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Abstract 

A combination of observed and unobserved (latent) factors capture term structure dynamics. 
Information about these dynamics is extracted from observed factors using restrictions implied by 
no-arbitrage, without specifying or estimating any of the parameters associated with latent factors. 
Estimation is equivalent to fitting the moment conditions of a set of regressions, where no-arbitrage 
imposes cross-equation restrictions on the coefficients. The methodology is applied to the dynamics 
of inflation and yields. Outside of the disinflationary period of 1979 through 1983, short-term rates 
move one-for-one with expected inflation, while bond risk premia are insensitive to inflation. 
r 2005 Elsevier B.V. All rights reserved. 
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1. Introduction 

Beginning with Vasicek (1977) and Cox et al. (1985), researchers have built increasingly 
sophisticated no-arbitrage models of the term structure. These models specify the evolution 
of state variables under both the physical and equivalent martingale measures, and thus 
completely describe the dynamic behavior of yields at all maturities. Much of this research 
focuses on latent factor settings, in which the state variables are not directly observed by 
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the econometrician. Effectively, the evolution of yields is described in terms of yields 
themselves. The important work of Piazzesi (2005) and Ang and Piazzesi (2003) broadens 
this rather introspective view by including macroeconomic variables in the workhorse 
affine framework of Duffie and Kan (1996). This extension allows us to investigate 
questions at the boundaries of macroeconomics and finance. For example, what is the 
information in the output gap about the compensation that investors demand to take on 
interest rate risk? What does today’s inflation rate say about the components of the 
expected real returns of nominal long-term bonds? Intensive research focuses on these and 
related questions using models that describe the entire term structure with a combination 
of macroeconomic and latent factors.1 

Yet many of these questions can be examined without attempting to estimate the 
complete dynamics of the term structure. In a general asset pricing setting, Hansen and 
Singleton (1982) show that restrictions implied by no-arbitrage can be exploited without 
using (or knowing) the complete joint dynamics of asset prices and the pricing kernel. It is 
easy to adapt this idea to a term structure setting because a zero-coupon bond’s price is 
simply the expected value of the pricing kernel at the bond’s maturity. By conditioning this 
expectation on a set of macroeconomic variables, combining it with the conditional 
dynamics of the same variables, and adding a couple of assumptions about risk 
compensation, the relation between bond prices and the macroeconomic variables can be 
determined without specifying the remainder of the term structure. 
This paper explains how to project the term structure onto a set of observed factors and 

thereby extract information from the factors about the future evolution of the term 
structure. I refer to this projection as partial term structure estimation. The remaining 
variation in the term structure is driven by latent factors, but latent factors play no role in 
either parameter estimation or statistical tests of the model’s adequacy. 
Partial term structure estimation has two advantages over complete term structure 

estimation. First, estimation is simplified substantially because researchers avoid specifying 
features of term structure dynamics that are not of direct interest. Second, misspecification 
is less likely to contaminate estimates of the dynamics that are of interest. For 
concreteness, consider the relation between aggregate output and the term structure. We 
know that while output growth forecasts yields, yields also forecast output growth. 
Capturing these dynamics in a complete term structure model such as Ang et al. (2005) 
requires specifying both the number of latent factors and the functional forms for their 
dynamics. For example, do latent factors follow moving average or autoregressive 
processes? Are such factors Gaussian or do they exhibit stochastic volatility? Is the 
information in the latent factors about future output primarily information about near-
term output growth (e.g., today’s one-quarter-ahead forecast of output depends on today’s 
realization of shocks to latent factors) or more distant output growth (e.g., today’s one-
quarter-ahead forecast depends on lagged shocks to latent factors)? 
If our research goal is to model the complete term structure, we cannot avoid taking a 

stand on its entire functional form. But if our goal is to use the information in the history 
of output to forecast current and future bond yields and risk premia, latent factors are 
nuisance features of the model. The estimation procedure proposed here puts little 
structure on these factors. Neither the number of latent factors nor their functional 
¨1Recent work includes Dewachter et al. (2002), Dewachter and Lyrio (2002), Hordahl et al. (2002), Ang and 
Bekaert (2003), Ang et al. (2005), and Rudebusch and Wu (2003). 
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relations with macro factors are specified. Intuitively, the procedure can be viewed as the 
joint estimation of two sets of regressions. The first set consists of regressions of changes in 
bond yields on changes in the macro factors. These regressions are estimated with 
instrumental variables, where the instruments are lagged macro factors. The second set 
represents the regressions comprising a vector autoregression for the macro factors. No-
arbitrage imposes cross-equation restrictions on the parameters. 

I use this estimation framework to study two questions concerning the relation between 
inflation and the nominal term structure. First, how sensitive are short-term interest rates to 
inflation? Second, how sensitive are bond risk premia to inflation? The empirical analysis 
focuses on two periods, namely, the ‘‘pre-Volcker’’ period, from 1960 through the second 
quarter of 1979, and the ‘‘post-disinflation’’ period, from 1984 through 2003. The evidence 
indicates that during both periods, short-term rates move approximately one-for-one with 
changes in expected inflation, where the expectations are conditioned on the history of 
inflation. This result might appear to contradict the existing Taylor rule literature which 
concludes that the Federal Reserve (Fed) reacted more aggressively to inflation in the 
disinflationary period than it did in the pre-Volcker period. However, the discrepancy is 
largely driven by the behavior of inflation and interest rates during 2002 and 2003. 

Surprisingly, bond risk premia are fairly insensitive to inflation in both periods. Risk 
premia are somewhat lower when inflation is high, but the contribution of inflation to 
variation in risk premia is economically small. The relation is strongest in the early period, 
with the standard deviation of excess quarterly returns to a five-year bond conditioned on 
inflation at about 13 basis points. Put differently, the relation between changes in inflation 
and changes in the shape of the term structure is determined almost entirely by changes in 
expected short rates, not by changes in risk premia. 

The next section describes the modeling framework and the estimation methodology. 
Section 3 applies the methodology to the relation between inflation and the term structure. 
Section 4 concludes. 

2. The model and estimation technique 

Underlying the dynamics of bond yields is some structural model that explains these 
dynamics in terms of the state of the macroeconomy, central bank policy, and the 
willingness of investors to bear interest rate risk. Although the model here includes 
observable variables, it is not a structural model. In particular, nothing here identifies 
monetary policy shocks. The model is closer in spirit to a reduced form model linking bond 
yields to macro variables. The formal structure is closely related to the model of Ang and 
Piazzesi (2003). 

Time is indexed by discrete periods t, where length of a period is Z years. There are n0 

observable variables realized at time t and stacked in a vector f 0. The natural application t 
of the model is to macroeconomic variables such as inflation and output. In principle, 
however, this vector can include any observed variable that we are interested in relating to 
bond yields. Accordingly, I generally refer to f 0 as a vector of observables rather than at 
vector of macro variables. 

The vector of observed factors f used in the model contains lags zero through p � 1t 
of f 0:t 

f 0
0 

f 0
0 

Þ
0

� ðf 0
0 

. . .f t t t�1 t�ðp�1Þ . (1) 
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The length of f is nf ¼ pn0. While the choice of p is discussed at various places int 
this section, for the moment it is sufficient to note that lags are important both in 
forming forecasts of future realizations of and in capturing variations in short-f 0 

t 
term interest rates that are not associated with f 0. In a term structure setting it is important t 
to distinguish between contemporaneous variables and the entire state vector f t.f 0 

t 
Bond prices depend on compensation that investors require to face one-step-

f 0ahead uncertainty in the state vector. In (1), only is stochastic given investors’ t 
information at t � 1. 
The period-t price of a bond that pays a dollar at period t þ t is Pt;t. The continuously 

compounded annualized yield is yt;t. The short-term interest rate, which is equivalent to 
the yield on a one-period bond, is rt. Observed factors are related to the term structure, but 
they are insufficient to explain the complete dynamics of the term structure; latent factors 
pick up all other variation in bond yields. There are nx latent factors stacked in a vector xt. 
The relation between the factors and the short rate is affine: 

rt ¼ d0 þ d0 f þ d0 xt. (2)f t x 

Bond prices satisfy the law of one price, 

Pt;t ¼ EtðMtþ1Ptþ1;t�1Þ, (3) 

where Mtþ1 is the pricing kernel. The term structure of bond yields depends on the joint 
dynamics of the pricing kernel, the observed factors, and the latent factors. To motivate 
the method for estimating the relation between observed factors and the term structure, it 
is easiest to start with the special case in which the observed factors are independent of the 
latent factors. The estimation technique in the more general case of correlated factors only 
requires a slight (but vital) modification to the method that is appropriate for 
independence. 

2.1. Independence between observed and latent factors 

f 0The contemporaneous observed variables are assumed to follow a vectort 
autoregressive process (VAR) with at most p lags. We can always embed a VAR with 
fewer than p lags into a VAR(p). Since the mathematics of affine term structure models are 
usually expressed in terms of first order dynamics, it is convenient to express the observed 
dynamics as a VAR(1) model for f :t 

f tþ1 � f t ¼ mf � Kff f t þ Sf f ;tþ1. (4) 

The components on the right-hand side of (4) are ! 
m0 K0 

mf ¼ 0ðnf �n0Þ�1
; Kff ¼ 

C 
, 

!  !
S0 0n0�ðnf �n0Þ 0;tþ1 

Sf ¼ ; and f ;tþ1 ¼ . (5)
0ðnf �n0Þ�n0 0ðnf �n0Þ�ðnf �n0Þ 0ðnf �n0Þ�1 

The vector m0 has length n0, the matrix K0 is n0 � nf , and the matrix S0 is n0 � n0. The 
elements of the n0-length vector 0;tþ1 are independent standard normal innovations. The 
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companion matrix C has the form 0 1 
�I I  0 . . .  0 0 B

C ¼ @ 
0 0 0 

. . .  

. . .  

CA. 

�I I  

(6) 

The square submatrices in C all have dimension n0. The double subscript on Kff is used for 
consistency with the model of correlated factors presented in Section 2.3. 

The dynamics of the latent factors have the general affine representation 

xtþ1 � xt ¼ mx � Kxxxt þ SxSxt x;tþ1, (7) 

where Sxt is a diagonal matrix with elements qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
SxtðiiÞ ¼ axi þ b0 . (8)xixt 

The elements of x;tþ1 are independent standard normal innovations. No additional detail 
about latent factor dynamics is either necessary or useful. 

The pricing kernel has the standard log-linear form 

log Mtþ1 ¼ �Zrt � L0 f ;tþ1 � L0 xt x;tþ1 � ð1=2ÞðL0 Lft þ L0 xtLxtÞ. (9)ft ft 

The vectors Lft and Lxt are the prices of f ;tþ1 risk and x;tþ1 risk, respectively. Since f 
0 
tþ1 is 

the only component of f tþ1 that is unknown at t, without loss of generality the former price 
of risk can be expressed as !

L0t 
Lft ¼ . (10)

0ðnf �n0Þ�1 

The n0-vector L0t is the price of risk associated with innovations to f 0 
tþ1. The price of 

observed-factor risk, which is the product of observed-factor volatility and the 
compensation required for exposure to f ;tþ1, depends on observed and latent factors: 0  !1 ! f tS0L0t B lf þ ðlff lfxÞ C 

Sf Lft � ¼ B@ xt AC. (11)
0ðnf �n0Þ�1 

0ðnf �n0Þ�1 

The vector lf has length n0, the matrix lff is n0 � nf , and the matrix lfx is n0 � nx. This is 
the Gaussian special case of the essentially affine price of risk introduced in Duffee (2002). 
The price of risk associated with latent factor shocks has the similar form ! 

f t
SxSxtLxt ¼ lx þ ðlxf lxxÞ . (12) 

xt 

Conditions under which this form satisfies no-arbitrage (in the continuous-time limit) are 
discussed in Kimmel et al. (2004). As written, (12) allows the price of latent factor risk to 
depend on both observed and latent factors. This general functional form is tightened at 
the end of this subsection through the introduction of a key restriction. 

The recursion used to solve for bond prices in an affine setting is standard. Campbell 
et al. (1997) provide a textbook treatment. I nonetheless go through a few of the steps here 
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for future reference. Guess that log bond prices are affine in the factors, that is, 

log Pt;t ¼ At þ B0 f ;t f t þ Bx 
0 
;txt. (13) 

The recursion implied by the law of one price (3), combined with the normally distributed 
shocks to f and xt and the independence between f and xt, producest t 

At þ B0 f ;t f t þ Bx 
0 
;txt ¼ � Zrt þ At�1 

þ B0 Etðf tþ1Þ þ B0 Etðxtþ1Þf ;t�1 x;t�1 

1 
þ B0 Sf S0 B0 þ B0 SxS2 S0 B0 f ;t�1 f f ;t�1 x;t�1 xt f x;t�12  !0 

BB@ 
f t

lf þ ðlff lfxÞ 

1 
CCA� B0 f ;t�1 

xt 

0ðnf �n0 Þ�1 ! !  
f t 

� B0 lx þ ðlxf lxxx;t�1 Þ . ð14Þ 
xt 

The factor loadings Bf ;t and Bx;t are determined by this recursion. Substitute into (14) the 
short-rate equation (2) and the conditional expectation of f tþ1 from (4), then match 
coefficients in f t. The result is the difference equation 

B0 f ;t ¼ �Zdf 
0
þ Bf 

0 
;t�1ðI � Kff

q 
Þ � Bx 

0 
;t�1lxf . (15) 

The matrix Kq 
in (15) is the counterpart to Kff under the equivalent martingale measure, ff 

and is given by 

K0 þ lff 
K

q 
¼ . (16)ff C 

Matching coefficients in xt produces another difference equation that, combined with (15), 
allows for the joint calculation of the loadings Bf ;t and Bx;t. Yet another difference 
equation produces the constant terms At. These other recursions are not relevant here. 
The combination of the observed factor dynamics (4), the latent factor dynamics (7), and 

the coefficients of log bond prices in (13) completely characterize the behavior of bond 
prices. For example, both the unconditional expectation of log Pt;t and its expectation 
conditioned on time t � 1 factor values can be calculated. This characterization allows 
estimation of the model’s parameters using the dynamics of observed factors and bond 
yields. To date, researchers using no-arbitrage models to study term structure dynamics 
have estimated these complete term structure models. In other words, each parameter’s 
value is either fixed by the researcher or estimated. The motivation behind this 
methodology is simple: our ultimate goal is to understand all of the dynamic patterns in 
the term structure. 
An alternative path to this goal requires less ambitious modeling efforts. Instead of 

estimating all of the parameters of a term structure model that is unavoidably misspecified, 
particular components can be estimated while leaving the remainder unspecified. This is 
the point of the estimation procedure described in the next subsection. The relation 
between observed factors and the term structure is estimated without characterizing the 
part of the term structure that is unrelated to the observed factors. No parameters 
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associated with latent factors are estimated. In fact, not even the number of latent factors is 
specified. 

An additional assumption is necessary. The price of risk of innovations in the latent 
factors is assumed to not depend on the level of the observed factors. Formally, the general 
form of the price of risk in (12) is restricted by 

lxf ¼ 0. (17) 

The role of this assumption is highlighted in the next subsection. 

2.2. Partial term structure estimation with independent factors 

The parameters that are identified and estimated by this procedure are df in (2), m0 and 
K0 in (5), and lff in (11). There are three key results that guide the econometric 
methodology. The first is that the observed factor loadings Bf ;t depend only on these 
parameters and not on any parameters associated with the latent factors. With assumption 
(17), the loading on the latent factors drops out of (15). We can then solve explicitly the 
resulting recursion for observed factor loadings without reference to the parameters of the 
latent factor dynamics. The solution is 

q 0 �1 q 0 tBf ;t ¼ �ðK Þ ðI � ðI � K Þ ÞZdf . (18)ff ff 

Given K0, lff , and the matrix of constants C defined in (6), the matrix Kq 
is determined by ff 

(16). Therefore the factor loadings in (18) can be computed. 
The second key result is that the expectation of differenced log bond yields conditioned 

on observed variables depends only on information about the observed variables. To 
understand this result, first-difference the general bond pricing equation (13), divide by the 
negative of the bond’s maturity (in years) Zt to express it in terms of annualized yields, and 
rearrange terms, denoting first differences with D: 

�B0 �B0 f ;t x;tDyt;t � Df ¼ Dxt. (19)tZt Zt 

The purpose of the first differencing is to remove both At and the unconditional mean of 
the latent factors. Next, remove any other information about the latent factors by taking 
the expectation of (19) conditioned on Df Because f and are independent, thet. t xt 

conditional expectation of the right side of (19) is zero, that is, 

�B0 

E Dyt;t � Zt 
f ;t Df t Df ¼ 0. (20)t 

Note that the conditional expectation depends only on Bf ;t and Df t. 
The third key result is that conditional expectations of the observed factors identify the 

physical dynamics of f t, and thus identify the parameters of these dynamics. From (4), the 
expectation of Df t conditioned on f t�1 is 

EðDf tjf t�1Þ � ðmf � Kff f t�1Þ ¼ 0. (21) 

The parameters that link the observed factors to bond yields can be estimated with 
generalized method of moments (GMM) using the bond pricing formula (18) and the 
moment conditions (20) and (21). At each date t ¼ 1; . . . ;T we observe the contempora-
neous observed factors f 0 and the yields y of L zero-coupon bonds with maturities t1t t;ti 
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through tL. Denote a candidate parameter vector as 

0 0 0F ¼ ðm0 d
0 vecðK0Þ vecðlff Þ Þ . (22)f 

There are n0 þ nf þ 2n0nf parameters in F; n0 in m0, nf in df , and n0nf in both of K0 and 
lff . Denote the true parameter vector by F0. 
Given a parameter vector, the implied observed factor loadings Bf ;t1 through Bf ;tL can 

be calculated with (18). The moment vector for observation t is 

htðFÞ ¼  

0 
BBBBBBBBB@ 

f ;t1Dy �
�B0 

Df Dft;t1 Zt1 t t 

�B0 
f ;tLDyt;tL 

� ZtL 
Df t Df t ! 

1 

1 
CCCCCCCCCA 
. (23) 

ðDf 0 
� m0 þ K0f t�1Þ�t f t�1 

The unconditional expectation of ht is zero when it is evaluated at F0. 
We can think of these moments as the moments associated with L þ n0 ordinary least 

squares (OLS) regressions, modified by the requirement of no-arbitrage. To make this 
clear, consider the top expression in the moment vector, which represents nf moments 
associated with the t1-maturity bond. If no-arbitrage is not imposed, the vector Bf ;t1 is 
unrestricted and this set of moments corresponds to the moments of the OLS regression of 
differenced bond yields on differenced observed factors. (There is no constant term in the 
regression.) Without the requirement of no-arbitrage, the estimate of �Bf ;t1 =ðZt1Þ equals 
the coefficients produced by this regression. Similar OLS regressions are estimated for each 

X 

of the L bonds. By imposing no-arbitrage, the coefficients from these regressions are 
required to satisfy cross-equation restrictions. 
Now consider the bottom expression in the moment vector, which represents n0 � ð1 þ

nf Þ moments. If no-arbitrage is not imposed, this expression corresponds to the moments 
of n0 OLS regressions of the VAR(p) model of the observed factors. The estimate of K0 is 
then determined by the VAR parameter estimates. If no-arbitrage is imposed but the 
feedback matrix K0 under the physical measure has no parameters in common with the 
feedback matrix K0 þ lff under the equivalent martingale measure, the interpretation of 
these moments is unchanged. If any parameter restrictions are placed on lff , cross-
equation restrictions link the observed factor dynamics and the bond price dynamics. 
The parameter estimates solve 

0F ¼ argmax gT ðFÞWgT ðFÞ, (24) 
F 

where gT is the mean moment vector 

T 

gT ðFÞ ¼  htðFÞ (25) 
t¼1 

and W is some weighting matrix. The moment vector has length Lnf þ n0ð1 þ nf Þ. If  no
restrictions are placed on the model’s parameters, the number of moments less the number 
of free parameters is nf ðL � 1 � n0Þ. Thus all of the parameters are exactly identified when 
the number of bonds L is one greater than the number of variables in the contemporaneous 
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observed vector f 0. Including additional bonds produces overidentifying restrictions thatt 
can be used to test the adequacy of the model. 
2.3. Dependence between observed and latent factors 

A large literature documents that the term structure contains information about future 
realizations of some macro variables, such as output and inflation, that is not contained in 
the history of these macro variables.2 Thus, for at least some choices of observed variables, 
the assumption of independence between observed and latent factors is untenable. This 
subsection generalizes the model to allow for correlations between observed and latent 
factors. Conveniently, the partial term structure estimation technique described in Section 
2.2 requires little modification in order to incorporate the correlation structure introduced 
here. The formal modeling framework is presented below, and is followed by an example. 
�

�

2.3.1. The model 
The following dependence is allowed between the observed and latent factors: 

Eðf jxt�j Þ unrestricted; j40; (26)t 

Eðxtjf t�j Þ ¼ 0; jX0. (27) 

Eq. (26) allows the latent factors to forecast future observed factors, while (27) says that 
observed factors have no forecasting power for current or future latent factors. This 
second equation is less restrictive than it appears. In part, it imposes a normalization on 
the decomposition of the short rate into pieces related to observable and latent factors. The 
example of Section 2.3.2 illustrates the restrictions and normalizations built into (27). 

The dynamics of the latent factors are given by (7), which are the same dynamics used in 
the case of independence. The dynamics of observed factors are 

f tþ1 � f t ¼ mf � Kff f t � Kfxxt þ Sf f ;tþ1. (28) 

Consider the ‘‘own’’ dynamics of observed factors, that is, the dynamics conditioned only 
on the history of the observed factors. From (28) and (27), these dynamics are 

f tþ1 � f t ¼ mf � Kff f t þ xtþ1, (29) 

xtþ1 ¼ �Kfxxt þ Sf f ;tþ1; Eðxtþ1jf ; . . . ; f t�1Þ ¼ 0. (30)t 

In words, the own dynamics for f are an AR(1) (with, perhaps, stochastic volatility t 
introduced by xt), or equivalently, the own dynamics for f 0 are an AR(p).t 

The joint dynamics of the observed factors (28) and latent factors (7) must satisfy (27). 
The fact that f t does not appear in (7) does not guarantee that (27) holds. The Appendix 
describes parameter restrictions on Kfx and the latent factor dynamics (7) that are 
sufficient to imply (27). Because Kfx and all of the components of (7) drop out of the 
estimation procedure, these restrictions do not need to be imposed explicitly in the 
estimation. 
2The literature is too large (and only indirectly related to this paper) to cite fully. See Ang et al. (2005) and 
Diebold et al. (2003) for discussions of this forecastability and references to the relevant literature. 
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The model is completed with the dynamics of the pricing kernel in (9), which are the 
same dynamics used for the case of independent factors. The functional forms for risk 
compensation are (11) and (12), which also carry over from the case of independence. 
Bond pricing formulas are calculated in the usual way. Guess the log-linear form (13) 

holds and apply the law of one price. The result is (14). Although the form of this equation 
is unchanged by the introduction of correlated factors, the interpretation is different. With 
correlated factors, the period-t expectation of f tþ1 depends on both observed and latent 
factors. As in the case of independent factors, match coefficients from (14) in f t. This step 
uses the special structure placed on the joint dynamics of f and xt. Because Etðxtþ1Þ doest 
not depend on f t, this matching results in the recursion (15), as in the case of independent 
factors. Finally, by imposing assumption (17), the recursion for Bf ;t can be solved 
explicitly, producing (18), as in the case of independence. 
Why are the observed factor loadings Bf ;t unchanged when the assumption of 

independence between observed and latent factors is dropped? The reason relates to the 
restrictions imposed by (27). Because the latent factors are associated with future observed 
factors but not current or past observed factors, the projection of the term structure onto 
observed factors is unaffected by the latent factors. The projection throws away 
information in the term structure about the future evolution of the observed factors, but 
this information does not affect the sensitivity of yields to f t. Thus, the only implication 
of introducing correlated factors is that the model’s parameters can no longer be estimated 
with the technique described in Section 2.2. A modified technique is described in 
Section 2.4. 

2.3.2. An example 
The short rate is determined by contemporaneous inflation and the contemporaneous 

output gap, 

rt ¼ d0 þ pt þ gt, (31) 

where pt is inflation and gt is a measure of the output gap. (For simplicity, the coefficients 
in this Taylor rule equation are both one.) The dynamics of output and inflation are 

g ¼t cg þ yg;p;0pt þ yg;p;1pt�1 þ zt þ g;t, (32) 

and 

zt ¼ yzzt�1 þ z;t, (33) 

pt ¼ cp þ yppt�1 þ c g;t�1 þ p;t. (34) 

The shocks g;t, z;t, and p;t are normally distributed and are independent at all leads and 
lags. The coefficient yg;p;0 picks up any contemporaneous relation between shocks to 
inflation and output. Inflation also leads output through yg;p;1. Output has a component zt 

that is independent of inflation at all leads and lags, and a component g;t that leads 
inflation. 
An econometrician wants to investigate the relation between inflation and the term 

structure without using information about output. Thus from the econometrician’s 
perspective, the short rate is driven by observed inflation and latent factors. There are a 
variety of ways to express the short rate as the sum of observed and latent factors. One 
obvious expression is simply (31) where f ¼ pt and xt ¼ gt. But without information t 
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about output, it is impossible to distinguish the direct link between inflation and the short 
rate from the indirect link associated with the contemporaneous covariance between 
inflation and output. The natural restriction is to impose a zero covariance between f andt 
xt. Indeed, it is imposed by (27) with j ¼ 0. With this restriction and the choice of f ¼ pt,t 
xt is the residual from a regression of g on pt.t 

However, this decomposition does not satisfy all of the restrictions built into (27). When 
f ¼ pt, there are two channels through which f forecasts future short rates. First, current t t 
inflation forecasts future inflation (and therefore future f ) through (34). Second, current t 
inflation forecasts future output (and therefore future xt) through (32). The second channel 
violates (27) for j40. 

To satisfy (27), the vector of observed factors must be expanded to include lagged 
inflation. The appropriate decomposition of rt into observed and latent factors is !  ! 

pt zt 
f ¼ ; xt ¼ , (35)t pt�1 g;t 

! 
1 þ yg;p;0 1 

df ¼ ; dx ¼ . (36)yg;p;1 1 

With the definitions of f and xt in (35), verification of (27) is straightforward. The second t 
element of xt is correlated with ptþj ; j40, while xt is independent of pt�j ; jX0. 

The econometrician cannot rely on the structure of the model to produce this 
decomposition because, by assumption, no data on output are available to determine the 
dynamics in (32). The appropriate rule to follow is that the vector f must include all lagst 
of pt that have independent information about the short rate. Put somewhat differently, 
the choice of lag length p maximizes the explanatory power of f for the short rate. Sincet 
the econometrician does not know the true data generating process of rt, a reasonable 
approach is to choose a lag length and then test its adequacy by checking whether 
additional lags help to forecast the short rate. Section 3.2 contains an application of this 
procedure. 

Although f requires only one additional lag of inflation in this example, alternative data t 
generating processes can require a large number of lags. To take an extreme example, 
replace the dynamics of output and inflation above with the bivariate VAR !  !  ! 

pt pt�1 1;t 
¼ y þ S , (37) 

gt gt�1 2;t 

where the elements of y and S are arbitrary. If gt is not observed, every lag pt�j contains 
some independent information about the evolution of rt. Therefore, unless f contains an t 
infinite number of lags, (27) is technically violated. But in practice, the amount of 
independent information in distant lags might be too small to distinguish from sampling 
error. 

Model estimation in the presence of correlated factors is discussed in the next 
subsection. Before getting into the details, it is worth noting the consequences of using a 
vector of observed factors f that does not satisfy the conditional expectation requirement t 
(27). In the context of the example here, assume the econometrician uses f ¼ pt instead of t 

0f ¼ ðpt pt�1Þ . This choice of f produces a misspecified loading Bf ;t on pt. The problem t t 
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arises in the matching of coefficients on f in (14). Because (27) is violated, the truet 
conditional expectation Etðxtþ1Þ depends on pt. Therefore Bf ;t depends on Bx;t�1, but this 
dependence is ignored in calculating Bf ;t. Hence, not only is the econometrician throwing 
away information in pt�1 that would help forecast the term structure—the information in 
pt is also used incorrectly. 
� ����
�

� � �
�

�

2.4. Partial term structure estimation with correlated factors 

As in the case of independence, here the parameters df , m0, K0, and lff can be estimated 
without imposing additional structure on the latent factors. However, there is one 
important difference. With independence, the expectation of the right-hand side of (19) 
conditioned on Df is zero. With correlated factors, this is no longer true because xt�1 mayt 
contain information about f t. Instead, take the expectation of (19) conditioned on f t�1 and 
apply (27): 

�B0 

E Dyt;t � 
f ;t Df t f t�1 ¼ 0. (38)

Zt 

The corresponding moment vector for observation t is 

htðFÞ ¼  

0 
BBBBB@ 

f ;t1Dy �
�B0 

Dft;t1 Zt t 

1 
CCCCCA f 

1 

t�1 

! 
. (39)

Dyt;tL 
� 
�B0 

f ;tL 
Zt Df t 

Df 0 
� m0 þ K0ft t�1 

Recall that with independence between observed and latent factors, the moment vector 
(23) is interpreted as moments of OLS regressions in which cross-equation restrictions are 
imposed on the OLS parameter estimates. Almost the same interpretation can be applied 
to (39). The only difference is that the regressions of differenced yields on differenced 
observed factors are estimated with instrumental variables instead of OLS. 
The instruments are a constant and lagged observed factors. As with (23), no-
arbitrage imposes cross-equation restrictions on the estimated parameters. Section 3 
contains some additional discussion about the inappropriateness of OLS moment 
conditions when the latent factors contain information about future realizations of the 
observed factors. 
This estimation procedure can use yields on bonds of any maturity. In particular, it is 

not necessary to observe the short rate. However, if the short rate is observed, a single 
instrumental variable (IV) regression can be used to estimate the short-rate loadings df . 

0Denote the instruments used in the moment condition (39) as z ¼ f1 f 0 t�1g. Write thet�1 
change in the short rate from t � 1 to  t as the sum of two pieces, in particular, a component 
that is projected on zt�1 and a residual. The result is 

Drt ¼ d0 ðEðDf jzt�1ÞÞ þ fd
0 

f t f ð�Kfxxt þ Sf f ;tÞ þ d0 Dxtg,x (40) 

where 

EðDf jzt�1Þ ¼ mft � Kff f t�1. (41) 
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The residual term in curly brackets is orthogonal to f t�1. Thus a regression of changes in 
the short rate on changes in the observed factors using instruments zt�1 produces a 
consistent estimate of df . 

The remainder of this section examines in detail some of the features of this model. The 
next subsection discusses the role played by the affine structure of the latent factors. 
�

�

� �

�

�

2.5. Relaxing the affine structure 

The affine dynamics of the latent factors xt are not essential. The affine form guarantees 
conditional joint log-normality of bond prices and the pricing kernel, which in turn 
produces the recursion (14) from the law of one price. This subsection describes an 
alternative framework that allows for nonlinear dynamics, where conditional joint log-
normality is simply assumed. This framework leads to the identical estimation procedure 
described in the previous subsection. 

Replace the observed factor dynamics (28) with 

f tþ1 � f t ¼ mf þ Kff f t þ KfxðxtÞ þ Sf f ;tþ1, (42) 

where KfxðxtÞ is an unspecified function of the latent factors that can be nonlinear. Replace 
the latent factor dynamics (7) with 

xtþ1 � xt ¼ KxxðxtÞ þ SxSxðxtÞ x;tþ1, (43) 

where KxxðxtÞ and SxðxtÞ are also unspecified functions of the latent factors that can be 
nonlinear. The innovations f ;tþ1 and x;tþ1 are multivariate standard normal shocks that 
are independent at all leads and lags. Therefore, shocks to both types of factors are 
conditionally normal. Independence between shocks to observed and latent factors is 
consistent with the normalization that latent factors contain information about future 
realizations of observed factors, but not information about current or past realizations. 
Both types of shocks appear in the stochastic discount factor, which is the same function 
(9) used in the affine model. 

Replace the affine form for log bond prices (13) with 

log Pt;t ¼ At þ B0 f ;t f t þ wtðxtÞ, (44) 

where wtðxtÞ is a (perhaps nonlinear) function of xt with conditionally normal shocks: 

wtðxtþ1Þ ¼ Etðwtðxtþ1ÞÞ þ et;tþ1; et;tþ1 Nð0;Vartðet;tþ1ÞÞ. (45) 

As with the shocks to the latent factors, the shocks to these functions of latent factors are 
also independent of the shocks to observed factors f ;tþ1. Eq. (44), with t ¼ 1, replaces the 
short-rate equation (2). 

While the functional form of wðtÞ is unspecified here, it is not arbitrary. No-arbitrage 
restricts the form of wðtÞ given the form of wðt � 1Þ. Here I simply assume that there is a 
sequence of functions wð1Þ;wð2Þ; . . ., such that no-arbitrage is satisfied. 

With these assumptions, the law of one price (3) implies 

At þ B0 f ;t f þ wtðxtÞ ¼ A1 þ B0 f t þ w1ðxtÞ þ At�1t f ;1 

þ B0 Etðf tþ1Þ þ Etðwt�1ðxtþ1ÞÞf ;t�1 
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þ 1ðB0 Sf S0 Bf ;t�1 þ Vartðet�1;tþ1ÞÞ2 f ;t�1 f 

� B0 Sf Lft � Covtðet�1;tþ1;L0 x;tþ1Þ. ð46Þf ;t�1 xt 

As with the affine model, the next step is to take the expectation of (46) conditioned on f t. 
A few additional assumptions are necessary for the terms involving the latent factors to 
drop out of this conditional expectation. The first two assumptions replace the restriction 
(27). First, the component of the expectation of f tþ1 that is related to the latent factors has 
an expectation of zero when conditioned on f :t 

EðKfxðxtÞjf tÞ ¼ 0. (47) 

Second, the expectation of wðtÞ conditioned on both f t and f t�1 is zero for all t: 

EðwðtÞjf ; f t�1Þ ¼ 0 8t. (48)t 

Third, the variance of et;tþ1 conditioned on f is constant: t 

EðVartðet;tþ1Þjf Þ ¼ V t. (49)t 

Fourth, the conditional expectation of the compensation for facing observed-factor risk is !
lf þ lff f t

Sf EðLftjf tÞ ¼  . (50)
0ðnf �n0 Þ�1 

Finally, the restriction on the dynamics of latent-factor risk premia given in (17) is replaced 
with 

EðCovtðet�1;tþ1;L0 x;tþ1Þjf Þ ¼ Ct�1. (51)xt t 

The expectation of (46) conditioned on f is therefore t 

B0 f ;tf t ¼ kt þ Bf 
0 
;1f t þ B0 f ;t�1ðI � Kff � lff Þf t, (52) 

where kt is a maturity-dependent constant. Matching coefficients in f produces the bondt 
pricing formula (18) with Zdf ¼ �Bf ;1. The own dynamics of f t are a VAR(1). Thus, the 
model’s implications are identical to those of the affine model with correlated factors. 

2.6. Applications 

This subsection illustrates the kinds of questions that can be addressed with the partial 
term structure estimation methodology. 
�
 How does the expected time path of rt vary with f ?t 
The expected change in the short rate from t to t þ j, conditioned on f , is  t 

Eðrtþj � rtjf Þ ¼ d0 ðI � ðI � Kff Þ
j 
ÞðK�1mf � f Þ. (53)t f ff t 

Note that this j-ahead forecast is not a minimum variance forecast. There is additional 
information in the term structure (such as the current level of the short rate) that is ignored 
in forming this conditional expectation. Therefore, the partial term structure dynamics 
should not be used to forecast, but rather to interpret the link between the observed factors 
and the term structure. 
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�
 How do risk premia on bonds vary with f ?t 
The partial nature of the estimated model does not pin down mean excess bond returns. 
However, it does determine how variations in f correspond to variations in expected t 
excess returns. The expected excess log return to a t-maturity bond held from t to t þ 1, 
conditioned on f t, is  !

lff 
Eðlog Ptþ1;t�1 � log Pt;t � Zrtjf Þ ¼ kt þ B0 f (54)t f ;t�1 0ðnf �n0 Þ�nf 

t. 

The constant term kt is unrestricted. 
�
 What is the shape of the term structure conditioned on f ?t 
The expectation of the t-maturity annualized bond yield yt;t, conditioned on f , is  t 

1 �1Eðyt;tjf tÞ ¼ at þ df 
0
ðI � ðI � K

q
ff Þ

t
ÞðK

q
ff Þ f t. (55)

t 

The constant term at is unrestricted. 
�
 What is the expected evolution of the term structure conditioned on f ?t 
The j-period-ahead forecast of the change in the yield on a bond with constant maturity 
t is 

1 
d0 Þ

t �1Eðytþj;t � yt;tjf tÞ ¼  f ðI � ðI � K
q
ff ÞðK

q
ff Þ ðI � ðI � Kff Þ

j
Þ 

t 
�ðK�1 � f Þ. ð56Þff mf t 
�
 Is the empirical failure of the expectations hypothesis associated with f ?t 
� �

Campbell and Shiller (1991) estimate regressions of the form 

s 
ytþs;l�s � yt;l ¼ b0 þ b1 ðyt;l � yt;sÞ þ etþs;l;s (57)

l � s 

for maturities l4s. Under the weak form of the expectations hypothesis the coefficient b1 

should equal one, but in the data it is often negative. A common interpretation of this 
result is that bond risk premia and the slope of the term structure are positively correlated. 
The results of partial term structure estimation can be used to determine if the failure of 
the expectations hypothesis is seen in the part of the term structure that is associated with 
f t. Consider estimating (57) using f t as instruments. If the data are generated by the affine 
model described in this section, the conditional expectation of yield spread on the right-
hand side of (57) is 

1 1 0 

Eðyt;l � yt;sjf tÞ ¼ yl;s þ �  Bf ;l þ Bf ;s f t, (58)
l s 



ARTICLE IN PRESS
522 G.R. Duffee / Journal of Financial Economics 79 (2006) 507–536 
� � � �� �
� �

� � �

where yl;s is an unrestricted constant. The conditional expectation of the left-hand side 
of (57) is 

s 
Eðytþs;l�s � yt;l jf tÞ ¼ fl;s þ Eðyt;l � yt;sjf tÞ l � s 

s q s
� 

1 
B0 ððI � Kff Þ � ðI � K Þ Þf t, ð59Þf ;l�s ffl � s 

q
where fl;s is an unrestricted constant. If lff ¼ 0, then Kff ¼ K and the final term in (59) is ff 
identically zero. In this case, the population estimate of b1 from IV estimation of (57) is 
one. More generally, the population regression coefficient is 

0 �1 
1 1 1 1 1 

b1 ¼ 1 � � Bf ;l þ Bf ;s Varðf Þ �  Bf ;l þ Bf ;s 
s l s t l s 

0
1 1 s s 0

� �  Bf ;l þ Bf ;s Varðf ÞððI � Kff Þ � ðI � K
q 
Þ Þ Bf ;l�s, ð60Þffl s t 

where Varðf Þ is the unconditional variance-covariance matrix of f t. Given this variance t 
and the parameters of the term structure model, the regression coefficient can be 
computed. 
The next section illustrates some of these applications by using the model to study the 

joint dynamics of inflation and the term structure. 

3. Inflation and the term structure 

Researchers have long studied the relation between inflation and bond yields. This 
section reexamines the relation using the model of correlated factors developed in Section 
2.3. The vector of observed factors consists of current and lagged inflation: 

0f t ¼ ðpt pt�ðp�1ÞÞ . (61) 

The short rate equation (2) looks something like a Taylor (1993) rule regression. The 
Taylor rule adds a measure of the period-t output gap to this equation and, depending on 
the implementation, may include only contemporaneous inflation or impose constraints on 
the parameters.3 The empirical analysis here uses information from the term structure to 
both refine the estimate of the short rate’s loading on inflation df and to simultaneously 
estimate the sensitivity of the price of interest rate risk to the level of inflation. Ang and 
Piazzesi (2003) investigate the latter issue using a different methodology. The next 
subsection describes the data sample. 

3.1. The data 

The data are quarterly from 1960 through 2003. The first date matches the beginning 
date of Clarida et al. (2000) in their empirical study of the Taylor rule. Inflation in quarter t 
is measured by the change in the log of the personal consumption expenditure (PCE) 
chained price index from t � 1 to  t. Quarter-t bond yields are defined as yields as of the end 
of the last month in the quarter. This choice is a compromise between two reasonable 
3For example, the short rate in quarter t is often expressed as an affine function of inflation during the past year, 
implying that f contains lags zero through three of quarterly inflation and that df ðiÞ ¼ df ðjÞ; iaj.t 
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Table 1 
Summary statistics 
The table reports summary statistics for quarterly observations of inflation and Treasury bond yields. Inflation 

is the log change in the PCE chain-weighted price index. Zero-coupon treasury yields are from CRSP. All data are 
continuously compounded and expressed in percent per year. Standard deviations are denoted SD and first-order 
autocorrelation coefficients are denoted AR. ‘‘Differences’’ refers to quarterly changes. 

Levels Differences Contemporaneous corrs of differences 

SD AR SD AR Inflation 3-mon yield 1-yr yield 

Panel A: 1960Q1– 1979Q2 
Inflation 2.80 0.90 1.23 �0.16 1.00 
3-mon yield 1.83 0.93 0.69 �0.02 0.26 1.00 
1-yr yield 1.83 0.92 0.71 �0.04 0.24 0.80 1.00 
5-yr yield 1.63 0.95 0.50 �0.12 0.16 0.65 0.88 

Panel B: 1979Q3– 1983Q4 
Inflation 2.79 0.82 1.63 �0.39 1.00 
3-mon yield 2.66 0.39 2.99 �0.36 0.00 1.00 
1-yr yield 2.26 0.41 2.51 �0.42 0.16 0.93 1.00 
5-yr yield 1.66 0.61 1.45 �0.28 0.19 0.82 0.94 

Panel C: 1984Q1– 2003Q4 
Inflation 1.26 0.62 1.10 �0.37 1.00 
3-mon yield 2.20 0.96 0.59 0.13 0.13 1.00 
1-yr yield 2.34 0.96 0.67 0.05 0.07 0.86 1.00 
5-yr yield 2.17 0.95 0.66 �0.01 0.06 0.59 0.85 
alternatives, namely, using average yields within a quarter, as inflation is measured, or 
using yields observed some time after the end of the quarter, to ensure the yields 
incorporate the information in the announced inflation rate for the previous quarter. The 
short rate is the three-month yield from the Center for Research in Security Prices (CRSP) 
risk-free rate file. Yields on zero-coupon bonds with maturities of one and five years are 
taken from the CRSP Fama-Bliss file. Inflation and bond yields are continuously 
compounded and expressed as annual rates. 

Table 1 reports summary statistics for three samples separated by break points after 
1979Q2 and after 1983Q4. The first break point corresponds to the beginning of the 
Volcker tenure at the Fed and the accompanying disinflation. There is substantial evidence 
that a regime change in the joint dynamics of inflation and interest rates occurred at that 
time.4 Clarida et al. (2000) also use this break point. The second break point corresponds 
to the end of the disinflation. Its precise placement is somewhat arbitrary because it is 
harder to determine when the disinflation ended than when it began. Using 1983Q4 allows 
for sufficient observations to identify the model’s parameters during the disinflationary 
sample. 

Many characteristics of these data are common to all three samples, including the high 
persistence of both inflation and yields. The estimation procedure assumes that both 
interest rates and inflation are stationary processes. Although this assumption is typical in 
both the term structure and Taylor rule literatures, it is motivated more by economic 
4See, e.g., Gray (1996) and the earlier research he cites. 
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intuition and econometric convenience than by statistical evidence. Unit root tests typically 
fail to reject the hypothesis of nonstationarity for either interest rates or inflation. 
Contemporaneous correlations between changes in inflation and changes in interest rates 
are fairly low, ranging from about 0.25 in the early sample to about 0.10 in the late sample. 
Section 3.3 discusses why these correlations understate the true relation between inflation 
and interest rates. 
The focus on the three-month, one-year, and five-year yields is motivated by the 

following considerations. The three-month maturity is the shortest that is consistent with 
the quarter-length periods used in the model, while the five-year maturity is the longest 
zero-coupon bond available from CRSP. The one-year yield is at about the midpoint 
between these two terms—not based upon maturity, but rather on comovement. Table 1 
shows that in both the disinflationary and post-disinflation samples, the correlation 
between quarterly changes in one-year yields and three-month yields is within a percentage 
point of the corresponding correlation between one-year yields and five-year yields. During 
the pre-Volcker sample, variations in the one-year yield are a little closer to variations in 
the long end of the term structure than the short end. 
Yields on bonds of intermediate maturities are available, but including them has two 

consequences. First, adding additional moment conditions expands the wedge between 
finite-sample and asymptotic properties of GMM estimation. Second, using yields on 
bonds of similar maturities increases the likelihood that the model’s parameter estimates 
will be determined by economically unimportant properties of these yields. Efficient GMM 
estimation emphasizes the linear combinations of yields that are statistically most 
informative about the model. Moments involving yield spreads on similar-maturity bonds 
are likely to be highly informative because such spreads exhibit little volatility. If the model 
is correct and the yields are observed without noise, including bonds of similar maturities is 
a good way to pin down the parameters. But the model is only an approximation to reality, 
and the zero-coupon bond yields are interpolated. I therefore use a small number of points 
on the yield curve that capture its general shape. A comparison with maximum likelihood 
term structure estimation may be helpful. One method used to estimate an n-factor term 
structure model is to assume that n points on the term structure are observed without error 
and other points are contaminated by measurement error. In principle, any n maturities 
will work, yet in practice the n maturities are widely spaced in order to force the model to 
fit the overall shape of the term structure. The estimation procedure used in this paper does 
not rely on ad hoc measurement error, but as a consequence it is more difficult to use 
information from many points on the term structure. 
Monthly observations of inflation and yields are also available. Monthly data contain 

more information but their use requires both more parameters and more GMM moment 
conditions. The number of inflation lags included in the vector f must capture both thet 
autoregressive properties of inflation and the relation between lagged inflation and current 
bond yields. These properties are driven more by calendar time than by frequency of 
observation. Thus, shifting to monthly data will triple both the amount of available data 
and the number of elements of f t. With n0 ¼ 1 (a single contemporaneous observed 
variable) and L bond yields, the number of moment conditions in (23) is pðL þ 1Þ þ 1 and 
the number of moment conditions in (39) is ðp þ 1ÞðL þ 1Þ. The number of parameters is 
1 þ 3p. (The AR(p) description of inflation uses 1 þ p parameters and there are p 
parameters in both df and lff .) Hence the number of moment conditions and parameters 
increases almost proportionally with p. Put differently, the number of data points per 
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moment condition (and per parameter) increases only slightly if monthly data are used. 
Quarterly data are used for the sake of parsimony. 

3.2. The choice of lag length 

The number of elements p of f must be at least as large as the number of lags necessary t 
to capture the autoregressive properties of inflation. To help choose this length, I estimate 
autoregressions using up to six lags and calculate the Akaike and Bayesian Information 
Criteria (AIC and BIC) for each. For the full sample, both criteria are minimized with 
three lags. For the early sample, both criteria are minimized with a single lag. For the late 
sample, the AIC is minimized with three lags and the BIC is minimized with a single lag. 
(None of these results are reported in any table.) 

Section 2.3 discusses the importance of including enough lags of inflation in f t to capture 
all of the information in the history of inflation for the short rate. In other words, adding 
additional lags to (61) should not increase the explanatory power of current and lagged 
inflation. There is no consensus in the Taylor rule literature as to the proper lag length. 
(That literature typically interprets lags in terms of a slow reaction of the Fed to inflation 
and output.) Using different econometric frameworks, Clarida et al. (2000), Rudebusch 
(2002), and English et al. (2003) arrive at different conclusions about the persistence of the 
Fed’s reaction function. A recent review of the evidence is in Sack and Wieland (2000). 

We might be tempted to rely on information criteria to choose the appropriate lag length 
in the regression 

rt ¼ d0 þ d0 f þ ot. (62)f t 

But estimation of (62) is problematic for the same reason that estimation of the Taylor rule 
is problematic: the residual exhibits very high serial correlation. To illustrate the problem, 
consider estimation of (62) over the sample 1984 through 2003. With three elements in f t, 
the estimated equation is 

rt ¼ 1:82 þ 0:53pt þ 0:33pt�1 þ 0:41pt�2 þ ot. (63) 

The first-order autocorrelation of ot is 0.9. This high autocorrelation makes it difficult to 
test hypotheses and construct reliable standard errors. Accordingly, further discussion of 
the choice of p is deferred in order to discuss in more detail methods to estimate the 
parameters of (62). The choice of method critically depends on the relation between the 
residual ot and future inflation. 

3.3. The relation between inflation and the short rate 

Differencing is a natural method to correct for the high autocorrelation of ot in (62): 

rt � rt�1 ¼ d0 ðf � f t�1Þ þ ðot � ot�1Þ. (64)f t 

The residual of (64) is much closer to white noise than is the residual of (62). If we adopt 
the assumption that ot�1 is orthogonal to f t, (64) can be estimated with OLS. However, 
this assumption is inconsistent with both intuition and evidence. A large empirical 
literature beginning with Fama (1975) considers the forecast power of interest rates for 
inflation. Investors at time t � 1 have more information about inflation during t than is 
contained in the history of inflation. Since investors care about real returns, presumably 
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Table 2 
Instrumental variable regressions of changes in three-month yields on changes in inflation 
Quarterly changes in the three-month Treasury bill yield are regressed on lags zero through two of changes in 

inflation. No constant term is included. Yields are from CRSP and inflation is the log change in the PCE chain-
weighted price index. Both are expressed as annual rates. The regressions are estimated with instrumental 
variables, where the instruments are a constant and lags one through three of quarterly inflation. Standard errors 
are in parentheses. They are adjusted for generalized heteroskedasticity and four lags of moving average residuals 
using the technique of Newey and West. The final three columns report sample correlations between fitted 
residuals and leads zero through two of changes in inflation. 

Sample Obs Lag of change in inflation Corr between residual and lead of 
change in inflation 

0 1 2 0 1 2 

1960Q1–2003Q4 

1960Q1–1979Q2 

1979Q3–1983Q4 

1984Q1–2003Q4 

173 

75 

15 

77 

�0.125 
(0.543) 
0.592 
(0.230) 
0.340 
(0.611) 
0.436 
(0.353) 

�0.108 
(0.224) 
0.015 
(0.119) 
�0.259 
(0.500) 
0.287 
(0.183) 

0.117 
(0.142) 
0.109 
(0.090) 
0.677 
(0.315) 
0.229 
(0.141) 

0.24 

�0.62 

�0.29 

�0.37 

0.07 

0.29 

0.31 

0.32 

0.00 

0.08 

�0.15 

0.07 
the short rate at t � 1 (which is a nominal return earned during period t) depends on this 
information. If so, ot�1 will be positively correlated with f Therefore, f � f ist. t t�1 
negatively correlated with ot � ot�1 and the OLS estimate of df is biased. Similarly, 
contemporaneous correlations between changes in inflation and changes in bond yields are 
relatively small because news about next period’s inflation rate dampens these correlations. 
As discussed in the context of Eq. (40), estimation of (64) with a particular set of 

instruments avoids this bias. The instruments are a constant and f t�1. Table 2 reports 
results of estimating (64) with these instruments when f contains lags zero to two oft 
quarterly inflation. Standard errors are adjusted for generalized heteroskedasticity and 
four lags of moving average residuals using the technique of Newey and West (1987a). The 
sample autocorrelations of the residuals (not reported in any table) are fairly close to zero 
at all lags. The results for the full sample are puzzling. The sign of the estimated relation 
(negative) is wrong and the standard errors are huge. Moreover, the fitted residuals are 
positively correlated with contemporaneous changes in inflation. The intuition behind the 
bias in OLS coefficients implies that this correlation should be negative. 
In contrast, the subsample results are in line with our intuition, and contradict the 

results from the full sample. In both the early and late samples, the coefficient on the 
contemporaneous change in inflation is about 0.5. (This is also true in the disinflationary 
sample, but the disinflationary sample results are shown only for completeness. There are 
too few observations to draw any conclusions.) The coefficients on lagged changes in 
inflation are also positive in both of these samples, while the correlations between fitted 
residuals and contemporaneous changes in inflation are strongly negative. The negative 
correlation implies that short rates lead inflation. Further evidence of this predictability is 
the positive correlation between fitted residuals and the next quarter’s change in inflation. 
All of these results are consistent with our intuition about the relation between inflation 
and interest rates. 
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Table 3 
An AR(3) description of quarterly inflation 
The table reports results from OLS estimation of an AR(3) model of quarterly inflation. Inflation is measured 

by the change in the PCE chain-weighted price index. Standard errors, adjusted for generalized heteroskedasticity, 
are in parentheses. The column labeled SEE reports the standard error of the estimate. 

Sample Obs Lag 1 Lag 2 Lag 3 SEE 

1960Q1–2003Q4 173 0.638 0.115 0.178 1.147 
(0.076) (0.079) (0.078) 

1960Q1–1979Q2 75 0.804 0.066 0.078 1.233 
(0.123) (0.143) (0.128) 

1979Q3–1983Q4 15 0.388 0.058 0.436 1.342 
(0.166) (0.158) (0.169) 

1984Q1–2003Q4 77 0.425 0.100 0.265 0.959 
(0.097) (0.129) (0.148) 
What explains the anomalous full-sample results? The assumptions underlying the IV 
regression are not satisfied over the full sample because the relation between the 
instruments and the explanatory variables has changed over time. In other words, inflation 
dynamics during 1960–2003 are not stable, as we can see from Table 3. In the early 
subsample, inflation basically follows an AR(1). In the late subsample, inflation dynamics 
are more complicated. The idea of the IV regression is that changes in short-term rates are 
projected on expected changes in inflation, where expectations are conditioned on lagged 
inflation. For the purposes of the regression, this expectation is proxied by an in-sample 
projection of changes in inflation on lagged inflation. Because inflation dynamics have 
varied over the full sample, true conditional expectations do not correspond to the full-
sample projection. This problem is avoided by splitting the sample into subsamples that 
exhibit stable dynamics. 

The IV regressions help determine the proper lag length. Modify the regressions in 
Table 2 by adding a fourth lag of differenced inflation as both an explanatory variable and 
as an instrument. For all of these modified regressions, we cannot reject the hypothesis that 
the coefficient on the additional lag of differenced inflation is zero. (These results are not 
reported in any table.) Including lags zero through two of inflation in f is thereforet 
sufficient to capture the dynamics of inflation in both the early and late samples. 

3.4. Details of model estimation 

To summarize, the relevant components of the term structure model are 
0f ¼ ðpt , (65)t pt�1 pt�2Þ 

rt � rt�1 ¼ d0 ðf � f t�1Þ þ ðot � ot�1Þ, (66)f t 

Eðptjf t�1Þ � pt�1 ¼ m0 � K0f t�1 þ xt, (67) 

and 

Eq q
ðptjf tÞ � pt�1 ¼ m0 � ðK0 þ lff Þf t�1 þ xq

t . (68) 
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The identified parameters are scalar m0 and the vectors df , K0, and  lff , each of which has 
three elements. Instead of reporting estimates of K0, the tables report the implied 
coefficients of the AR(3) for inflation, 

r � ð1 0 0Þ � K0. (69) 

The model allows the price of interest rate risk to depend on both contemporaneous and 
lagged inflation. For two reasons, results are reported only for the special case in which the 
price of risk depends on contemporaneous inflation, or lff ð2Þ ¼ lff ð3Þ ¼ 0. First, for both 
the pre-Volcker and post-disinflation samples, the more general functional form does not 
provide any statistically significant improvement in fit. Second, estimation of the general 
model over different samples sometimes produces an estimate of the equivalent martingale 
feedback matrix Kq 

that fits the observed bond yields well, but implies wildly implausible ff 
behavior for yields that are not included in the estimation. Typically when this occurs, 
some eigenvalues of I � K

q 
are imaginary with absolute values outside of the unit circle.ff 

The model is estimated separately over the pre-Volcker sample 1960Q1–1979Q2 and the 
post-disinflation sample 1984Q1 through 2003Q4. For completeness, the model is also 
estimated over the disinflationary sample, although the sample is too short to draw any 
meaningful conclusions. In fact, for this 18-quarter sample, the length of f is set to twot 
because there are too few observations to estimate the model using the moments for three 
elements. The GMM methodology is described in Section 2.4. The moment vector is (39). 
Two iterations of GMM are performed. For the first iteration, the weighting matrix is the 
inverse of the sample covariance matrix of the moments evaluated at ‘‘regression/constant 
risk premia’’ parameters. These parameters are determined by an AR(3) regression of 
inflation, IV estimation of (64), and lff ¼ 0. The parameter estimates produced by this first 
iteration are used to construct an asymptotically efficient weighting matrix and the 
parameters are estimated again. The covariance matrix of the moment vector is estimated 
using the robust method of Newey and West (1987a) with four moving average lags. The 
solution to the GMM optimization problem requires nonlinear optimization. To find the 
global minimum, 20 starting values are randomly generated. For each starting value, 
simplex is used to determine a well-behaved neighborhood of the parameter estimates. A 
derivative-based algorithm is used to improve the accuracy of the estimates. 

3.5. Results 

The results are displayed in Table 4. Panel A reports parameter estimates and Panel B 
reports specification tests. The first specification test is the Hansen (1982) J test of 
overidentifying restrictions. The second is a likelihood ratio (LR) test of the hypothesis 
df ¼ r. This hypothesis means that short rates can be written as 

rt ¼ d0 þ Eðptþ1jf Þ þ ot. (70)t 

In other words, ex ante real short rates are uncorrelated with expected inflation. The LR 
test has an asymptotic w2ðpÞ distribution under the null. The third is a Lagrange multiplier 
(LM) test of the hypothesis that the price of risk depends on the first two elements of f t 
instead of just the first element. The LM test has an asymptotic w2ð1Þ distribution under the 
null. The latter two test statistics are derived in Newey and West (1987b). 
There are three main conclusions to draw from these results. First, in both the early and 

late samples there is a strong positive relation between the short rate and inflation. Of 
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Table 4 
Estimates of a term structure model 
The short rate is rt ¼ d0 þ d0 f þ d0 xt, where the vector f contains lags zero through two of quarterly inflation f t x t 

and xt is an arbitrary-length vector of unobserved factors. Quarterly inflation follows an AR(3) process. Under 
the equivalent martingale measure, the first coefficient of this AR(3) equals the physical measure coefficient less 
the loading of the price of risk on inflation. Estimation is with GMM, using quarterly observations of inflation 
and yields on zero-coupon bonds with maturities of three months, one year, and five years. Standard errors are in 
parentheses. They are adjusted for generalized heteroskedasticity and four lags of moving-average residuals. The 
test of overidentifying moments is Hansen’s J test. The test of equality of coefficients is an LR test of the 
hypothesis that df equals the AR(3) coefficients. The test of an additional lag in the price of risk is an LM test that 
bond risk premia depend on the first lag of inflation in addition to current inflation. Square brackets contain p-
values of test statistics. 

Panel A: Parameter estimates 

Sample Loading of short rate Coef i of Price of 
on inflation lag i AR(p) for inflation risk loading on 

inflation 
0 1 2 1 2 3 

1960Q1–1979Q2 0.762 0.186 0.076 0.760 0.170 0.086 0.116 
(0.202) (0.106) (0.065) (0.083) (0.135) (0.084) (0.038) 

1979Q3–1983Q4 0.499 �0.159 — 0.485 0.408 — 0.092 
(0.400) (0.291) (0.069) (0.054) (0.698) 

1984Q1–2003Q4 0.590 0.319 0.291 0.458 0.102 0.364 0.026 
(0.275) (0.149) (0.113) (0.075) (0.093) (0.073) (0.095) 

Panel B: Hypothesis tests 

Overidentifying 
moments 

Equality of 
coefficients 

Additional lag 
in price of risk 

1960Q1–1979Q2 

1979Q3–1983Q4 

1984Q1–2003Q4 

4.666 
[0.793] 
3.117 
[0.794] 
6.273 
[0.617] 

0.079 
[0.994] 
14.254 
[0.001] 
3.112 
[0.375] 

0.479 
[0.489] 
0.652 
[0.420] 
0.778 
[0.378] 
course, we do not need a no-arbitrage model to tell us this; standard methods such as the 
IV regressions in Table 2 also document this relation. The value of imposing no-arbitrage 
is that the precision of the estimated relation is improved. The standard errors on df in 
Table 4 are all smaller than the corresponding standard errors produced by the IV 
regressions. Also note that in both samples, the magnitude of the estimated relation is 
stronger when no-arbitrage is imposed than when it is not imposed. The features of the 
data contributing to this pattern are discussed below. 

The second conclusion is that short rates and expected inflation move almost one-for-
one. A comparison of the estimated df vectors with the estimated AR(3) parameters 
reveals that they are almost identical in the early sample. The correspondence is not quite 
as close in the late sample, but the hypothesis that df ¼ r cannot be rejected in either 
sample. This conclusion is surprising, since earlier research such as Clarida et al. (2000), 
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Rudebusch (2002), and Goto and Torous (2003) document that short rates have been 
much more sensitive to inflation rates in the post-deflationary sample than prior to 
Volcker’s tenure. These apparently conflicting results are resolved below. 
The third conclusion is that there is a modest inverse relation between inflation and bond 

risk premia. All of the estimates of lff ð1Þ are positive, but only the early-sample estimate is 
statistically different from zero. The connection between the sign of lff ð1Þ and the sign of 
the relation between inflation and risk premia is determined by (54). Higher inflation 
corresponds to lower bond prices, which means that the log-price loadings on inflation, 
Bf ;t, are negative. Therefore, the product of lff ð1Þ and Bf ;t is negative, and from (54), higher 
inflation corresponds to lower expected excess returns. 
To get a sense of the magnitude of the reported coefficients, consider the standard 

deviation of expected excess quarterly log returns to a five-year bond. The standard 
deviation implied by the model can be computed with a combination of the formula for 
expected excess returns (54) and the sample variance of the inflation state vector f t. For the 
early sample, the implied standard deviation is 13.3 basis points, or 53 basis points on an 
annual basis. For the late sample, the implied standard deviation is only five basis points 
on an annual basis. 
What features of the data drive the high estimated sensitivity of the short rate and the 

low sensitivity of risk premia? To explore this question, take a closer look at the behavior 
of bond yields during 1984Q1–2003Q4. Table 5 reports estimates of the relation between 
one-year and five-year bond yields and f :t 

yt;t ¼ b0;t þ b0 tf þ et. (71)t 

The vector bt is calculated with three alternative techniques. The first technique differences 
(71) and estimates it with instrumental variables, paralleling the estimation of (64). The 
second uses the IV estimate of (64) from Table 2, the AR(3) estimate of inflation from 
Table 3, and the assumption that risk premia are invariant to f t. The vector bt is then given 
by no-arbitrage (ignoring the requirement that the computed vector for the one-year yield 
must be consistent with the vector for the five-year yield). The third uses the parameter 
Table 5 
Loadings of longer-term bond yields on current and lagged inflation, 1984Q1–2003Q4 
The yield on a t-maturity bond is expressed as yt;t ¼ b0 þ b1pt þ b2pt�1 þ b3pt�2 þ et;t, where pt is inflation 

during quarter t. Estimated coefficients are produced using three methods. With ‘‘IV,’’ the equation is first-
differenced and estimated over 1984Q1–2003Q4 with instrumental variables. With ‘‘Short rate/constant premia,’’ 
the coefficients are calculated using (a) the estimate of the corresponding expression for the short rate, (b) the 
estimate of the AR(3) dynamics of inflation, and (c) the assumption that risk premia are invariant to inflation. 
With ‘‘Model,’’ the coefficients are calculated using a term structure model estimated over 1984Q1–2003Q4. 

Maturity Method Loading of the yield on inflation lag i 

0 1 2 

One year IV 0.460 0.321 0.258 
One year Short rate/constant premia 0.437 0.224 0.149 
One year Model 0.574 0.303 0.233 
Five years IV 0.379 0.216 0.257 
Five years Short rate/constant premia 0.208 0.100 0.066 
Five years Model 0.392 0.204 0.153 
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estimates of the no-arbitrage model reported in Table 4 to compute bt. No standard errors 
are reported in Table 5 because the only goal is to understand why the results of these three 
procedures differ from each other. 

Intuitively, estimation of the no-arbitrage model with GMM produces loadings of yields 
on f that are as close as possible to the IV estimates of these factor loadings, subject to thet 
requirement of no-arbitrage. A comparison of the first row of Table 5 with the second 
reveals that the one-year yield is more sensitive to f than is implied by the IV estimates oft 
short-rate dynamics and constant risk premia. In fact, these IV estimates are larger than 
the corresponding IV estimates for the short rate reported in Table 2. To fit the IV 
estimates for the one-year yield, either the short rate needs to be more responsive to 
inflation or risk premia need to be high when inflation is high. 

If we attempt to reconcile the IV estimates for the short rate and the one-year yield 
simply by adjusting the risk premia, no-arbitrage requires that the loadings for the five-
year yield exceed the loadings for the one-year yield. (In other words, inflation must be 
nonstationary under the equivalent martingale measure.) A comparison of the first and 
fourth rows of Table 5 reveals that this is counterfactual. Therefore, GMM estimation 
picks short-rate loadings df that exceed the corresponding IV estimates, trading off fitting 
the short rate with fitting the longer-maturity yields. The model-implied loadings for the 
one-year and five-year yields (the table’s third and sixth rows) are fairly close to the IV-
estimated loadings, although the coefficients on contemporaneous inflation are too high 
and the coefficients on lagged inflation are too low. These loadings are produced with a 
value of lff close to zero. If risk premia increased when inflation increased (negative lff ), 
the loadings on inflation would be larger. This would produce a better fit for the loadings 
on lagged inflation but a worse fit for the loadings on contemporaneous inflation. 

As mentioned above, much research documents the high sensitivity of interest rates to 
inflation in the Volcker and Greenspan tenures. The results here do not support this result. 
The reason is that more recent data are used here. Table 6 reports estimation results for the 
post-deflationary sample, with different ending points. The ending point of 1996Q4 
Table 6 
Estimates of a term structure model: Sample sensitivity 
The short rate is rt ¼ d0 þ d0 f þ d x 

0 xt, where the vector f t contains lags zero through two of quarterly inflation f t 

and xt is an arbitrary-length vector of unobserved factors. Quarterly inflation follows an AR(3) process. Under 
the equivalent martingale measure, the first coefficient of this AR(3) equals the physical measure coefficient less 
the loading of the price of risk on inflation. Estimation is with GMM, using quarterly observations of inflation 
and yields on zero-coupon bonds with maturities of three months, one year, and five years. Standard errors are in 
parentheses. They are adjusted for generalized heteroskedasticity and four lags of moving-average residuals. 

Sample Loading of short rate Coef i of Price of 
on inflation lag i AR(p) for inflation risk loading on 

inflation 
0 1 2 1 2 3 

1984Q1–1996Q4 0.923 0.584 0.561 0.382 0.026 0.473 0.012 
(0.235) (0.131) (0.130) (0.057) (0.103) (0.083) (0.079) 

1984Q1–2001Q4 0.861 0.462 0.484 0.519 �0.018 0.477 0.053 
(0.256) (0.125) (0.122) (0.074) (0.092) (0.074) (0.073) 

1984Q1–2002Q4 0.157 0.090 0.139 0.544 �0.022 0.363 0.224 
(0.308) (0.132) (0.121) (0.070) (0.084) (0.104) (0.356) 
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Fig. 1. A comparison of forecasted and actual quarterly changes in bond yields. At the end of quarter t � 1, the 
change in the five-year bond yield from t � 1 to  t is predicted using a term structure model. The model is estimated 
using data through 2001Q4, while the one-quarter-ahead forecasts (plotted in Panel A) are constructed through 
2003Q3. Panel B plots realized changes in yields. The plots are aligned so that the forecast made at t � 1 of the 
quarter-t change corresponds to the quarter-t realization of this change. 
matches that in Clarida et al. (2000). Consistent with their evidence, the no-arbitrage 
results for this sample implies a very high sensitivity of the short rate to inflation. The sum 
of the coefficients on lags zero through two of the short rate exceeds two. Adding five years 
of data (an ending point of 2001Q4) does not substantially affect these results. However, 
including data for 2002 dramatically changes the results. With this sample, the estimated 
loadings on inflation are economically small and statistically indistinguishable from zero. 
Fig. 1 helps explain these results. Panel A is constructed using the parameter estimates 

from the no-arbitrage model estimated over 1984Q1–2001Q4. It plots one-quarter-ahead 
forecasts of changes in the five-year yield. The predicted changes are consistently negative 
because the model is fitting the general decline in interest rates during the sample. The last 
two years are out-of-sample forecasts in the sense that the model is estimated without these 
data, although the forecast formed at quarter t � 1 uses inflation data through quarter 
t � 1. Panel B shows the corresponding realization of the change in the five-year yield. 
(Note that the scales of the two figures do not correspond; realizations are much more 
volatile than forecasts.) 
Inflation was very low during early 2002. Therefore the AR model of inflation forecasted 

rising inflation in late 2002, and correspondingly rising bond yields. In Panel A, two of the 
largest predicted changes in the five-year bond yield are the predictions formed in 2002Q1 
and 2002Q2 for changes in 2002Q2 and 2002Q3, respectively. However, bond yields fell 
substantially during 2002. In fact, the largest decline in the five-year yield during the entire 
sample occurred between 2002Q2 and 2002Q3. Thus, the forecasts are spectacularly wrong 
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in 2002. The forecast accuracy improves in 2003, which is why estimation over the entire 
sample finds a statistically strong relation between inflation and bond yields. 

3.6. Does the evidence support the model? 

In both the pre-Volcker and post-disinflation samples, the formal tests of the 
overidentifying restrictions do not come close to rejecting the model. Yet in a broader 
sense, these results reinforce existing evidence that a single regime is an unsatisfactory 
description of the joint dynamics of inflation and the term structure. Estimation of the 
model over the entire sample 1960Q1 through 2003Q4 produces inflation factor loadings df 

that are negative, much like the IV estimates reported in Table 2 for the entire sample. (The 
full-sample results of the no-arbitrage model are not reported in any table.) As previously 
discussed in the context of these IV estimates, the problem with the full sample is that 
inflation dynamics have varied substantially over time. 

A more general no-arbitrage model needs to incorporate time-variation in inflation 
dynamics. One approach is to allow the parameters to switch at particular break points, 
but nevertheless price bonds as if investors believe parameters are constant over time. This 
is effectively the procedure followed here. An alternative approach is to allow for regime 
changes in inflation dynamics, where investors recognize the possibility of regime changes. 
Unfortunately, tractable bond pricing in a regime-switching framework requires a number 
of restrictions on the nature of the regime switching; not all of the components of the 
dynamics are allowed to switch regimes. The requirement of tractability leads to a variety 
of nonnested regime-switching models. For example, the model of Ang and Bekaert (2003) 
cannot accommodate changing factor dynamics, while the model of Dai et al. (2003) allows 
for changing factor dynamics only by imposing tight restrictions on the dynamics of the 
price of interest rate risk. Ang and Bekaert (2003) discuss the modeling advantages and 
disadvantages of regime-switching factor dynamics. The results here suggest that a 
relatively simple regime-switching framework can accurately fit these data. There is no 
need to allow for regime changes in the compensation investors require to bear inflation 
risk. In addition, the short rate’s sensitivity to one-step-ahead forecasted inflation can be 
constant across regimes. The only component that must shift regimes is the AR process 
followed by inflation. Whether these simple dynamics are consistent with a tractable bond 
pricing framework is an open question. 

4. Concluding comments 

This paper makes two contributions to the term structure literature. First, a 
methodological framework is constructed to investigate the relation between the term 
structure and other observable variables. The framework imposes no-arbitrage without 
requiring the estimation of the complete description of the term structure’s dynamics. 
Therefore, it can be used to describe the dynamics of expected returns to bonds conditional 
on the observable variables. The framework is simple to implement with GMM because it 
is essentially a set of regressions that are estimated with either OLS or instrumental 
variables. Cross-equation restrictions implied by no-arbitrage allow us to infer the 
parameters of the model from these regressions. 

Second, the framework is applied to the relation between inflation and the term 
structure. The results suggest a simple description of this relation: short-term interest rates 
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move in tandem with expected inflation, and risk premia are largely unaffected by 
inflation. Nonetheless, the relation between inflation and the term structure is unstable 
over time because the dynamics of inflation (used to determine expected inflation) are 
unstable. These results add to the already large body of evidence pointing to the 
importance of modeling regime shifts in interest rate dynamics. 

Appendix 

This appendix contains a formal dynamic model of correlated observed and latent 
factors. The latent factors affect the dynamics of the observed factors, while the 
expectation of the latent factors conditioned on observed factors satisfies (27) in the text. 
The framework presented here is not the only way in which to introduce correlations 
between f and xt while satisfying (27), but it is nonetheless fairly general. t 
There are two types of latent factors in this model. The first type creates variation in 

short-term interest rates that is independent of the observed factors, as in Section 2.1. The 
second type of latent factor affects both short-term interest rates and future realizations of 
the observed factors. The dynamics of the first type, labeled x0;t, are simple to express 
because they do not depend on other factors. Formally, 

x0;tþ1 � x0;t ¼ mx0 � Kx0x0;t þ Sx0Sx0t x0;tþ1, (A1) 

where Sx0t is a diagonal matrix that depends on x0;t. 
The joint dynamics of the observed factors and the second type of latent factors are 

somewhat more complicated than those of x0;t. At time t, investors observe signals that 
contain information about future realizations of the observed variables. Some signals will 
will show up quickly in the observed variables; others will show up only after a 
considerable lag. Formally, investors observe a vector of shocks x;i;t; i ¼ 1; . . . ; d at time t. 
(For ease of discussion the individual shock x;i;t is a scalar, but treating it as a vector 
introduces no complications other than those of notation.) These shocks are independent 
standard normal variables conditioned on investors’ information at t � 1. Shock isx;i;t 

news about the realization of f 0 
tþi. 

Stack lags zero through i � 1 of the shock x;i;t into the vector xi;t: 
0 xi;t ¼ ð x;i;t x;i;t�1 . . .  x;i;t�ði�1ÞÞ ; i ¼ 1; . . . ; d. (A2) 

The dynamics of xi;t are, in first-order companion form, 

xi;tþ1 � xi;t ¼ �  

0 
BBB@ 

1 0 . . .  0 0 

�1 1  . . .  0 0 

. . .  

0 0 . . .  �1 1  

1 
CCCAxi;t þ 

x;i;tþ1 
. (A3)

0 

Eq. (A3) simply reflects the definition of xi;t and the fact that x;i;tþ1 is a shock. 
The entire set of latent factors is 

0 0 0 0 xt ¼ ðx x x Þ . (A4)0;t 1;t d;t 

Recall that rt is affine in f and xt. Therefore, all of the shocks x;i;t�j ; joi are allowed tot 
affect rt directly. Put differently, the short rate can react to the information observed by 
investors before it is incorporated into the observed variables. 
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At time t þ i, the observed variables f 0 
tþi react to x;i;t. The key restriction built into their 

relation is that after t þ 1, the shock has no direct effect on the observed variables. It only 
affects these observed variables indirectly, through the persistence of the observed 
variables themselves. The observed-factor dynamics satisfy (28) in the text, where the 
matrix Kfx is 

Kfx0 Kfx1 . . .  Kfxd 
Kfx ¼ , (A5) 

0 0 . . .  0 

Kfx0 ¼ 0; Kfxi ¼ ð0 kiÞ. (A6) 

The submatrices of zeros in the second row of Kfx are a consequence of the first-order 
companion form of (28). The matrix Kfx0 is zero because the latent factors x0;t are 
independent of the observed factors. The submatrix of zeros in Kfxi is n0 � ði � 1Þ and ki is 
a vector of length n0. This structure implies that the shock x;i;t does not affect the observed 
factors until t þ i, at which point its effect is determined by the elements of ki. 

It is easy to verify that these dynamics satisfy (27). The key intuition is that the vector xi;t 

contains shocks that show up in the observed factors at t þ 1; . . . ; t þ i. Thus, it is 
independent of f t�j ; jX0. 
´
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