

3 ESTIMATION USING A CONDITIONAL GAUSSIAN LIKELIHOOD 

Section 2 documents relatively poor finite-sample performance of statistical 
inference with EMM. The auxiliary likelihood used in that section–full 
ML–provides the cleanest way to explain differences among the criterion functions. 
However, it does not allow us to compare point estimation properties, because 
EMM and asymptotic indirect inference point estimates are identical to ML 
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estimates. Nor does it permit an examination of the finite-sample properties of 
overidentifying restrictions. Thus in this section we use the auxiliary conditional 
likelihood of (6). We refer to this likelihood as the ‘‘conditional Gaussian’’ 
likelihood. 

The conditional Gaussian likelihood is less precise than the full ML likelihood. 
Put differently, it is a more flexible, and thus more highly parameterized, 
likelihood. By using it, we move in the direction of auxiliary likelihoods 
more frequently used in practice. Econometricians use auxiliary likelihoods to 
circumvent the problem of an unknown or intractable true likelihood. Gallant and 
Tauchen (1996) and Bansal et al. (1995) argue in favor of a data-based approach 
to choosing the auxiliary likelihood in order to detect misspecification of the 
structural model. In practice, this means using a flexible functional form that can 
capture arbitrarily complicated dynamics (at least asymptotically). This flexibility 
typically results in an auxiliary likelihood that is more highly parameterized 
than is the true data-generating process. Gallant and Tauchen recommend the 
SNP family of conditional likelihood functions described in Gallant and Tauchen 
(1992). For the case of a scalar time series, the simplest SNP specification is a 
conditional Gaussian likelihood. 

It is important to recognize, however, that we are not conducting a search 
for the best SNP specification. Instead, we use a common specification across all 
data samples. Although we use an auxiliary likelihood function that nests the 
true likelihood and is asymptotically equivalent to the true likelihood, it is not 
necessarily the best in-sample SNP specification for every sample. 

3.1 Setup 

The derivative of the mean auxiliary log-likelihood (6) is 
⎛ ⎞ 

et 
−1 ⎝ ⎠ha,T(YT, β) = β2 etyt−1 (46) 

(1/2)(et 
2/β2 − 1) 

where 

et = yt − β0 − β1yt−1. (47) 

The optimal parameter vector β̂ T = (β̂ 0,T β̂ 1,T β̂ 2,T) is equivalent to the combination 
of the coefficients of an OLS regression of yt on yt−1 and the mean of squared 
regression residuals. At this point, the Hessian matrix is 

⎛ ⎞ 
1 yt−1 0 

−1 ⎜ 2 ⎟d̂ a,T = −β̂ 
2,T ⎝ yt−1 yt−1 0 ⎠ . (48) 

1 −1ˆ0 0 β2 2,T 
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The mean outer product of the score is 
⎛ ⎞−1ˆ 2 1 3 ˆβ2,T et yt−1 2 et β2,T ⎜ −1 ⎟−2 2 2 2 1 3Ŝ a,T = β̂ 

2,T 
⎜
⎝ et yt−1 et yt−1 2 et yt−1β̂ 

2,T − etyt−1 ⎟
⎠ . 

−1 −1 −21 3 1 3 1 4 
2 et β̂

 
2,T 2 et yt−1β̂ 

2,T − etyt−1 4 (et β̂
 
2,T − 1) 

(49) 

Both of these matrices asymptotically approach (aside from a sign change) 
⎛ ⎞ 

1 0 0 
Sa,0 = 0 (1  − ρ2

0)−1 0 . (50)⎝ ⎠ 
0 0 1/2 

Estimation of ρ with EMM uses the expectation of (46) conditional on ρ. Some  
algebra reveals that this expectation is 

⎛ ⎞ −β0 
−1 ⎜ ⎟Ha,T(ρ, β) = β2 ⎝ (ρ − β1)Var(y|ρ) ⎠ . (51) 

1 −1 1 −1β − 1 + (ρ − β1)2Var(yt|ρ) + β2 β2 2 2 0 2 

The T subscript on Ha,T is included for notational consistency, but it is unnecessary 
because the auxiliary likelihood is a conditional likelihood. Because the auxiliary 
likelihood is correctly specified, the consistency of maximum likelihood implies 
that the asymptotic indirect inference binding function is 

⎛ ⎞ 
0 

b(ρ) = ρ . (52)⎝ ⎠ 
1 

The finite-sample binding function is approximated with H = 4. With our choice of 
auxiliary model, estimation of the auxiliary parameters does not require numerical 
approximation, and computation of b̃ TH(ρ) is therefore tractable. 

3.2 The Criterion Functions and Confidence Bounds 

As in the case of full maximum likelihood, a closer look at the EMM and asymptotic 
indirect inference criterion functions helps us understand the differences between 
their performance. The EMM moment vector is (51) evaluated at β̂ T. The moments 
are weighted by the inverse of (49). The corresponding asymptotic indirect 
inference moment vector is d̂ a,T(β̂ T − b(ρ)): 

⎛ ⎞ − ̂β0,T + yt−1(ρ − β̂ 1,T) 
−1 ⎜ ⎟2da,T(β̂ T − b(ρ)) = β̂ 
2,T ⎝ (ρ − β̂ 1,T)yt−1 − β̂ 0,Tyt−1 ⎠ . (53) 

1 −1(β̂ 
2,T − 1)2 



C 

Duffee & Stanton Simulation Inference for Near Unit-Root Processes 25 

A One–month half life 

0.8 L O R U 0.9 0.95 1 
0 

10 

20 

30 

40 

ρ 

G
M

M
 c

rit
er

io
n 

B One–year half life 

0.85 0.9 L 0.94 O RU 1 
0 

10 

20 

30 

40 

ρ 

G
M

M
 c

rit
er

io
n 

Six–year half life 

0.85 L 0.9 O 0.94 U R 1 
0 

100 

200 

300

G
M

M
 c

rit
er

io
n 

ρ 

Figure 3 Criterion functions for estimation of an autocorrelation coefficient, using a conditional 
Gaussian auxiliary auxiliary likelihood. 

These moments are also weighted by the inverse of (49). Each element of the 
vector (53) differs slightly from its counterpart in (51). The effects of these 
differences are illustrated in Figure 3. 

The figure displays the criterion functions for EMM, asymptotic indirect 
inference, and finite-sample indirect inference for the 1000-observation samples 
previously examined in Figure 1. The points labeled ‘‘O’’ are the EMM point 
estimates and the points labeled ‘‘L’’ and ‘‘U’’ are the upper and lower 95th 
percentile bounds on these estimates. The points labeled ‘‘R’’ are the estimates 
of persistence from the auxiliary model (β̂ 2,T), which are also the OLS regression 
estimates. Efficient method of moments criterion functions are dotted-dashed lines, 
asymptotic indirect inference functions are solid lines, and finite-sample indirect 
inference functions (using four simulations to approximate the binding function) 
are dotted lines. 

The most striking feature of this figure is that the EMM criterion functions 
in Panels B and C look nothing like the indirect inference criterion functions. 
Consider, for example, Panel C. For this highly persistent sample of data, the OLS 
estimate of ρ is 0.9884. The asymptotic indirect inference estimate is 0.9987, at 
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which point the value of the corresponding criterion function is about 16. The 
finite-sample indirect inference estimate is 0.9971, with a criterion function value 
of about 11. By contrast, the EMM estimate is 0.9256, with a criterion function 
value that exceeds 175. 

What accounts for the anomalous behavior of the EMM criterion function? 
One reason is identified in Section 2.3: the presence of the unconditional variance 
in the EMM moment condition, which is extremely sensitive to small variations in 
ρ in the neighborhood of ρ = 1. A second reason is that the sample mean has a 
large variance when the data are highly persistent. If the auxiliary model specifies 
the true mean, as it does in Section 2, this is irrelevant. But with a more general 
auxiliary model, the EMM criterion function is extremely sensitive to the sample 
mean. 

This sensitivity cannot be seen merely by studying the EMM moment 
vector (51) because it is driven by the interaction of the moment vector and 
the weighting matrix. More precisely, the sample mean of the data is correlated 
with sample covariance between the first two EMM moments, with unfortunate 
effects. The details (which are unavoidably mind-numbing) follow. 

First note that  in any  finite sample,  the mean  of  yt will differ from the true 
mean, which is zero in this setting. In addition, in most finite samples where the 
true process is stationary, the OLS regression estimate of mean reversion, β̂ 1,T, 
is less than one. As a consequence, the estimate of the constant term in the OLS 
regression, β̂ 0,T, is positively correlated with the sample mean of yt.9 Therefore 
the first moment of (51) is negatively correlated with the sample mean of yt. 
Asymptotically, this moment has no effect on the estimate of ρ. The  parameter  
does not appear in the equation for this first moment, and we can see in (50) that 
the asymptotic covariances between this moment and the other two moments are 
both zero. 

However, the criterion function uses sample covariances, not asymptotic 
covariances. The sample covariance between the first two moments is, from (49): 

2 2 2et yt−1 = Cov(et , yt−1) + et yt−1. (54) 

Thus if the sample mean of yt happens to be greater (less) than its true mean, 
the sample covariance will also tend to be greater (less) than its true mean. 
Hence the first moment tends to be positively correlated with the second moment 
whenever the first moment is negative, and negatively correlated whenever the 
first moment is positive. This pattern means that the EMM criterion function is 
typically minimized at a negative value of the second moment, which corresponds 
to an EMM estimate of ρ less than the OLS estimate β̂ 1,T. The effect holds regardless 
of the true value of ρ, which is why the EMM estimate of ρ is less than the OLS 
regression estimate in each panel of Figure 3. The effect is magnified for highly 

9 This is from β̂ 0,T = yt − β̂ 1,Tyt−1; ignore the difference between the sample mean of yt and the sample 
mean of yt−1. 
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persistent processes because the variance of the sample mean is higher for higher 
values of ρ. 

The structure of the asymptotic indirect inference moment vector (53) avoids 
this problem. The steps used to conclude that the EMM criterion function is 
typically minimized at a negative value of the second moment also apply to this 
moment vector. However, the second moment of (53) has a term that does not 
appear in the EMM moment (51). This term picks up the negative value of the 
second moment. In fact, the asymptotic indirect inference estimate of ρ is usually 
larger than the OLS estimate β̂ 1,T. In addition, the asymptotic indirect inference 
moment vector depends on an estimate of the sample variance of yt instead of 
the population variance. As a result, the asymptotic indirect inference criterion 
function is quadratic. Depending on the sample, the asymptotic indirect inference 
estimate of ρ can equal one, or equivalently the first-order conditions are not 
satisfied at an estimate less than one. This is a consequence of using a conditional 
likelihood as the auxiliary model. We now present Monte Carlo evidence on the 
finite-sample performance of the estimators. 

3.3 Finite Sample Properties 

We first summarize features of the empirical density functions of estimates of ρ. 
Return to Table 2, which reports means, medians, and RMSEs of the parameter 
estimates. The OLS estimates are the estimates β̂ 1,T from the conditional Gaussian 
auxiliary likelihood. Two features of the table are worth highlighting. First, for all 
combinations of ρ0 and T, the point estimates produced with EMM exhibit greater 
bias and greater RMSE than estimates produced with either asymptotic indirect 
inference or OLS estimation. Second, there is no clear winner in a horse race 
between asymptotic and finite-sample indirect inference. Unsurprisingly, point 
estimates produced with the latter technique exhibit less bias. Also unsurprisingly, 
the noise introduced by using a small number of finite-sample simulations typically 
inflates the RMSE of finite-sample indirect inference relative to that of asymptotic 
indirect inference. However, for the highest-persistence value of ρ0, the  bias  
reduction overcomes the noise, and the RMSEs of finite-sample indirect inference 
are actually lower than those of asymptotic indirect inference. 

Figure 4 displays empirical density functions for ML, EMM, and asymptotic 
indirect inference when the sample size is 1000 observations. Each panel contains 
three plots. (To limit clutter, densities for finite-sample indirect inference are 
not displayed. They are not markedly different from those for asymptotic 
indirect inference.) The solid lines are the densities produced with full ML 
estimation. Equivalently, they are the densities produced with EMM and indirect 
inference using the full likelihood as the auxiliary likelihood. The dotted lines 
are densities produced with EMM estimation using the conditional Gaussian 
auxiliary likelihood. The dashed lines are densities produced with asymptotic 
indirect inference using the same auxiliary model. The true value of ρ is denoted 
with a ‘‘p’’ in each panel 
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Figure 4 Empirical density functions of estimates of an autocorrelation coefficient. 

There are three conclusions to draw from this figure. First, the asymptotic 
indirect inference densities are very close to the full ML densities. Second, the 
EMM density is similar to the others only when the data-generating process is not 
highly persistent. When the process has either a one-year or a six-year half life, 
the EMM density is significantly more diffuse than are the other two densities. In 
particular, the lower tails of the EMM densities are much fatter than the lower tails 
of the other densities. For specificity, consider the densities in Panel B (one-year 
half life). The interquartile range of the ML estimate is from 0.9819 to 0.9890. These 
values correspond to half lives of 0.73 years to 1.2 years. The interquartile range 
of the EMM estimate is from 0.9720 to 0.9857, corresponding to half lives of 0.47 
years and 0.93 years. Not only is this range much larger, but it does not contain 
the true value of ρ. 

Third, the efficiency of EMM estimation relative to the other estimation 
methods is lower when the data generating process exhibits greater persistence. 
(This conclusion is also evident in the RMSEs in Table 2.) Comparing Panels B and 
C, the ML and asymptotic indirect inference estimates are less diffuse when the 
process has a six-year half life than when it has a one-year half life. By contrast, 
the EMM estimates are more diffuse when the process has a six-year half life. The 
interquartile range of the EMM estimate in Panel B is from 0.9085 (outside of the 
plotted area) to 0.9924, corresponding to half lives of less than two months and 
1.7 years. 

We now turn to test statistics, including tests of over-identifying restrictions. 
Monte Carlo results for the EMM and indirect inference estimators are displayed 
in Table 4. The table reports median lengths of 95 percent confidence bounds for 
ρ. It also reports empirical rejection rates for tests of overall model adequacy and 
tests that ρ = ρ0. Because three moments are used to identify a single parameter, 
the first category of statistics has an asymptotic χ2(2) distribution and the second 
category has an asymptotic χ2(1) distribution.10 

10 Indirect inference test statistics are not computed for samples in which the estimate of ρ is on the 
boundary of the stationary region. For the one-month and one-year half lives, none of the estimates 
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Table 4 Tests of an autocorrelation coefficient using a conditional Gaussian auxiliary 
model. 

Median length of 
95% conf bound 

Actual rejection rate 
at 95% critical value 

Overident ρ = ρ0 

T ρ0 EMM A-II F-II EMM A-II F-II EMM A-II F-II 

1000 0.8522 0.0685 0.0646 0.0726 0.066 0.061 0.057 0.086 0.050 0.056 
2000 0.8522 0.0471 0.0457 0.512 0.057 0.054 0.055 0.075 0.057 0.060 
10000 0.8522 0.0206 0.0205 0.0229 0.057 0.057 0.050 0.054 0.053 0.055 

1000 0.9868 0.0564 0.0207 0.0209 0.126 0.079 0.097 0.344 0.056 0.144 
2000 0.9868 0.0230 0.0144 0.0161 0.089 0.062 0.069 0.230 0.053 0.087 
10000 0.9868 0.0070 0.0064 0.0071 0.061 0.057 0.051 0.102 0.050 0.057 

1000 0.9978 0.1455 0.0078 0.0048 0.375 0.136 0.315 0.739 0.051 0.239 
2000 0.9978 0.0892 0.0058 0.0042 0.234 0.110 0.203 0.590 0.049 0.176 
10000 0.9978 0.0048 0.0026 0.0029 0.100 0.066 0.065 0.261 0.055 0.097 

This table summarizes results from 5,000 Monte Carlo simulations. The true data-generating process is 

yt = ρ0yt−1 + t , t ∼ N(0, 1). 

For each simulation, a sample of length T is generated. The parameter ρ is treated as unknown, and is 
estimated with EMM, asymptotic indirect inference (A-II), and finite-sample indirect inference (F-II) where 
the binding function is approximated with four simulations. The auxiliary likelihood is the conditional 
likelihood of a three-parameter AR(1) with Gaussian innovations. The columns labeled ‘‘Overident’’ report 
rejection rates of χ2(2) tests of the overidentifying restrictions. The columns labeled ‘‘ρ = ρ0’’ report 
empirical rejection rates for test statistics that have asymptotic χ2(1) distributions under the null. They are 
equivalent to empirical rejection rates of the confidence bounds on ρ. 

There are three main conclusions to draw from this table. First, asymptotic 
indirect inference, in combination with the conditional Gaussian likelihood, works 
well in finite samples even when the data are highly persistent. The median 
confidence bounds for indirect inference are typically slightly larger than those 
reported in Table 3 for ML. The larger confidence intervals are warranted: the 
empirical rejection rates of the hypothesis ρ = ρ0 correspond almost exactly to the 
asymptotic rejection rates, in contrast to the modest over-rejections reported for 
ML in Table 3. Tests of the over-identifying restrictions are somewhat less well-
behaved, but the differences between empirical and asymptotic rejection rates are 
small except for the six-year half life. The largest difference occurs with 1,000 
observations: 14% of the statistics exceed the asymptotic 95% critical value. 

is on the boundary. For the six-year half life and 1000 observations, slightly less than two percent of 
the estimates are on the boundary. Doubling the number of observations reduces the fraction on the 
boundary to about one quarter of one percent. None of the estimates are on the boundary for the six-year 
half life and 10,000 observations. 
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Second, EMM, in combination with the conditional Gaussian likelihood, 
works poorly when the data are highly persistent. The confidence bounds are 
large and the empirical rejection rates of truth are high. The poor performance of 
EMM is evident even in very large samples. With a six-year half life and 10,000 
observations (almost 200 years of weekly data), the median EMM confidence 
interval is almost twice the length of the median asymptotic indirect inference 
confidence interval. Yet over one-quarter of the EMM test statistics for ρ = ρ0 
exceed the asymptotic 95% critical value. Naturally, shorter samples correspond 
to poorer finite-sample behavior. With 1,000 observations, almost three-fourths of 
the test statistics exceed the same critical value. Tests of the EMM overidentifying 
restrictions are somewhat better behaved, but also strongly over-reject the null. 
With a one-year half life the over-rejections are smaller, but remain significant. For 
example, with a one-year half life and 2,000 observations, almost one-quarter of 
the statistics for ρ = ρ0 exceed the asymptotic 95% critical value. 

Third, the empirical rejection rates for finite-sample indirect inference are 
generally higher than those for asymptotic indirect inference. This result conforms 
with the auxiliary likelihood that we observed in Section 2.4.2. Although finite-
sample indirect inference produces less biased point estimates, it does not 
necessarily produce more accurate test statistics. 

Comparing the results here with the results in Section 2 shows that 
implementing EMM with this conditional Gaussian auxiliary likelihood instead 
of the true full likelihood results in both less efficient parameter estimation and 
larger discrepancies between finite-sample and asymptotic critical values. The 
conditional Gaussian auxiliary likelihood differs from the true likelihood in two 
(obviously related) respects—it uses less information about the true model and it 
is more highly parameterized. A natural question is whether the consequences of 
these two aspects of the auxiliary likelihood can be disentangled. 

3.4 Does Imposing Structural Model Restrictions Improve Efficiency? 

Imagine that instead of estimating (2), we estimate a more general Gaussian AR(1): 

yt − α = ρ(yt−1 − α) + t, t ∼ N(0, v). (55) 

In other words, instead of using our knowledge of the true model to fix the 
unconditional mean to zero and the variance of shocks to one, we treat these 
parameters as unknown. 

Full ML estimates of ρ are less efficient when the parameters α and v are 
treated as unknown than when they are fixed to their true values.11 As can be 
seen in the RMSEs reported in Table 2, the same result holds for the auxiliary 
model used by EMM and asymptotic indirect inference. In other words, when 
estimating the single parameter ρ with either EMM or indirect inference, using the 
full likelihood as the auxiliary model produces more accurate point estimates than 

11 Although perhaps obvious, we verified this result with Monte Carlo simulations; the evidence is available 
on request. 
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using a conditional Gaussian likelihood. (The reduction in accuracy with indirect 
inference is fairly small, but as we saw in Figure 4, it is dramatic with EMM.) 

Surprisingly, this intuition does not carry over to the structural model used by 
EMM estimation, at least for the process examined in this paper. In other words, 
holding the auxiliary model constant, estimates of ρ using the structural model 
that imposes the true values of α and v are less efficient than estimates of ρ using 
the structural model that treats α and v as unknown. 

The evidence for this conclusion is hidden in Table 2. The information in 
the table allows us to compare the accuracy of two particular estimates of ρ. One  
estimate uses EMM combined with the conditional Gaussian auxiliary likelihood to 
estimate the single-parameter model (2). The other estimate uses EMM combined 
with the same conditional Gaussian auxiliary likelihood to estimate the three-
parameter model (55). This estimate is identical to the OLS estimate of ρ. The  
reason for this equivalence is that the conditional Gaussian likelihood is the true 
conditional likelihood for (55). Therefore the EMM point estimate of the structural 
model equals the point estimate of the auxiliary model.12 As noted in Section 3.1, 
the auxiliary-model point estimate is the OLS point estimate. Thus the columns 
labeled ‘‘OLS’’ in Table 2 can be interpreted as results for the estimate of ρ from 
EMM estimation of (55) using the conditional Gaussian auxiliary likelihood. 

We see in the table that the OLS estimates are less biased than those from 
EMM estimation of (2) using the conditional Gaussian auxiliary likelihood. They 
are also less diffuse, in a RMSE sense. Put differently, when the same auxiliary 
model is used to estimate both the restrictive model (2) and the broader model (55) 
with EMM, the estimates of ρ using the broader model are more accurate. 

What accounts for this apparently counterintuitive behavior? Although more 
information is available to pin down ρ when the restrictive model (2) is estimated 
than when (55) is estimated, EMM estimation does not necessarily use the 
information appropriately. Section 3.2 placed part of the blame for the poor 
EMM estimates of ρ on the correlation between the sample mean of the data and 
the weighting matrix. Hence the information in the difference between the true 
mean and the sample mean tends to be used incorrectly in EMM estimation of (2). 
Estimation of the broader model (55) throws away this information because it 
treats the true mean as an unknown parameter. For the sample sizes and values 
of ρ0 examined here, throwing away the information is better than using the 
information improperly. 

12 This statement is a little loose. The estimate of the structural model will impose stationarity, but the 
estimate of the conditional Gaussian model will not. Inspection of the EMM moment condition for the 
structural model (55) combined with its conditional likelihood used as the auxiliary likelihood reveals 
that the point estimates of the auxiliary model equal the point estimates of the structural model when the 
point estimates for the auxiliary likelihood are in the stationary region. This condition was satisfied for 
all but 84 of the 5000 Monte Carlo simulations that specified 1000 observations and a six-year half life. It 
was satisfied for all but 4 of the simulations that specified 2000 observations and a six-year half life, and 
was always satisfied for all other combinations of T and ρ0. 

https://model.12
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A more provocative way to express this conclusion is that with EMM 
estimation of highly persistent processes, it is more important to impose model-
based restrictions on the auxiliary model than on the structural model. This runs 
counter to the standard advice to use a data-driven auxiliary model. We hasten to 
add that we do not know whether this result generalizes to other settings. 

3.5 Some Caveats 

The results of this section, combined with those in Section 2, do not place EMM 
estimation in a favorable light. Thus it is important to recognize that, in many 
ways, the AR(1) setting we study rules out many of the advantages of the 
EMM procedure that others have noted. Perhaps the most obvious difficulty in 
generalizing our results is that there is no need for EMM estimation in our setting 
because of the tractability of the likelihood function. Dynamic simulation methods 
are commonly used in settings where structural models are nonlinear, when 
shocks are conditionally heteroskedastic and conditionally nonnormal, and where 
likelihood functions are unknown or intractable. What we really want to know 
is how estimation techniques perform when confronted with the combination of 
highly persistent data and these more realistic dynamic properties. Unfortunately, 
the analytics are beyond us. 

A clear limitation of our analysis is that the strong asymmetry of the EMM 
criterion function, which is largely responsible for the poor performance of EMM 
identified here, may well be a desirable property in more complicated settings. 
When the econometrician does not know how to impose stability on the parameter 
space, EMM ensures that neither the parameter estimates nor the confidence 
bounds include the explosive region. This enforced stability is not shared by 
indirect inference. Thus the asymmetry of the EMM criterion function might 
well produce more accurate point estimates and confidence regions than indirect 
inference. 

From the perspective of dynamic term structure estimation (the motivation 
behind our study), this limitation is not particularly important, because for these 
models the stationary region of the parameter space is typically known. But even 
in this case, criterion function asymmetry may be useful in damping the effects of 
nonlinearities and fat tails near the boundary of stationarity. An investigation of 
this question is beyond the scope of the current work. 

4 CONCLUSIONS 

EMM and indirect inference are both asymptotically equivalent to ML when the 
auxiliary model nests the true likelihood function. This paper confirms that their 
finite-sample properties are also similar to those of ML when estimating an AR(1) 
process that is not close to a unit root. However, when the persistence of the data 
is similar to the observed persistence of interest rates, the finite-sample properties 
of EMM estimates differ substantially both from their asymptotic properties and 
from the finite-sample properties of indirect inference and ML. 
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The most obvious implication of our results is that any estimation of a 
structural model with highly persistent data should be accompanied by a Monte 
Carlo analysis of its finite-sample properties. Without this, it is impossible to draw 
reliable inferences from reported test statistics. We can also draw three further 
preliminary implications. Although we cannot be sure that these necessarily 
hold unaltered in more complex settings than considered here, their significance 
warrants further investigation. First, researchers using EMM to estimate such 
models might want to consider using model-based auxiliary models instead 
of data-driven models. Unfortunately, researchers lose much of their ability to 
test for misspecification when using a model-based auxiliary model. But the 
results here indicate that the efficiency and size properties of EMM estimates 
are improved substantially by imposing model-based restrictions on the mean 
of the data. Second, the superior performance of asymptotic indirect inference 
documented here suggests that researchers should consider using asymptotic 
indirect inference as an alternative to EMM estimation of such models. Third, 
our results also cast doubts on a common perception that finite-sample indirect 
inference (averaging over independent replications) is superior to asymptotic 
indirect inference (working with a single long simulation). Finite-sample indirect 
inference does, indeed, possess bias-reduction properties, but this advantage, at 
least in the setting we consider, is outweighed by its high computational cost and 
relatively poor finite-sample test statistics. 

Received October 2, 2006; revised March 12, 2007; accepted July 24, 2007. 
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