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Abstract 

This paper critically reviews current practices for measuring credit risks of derivative 
instruments. It argues that there are two major problems with the standard measurement 
approach. First, it uses models of the stochastic behavior of financial variables while 
ignoring both their inherent oversimplification and the uncertainty in their parameters. 
Second, it ignores the correlations among exposures on derivative instruments and the 
probabilities of counterparty default. This paper demonstrates that these practices can 
produce large errors in the estimation of distributions of both future credit exposures and 
future credit losses. 
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1. Introduct ion 

This paper cri t ically rev iews  the current  state of  credit  risk measu remen t  of  

der ivat ive  instruments.  The  proper  measu remen t  of  credit  risks is vi tal ly important  

to the der iva t ives  market .  Marke t  part icipants need to know how to price credit  

risk in order  to be proper ly  compensa t ed  for bearing it. They also need to know 

how to evaluate  the usefulness  o f  mechan i sms  to reduce credit  risk, such as 
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transacting with specialized derivative product companies or using collateral. Bank 
regulators also need accurate measures of the credit risk involved in derivatives so 
that capital requirements can be set optimally. Regulators may be tempted to 
compensate for imprecision in the measurement of credit risks by setting very 
conservative capital standards. However, overly conservative capital standards can 
unduly restrict the use of derivatives for risk management by setting the shadow 
price of credit risk too high. 

Participants in derivative markets typically have three goals related to credit 
risk measurement: Estimating future credit exposures, estimating future credit 
losses, and pricing the risk of default. This paper points out two important flaws in 
the current measurement methods. The first flaw is that estimates of future 
exposures, which are based on a Monte Carlo approach, ignore the uncertainties in 
the models used to generate these estimates. 

As an example, I estimate the distribution of future exposure on an interest rate 
swap. The typical Monte Carlo method using a standard model generates expo-
sures that are roughly 20 percent smaller than the exposures generated by the same 
model when the uncertainty in the model's parameters is explicitly recognized. 
The historical distribution of exposures, calculated for the same sample period 
used to estimate the model's parameters, yields estimates 35 to 60 percent larger 
than those generated in the standard manner. 

The second flaw is that methods used to estimate future losses and price default 
risk ignore correlations among instruments' exposures and counterparties' proba-
bilities of default. In reality, there are likely to be large correlations among these 
variables, which implies that joint estimation of exposures and default probabilities 
is required to estimate credit losses and to price default risk. 

For example, if two equally creditworthy counterparties enter into an interest 
rate swap, the standard method implies that their respective credit risks are roughly 
equal. However, if both counterparties are typical 'A'-rated corporations, I esti-
mate that the counterparty receiving fixed will have an expected credit loss five 
times greater than that of the counterparty paying fixed. The difference in expected 
credit losses is a consequence of the fact that firms are more likely to default in 
recessions, when interest rates have fallen from earlier levels, and, as a result, 
fixed-rate receivers are exposed to fixed-rate payers. 

Similarly, because correlations among exposures to different counterparties are 
ignored, the standard method to compute a given upper bound on credit losses 
associated with a given instrument is essentially useless. I argue that an upper 
bound on the credit loss associated with a given instrument should be defined as 
the marginal effect of the instrument on the given upper bound of the aggregate 
credit loss of the entire portfolio. This marginal effect will depend on the 
correlation of the instrument's future exposure with the total portfolio's future 
exposure, and therefore must be estimated within the context of the total portfolio. 
I present simple examples in which the standard method of estimating upper 
bounds on credit losses produces estimates that are dramatically wrong. 
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Section 2 reviews some aspects of  the theory of credit risk measurement. 
Section 3 discusses the current practice of  credit risk measurement. Section 4 
discusses how to measure future credit losses over some arbitrary period of  time 
shorter than the life of the derivative instrument or instruments. Section 5 
concludes. 

2. A review of the theory 

For the most part, academics and practitioners view credit risk measurement 
differently. Academics have largely focused on using contingent-claims techniques 
to price the credit risk associated with derivative instruments, while financial 
institutions and their regulators have focused on estimating distributions of credit 
exposures and credit losses. The emphasis on future credit exposures is a 
consequence of  the fact that exposures determine capital requirements, while 
distributions of future credit losses convey information about the likelihood that 
credit losses can materially affect a firm's probability of  survival. This section 
discusses the theory underlying these different perspectives of  credit risk measure-
ment. 

2.1. Pricing default risk 

Here I focus on a few papers that are intellectual descendants of the 
contingent-claims technique pioneered by Black and Scholes (1973). In these 
papers, complete and arbitrage-free markets are assumed and the value of an 
uncertain payoff  is the expectation, under the equivalent martingale measure, of 
the payoff  discounted with riskfree rates. 

In this framework, a model designed to price instruments subject to credit risk 
must address the following questions. First, what is the process (under the 
equivalent martingale measure) generating defaults? Second, how are payoffs 
determined in the case of  default? Third, what are the relationships (again, under 
the equivalent martingale measure) among the variables underlying the default 
process, the variables underlying the obligated cash flows on the instrument, and 
riskless interest rates? 

The contingent-claims technique was first applied to default risk by Merton 
(1974), who priced zero-coupon bonds issued by default-risky firms. He assumed 
that the value of  the default-risky firm follows geometric Brownian :notion. The 
payoff to the bond equals the value of the firm if, at maturity, the firm's value is 
less than the bond's  face value. Default cannot occur prior to the maturity of the 
bond. With this setup, the firm's stockholders own a European option on the value 
of the firm with a strike price equal to the face value of  the bond. He assumed that 
riskless interest rates are constant, and therefore did not allow the value of the 
obligated cash flow to vary with the probability of  default. This latter assumption 
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was relaxed by Shimko et al. (1993), who allow for stochastic riskless interest 
rates using Vasicek's one-factor model of the riskless term structure (Vasicek, 
1977), with an arbitrary correlation between the innovations in interest rates and 
the firm's value. 

A practical difficulty with Merton's approach is that for instruments with 
multiple cash flows, such as coupon bonds, stockholders own compound options 
on the firm's value (Geske, 1977). Valuing such options generally requires 
numerical techniques. Cooper and Mello (1991) and Abken (1993) use such 
techniques to value default-risky interest rate swaps. In these papers, the value of 
the default-risky firm follows geometric Brownian motion and default occurs at 
the first payment date at which the firm's value is less than the firm's required 
payment on the swap. Both papers also allow the processes generating firm values 
and riskless interest rates to be correlated. 

Black and Cox (1976) generalized Merton's model to allow default to occur 
prior to the maturity date of the bond if the firm's value falls to a given (arbitrary) 
level. If this level is reached, the bondholders receive the value of the firm. A 
practical difficulty with both Merton and Black and Cox is that when there are 
multiple classes of bondholders, the value of the firm must be divided among them 
when the firm defaults, but Franks and Torous (1994), among others, find that this 
division does not follow simple priority rules. 

Rather than expressly modeling the bargaining process among claimants, Hull 
and White (1992) and Longstaff and Schwartz (1994) make an assumption that 
substantially simplifies valuation. Following Black and Cox, they assume that 
default occurs when the value of the firm falls to a given level, but they also 
assume that in the event of default, each class of risky debt receives some 
arbitrarily determined fraction of the riskfree value of the instrument. Their models 
do not enforce the constraint that the total payoffs to the bondholders equal the 
remaining value of the firm. Hull and White focus their attention on valuing an 
instrument assuming independence of the processes generating the firm's value 
and the riskfree value of the instrument, while Longstaff and Schwartz analytically 
value an interest rate swap allowing for a nonzero correlation between the 
processes generating the firm's value and riskfree rates (and therefore the riskfree 
value of the swap). 

In the above models, the value of the firm follows a diffusion process and 
default occurs when the value of the firm reaches a lower boundary. Roughly 
speaking, therefore, firms never default unexpectedly. (More precisely, the time of 
default is a predictable stopping time.) The validity of this implication is question-
able. An alternative approach, taken by Madan and Unal (1994), Jarrow et al. 
(1994), Lando (1994), Duffle and Singleton (1994), and Duffle and Huang (1994) 
is to use jump processes so that defaults can occur unexpectedly. 

Although a detailed summary of the above literature is beyond the scope of this 
paper, I should note that models which allow dependence between the processes 
generating firm values and riskless interest rates find that the spread between risky 
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fixed-rate debt and riskfree fixed-rate debt is strongly positively related to the 
correlation between innovations in firm value and riskfree rates (Shimko et al., 
1993; Longstaff and Schwartz, 1994). When this correlation is positive, the states 
of the world in which fixed-rate debt is valuable (falling interest rates) are those in 
which firms are more likely to default. Similarly, the value of an interest-rate swap 
to the receive-fixed side is inversely related to the correlation between firm values 
and riskfree rates (Cooper and Mello, 1991; Abken, 1993; Duffle and Huang, 

1994). None of these papers make an attempt to parameterize the correlation 
between the processes generating firm values and riskfree rates with historical 
data. 

2.2. Estimating distributions of credit exposures and losses 

There are few rigorous discussions of the theoretical issues involved in 
measuring distributions of credit exposures and losses on derivative instruments in 

the literature. The following analysis is similar to those in Hull (1989a, Hull 
(1989b)). For clarity, denote the two counterparties to a given derivative contract 
as ABC and XYZ. For simplicity I view matters from the perspective of ABC. The 
cost to ABC of XYZ's  default (prior to any recovery in bankruptcy) is the amount 
required to induce another counterparty to take over XYZ's  contractually obligated 
cash flows. This amount is termed the replacement cost or the credit exposure of 
the contract. If neither ABC nor the new counterparty have any risk of default, this 
replacement cost equals the greater of zero and the 'riskless' mark-to-market value 

1 of the contract. 

Much of the literature concerned with credit exposure simply uses the term 
mark-to-market without the 'riskless'  modifier. However, this literature is always 
referring to the value of the instrument assuming riskless counterparties, not the 
true mark-to-market value of the instrument, which reflects counterparty credit 
quality. 

To fix notation, denote the time-t 'riskless'  mark-to-market value of the 
derivative instrument (from the perspective of ABC) by p,. I denote the exposure 
on the instrument as v,, which is given by u, max(0,p,). The distribution of t, T 
at any time r can be calculated from the distribution of p~., which is in turn 
determined by the distribution of the underlying financial variables that underlie 
the derivative instrument. 

We need to define a 'credit loss' before we can estimate its stochastic behavior. 
The literature concerned with estimating distributions of credit losses implicitly 

i This assumes that default by XYZ does not allow ABC to avoid making payments on derivatives 
contracts that have a positive mark-to-market value from the perspective of XYZ. If the contracts 
include provisions for limited two-way payments (walkaway clauses), this assumption may not be 
valid. 

= 
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uses the following definition of  a credit loss on a derivative instrument. A credit 
loss occurs when (1) the counterparty defaults and (2) the credit exposure on the 
instrument is positive. The magnitude of  the loss equals the difference between 
this positive value and the amount recovered from the defaulting counterparty. 

It should be clear from this definition that this literature is largely divorced 
from the contingent-claims valuation literature previously discussed. A reasonable 
definition of  credit loss implied by this literature is the loss incurred when the 
value of  a derivative instrument falls owing to changes in counterparty credit 
quality. The two definitions are equi.valent only when the probabili ty of  counter- 
party default is constant over time. (As we shall see, the assumption of constant 
default probabil i ty is a recurring one in this area.) A discussion of the relative 
merits of  these definitions is deferred until Section 4. The remainder of this section 
uses the first definition of credit loss. 

The risk of  credit losses can be formalized by denoting the uncertain fraction of 
the exposure v, that is recovered, were default to occur at time t, as 6,. The credit 
loss on this instrument is described by 

0, if XYZ does not default; ( 1 ) 
credit loss ( 1 ~ )  v~, if XYZ defaults at time r .  

A similar formulation holds for a portfolio of contracts between ABC and 
XYZ. Consider  a portfolio with mark-to-market  values p , , p l  . . . . .  p, and corre- 
sponding exposures u],uff . . . . .  ~,~. The distribution of credit losses depends on 
whether the contracts are covered by a legally enforceable netting agreement. If 
netting is effective, credit losses on the portfolio are described by 

credit loss l 6,)  max O, Y'~ p~ , if XYZ defaults at time r .  

[ i = 1  J 

(2a)  

If netting is not allowed, credit losses on the portfolio are described by 

0, if XYZ does not default; 
n 

credit loss ( 1 S~) v i, , if XYZ defaults at time ~-. (2b)  

i 

An issue that is generally ignored in this literature (as opposed to the contin- 
gent-claims literature) is the proper way to discount future credit losses. Such 
discounting should be tailored to the problem at hand. If our objective were to 
determine the current market value of future credit losses, we would proceed as in 
the contingent-claims literature. Alternatively, we might be interested in the 
probabili ty that credit losses do not exceed A B C ' s  assets. If so, we should 
discount credit losses at the (stochastic) rate of return to those assets. Throughout 

= -

= -

~ 

= -
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this paper I work with undiscounted losses, to avoid the complications introduced 
by discounting. 

Implicit in Eqs. (1), (2a), and (2b) is the idea that credit loss distribution 
depends on the joint distribution of the exposure, the probability of  default of 
XYZ, and the fraction of losses recovered in bankruptcy. This idea is made more 
explicit in the expression for the expected credit loss. This expected loss, 
conditional on information available at time t, is given by the probability of 
default at some point during the life of the contract multiplied by the expected 
unrecovered exposure at the time of default: 

Et(credit loss) p rob , (XYZ defaul ts) .  E, [(1 6 ) c[XYZ defaults] (3)  

In the case of a portfolio of  contracts this expectation can be written as (4a), if 
netting is allowed, or (4b), if netting is not allowed: 

E,(credit loss) p rob , (XYZ defaults) 

E , ( ( l - a )  m a x [ 0 , i ~  p ' ] IXYZ defaults) (4a) 

( ) E,(credit loss) p rob , (XYZ defaul ts) .  E, (1 a )  Y'. c ' l x g z  defaults 
i = l  

(4b) 

The expected exposures (and recovery ratios) on the right-hand sides of  Eqs. 
(3), (4a), and (4b) are conditional on both time-t information and the default of 
XYZ at some time during the life of  the instrument. If the credit exposure on the 
instrument is correlated with the probability of XYZ ' s  default, this expectation 
generally will differ from both the unconditional expected exposure and the 
expected exposure conditioned on time-t information. 

Few papers attempt to empirically estimate credit losses on derivative instru- 
ments. Hull (1989b) calculates expected credit losses on interest-rate swaps and 
currency swaps relative to expected credit losses on loans under the assumption 
that the riskfree term structures are flat and instantaneous changes in rates are 
log-normally distributed. A key parameter in his calculations is the assumed 
correlation between riskfree rates and the default risk of  firms. The credit loss to 
the receive-fixed side in an interest-rate swap is positively related to this correla- 
tion: As the correlation increases, the states of the world in which fixed-rate debt 
is valuable are those in which firms are more likely to default. 

Belton (1987) considers the distribution of credit losses on a portfolio of 
interest-rate swaps with many counterparties, where the distribution of movements  
in the yield curve are generated by a vector autoregressive model. Although he 
recognizes that the distribution of losses depends on the correlation between 
interest rates and default probabilities, he assumes a zero correlation in his 

= -

= 
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simulations. As we see in the next section, his assumption is shared by practition- 
ers involved in measuring and managing credit risks on derivative instruments. 

3. A review of  the practice 

A review of the current practice of  credit risk measurement is confounded by 
three facts. First, each participant in the derivatives market has its own procedures 
for measuring credit risks, with varying degrees of sophistication. Second, 'cur- 
rent' practice is changing fairly quickly over time, as the general level of 
sophistication of  participants grows. Third, the most sophisticated techniques 
developed by major dealers are generally proprietary. 'Current practice', as 
described in this paper, refers to the techniques used by the more sophisticated 
participants, based on published research, press reports, industry seminars, and 
discussions with various industry professionals involved in designing techniques 
for measuring credit risk. 2 Moreover, the Group of Thirty (1993) has recom- 
mended that all dealers and end-users adopt the 'current practices' as described 
here. 

This section is divided into several parts. A brief overview of current practice is 
found in Section 3.1. Section 3.2 provides a more detailed description of  Monte 
Carlo methods for estimating distributions of  credit exposures; Section 3.3 criti- 
cizes this Monte Carlo technique as currently practiced. Section 3.4 describes the 
standard methods used to compute estimated credit losses and an upper bound on 
these credit losses. Sections 3.5 and 3.6 criticize these standard methods for 
measuring expected credit losses and an upper bound on credit losses, respec- 
tively. 

3.1. An overview 

Measures of  future credit exposures are estimated as follows. Distributions of 
exposure at many discrete points (say, ~-s, i 1 . . . . .  K) over the life of the 
instrument or portfolio are computed. These distributions are sometimes condi- 
tioned on the current state of  financial variables, but not conditioned on the 
probability of counterparty default. For each of  the K distributions, a particular 
summary statistic (say, mean or some upper bound) is then computed. These K 
summary statistics are then averaged to produce a single measure of future 
exposure (an average mean or an average upper bound) for the instrument or 
portfolio. 

Measures of future credit losses are produced by multiplying measures of  future 

2 Good descriptions of the approaches taken by rating agencies in measuring derivatives' credit risk 
are Standard & Poor's (1992) and Gluck and Clarkson (1993). 

= 
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credit exposure by the cumulative probability of  counterparty default over the life 
of the instrument. This result is further multiplied by the fraction of  loss expected 
to be unrecovered in bankruptcy. For example, if the measure of future credit 
exposure is the 95th percentile upper bound, this multiplication produces the 95th 
percentile upper bound on credit losses. 

Default risk is often priced using measures of  expected credit losses instead of 
using contingent-claims techniques. Frequently, the price effect is simply the 
difference in the counterparties' expected credit losses as estimated above, plus or 
minus an arbitrary spread. More sophisticated practitioners use option pricing 
methods in which the underlying financial variables and the probability of 
counterparty default evolve independently. 

These approaches do not incorporate any possible correlation between future 
exposure and the probability of  counterparty default. However, ad hoc corrections 
to this approach are sometimes made. The most common correction is made for 
interest-rate swaps, as described in Sorensen and Bollier (1994). When the term 
structure is upward sloped, the first net payment is made to the receive-fixed side. 
After this payment the contract is expected to be in-the-money to the pay-fixed 
side. Because defaults tend to occur later rather than earlier, the pay-fixed side is 
perceived to face more credit risk than is the receive-fixed side. However, as we 
shall see, this 'correction' is inappropriate; the receive-fixed side faces much more 
credit risk than the pay-fixed side because defaults tend to occur following 
declines in interest rates. We now examine these measurement practices in more 
detail. 

3.2. The standard method o f  estimating future exposures 

Distributions of  future exposure are typically generated by the technique of  
Monte Carlo simulation. The standard approach is to choose a particular parame-
terization of  the financial variables of interest. For example, to calculate the 
distributions of  future exposures for an interest-rate swap, I might choose a 
one-factor Cox, Ingersoll, and Ross (CIR) model of  the risktYee term structure 
(Cox et al., 1985). The parameters used in the simulation are usually calibrated 
with historical data. For example, the CIR model might be estimated on historical 
observations of the U.S. dollar term structure. 

The resulting model is used to generate randomly a hypothetical time path of 
the relevant financial variables. The replacement values of an instrument or 
portfolio are calculated at each point along each time path. This exercise is 
repeated thousands of times. The resulting distributions of  replacement costs are 
used to calculate expectations and confidence bounds for exposures. 

A large number of researchers have generated statistics concerning the distribu-
tion of exposures for various derivative instruments. The general focus has been 
on interest-rate swaps and currency swaps. A partial list includes Arak et al. 
(1986), Muffet (1987), Bank of England and Federal Reserve Board Staff (1987), 
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Ferron and Handjinicolaou (1987), Whittaker (1987), Bankers Trust (1987), Neal 
and Simmons (1988), Duffee (1992), Hendricks and Barker (1992), Gilberti et al. 
(1993), and Bond et al. (1994). In addition, most major banks have staff engaged 
in estimating these distributions. 

I illustrate this Monte Carlo approach in the context of interest-rate swaps with 
a one-factor CIR model of nominal yields. In the CIR model, the evolution of the 
instantaneous riskless interest rate follows the diffusion process d r  K ( a -  r )d t  
+ m f f  dZ. I estimate the following discrete-time version: 

A r , + , = K ( ~ - - r , ) A t + e , ,  et+,=0-{r,  Atvl,+l,  E ( r h + , ) = 0 ,  

E( ,v '+ , )  1. (5)  

Eq. (5) is estimated with the generalized method of moments (GMM), using 
monthly observations of the three-month T-bill yield from the Center for Research 
in Security Prices (CRSP) as a proxy for the instantaneous interest rate. The 
estimation period i s  March 1959 through December 1992. The moment conditions 

0.2 are et= e~+ let e ; -  r~ 0. The results are below, with standard errors in 
parentheses: 

Art+ 1 0.268(0.063 - r , ) A t  + 0.082~/-~t At rh+ 
(0.223) x(0.013) (0.006) 

The CIR model is closed with a market price of interest-rate risk, which I 
assume is zero. This assumption is in accord with the results in Chen and Scott 
(1993). They estimate the one-factor CIR model using maximum likelihood and 
cannot reject the hypothesis that the market price of risk is zero. Zero-coupon 
bond prices can then be calculated as functions of the current interest rate, as 
described in Cox et al. (1985). 

The CIR model has been estimated with much more sophisticated techniques 
such as in Chen and Scott (1993). However, for the purpose of estimating 
distributions of future exposure, the approach taken in this paper is more rigorous 
than most. I return to the issue of econometric sophistication below. 

Here I restrict my attention to a five-year U.S. dollar plain vanilla interest-rate 
swap with semiannual payments. I first estimate distributions of exposure, from 
the perspective of the receive-fixed side, for a new swap. I estimate both 
unconditional and conditional distributions, where the conditioning information is 
the shape of the yield curve at the time the swap is initiated. In a CIR model, the 
shape of the yield curve at time t is summarized by the model parameters and the 
time-t instantaneous interest rate. The first panel in Fig. 1 displays expected 
exposures for distributions that are (1) unconditional (the solid line), (2) condi- 
tioned on the initial interest rate equal to 12% (the dot-dashed line); and (3) 
conditioned on the initial interest rate equal to 3.5% (the dotted line). The 
unconditional distributions are estimated by first generating a very long time series 
of interest rates using the parameterized model, then randomly selecting values 

= 

= 

= = 

= ~ 
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Fig. 1. Expected and 95th percentile upper bounds on credit exposures (in % of notional principal) for 
the receive-fixed side of  a five-year U.S. dollar interest-rate swap. The horizontal axis measures years 

since the initiation of the swap. Distributions are calculated with Monte Carlo simulation of a 

C o x - I n g e r s o l l - R o s s  model. The solid lines use the unconditional distribution of exposures. The dotted 

lines assume the initial interest rate equals 12% and the dot-dashed lines assume the initial interest rate 
is 3.5%. 

from this time series to use as initial interest rates. The second panel displays the 
95th percentile upper bound for these distributions. 

The information in distributions of future exposures is compressed into a few 
summary statistics. These statistics are defined here in the context of the distribu- 
tion of exposures for the interest-rate swap examined in Fig. 1. 

AL;erage expected exposure is defined as the mean (over time) of expected 
exposure. For  example,  the unweighted mean of the solid line in the first panel of 
Fig. 1 is the unconditional average expected exposure, while the unweighted 
means of the other lines are average expected exposures conditioned on the 
relevant initial interest rate. Acerage ntaximurn exposure is defined as the mean 
(over time) of some upper bound on exposure. ' M a x i m u m '  is a misnomer because 
exposure can obviously exceed this maximum. If we choose an upper bound of 
95%, then the average maximum exposures for the distributions in the second 
panel of  Fig. 1 are the unweighted average values of the lines in this figure. Peak 
expected exposure and peak maximum exposure are defined as the respective 
peaks of the lines in the first and second panel in Fig. 1. 

Fig. 1 demonstrates that incorporating the initial shape of the term structure into 
calculations of  future exposure can significantly affect the perceived risk of a new 
interest-rate swap. When the initial interest rate is 12%, the yield curve is 
downward sloped and interest rates are expected to fall. Therefore the floating rate 

i 

, 
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is initially higher than the fixed rate and the initial net payments are made by the 
receive-fixed side. After these initial payments, the swap is expected to be 
in-the-money to the receive-fixed side. Therefore expected future exposures (from 
the receive-fixed perspective) conditioned on an initial interest rate of 12% are 
roughly 2.3 times larger than unconditional expected future exposures. Con-
versely, expected future exposures conditioned on an initial interest rate of  3.5% 
are roughly 0.6 times as large as unconditional expected exposures. When 
estimating distributions of  future credit exposures of seasoned swaps, it is even 
more important to condition on the history of interest rates because the swaps 
typically will have moved into or out of  the money. 

3.3. Criticism of the standard method of estimating future exposures 

Future values of  credit exposure on a given derivative instrument are unknown 
because the future values of  the underlying variables that determine the cash flows 
are unknown. The above-described Monte Carlo approach implicitly assumes that 
the only source of  uncertainty concerning these underlying variables is that we do 
not know the realization of  the path generated by the model. In reality, however, 
there is another important source of  uncertainty: The true model generating these 
paths is unknown. 

We would like to have some sense of  the importance of  this uncertainty. If the 
model used in the Monte Carlo estimation is assumed to be true but the parameters 
are recognized to be unknown, we can estimate credit exposures with a different 
type of  Monte Carlo simulation. To generate a single time path of underlying 
variables, we first randomly choose a set of parameters, then use the parameters 
(in conjunction with the model) to generate the time path. This technique requires 
a joint distribution from which to draw the parameters. One (albeit imperfect) way 
to construct such a distribution is to use standard econometric techniques to 
estimate the model. The distribution is then assumed to be multivariate normal, 
with a mean equal to the parameter estimates and variance-covariance matrix 
equal to the estimated variance-covariance matrix from the econometric estima-
tion. (Of course, this procedure implies that the parameter distribution is known, 
when in fact it is estimated.) 

To illustrate the differences between the standard Monte Carlo approach and 
this random-parameters Monte Carlo approach, I recalculated unconditional distri-
butions of exposure on a five-year interest-rate swap. The same CIR model is 
used, but parameters are chosen from a multivariate normal distribution with a 
mean equal to the estimated parameters and a variance-covariance matrix given 
by the GMM estimation. (This approach is less accurate than it might be. The 
variance of interest rates must be nonnegative, hence the distribution from which 
tr is drawn should not be normal.) 

A comparison of  these two approaches is displayed in Fig. 2. The first panel 
reports expected exposure, while the second panel reports the 95th percentile 
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Fig. 2. Expected and 95th percentile upper bounds on unconditional credit exposures (in % of notional 
principal) for the receive-fixed side of a five-year US. dollar interest-rate swap. The horizontal axis 
measures years since the initiation of the swap. The solid lines use Monte Carlo simulation of a 
Cox-Ingersoll-Ross model with fixed parameters. The dotted lines use Monte Carlo simulation of the 
same model with random parameters. The dot-dashed lines use bootstrapping. 

bound on exposure.  In both panels,  the solid lines are the dis tr ibut ions given by 

the standard approach they are duplicates  of  the solid lines in Fig. I. The 

dotted lines are distr ibut ions g iven by this al ternat ive approach.  ( Ignore the 

dot-dashed line for the momen t . )  The  dotted lines are approximate ly  19% higher  

than the solid lines, indicat ing that the standard Monte  Car lo  approach underesti-  

mates  credit  exposures  because  it assumes we know more  than we really do. 

Moreover ,  d i f ferences  be tween  the standard approach and the random-paramete rs  

approach are likely to be far more pronounced  in typically used mode ls  than in the 

one-factor  C l R  model  used here. In practice,  term-structure mode ls  such as Ho and 

Lee (1986) use a large number  of  parameters  in order to fit precisely the current  

term structure. These  parameters  are highly unstable over  time. 

This  al ternat ive Monte  Car lo  approach likely still underes t imates  both mean 

credit  exposures  and upper bounds on credit  exposures  because it ignores the fact 

that we do not know the true model .  To properly account  for this uncertainty,  we 

should randomize  ove r  possible  models .  Unfortunately,  we cannot  even  define the 

universe  of  possible models ,  much  less de termine  a probabil i ty  measure  over  this 

universe.  Therefore  I take another  approach.  

I use boots t rapping me thods  instead of  Monte  Car lo  s imula t ions  to est imate 

distr ibutions of  future credit  exposure .  This method requires that there be suffi- 

cient historical data to a l low us to choose  a large number  of  di f ferent  actual paths. 

Therefore  it will  not be useful in generat ing exposure  dis tr ibut ions for der ivat ive  

- - -  
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instruments that are priced off of  variables for which there are no long time series. 
However,  there are long time series of observations on the U.S. dollar yield curve. 
I therefore use the bootstrap method to estimate the unconditional distribution of 
exposure on a new five-year U.S. dollar  interest-rate swap. 

I use CRSP data to construct month-end term structures for February 1959 
through December  1992. For each of  these 407 months, I construct sixty different 
yield-to-maturi t ies corresponding to zero-coupon bonds that mature in one month, 
two months, and so on up to sixty months. I then use these data to calculate, for 
each month, the fair-value fixed rate for a newly issued five-year swap with 
semiannual payments.  For each of  the 348 months between January 1964 and 
December  1992, I next calculate the mark-to-market  value, and therefore the credit 
exposure, of  a f ive-year interest-rate swap with one or more months to maturity. 
(A five-year swap that initiated at the end of February 1959 would have matured 
in February 1964.) 

The dot-dashed lines in Fig. 2 display the historical distributions of  future 
exposure on the swap. The distributions have much higher means and confidence 
bounds than do the distributions calculated with the Monte Carlo techniques. The 
average expected exposure using the historical approach is over 33% larger than 
the corresponding average using the standard Monte Carlo approach, while the 
average 95th percentile exposure using the historical approach is almost 60% 
larger than the corresponding average for the standard Monte Carlo approach. 

The primary reasons for the larger exposure using the bootstrap method is that 
the actual distribution of  changes in interest rates exhibits both fat tails and 
short-term persistence in volatility. These features are poorly captured by the CIR 
model. This is illustrative of  a general problem. Every model is too simple i.e., 
it has omitted variables. Two common oversimplif icat ions are to ignore t ime-vary- 
ing volatility and to ignore imperfect correlations among various financial vari- 
ables (assuming that either the correlation is perfect or that there is no correlation 
at all). 

Unfortunately, although bootstrapping is a very useful check on the accuracy of 
a given model, it is not a substitute for a model-based approach. The problem is 
that, for risk management  purposes, distributions of  future exposure should be 
conditioned on the current state of  the relevant financial variables. As we saw in 
Section 3.2, conditional distributions are often much different from the uncondi- 
tional distribution. However,  there is not enough historical data to generate 
distributions of  exposures condit ioned on particular values of the relevant financial 
variables without using a model. 

For example,  consider estimating distributions of future exposure on a new 
interest-rate swap given the current term structure. With a reasonably sophisticated 
model, the current term structure can be used as an input to the model. With the 
historical approach, empirical distributions of future exposure must use only those 
realized term-structure paths that have an initial term structure similar to the 
current term structure. Even with decades of  data, this set of  paths is likely to be 

-
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far too small to produce sufficiently precise estimates of distributions of future 
exposures. Only model-based Monte Carlo estimation can generate the necessarily 
large number of paths. 

A final problem shared by all of these approaches is that they assume that the 
future will be like the past. More precisely, accuracy in model calibration requires 
that the future data be generated by the same process that generated historical data. 
Given rapid changes in financial markets over time, this equivalence may not hold. 
For example, imagine that a ten-year oil swap had been initiated in 1969. At that 
time, any model's 99th percentile confidence bound on future exposures would 
have grossly underestimated actual exposures. 

Perhaps the best defense against errors induced by such regime changes is a 
familiarity with the frequency of regime changes in a wide range of financial 
variables. Although oil price data from 1950 through 1970 could not have 
predicted the great volatility of the 1970s, commodity prices often exhibit periods 
of stability followed by periods of great volatility. These periods of volatility are 
often associated with financial panics or international crises (stock prices in 1929, 
grain prices at the beginning of World War I). Recognizing the possibility of such 
periods of high volatility might substantially improve estimates of the tails of 
exposure distributions. 

3.4. The standard method o f  estimating credit losses and pricing default risk 

Armed with measures of future credit exposure, credit losses associated with a 
contract or portfolio of contracts with a single counterparty typically are estimated 
as follows. The expected credit loss is the product of the average expected 
exposure and the estimated cumulative probability of counterparty default (over 
the life of the contract or portfolio of contracts). The 'maximum' credit loss is 
usually defined as the product of the average maximum exposure and the 
estimated cumulative probability of counterparty default, although sometimes peak 
maximum exposure is used instead of average maximum exposure. 

I do not explicitly discuss the option-like methods to price default risk because 
in practice, they are very similar to methods used to measure expected credit 
losses. Although in principle, expected credit losses depend on the true probability 
distributions of the underlying variables while option-like methods require the 
pseudo-risk-neutral distributions, in practice risk neutrality is widely assumed 
when calculating expected credit losses. 

There are a variety of ways to estimate the probability of counterparty default. 
The rating agencies are standard sources tbr average default probabilities and 
recovery rates |br publicly rated corporations, in addition to individual firm credit 
ratings. Moody's data is summarized in Fons et al. (1994), while S&P ' s  data is 
summarized in Brand et al. (1994). Techniques used to forecast default probabili-
ties for individual firms can be found in Airman et al. (1977). Proprietary 
techniques that extract information about underlying asset values and volatility 
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Table 1 
Cumulativedefault probabilitiesby initial Moody's credit rating, 1970-1993 

Initial Probabilityof defaultby end of year: 

rating 1 2 3 4 5 6 7 8 9 l0 

Aaa 0.000 0.000 0.000 0.000 0.001 0.002 0.003 0.004 0.006 0.007 
Aa 0.000 0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.008 0.009 
A 0.000 0.001 0.003 0.005 0.006 0~008 0.01 I 0.013 0.016 0.020 
Baa 0.002 0.005 0.009 0.015 0.020 0.025 0.031 0.037 0.044 0.050 
Ba 0.018 0.044 0.069 0.094 0.118 0.138 0.153 0.167 0.181 0.195 
B 0.083 0.148 0.204 0.248 0.284 0.319 0.343 0.367 0.384 0.400 

Source: Fonset al. (1994). 

from stock prices are commercially marketed. The market price of default risk, 
which incorporates the probability of default, uncertain recovery rates, and the 
market prices of these risks, can be extracted from the premium of publicly traded 

risky debt over riskless debt, although Altman's  evidence (Altman, 1989) that 
excess yields on corporate bonds are consistently positive suggests that market 
prices be used with caution. In addition, bank credit departments produce internal 

estimates of counterparty credit risk. 
Below I make two criticisms of this approach to measuring credit losses. First, 

the calculations of expected credit losses ignore correlations between default 

probabilities and exposures. Second, statistics such as an upper bound on credit 
losses associated with a single instrument or portfolio of instruments cannot be 

calculated usefully without reference to the total portfolio of the institution. 

3.5. Criticism o f  the standard method o f  measuring expected credit losses 

There are three reasons why exposures and default probabilities generally will 
be correlated. First, for a given firm, the probability of default over a given time 
interval At will vary over the life of a derivative instrument. The cumulative 
default probabilities for various Moody's  rating categories over 1970-1993 are 
reported in Table 1. The table documents that the probability of an 'A'-rated 
counterparty defaulting within two years is 0.1%, while the probability of default 
during the subsequent two years is 0.4%. As can be seen in the table, this pattern 
is typical for originally investment-grade firms (but not for originally speculative-
grade firms). 

Therefore, for a typical investment-grade counterparty, the risk of a credit loss 
on a derivative instrument depends more on exposures near the end of the 
instrument 's  tenor than on exposures near the beginning. Consider, for example, 
two different contracts with equal average expected exposure over their lives. If 
one contract has much of its exposure concentrated in the early portion of its life 
(such as an interest-rate swap), and the other contract has much of its exposure 
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concentrated in the late portion of  its life (such as a currency swap), the latter 
contract will have a greater risk of  credit loss. 

The second reason why exposures and default probabilities will be correlated is 
that default probabilities are correlated with the business cycle (Fons et al., 1994), 
which is tied to the macroeconomic variables that underlie most derivative 
instruments. For example, Estrella and Hardouvelis (1991) find that the slope of 
the term structure is a predictor of  future economic activity. 

The third reason is that firms generally enter into derivative contracts that have 
mark-to-market values which are correlated with firm- or industry-specific shocks 
to firms' survival probabilities. For example, end-users typically enter into con- 
tracts to either hedge other positions or to speculate in areas in which they have 
special knowledge. The situation with major derivative dealers is somewhat 
different. Dealers transact with many different types of end-users, and therefore 
are unlikely to have derivative books that are extremely sensitive to the move- 
ments in a single financial variable, such as the price of oil. However, the default 
of a major dealer is more likely to occur during a time of larger-than-average 
volatility across many financial markets, in which the dealer has made a series of 
bad bets. It is precisely at this time that even well-diversified derivatives portfolios 
are likely to be characterized by large exposures. 

These links between exposures and default probabilities have been recognized 
by both academics and market participants. However, there are large practical 
problems involved in estimating these links. For any particular counterparty and 
derivative instrument, estimating the correlation between default and exposure 
would be very time-consuming, very difficult, and very imprecise. One simplifica- 
tion is to use aggregate default behavior as a proxy for individual default behavior. 
This simplification is, of course, inappropriate if the counterparty in question does 
not look like the ' typical '  counterparty. In addition, it cannot incorporate the effect 
of the counterparty's derivatives activities on tile probability of counterparty 
default this effect depends on the level and w)latility of the counterparty's 
asse t s .  

If we decide to use aggregate default data as a proxy for individual default 
experience, it would be fairly simple to modify current practice to incorporate the 
dependence of aggregate default probabilities on time. The simplicity owes to the 
fact that time is nonstochastic, so no additional modeling needs to be done. 

For example, recall that when the 'expected'  credit loss was calculated in 
Section 3.4, an unweighted average of  the expected exposures at each point in 
time was multiplied by the cumulative probability of default. An 'expected'  credit 
loss that incorporates the dependence of  default probabilities on time is calculated 
almost identically. A weighted average of expected exposures at each point in time 
is computed instead of  an unweighted average. The probabilities of default over 

3 See, e.g., Belton (1987), Hull (1989a), Gluck and Clarkson (1993), and Lucas (1994). 
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each interval in time are used as weights. The resulting weighted average is then 
multiplied by the cumulative detault probability and the expected fraction of  losses 
unrecovered in bankruptcy to determine the 'expected'  credit loss. Alternatively, 
an ad hoc approach can be taken, as described in Sorensen and Bollier (1994). 

Incorporating correlations between default probabilities and stochastic financial 
variables is more difficult because it requires knowledge of the joint stochastic 
behavior of  defaults and the relevant financial variables. Unlortunately, there are 
no empirically calibrated models of the joint behavior of typical financial vari-
ables, such as interest rates or equity prices, and the probability of  counterparty 
default. If  we had such a model, we could use Monte Carlo simulation to generate 
a large number of time paths of  exposures. At every point along each path there is 
some probability of  counterparty default. Expected credit losses (prior to any 
recovery in bankruptcy) are calculated by multiplying the exposures at each point 
by the probability of counterparty default at that point. The model can be made 
more realistic by including an uncertain fraction of  replacement cost recovered in 
bankruptcy proceedings. 

I do not attempt to construct such a model here. Instead, I use a bootstrapping 
method that relies on the historical behavior of interest rates and corporate 
defaults. This simulation illustrates the idea that ignoring the joint behavior of 
defaults and exposures can lead to substantial mismeasurement of  credit risks. 
However, the data analyzed here are too limited for the results to be accepted 
uncritically. 

For this exercise I use the aggregate default experience of corporations rated by 
Moody ' s  over the period 1971-1992. Consider the cohort of  firms rated 'A '  by 
Moody ' s  in January of year t. In Fons et al. (1994), Moody ' s  reports the fraction 
of  these firms that defaulted at the end of  year t, t + !, and so on. Moody 's  
reports yearly aggregates, while this exercise uses monthly data. I therefore 
interpolate the Moody ' s  data in two ways. First, I assume that those firms that 
default during year t + i, i >  0, do so uniformly within year t + i .  Second, 
because Moody ' s  does not report results tbr cohorts formed in months other than 
January, I linearly interpolate the Moody ' s  numbers to estimate the default 
experience for cohorts formed in these months. 

I examine the distribution of credit losses on two types of  contracts: a five-year 
U.S. dollar interest-rate swap and a five-year U.S. dol lar /German mark currency 
swap. The credit exposures on these contracts are calculated using actual U.S. and 
German risk-free term structures, as well as the actual spot exchange rate, over the 
period 1971-1992. The counterparties are assumed to all be 'A'-rated at the time 
the swaps were initiated. For simplicity, I do not incorporate recovery in bankruptcy 
in this simulation. However, it could be added without much additional complex-
ity. 

With the historical data used here, there are 204 different five-year time paths 
of the financial variables of  interest. The first path is the realized path over 
January 1971-January 1975; the last path is the realized path over December 
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Table 2 
A comparison of different methods of calculating expected credit losses on certain derivative 
instruments 

Contract Not conditioned Conditioned on 
on default behavior counterparty default 

Expected Implied expected Expected Implied expected 
exposure credit loss exposure credit loss 

Five-year US$ 
interest-rate swap 

Receive-fixed 2.29 0.013 3.79 0.021 
Pay-fixed 2.13 0.012 0.66 0.004 

Five-year US$/DM 
currency swap 

Pay-$ 18.22 0.103 31.25 0.176 
Receive-$ 5.23 0.029 3.65 0.021 

Distributions of credit exposures are calculated with actual U.S. and German risk-free term structures 
and the spot $/DM exchange rate, over 1971-1992. Default behavior over the same period is for firms 
originally rated 'A" by Moody's. Expected losses are calculated before any recovery in bankruptcy. All 
figures are expressed as a percent of notional principal. 

1987-December 1992. Corresponding to each of these paths is the actual or 

estimated default experience of Moody's-rated corporations. 
Table 2 reports expected exposures and corresponding expected credit losses 

for both sides of the interest-rate swap and the currency swap. These expected 
exposures are first calculated independently of the probability of counterparty 
default, then conditional on counterparty default. 

If the correlation between interest rates and default probabilities is ignored, the 

expected credit losses on receive-fixed and pay-fixed sides of an interest-rate swap 
appear similar. The expected credit loss to the receive-fixed side is 1.3 basis points 
of notional principal, while the expected credit loss to the pay-fixed side is 1.2 
basis points. However, when the joint distribution of interest rates and default 
probabilities is used to estimate credit losses, the credit risk of the receive-fixed 
side is much larger than the credit risk of the pay-fixed side. 

Over the past 20 years, the probability of default by an initially 'A'-rated 
counterparty was negatively correlated with changes in interest rates defaults 
rose and interest rates fell as the economy entered recessionary periods. The value 
of receiving fixed is high when floating rates fall, which is precisely when 
counterparties are more likely to default. This is reflected in the expected credit 
losses for the receive-fixed and pay-fixed sides reported in Table 2. The expected 
credit loss for the receive-fixed side is approximately two basis points of notional 
principal, over 65% larger than the expected loss calculated independently of the 
probability of counterparty default. It is also over five times larger than the 
expected credit loss (based on the joint probability) for the pay-fixed side. 

-
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For currency swaps, even if the correlation between the exposure and counter- 
party default probability is ignored, the expected credit loss to the pay-dollar side 
(10 basis points of  notional principal) is much larger than the expected credit loss 
to the receive-dollar side (3 basis points). This disparity reflects the long unex- 
pected depreciation of  the dollar over this period. The receive-dollar side was 
seldom in-the-money. This disparity also points out one of the difficulties of the 
bootstrapping method to estimating credit risks. In order to have substantial 
confidence in the results, the data must cover all of the regimes one is likely to 
encounter in the future. It is unlikely that the behavior of  the do l l a r /DM exchange 
rate over past 20 years will characterize the future behavior of  this exchange rate. 

For the currency swap as well as for the interest-rate swap, the expected 
exposures calculated conditional on counterparty default are substantially different 
from the expected exposures calculated independently of counterparty default. The 
default-conditioned exposure to the pay-dollar side is over 70% larger than the 
default-independent exposure, while the default-conditioned exposure to the re- 
ceive-dollar side is over 30% smaller than the default-independent exposure. These 
differences owe to the fact that over this 20 year period, default probabilities were 
higher when the dollar was falling. 

These results should be regarded as illustrative rather than precise measure- 
ments of the risk of credit losses. The typical corporation rated by Moody ' s  may 
not look like the typical counterparty in a bank's derivatives book. On a gross 
basis, the largest exposures are to other banks and financial institutions instead of  
corporate end-users. The default behavior of these institutions (including foreign 
financial institutions) is likely to be different from the default behavior of the 
average nonfinancial institution. (However, calculation of exposures on a net basis 
typically reduces the relative importance of  financial institution exposures in a 
typical bank's derivatives portfolio.) More work needs to be done to characterize 
the relationship between relevant financial variables, such as interest rates and 
equity prices, and the default behaviors of financial and nonfinancial institutions. 

3.6. Criticism o f  the standard method o f  measuring upper bounds on credit losses 

Here I make two points concerning confidence bounds on credit losses. First, 
an upper bound on credit losses is a meaningful concept only within the context of 
a portfolio of instruments with various counterparties it makes little sense to 
discuss an upper bound for a single counterparty in isolation. Second, the typical 
approach used to calculate upper bounds on exposure to a given counterparty is 
useful only under very strict assumptions about the structure of  this portfolio that 
cannot conceivably be met in practice. 

An upper bound on credit losses is not a useful measure in the context of a 
single counterparty because the probability of a single counterparty defaulting is 
very small. For example, consider a five-year contract (or portfolio of  contracts 
with a maximum life of  five years) with a single typical 'A ' - rated counterparty. 

-
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Table 1 reports that there is less than a 1% chance that the counterparty will 
default during the life of the contract. Hence both the 95th and 99th percentile 
upper bounds on credit losses on the contract are precisely zero. 

Of more interest is the marginal effect of  a particular derivative instrument on 
an upper bound on aggregate credit losses to a portfolio of instruments with 
various counterparties. Under certain restrictive assumptions, this marginal effect 
is independent of  the composition of  the portfolio and is a multiple of the average 
expected exposure on the instrument. I am unaware of any arguments justifying 
measuring this marginal effect by the typical method of multiplying the average 
upper bound exposure on the instrument by the probability of  counterparty default. 
This approach is probably only appropriate if the distributions of instruments' 
exposures are such that their average upper bounds are proportional to their 
average expectations. 

Hull (1989a) lists assumptions that are sufficient to justify the use of a multiple 
of average expected exposure. He notes that they are 'questionable' in practice. 
First, the portfolio must be very large, so that the Central Limit Theorem can be 
used to approximate credit losses. Second, the exposure on instrument i must be 
independent of the exposure on instrument j, i 4:j. This assumption can be 
slightly weakened; all that is required is that the exposure on instrument i be 
independent of  the distribution of credit losses on the rest of  the portfolio for all i. 
Third, the exposure on each instrument must be independent of the process 
generating counterparty default probabilities. 

As argued above, this third assumption is likely to be false tot typical 
derivative instruments. The second assumption is even more tenuous. Hull 's 
version of  this assumption will never be true as long as there is more than one 
instrument of a given type in the portfolio (say, at least two U.S. dollar interest-rate 
swaps). The weaker version of the assumption requires that the distribution of 
credit losses on the portfolio be independent of the distribution of any relevant 
financial variables. Given the third assumption, this weaker second assumption 
requires that the aggregate exposure of the portfolio must be independent of the 
underlying financial variables that determine the exposures on the individual 
instruments. 

When these assumptions do not hold, the marginal effect of a derivative 
instrument on the upper bound of credit losses associated with a portfolio must be 
measured in the context of the portfolio. The marginal effect will be relatively 
high (low) when the exposure on the instrument is positively (negatively) corre-
lated with the exposure on the rest of the portfolio; it will also be relatively high 
(low) when the exposure is positively (negatively) correlated with the number of 
defaulting counterparties. 

The remainder of  this discussion illustrates the difference between the true 
marginal impact of a given derivative instrument on a portfolio's credit losses and 
the estimated impact as measured in the typical manner. I calculate the 95th 
percentile upper bounds on credit losses for four derivative instruments (actually 
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both sides of  two instruments). I first calculate these upper bounds in the standard 
way: first calculating the average 95th percentile upper bound on exposure, then 
multiplying by the cumulative probability of  counterparty default. I then calculate 
these upper bounds in the context of  a particular portfolio. 

For this exercise, I arbitrarily choose a portfolio that consists of  100 derivative 
contracts with 100 counterparties. One-fourth of  the contracts are paying-fixed on 
five-year U.S. dollar interest-rate swaps, one-fourth are receiving-fixed on the 
same swap, one-fourth are receiving dollars on five-year do l l a r /DM currency 
swaps, and the remainder are paying dollars on the same swap. All of  these 
contracts have the same notional value and were initiated at the same time. I 
consider four different marginal contracts: each side of  a five-year U.S. dollar 
interest-rate swap and each side of  a five-year do l l a r /DM currency swap. The 
marginal contract is with yet another counterparty, so that the total portfolio 
(including the additional marginal contract) consists of 101 instruments with 101 
counterparties. 

This portfolio should be no means be interpreted as representative; I chose it 
because there is sufficient historical data on U.S. and German term structures, as 
well as the $ / D M  exchange rate, so that the historical distribution of  exposures 
can be used instead of  a distribution from a Monte Carlo simulation. In practice, 
the 'portfolio'  should be the entire portfolio of  the firm, including loans and other 
sources of  credit exposure, not just the portfolio of  derivative instruments. 

The unconditional distribution of credit losses was generated by Monte Carlo 
simulation using the joint behavior of  financial variables and default probabilities 
used above in the calculations of  expected exposures and credit losses. This 
simulation implicitly assumes that the counterparties are typical firms rated by 
Moody's .  In other words, the counterparties are drawn from a well-diversified 
group. This implicit assumption will affect the distribution of  credit losses that is 
calculated here, because this distribution depends, in part, on the correlations 
among different counterparties' defaults. The tails of  the distribution of credit 
losses are fatter for counterparties that have highly correlated default probabilities. 
Because of  industry-specific shocks, these correlations will be larger for firms 
within a given industry than they will be for firms in different industries. Actual 
dealer portfolios may be far less diversified than the universe of  Moody 's  firms, 
and therefore may exhibit fatter tails than the distribution calculated here. 

An 'observation'  of  credit losses on the portfolio is generated as follows. First, 
one of the 204 different five-year paths of  financial variables and default probabili- 
ties was randomly chosen. For this time path there is a cumulative probability of  
default over five years. Next, 101 independent random draws were made, using 
this cumulative probability of  default, to determine whether counterparty i, 
i 1 . . . . .  101, defaulted at some time along this path. For each counterparty that 
defaults, another random drawing is made to determine at what point along this 
path the default occurred. This random drawing uses the marginal probabilities of 
default in months one through sixty. For each 'observation' ,  we record the total 

= 
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Table 3 
A comparison of different methods of calculating an upper bound on credit losses on certain derivative 
instruments 

Contract Average 95th Implied Marginal effect on 
percentile bound credit loss b 95th percentile bound 
on exposure a on portfolio's credit loss c 

Five-year US$ 
interest-rate swap 

Receive-fixed 9.848 0.055 0.149 
Pay-fixed 8.937 0.050 0.000 

Five-year US$/DM 
currency swap 

Pay-$ 51.06 0.287 1.837 
Receive-$ 27.05 0.152 0.149 

Distributions of credit exposures are calculated with actual U.S. and German risk-free term structures 
and the spot $/DM exchange rate, over 1971-1992. Default behavior over the same period is for firms 
originally rated "A' by Moody's, Losses are calculated before any recovery in bankruptcy. All figures 
are in percent of notional principal. 
a The unweighted average of the 95th percentile bound at each month-end during the life of the 
instrument. 
b The average 95th percentile bound multiplied by an A-rated firm's five-year cumulative probability 
of default. 
c The actual marginal impact of each instrument on a given portfolio's 95th percentile bound on credit 
losses. This portfolio consists of 100 contracts, each with different counterparties. It is divided evenly 
into pay-fixed U.S. dollar five-year interest-rate swaps, receive-fixed US. dollar five-year interest-rate 
swaps, pay-dollar U.S./DM five-year currency swaps, and receive-dollar U.S./DM five-year currency 
swaps. 

credit  losses for both the or iginal  portfol io  of  100 instruments  and the new 

port fol io  of  101 instruments.  I make  no at tempt to d iscount  the losses to ref lect  the 

t imes o f  the various defaults.  This  procedure  was repl icated 5 0 0 0 0  t imes to create 

the distr ibution of  undiscounted  credit  losses prior to recovery  in bankruptcy.  

To  calculate  the impact  o f  each of  the four  marginal  der iva t ive  instruments ,  I 

first calculate  the 95th percent i le  upper bound on aggregate  credi t  losses for the 

original  por t fol io  o f  100 instruments.  I then add the marginal  der iva t ive  contract  to 

the portfol io  and recalculate  the 95th percent i le  upper bound on aggregate  credit  

losses. The  change in this upper  bound is the true marginal  ef fec t  o f  this additional 

der iva t ive  contract.  

Table  3 reports three numbers  for each marginal  instrument.  The  first co lumn 

reports the average  95th percent i le  upper bound on exposure.  The  second co lumn 

translates this number  into a credi t  loss by mul t ip ly ing  by 0.00563 (the average  

cumula t ive  default  probabi l i ty  in this data). The  third co lumn reports the marginal  

increase in the por t fo l io ' s  95th percent i le  bound on credit  losses g iven  by the 

above  Monte  Car lo  s imulat ion.  

The  por t fo l io ' s  total credi t  losses are largely associated with the counterpart ies  
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to the receive-dollar side of  the currency swap (79% of all credit losses are the 
result of  defaults by the counterparty on the other side of this swap). Therefore the 
actual marginal impact of another receive-dollar side is very large: 1.8% of the 
notional value of the swap. This impact is over six times larger than that implied 
by the 95th percentile bound on this instrument's exposure. By contrast, the actual 
marginal impact of  the pay-dollar side of  this currency swap (0.15% of notional) is 
slightly less than that implied by this instrument's bound on exposure. 

Over the past twenty years, the value of  the dollar and the level of  U.S. interest 
rates have generally moved together. Therefore in this Monte Carlo simulation, 
credit losses on receive-fixed interest-rate swaps are positively correlated with 
losses on pay-dollar currency swaps, and hence with losses on the portfolio as a 
whole. The marginal effect of another receive-fixed interest-rate contract is 
therefore much larger (three times larger) than that implied by the contract's upper 
bound on exposure. By contrast, the marginal impact of  another pay-fixed side of 
the interest-rate swap is zero. In other words, the credit Josses on this contract 
were not realized at times when the total credit losses on the portfolio were 
extremely large. 

4. Measuring credit losses over short horizons 

Throughout the preceding discussion of  credit risk, risk was measured over the 
remaining life of  the contract or contracts. However, it is not clear that this 
horizon is the appropriate one. Derivative contracts need not be held until 
maturity; they can be terminated or assigned to other dealers. The industry is 
increasingly looking to these alternatives as mechanisms for managing credit risk. 

Termination or assignment are tools available to regulators as well. For 
example, the Bank of  New England had a derivatives book of  $30 billion in 
notional principal in January 1990. At that time the Bank was in considerable 
financial difficulty. Over the next year, the size of  the book was reduced through 
terminations and assignments under the supervision of  banking regulators. The 
book had a remaining notional principal of  $6.7 billion by January 1991, at which 
time the bank was declared insolvent. Drexel 's derivatives book was also substan-
tially unwound prior to the bankruptcy of  its derivatives subsidiary. A good 
summary of  these events is Cunningham (undated). 

In this section we consider how to measure credit losses over a time horizon 
shorter than the instrument's life. Before we get into the details of  this procedure, 
however, we should think about the proper time period over which credit losses 
should be measured. We do so from the perspective of  a bank regulator. The 
Risk-Based Capital Standards require banks to hold capital against current expo-
sures on derivative instruments and additional capital to cover potential future 
increases in exposures. What risks should these 'add-ons'  be designed to cover'? 

One line of reasoning is that add-ons provide a buffer stock of  capital to cover 
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potential increases in credit exposures between the times that banks measure their 
current exposures. This reasoning is implicit in much of the banking industry's 
discussion of add-ons (see, e.g., Bankers Trust, 1987). This approach implies that 
if banks recalculated their current exposures very frequently (say, every day), they 
would need very small add-ons, or perhaps none at all. A problem with this 
approach is that it presumes that when banks discover that their current exposures 

have increased, they can simply raise additional capital to cover their new levels of 
current exposures. Of course, this presumption also implies that bank failures 
would never happen as long as bankers were constantly aware of the market value 
of their asset portfolio. No one would disagree with the idea that bankers should 

be aware of their portfolio's market value, but the notion that such knowledge is 
sufficient to ward off bank failures is, at best, problematic. 

An alternative view of add-ons is that they are designed to cover potential 
increases in credit exposures during the time it takes for regulators to both detect a 
situation in which a bank will have insufficient capital to cover future increases in 

credit exposures and to respond to this situation by unwinding a bank's  derivatives 
portfolio. The amount of time required will vary from bank to bank, depending on 
the size and complexity of the bank's  portfolio as well as market conditions at the 
time the bank gets into difficulty. 

This paper will not pretend to determine the length of time needed to detect a 
problem and unwind a bank 's  portfolio. We leave that for further consideration. In 

the remainder of this section we consider how credit risks should be measured for 
a derivative instrument or instruments over a given period of time shorter than the 
maturity of the contract(s). 

When we focus on horizons shorter than the life of the instrument, the second 

definition of credit loss mentioned in Section 2.2 is the appropriate definition: A 
credit loss is the loss incurred when the value of a derivative instrument falls 
owing to changes in counterparty credit quality. 4 (Conversely, there are also 

credit gains: increases in value owing to an increase in credit quality.) Dealers in 
derivative markets report that when contracts are unwound, their "resale' (i.e. 
assignment) value depends on the health of the original counterparty at the time of 
assignment. This is likely to be true even if contracts are terminated instead of 
assigned. Sophisticated counterparties recognize the effect that their own credit-
worthiness has on the mark-to-market value of a derivative contract. For example, 
when a securities firm experienced difficulties several years ago, some of its 
counterparties raised the possibility of terminating some of their derivatives 

contracts. The firm reportedly indicated that it would consider terminations as long 

4 An alternativedefinitionis that a credit loss is incurredwheneverthe differencebetweenthe value 
of the default-riskyinstrumentand the valueof an identicaldefault-freeinstrumentincreases.With this 
definition,credit losses can be incurredwithout any change in counterpartycredit quality because an 
increase in the value of the obligatedcash flowswillbe discountedby the probabilityof firmsurvival. 
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as its derivative obligations were discounted at the same rate as the market's 
discount on its senior debt. 

There are very few nonproprietary empirical estimates of distributions of credit 
losses on derivative instruments over fixed time horizons, and they all (explicitly 
or implicitly) assume away the complications introduced by time-varying credit 
quality. Bankers Trust (1987) and Hendricks and Barker (1992)estimate distribu-
tions of credit exposures over some arbitrary time horizon. The expected credit 
loss over that horizon is then the expected credit exposure over that horizon times 
the probability of counterparty default over the same horizon. Hull (1989a) 
justifies this approach by assuming that counterparties have a constant probability 
of default over every time interval At. Therefore there are no perceived variations 
in credit quality to affect the value of the derivative instruments. This assumption 
is at odds with most of the valuation models discussed in Section 2.1 as well as 
reality. Firms' perceived credit quality varies over time, and firms with publicly 
traded debt rarely default without prior downgrades (Altman and Kao, 1991; Carty 
and Fons, 1993; Fons et al., 1994; Brand et al., 1994; and Jarrow et al., 1994). 

Without an assumption like Hull's, estimating distributions of credit losses is 
very difficult. The starting point for such estimation is a valuation model such as 
those described in Section 2.1. These models determine mark-to-market values of 
derivative instruments as functions of the joint stochastic behavior, under the 
equivalent martingale measure, of counterparty credit quality and the variables that 
determine obligated cash flows. To estimate distributions of credit losses, the 
variability over time of these mark-to-market values owing to variations in 
counterparty credit quality must be estimated. 

5. Conclusion 

This paper reviews the current techniques used to measure the credit risks 
associated with derivative instruments over the lives of these instruments. It 
identifies major problems with these techniques. All of these problems have been 
previously noted, but then largely ignored. The contribution of this paper is to 
document that these problems lead to substantial mismeasurement of credit risks 
for typical derivative instruments and counterparties. 

The first problem is that the stochastic models used in Monte Carlo simulations 
are too often accepted at face value. For example, the parameters in these models 
are estimated, but the simulations ignore the fact that they are estimated, and 
instead treat the parameters as known. In addition, these models are inherently 
simplistic, tending to ignore important features of the behavior of the underlying 
financial variables. Addressing this problem requires a greater focus on economet-
ric estimation and less on simple calibration. 

The second problem is that the correlation between exposure on a given 
derivative instrument and the counterparty's default probability is largely ignored. 
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Defaults are primarily driven by the business cycle, which also drives variations in 
the financial variables on which most derivative instruments are priced. Research 
efforts must focus on the joint  determinants of  variations in firms'  credit quality 
and variations in financial variables, such as interest rates and equity prices. 

Finally,  upper bounds on credit losses associated with given derivative instru-
ments are calculated without regard to the total portfolio of the dealer or end-user. 
However,  upper bounds on credit losses cannot be computed meaningfully in 
isolation. An upper bound on credit loss for an individual instrument should be the 
marginal impact of the instrument on the upper bound of  credit losses for the 
entire portfolio. 

Most of this paper is concerned with measuring credit risk over the life of a 
derivative instrument. However,  since contracts can be terminated prior to their 
maturity, a shorter horizon may be more relevant. If so, we need to change our 
definition of credit loss. Losses are accrued whenever a counterparty 's  credit 
quality is perceived to fall: A decline in credit quality results in a worse 
assignment or termination value for the instrument. Techniques for measuring 
credit risk must change accordingly.  

A tremendous amount of  work is currently being done by researchers, both 
inside and outside the derivatives industry, to increase the speed of  credit risk 
measurement.  Such increases in speed are necessary in order for large derivative 
dealers to assess the credit risks they face in a timely manner. The results in this 
paper suggest that similar efforts are required to make these timely measurements 
accurate as well. 
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