
Attempting to understand stock–bond comovement

Gregory R. Duffee
Johns Hopkins University

First version October 2017
Current version October 29, 2017

Preliminary and incomplete; probably something wrong somewhere . . .

Abstract

Why does the correlation between stock returns and nominal bond returns vary over time, oc-
casionally switching sign? This paper argues that a successful explanation must be grounded
in the time-varying behavior of real rates. Standard models with long-run risk dynamics have
substantial difficulty generating the necessary properties of real rates. Time-varying dynam-
ics of real output may well account for the observed patterns, but embedding those dynamics
in standard asset-pricing frameworks appears to pose a major challenge.

Voice 410-516-8828, email duffee@jhu.edu. Address correspondence to 552 Wyman Park
Building, 3100 Wyman Park Drive, Baltimore, MD 21218. Thanks to Anna Cieslak for
extensive discussions on this subject.



1 Introduction

The correlation between stock and nominal bond returns varies widely over time, occasionally

switching sign. Figure 1 illustrates patterns first identified by Li (2002) and Fleming, Kirby,

and Ostdiek (2003). Daily stock returns and contemporaneous daily changes in long-term

nominal Treasury yields move together in the early 1960s. They are strongly negatively

correlated from the 1970s through the late 1990s. After an abrupt sign change around 1997,

the correlation remains positive through much of the 21st century. (Recall that correlations

between stock and bond returns have the opposite sign of those in Figure 1.) This time-

variation in daily comovement also holds for monthly, quarterly, and annual horizons.

Three related branches of research explore time-varying correlations.1 One follows Li

(2002) by searching for plausible conditioning information. What macroeconomic and finan-

cial variables observed at t predict the correlation at t+1? Baele, Bekaert, and Inghelbrecht

(2010) illustrates another branch that attempts to explain empirically the conditional sec-

ond moments in Figure 1 with conditional second moments of plausible fundamentals such

as output, inflation, and liquidity. The third branch, and the focus of this paper, interprets

Figure 1 using standard asset-pricing frameworks.

This paper evaluates possible mechanisms in asset-pricing models that drive time-varying

correlations. Much research claims to successfully embed time-varying correlations in asset-

pricing models. For example, Burkhardt and Hasseltoft (2012), David and Veronesi (2013),

Song (2017), and Campbell, Sunderam, and Viceira (2017) all construct models in which

the conditional covariance between stock returns and nominal yields changes sign over time.

Are any or all of these different stories plausible, qualitatively and quantitatively?

Not surprisingly, a key mechanism in much of this research is time-variation in the con-

ditional correlation between expected inflation and expected aggregate cash flows to eq-

uity. Macroeconomic dynamics swing from periods of countercyclical expected inflation—

stagflation—to periods of procyclical expected inflation. During stagflation, good (bad) news

about future cash flows tends to be accompanied by news of lower (higher) expected infla-

tion. Thus when stock prices rise (fall), nominal yields tend to fall (rise). Such a pattern

is consistent with the 1970s through late 1990s in Figure 1. Procyclical shocks to expected

1A fourth, independent branch follows Fleming et al. (2003) by examining the implications for portfolio
management.
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inflation generate the opposite correlation, such as in the Great Recession.

This paper makes three points. First, any reliance on the central role of a regime-shifting

inflation mechanism is misplaced. There are two key pieces of evidence, both of which can

be gleaned from the existing literature. The first empirical observation is that conditional

covariances between U.S. stock returns and nominal Treasury bond yields move closely with

conditional covariances between U.S. stock returns and real bond yields. Real yields are

those for inflation-indexed debt issued by the U.S. and U.K. governments. For example,

both nominal and real conditional covariances are negative in the late 1980s and early 1990s,

and both are positive in the 21st century.

The second empirical observation is that conditional volatilities of long-horizon inflation

expectations are small. Duffee (2017) uses this empirical result to show that innovations in

nominal yields are attributable mostly to news about either expected future real rates or

term premia. The same observation applies to conditional covariances between stock returns

and nominal yields: Since there is not much news about expected inflation, the sign of its

conditional covariance with cash flows cannot matter much.

The second point is that existing models in the spirit of Bansal and Yaron (2004) have

substantial difficulty generating sufficiently large shocks to real rates to drive observed vari-

ations over time in stock–bond comovement. Models in the literature that generate the

necessary comovement tend to rely on unusual specifications, such as money illusion.

The third point is that a time-varying mix of short-term and long-term macroeconomic

shocks may help account for the time-variation in stock–bond comovement. This claim is

supported by evidence from forecasters’ revisions of anticipated real GDP growth across

various horizons. It is also supported by evidence from the term structure. Stated roughly,

the sign of news at the long end of the term structure is associated with the magnitude of

news at the short end of the term structure. When short-rate volatility exceeds long-rate

volatility, stock returns and long-maturity yields move inversely. When long-rate volatility

exceeds short-rate volatility, the comovement of stock returns and bond yields is reversed.

Naturally, this work builds on much earlier research. Connolly, Stivers, and Sun (2005)

is one of the first attempts to link time variation in the stock-bond correlation to macroe-

conomic fundamentals. Campbell, Shiller, and Viceira (2009), Campbell, Sunderam, and

Viceira (2017), and Liu (2017) investigate empirically the comovement between stock re-

turns and real yields. Attempts to interpret properties of the stochastic discount factor
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using the comovement of stock returns and yields dates to at least d’Addona and Kind

(2006).

2 An inflation-centric approach

Expected inflation affects nominal bond yields. This observation worthy of any Principles

course can be formalized using an accounting identity borrowed from Campbell and Ammer

(1993).

2.1 Accounting definitions of news

Denote the continuously compounded yield on an n-maturity real (inflation-indexed) bond

as y
(n)
t . Shorthand notation for the one-period real bond yield is rt. Denote the log return

to holding an n-period real bond from t to t + 1 in excess of rt as

ex
(n)
t+1 ≡

(
ny

(n)
t − (n− 1)y

(n−1)
t+1

)
− rt. (1)

Recursive substitution of (1) produces the accounting identity

y
(n)
t =

1

n

n∑
i=1

rt+i−1 +
1

n

n∑
i=1

ex
(n−i+1)
t+i . (2)

This equation says that holding constant the real yield on the left, higher (lower) real short

rates over the life of the bond must correspond to lower (higher) excess returns.

Conditioning (2) on an information set Σ produces

E
(
y
(n)
t |Σ

)
=

1

n

n∑
i=1

E (rt+i−1|Σ) + 1

n

n∑
i=1

E
(
ex

(n−i+1)
t+i |Σ

)
. (3)

When the information set is everything observable at t, including bond yields, this expecta-

tion version says that the period-t real yield is the sum of average expected future short-term

real rates and average expected excess returns over the life of the bond.
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Notation for the innovation in the bond yield from t− 1 to t is

ỹ
(n)
t ≡ y

(n)
t −Et−1y

(n)
t

= η
(n)
r,t + η

(n)
ex,t. (4)

The two components of this news are

η
(n)
r,t ≡Et

(
1

n

n∑
i=1

rt+i−1

)
− Et−1

(
1

n

n∑
i=1

rt+i−1

)
,

η
(n)
ex,t ≡Et

(
1

n

n∑
i=1

ex
(n−i+1)
t+i

)
−Et−1

(
1

n

n∑
i=1

ex
(n−i+1)
t+i

)
. (5)

The first type of news is the innovation in expected average real rates over the life of the

bond, and the second is the innovation in expected average excess returns, again over the

life of the bond.

Now turn to nominal bonds. Denote the yield on an n-maturity nominal bond as y
$(n)
t .

Denote the log change in the price level from t− 1 to t as πt. Finally, denote the log return

to holding an n-period nominal bond from t to t+1 in excess of the short-term real rate and

inflation as

ex
$(n)
t+1 ≡

(
ny

$(n)
t − (n− 1)y

$(n−1)
t+1

)
− rt − πt+1. (6)

The expectation form of the resulting accounting identity is

E
(
y
$(n)
t |Ω

)
=

1

n

m∑
i=1

E (πt+i|Σ) + 1

n

n∑
i=1

(rt+i−1|Ω) + 1

n

n∑
i=1

E
(
ex

$(n−i+1)
t+i |Σ

)
. (7)

Equation (7) says that the period-t nominal yield is the sum of average expected future

short-term real rates, average expected inflation, and average expected excess returns over

the life of the bond.

In innovation form, we have

ỹ
$(n)
t ≡ y

$(n)
t −Et−1y

$(n)
t ,

= η
(n)
π,t + η

(n)
r,t + η

$(n)
ex,t . (8)
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The news components other than real-rate news are

η
(n)
π,t ≡Et

(
1

n

n∑
i=1

πt+i

)
− Et−1

(
1

n

n∑
i=1

πt+i

)
,

η
$(n)
ex,t ≡Et

(
1

n

n∑
i=1

ex
$(n−i+1)
t+i

)
− Et−1

(
1

n

n∑
i=1

ex
$(n−i+1)
t+i

)
. (9)

Note that the news about expected excess returns in (5) differs from the news in (9). The

former is for real bonds and the latter is for nominal bonds. For example, risk premia on

nominal bonds can vary without corresponding variation in risk premia on real bonds.

2.2 Standard stock-bond comovement intuition

The conditional covariance between the aggregate stock return and the innovation in the n-

maturity nominal bond yield is the sum of covariances between stock returns and the three

components of nominal news,

Covt

(
retM,t, ỹ

$(n)
t

)
= Covt

(
retM,t, η

(n)
π,t

)
+ Covt

(
retM,t, η

(n)
r,t

)
+ Covt

(
retM,t, η

$(n)
ex,t

)
. (10)

Changes in the covariance over time must therefore be driven by changes in one or more of

the three component covariances. The literature focuses on the second term on the right,

the conditional covariance between stock returns and news about expected inflation.

Interpreting U.S. aggregate data from 1952 through 2005 with a dynamic factor model,

Piazzesi and Schneider (2007) argue that expected inflation is countercyclical. More pre-

cisely, unexpected changes in aggregate consumption growth tend to lead future decreases

in inflation. Piazzesi and Schneider combine this evidence with recursive utility to explain

why the nominal yield curve slopes up on average: investor fear stagflation. Bansal and

Shaliastovich (2013) present similar evidence in building a term structure model that ex-

hibits countercyclical expected inflation.

Aggregate stock prices and news about aggregate consumption growth tend to move

together. Therefore the evidence of Piazzesi/Schneider and Bansal/Shaliastovich implies

that the conditional covariance between stock returns and news about future inflation is

negative.
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However, Burkhardt and Hasseltoft (2012), hereafter B/H, find that the relation between

consumption growth and inflation changes over time. From 1930 through 1970, the cor-

relation between annual consumption growth and annual inflation ranges from positive to

modestly negative. Subsequently the correlation turns sharply negative, in the neighborhood

of −0.6 during 1970 through 2000. The correlation then switches sign again, to about 0.6

from 2010 through 2010. B/H use this and related evidence to motivate a regime-shifting

model that interprets the sign change in the stock-bond covariance in the 1990s as a conse-

quence of a shift from a countercylical inflation regime to a procyclical inflation regime.

B/H report correlations with inflation levels rather than news about expected future

inflation. Song (2017) expands on the evidence of Piazzesi and Schneider by constructing

an explicit regime-shifting dynamic factor model of consumption growth and inflation. He

confirms that expected inflation is largely countercyclical prior to 2000 and procyclical after.

2.3 A benchmark long-run risk model

Much research into stock-bond comovement adopts the long-run risk (LRR) setting pioneered

by Bansal and Yaron (2004). One approach pairs the LRR dynamics of real quantities with

an exogeneous inflation process. The joint dynamics determine prices of nominal bonds, real

bonds, and equity, as in Bansal and Shaliastovich (2013).

An example of the assumed macroeconomic specification is taken from B/H. There are

two regimes. One has countercyclical inflation expectations and the other has procyclical

inflation expectations. The regime in period t is st. Regime dynamics are determined by a

Markov transition matrix.

Denote log aggregate consumption by ct, log aggregate cash flows to equityholders as dt,

and the log change in the price level as πt. Each variable has a time-varying conditional

expectation. Inflation is conditionally heteroskedastic. Their dynamics are

Δct+1 = μc + xc,t + σcηc,t+1, (11)

Δdt+1 = μd + φxc,t + ψσcηd,t+1, (12)

πt+1 = μπ + xπ,t + V
1/2
t ηπ,t+1. (13)

Consumption and cash-flow growth share the conditional mean component xc,t. The param-
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eter φ > 1 captures the idea that equity is leveraged. The innovations ηc,t, ηd,t, and ηπ,t are

iid standard normal shocks.

The state variables are the regime, the conditional expectations of consumption growth

and inflation, and a state variable that drives time-varying volatilities. The dynamics of

these state variables are

Vt+1 = V + νπ
(
Vt − V

)
+ σνωt+1, (14)(

xc,t+1

xπ,t+1

)
=

(
β11(st+1) β12(st+1)

0 β22(st+1)

)(
xc,t

xπ,t

)
+

(
Ω11(st+1) Ω12(st+1)

Ω21(st+1) Ω22

)(
σcεc,t+1

V
1/2
t επ,t+1

)
.

(15)

The innovations ωt, εc,t and επ,t are iid standard normal shocks.

The matrices β and Ω differ across the two regimes.2 The parameters β11, β22, and

Ω11, are all positive in both regimes, although they differ in magnitude across the regimes.

Cyclicality is determined by the remaining parameters:

st =

{
countercyclical, ≡ β2 < 0,Ω12 < 0,Ω21 < 0;

procyclical, ≡ β2 > 0,Ω12 > 0,Ω21 > 0.

The countercyclical regime is characterized by negatively correlated shocks to the condi-

tional expectations of consumption growth and inflation. In addition, high (low) expected

inflation forecasts decreasing (increasing) conditional consumption growth. These patterns

are reversed in the procyclical regime.

The representative agent has recursive preferences,

Ut =
[
(1− δ)C

1−γ
θ

t + δ
(
Et
[
U1−γ
t+1

]) 1
θ

] θ
1−γ

, (16)

where γ is the coefficient of relative risk aversion (CRRA), ψ is the elasticity of intertemporal

substitution (EIS), and θ = (1 − γ)/(1− (1/ψ)). Following Bansal and Yaron (2004), both

the CRRA and the EIS are assumed to be greater than one.

Denote the log price/dividend ratio for aggregate equity by pdt. Denote the log prices of

2The parameters µc and µπ in (11) and (13) also differ across regimes in the parameterized model of B/H.
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real and nominal bonds by p
(n)
t and p

$(n)
t respectively. Their functional forms are

pdt =A0(st) + A1(st)xc,t + A2xπ,t + A3Vt, (17)

p
(n)
t =D0,n(st) +D1,n(st)xc,t +D2,nxπ,t +D3,nVt, (18)

p
$(n)
t =D$

0,n(st) +D$
1,n(st)xc,t +D$

2,nxπ,t +D$
3,nVt. (19)

Properties of asset prices in this setting are intuitive. Higher expected consumption

growth corresponds to higher real short-term interest rates, as investors attempt to borrow

from the future to spend today. Therefore D1,n < 0. Nominal bonds inherit this property

from real bonds, thus D$
1,n < 0. Higher expected consumption growth raises expected cash

flows to equity more than it increases discount rates, therefore A1 > 0. With both an EIS and

a CRRA greater than one, higher volatility simultaneously lowers real short rates through

the precautionary savings channel and and lowers stock prices (and total wealth) through

higher risk premia. Therefore D3,n > 0 and A3 < 0.

Higher expected inflation lowers nominal bond prices, thus D$
2,n < 0. When inflation

expectations are countercyclical, higher expected inflation lowers real rates (investors at-

tempt to save for the coming bad times) and lowers equity valuations, D2,n > 0 and A2 < 0.

Nominal bonds are speculative assets, thus an increase in volatility raises risk premia, low-

ering nominal bond prices; D$
3,n < 0. When inflation expectations are procyclical, these

sensitivities are reversed. Higher expected inflation raises real rates and raises equity values.

Nominal bonds are a hedge so higher volatility raises their prices.

These signs are summarized in Table 1.

Table 1. Price sensitivity of assets to the factors of a regime-shifting long run risk model

Expected Cons Growth Expected Inflation Volatility
Both Regimes Counter-C Pro-C Counter-C Pro-C

Equity + − + − −
Real bonds − + − + +

Nominal bonds − − − − +
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This model has no difficulty generating the time-varying correlations displayed in Figure

1. The countercyclical regime generates a negative correlation between stock returns and

changes in nominal yields because higher expected inflation is bad news for the economy

(stagflation). The procyclical regime generates a positive correlation because higher expected

inflation is good news.

Other researchers follow the lead of B/H. Song (2017) and Campbell, Pflueger, and

Viceira (2015) partially endogenize inflation with regime shifts in monetary policy. (The

latter paper uses habit formation rather than LRR, as discussed in Section 5.3.) David and

Veronesi (2013) have unobserved regimes that differ in their conditional covariance between

inflation expectations and equity cash flows, creating a filtering problem for agents. Camp-

bell, Sunderam, and Viceira (2017) use a continuous state variable to capture time-varying

covariances with expected inflation rather than one that jumps from regime to regime.

Although this is a popular framework, the empirical evidence presented in the next

section casts considerable doubt on this simple countercyclical/procyclical interpretation of

the variation over time in covariances between stock returns and changes in nominal yields.

3 Evidence of comovement with real and nominal yields

This section characterizes the empirical time-series relation between two covariances: The

covariance between stock returns and changes in nominal yields, and the covariance between

stock returns and changes in real yields. The preceding language is cumbersome, so I often

use the shorthand terms ’nominal covariance’ and ’real covariance.’

Two reasons underlie the focus on covariances rather than correlations. First, covariances

arise naturally in asset-pricing models such as the B/H model discussed in the previous

section. Second, as documented below, an important empirical regularity is missed if we

look only at correlations.

3.1 Data description

The daily value-weighted return to the Center for Research in Security Prices (CRSP) index

proxies for the aggregate U.S. stock return. The daily return to the Financial Times Stock

Exchange (FTSE) index proxies for the aggregate U.K. stock return.
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Daily observations of a ten-year nominal Treasury coupon bond yield are from the CRSP

Fixed Term file. That file also reports the duration of the bond. The first nominal yield

observation is in June 1961. Daily observations of ten-year real Treasury yields are from the

Treasury Department’s TIPS website. These ten-year constant maturity yields are interpo-

lated from secondary market quotes. The data begin in January 2003. D’Amico, Kim, and

Wei (2008) show that TIPS yields prior to approximately mid-2003 exhibit erratic behavior

behavior that they plausibly attribute to market inefficiencies. Durations of these bonds are

determined using the formula for par ten-year bonds.

Daily observations of ten-year Bank of England real and nominal yields are from the

Bank of England web site. These are zero-coupon yields interpolated from coupon bonds.

Bank of England yields are available beginning in January 1985. These yields, like all other

data used here, are available through the end of 2016. Yields are expressed on an annual

basis.

3.2 Realized covariances

Figure 2 displays realized covariances between daily stock returns and daily changes in bond

yields for 44-day rolling samples. Stock returns are measured in percent and changes in yields

are measured in basis points. Panel A is the covariance counterpart to Figure 1. Realized

covariances between changes in nominal Treasury yields and U.S. stock returns are modestly

negative from the beginning of the sample in 1961 through the late 1970s. They are strongly

negative during the Fed monetarist experiment period, then slowly drift higher until the late

1990s. A striking sign change in 1997 is followed by consistently positive covariances through

the end of 2016.

Panel B focuses on the 2003 through 2016 sample and includes the covariance between

stock returns and changes in real bond yields. Similar information is in Figure 4 of Campbell,

Sunderam, and Viceira (2017). The nominal and real realized covariances closely track each

other and are almost all positive. The introduction of the TIPS market coincides with a

period of stable and low forecasts of long-run inflation in the U.S. Thus it is not too surprising

that their realized covariances with equities are similar; during the sample, nominal bonds

are economically close to real bonds. Absent heroic assumptions, these data do not allow us

to infer the link between the nominal and real covariances at times when inflation concerns

10



are greater.

I extend the sample with real yields back to 1985 using inflation-indexed debt issued

by the Bank of England. This choice introduces some potential noise in the results. As

discussed in Campbell, Shiller, and Viceira (2009), yields on inflation-indexed bonds can

diverge substantially across countries. The underlying consumption baskets differ. Perhaps

more importantly, illiquidity and other sources of segmentation prevent complete market

integration. However, Campbell et al. (2009) show that U.S. and U.K. real yields have

closely tracked each other since roughly 2003 (when U.S. real yields no longer exhibit erratic

behavior).

Rolling realized nominal and real covariances are plotted in Panel C. Contemporaneous

realized real covariances use the U.S. stock return from day t− 1 to day t the change in the

Bank of England real yield from t−1 to t+1. This two-day yield change picks up news that

arrives when the U.S. market is open on day t and the U.K. market is already closed.

Panel C reveals three important patterns. First, during the 2003–2016 period, realized

covariances between U.S. stock returns and UK real bond yields behave similarly to those

displayed in Panel B for TIPS yields. This pattern supports the use of U.K. real yields as

proxies for U.S. real yields. Second, realized equity covariances with real yields, like those

with nominal yields, switch sign in the late 1990s. Third, the covariances with real yields

are muted versions of covariances with nominal yields. Although they move together, the

covariances with nominal yields are more volatile than those with real yields.

Li (2002) observes that variation over time in the U.S. stock/nominal-bond relation is

shared across many countries including the U.K. Panel D plots nominal and real realized

covariances using entirely U.K. data. As in Panel C, both nominal and real covariances

switch sign in the late 1990s, and real covariances are less volatile over time than nominal

covariances.

Figures similar to Panel C, using U.K. data, appear in earlier literature. Campbell

et al. (2009) use data beginning in the early 1990s to plot annual real and nominal realized

correlations. Liu (2017) also plots annual realized correlations, extending the sample back

to 1985. These figures illustrate the comovement of nominal and real covariances, although

the muted time series behavior of real covariances is difficult to detect in correlations. Daily

changes in real yields are less volatile than daily changes in nominal yields, largely offsetting

the smaller time-series variation of real covariances.
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3.3 Conditional covariances

Conditional covariances rather than realized covariances are central to asset-pricing models.

Realized covariances equal conditional covariances plus orthogonal noise. The persistence

of the realized covariances in Figure 2 indicates that lags of realized covariances contain

substantial forecasting information. Denote successive, nonoverlapping periods of 44 days by

t, t+1, and so on. Denote realized variances and covariances during period t by Ωt,i,j, where

i and j are “s,” “n,” or “r,” indicating stocks, nominal yields, and real yields respectively.

Conditional covariances are constructed by ordinary least-squares (OLS) projections

Ωt,s,i = b0,i +
L∑
k=1

b′k,iXt−k + εt,s,i, i ∈ {n, r}, (20)

where the set of instruments is either parsimonious or expanded,

Xt = (Ωt,s,n Ωt,s,r)
′ or Xt =

(
Ωt,s,n Ωt,s,r

√
Ωt,s,s

√
Ωt,n,n

√
Ωt,r,r

)′
. (21)

Fitted values are estimated conditional covariances.

The fitted values allow us to investigate how tightly linked nominal conditional covari-

ances are to real conditional covariances. Regress the former on the latter,

Ω̂t,s,n = a0 + a1Ω̂t,s,r + et. (22)

Since the explanatory variable is a generated regressor from (20), asymptotic standard errors

are constructed using Generalized Methods of Moments (GMM). The moments are the OLS

moments of the two regressions in (20) and the OLS moments of the single regression (22).

Estimation is performed separately for the three sets of data underlying Panels B, C, and D

of Figure 2: U.S. only, U.S. combined with U.K. real yields, and U.K. only.

Table 1 reports estimation results for (22), as well as R2s of the regressions (20) that

produce the fitted conditional covariances. The main message of Table 1 does not depend

on the sample period, the instrument choice, or the number of lags of instruments used

to construct conditional covariances. Variations in conditional real covariances explain, in

an R2 sense, the bulk of the variation in conditional nominal covariances. All of the R2s

for (22) are well above a half. Nominal covariances respond much more than one-to-one;
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point estimates of (22) range from about 1.7 to 2.1. Asymptotic t-statistics testing the null

hypothesis of a one-to-one relation range from 1.25 to 2.4.3

Figure 3 plots fitted conditional covariances for the 1985–2016 period. Panel A displays

covariances with U.S. stock returns and Panel C displays covariances with U.K. stock returns.

Naturally, these are less noisy than the realized covariances plotted in Figure 2.

Another intuitive way to express the comovement of stocks and bonds is with market

betas. Daily changes in yields are multiplied by negative duration, converting the changes to

daily bond returns. Then fitted conditional covariances between stock and bond returns are

divided by fitted conditional variances of stock returns. These fitted variances are produced

following (20), using lagged realized variances as instruments.

Panels B and D of Figure 3 display the fitted conditional market betas. Here I briefly

discuss betas with respect to the U.S. stock market (Panel B); results for the U.K. stock

market are similar.4 Conditional nominal betas between 1985 and 1996 ranged from roughly

zero to 0.8, averaging 0.17. Conditional real betas during the same period ranged from −0.05

to about 0.4, averaging only 0.05. After 1996, conditional nominal betas ranged from −0.6

to 0.35, averaging −0.11. Conditional real betas ranged from −0.6 to 0.1, averaging −0.09.

The most important message to take from this evidence is that nominal and real covari-

ances move together over time, including switching signs together. This conclusion tightly

constraints potential explanations for time-varying covariances. Whatever economic forces

drive variation in nominal covariances must simultaneously drive smaller variation in real

covariances.

In the context of the accounting framework of Section 2.1, innovations to nominal bond

yields can be written as the sum of the innovation in a real bond yield and a component

specific to nominal bonds:

ỹ
$(n)
t =

[
η
(n)
r,t + η

(n)
ex,t

]
+

[
η
(n)
π,t +

(
η
$(n)
ex,t − η

(n)
ex,t

) ]
.

3The reported test statistics assume serially uncorrelated errors for (20) and use the Newey-West adjust-
ment for seven lags of moving-average residuals for (22). Varying the number of Newey-West lags has almost
no effect on the test statistics.

4Campbell et al. (2009) display realized betas using U.K. data for a shorter sample.
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Then the conditional covariance of nominal yields with stock returns is

Covt

(
retM,t, ỹ

$(n)
t

)
=

[
Covt

(
retM,t, η

(n)
r,t

)
+ Covt

(
retM,t, η

(n)
ex,t

)]
+[

Covt

(
retM,t, η

(n)
π,t

)
+ Covt

(
retM,t, η

$(n)
ex,t − η

(n)
ex,t

)]
. (23)

The first square bracket on the right side contains covariances with innovations in real yields.

The second square bracket contains covariances with nominal-specific components. The

evidence presented here tells us this first term must move together with the second term.

3.4 Revisiting the benchmark LRR model

A glance at Table 1 makes clear the benchmark LRR model is inconsistent with the evidence

presented above. The sign of the covariance between stock returns and real yields is positive

regardless of the regime. In the LRR model, news of higher expected consumption growth

raises both stock prices and expected future short-term real rates. Thus real bonds are

always hedging assets. News of higher volatility lowers both stock prices, through higher

risk premia, and real yields, through precautionary savings and lower risk premia.

Another generic feature of the LRR framework in Section 2.3 is the limited scope for

variations in real rates. Two key features of the long-run risk approach are (a) variations

in expected consumption growth are small but persistent, and (b) the EIS is high. In

combination, these features imply that short-term real rates do not vary much over time.

From quarter to quarter, news about expected future ex-ante real rates is small. Thus

innovations in nominal bond yields must be driven primarily by news about expected inflation

or expected excess turns. A more detailed discussion of the drivers of nominal yields follows.

4 How big is news about expected inflation?

Equation (8) decomposes innovations in nominal yields into news about expected inflation,

news about expected real rates, and news about expected excess returns–all over the life of
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the bond. There is a corresponding variance decomposition,

Vart

(
ỹ
$(n)
t

)
=Vart

(
η
(n)
π,t

)
+Vart

(
η
(n)
r,t

)
+Vart

(
η
$(n)
ex,t

)
+ 2Covt

(
η
(n)
π,t , η

(n)
r,t

)
+ 2Covt

(
η
(n)
π,t , η

$(n)
ex,t

)
+ 2Covt

(
η
(n)
r,t , η

$(n)
ex,t

)
. (24)

The first subsection below discusses empirical evidence concerning this decomposition.

We then turn to properties of (24) implied by macro-finance models that attempt to explain

time-varying comovement between stock returns and nominal yields.

4.1 Empirical evidence

This subsection draws on some results in Duffee (2017). In that paper I construct quarterly

estimates of long-horizon expected inflation for the period 1968Q4 through 2013Q4. The

forecasting tool is a trend-cycle model. Inflation in quarter t is the sum of three components.

One is a martingale, another follows a persistent stationary process, and the third is a serially

uncorrelated shock. The model’s parameters are estimated using consensus inflation forecasts

over short horizons–up to six quarters ahead–from surveys. Therefore the expectations

should be interpreted as those of survey respondents.

The top panel of Figure 4 illustrates how well the model-implied forecasts line up with

consensus forecasts of long-horizon inflation from the same survey respondents. (The model

model extrapolates short-horizon survey forecasts because they are available more often than

long-horizon survey forecasts and because surveys do not ask about all of the horizons of

interest.) The black line is model-implied forecasts at of expected CPI inflation from five

years ahead to ten years ahead, based on short-horizon Blue Chip consensus forecasts. The

blue circles are Blue Chip consensus forecasts of inflation over the same horizon. They are

almost indistinguishable from the model forecasts. The only noticeable deviations are in the

early 1980s, when the Blue Chip long-horizon forecast is for GDP inflation rather than CPI

inflation.

The bottom panel of Figure 4 illustrates one of the conclusions of Duffee (2017). Nominal

bond yields fluctuate much more than do measures of expected inflation over the life of the

bond. The solid line is expected average inflation over the next ten years and the dashed line

is the ten-year nominal yield. A more precise statement of the visual evidence in Figure 4 is
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that innovations in bond yields, defined in an accounting sense by (8), are largely driven by

the two components other than news about expected inflation over the life of the bond. I use

the estimated trend-cycle model to calculate quarterly news about expected future inflation,

denoted η
$(n)
π,t in (9). This is the innovation, from quarter t − 1 to quarter t, in average

expected inflation from quarter t to quarter t + k. I estimate the innovations for five-year

(k = 20) and ten-year (k = 40) horizons. These innovations are calculated for every quarter

from 1968Q4 through 2013Q4.

Table 3 reports standard deviations of the expected-inflation news. It also reports stan-

dard deviations of quarterly changes in five-year and ten-year nominal yields. These yields

are nearly indistinguishable from martingales, thus the standard deviations are very close

to the standard deviations of the left side of (8). The table reveals that for the full sample

1968Q4 through 2013Q4, as well as for every interesting subsample, standard deviations of

yield innovations substantially exceeded standard deviations of news about expected infla-

tion. The former are typically more than twice as large as the latter. Cram (2016) and

Bauer and Rudebusch (2017) confirm and extend this evidence.

4.2 The LRR benchmark

Two key features of the long-run risk approach of Bansal and Yaron (2004) are (a) shocks

to expected consumption growth are small, and (b) the EIS is high. In combination, these

features imply that short-term real rates do not vary much over time. From quarter to

quarter, news about expected future real rates is small. Duffee (2017) explains why news

about expected excess bond returns is also small in plausible specifications of Bansal and

Yaron’s setup. Shocks to conditional variances are small, and the effects of these shocks on

bond risk premia are proportional to average bond risk premia—which are also small.

Therefore LRR models that attempt to match the observed volatilities of innovations to

nominal yields must have substantially more volatility of expected-inflation news than we

observe in the data. Table 3 reports quarterly standard deviations of news about expected

inflation over five-year and ten-year horizons for various models. Standard deviations implied

by the model of Burkhardt and Hasseltoft (2012) are two to three times larger than those

implied by the SPF consensus forecasts. Standard deviations specific to each regime in Song
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(2017) are similar.5 Table 3 reports that Song’s model generates standard deviations of

quarterly nominal yield innovations similar to those observed in the data. However, it does

so almost entirely through news about expected inflation. The ratio of the first term on the

right of (24) to the total variance on the left is close to one for all regimes.6

Table 3 also reports standard deviations of expected-inflation news and nominal yield

innovations for the model of David and Veronesi (2013). The standard deviations for news

about expected inflation are in line with the standard deviations from SPF estimates. Hence

not surprisingly, the standard deviations of nominal yield innovations are smaller than we

observe in the data. Yet the ratio of (expected-inflation news volatilities) to (yield innovation

volatilities) are well below one. David and Veronesi’s model generates much more news

about expected future real rates than does a benchmark LRR model–even though David

and Veronesi use power utility! How is this possible?

4.3 Non-standard sources of variation in real rates

4.3.1 Money illusion

David and Veronesi’s (hereafter D/V) model has a representative agent who consume aggre-

gate consumption Ct. The agent’s per-period utility is

Ut = e−ρt
C1−γ
t

1− γ
.

Denote the price level by Qt. Then the usual real and nominal stochastic discount factors

(SDFs), or ratio of marginal utility at the future date τ to the marginal utility at the current

date t, are
Mτ

Mt
= e−τ(τ−t)

(
Cτ
Ct

)−γ
, (25)

M$
τ

M$
t

= e−τ(τ−t)
(
Cτ
Ct

)−γ (
Qt

Qτ

)
. (26)

5Thanks to Dongho for sharing the standard deviations underlying his Table E-7. The table does not
report numbers for the ten-year horizon.

6Calculating standard deviations for B/H is on the to-do list.
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With the real SDF (25), real bond prices are

P
(n)
t = e−ρnEt

(
Ct+n
Ct

)−γ
. (27)

In D/V, log consumption is normally distributed with constant drift and diffusion. There-

fore the price of an n-maturity bond calculated using (27) is constant over time. The real

yield curve is fixed.

However, D/V do not use these SDFs to price assets. Instead, they follow Basak and Yan

(2010) by assuming investors have a form of money illusion. The extreme version of money

illusion in Basal and Yan is that investors discount real cash flows using the nominal SDF

(26). More generally, the real and nominal SDFs have a degree of money illusion indexed by

δ,
Mτ

Mt
= e−τ(τ−t)

(
Cτ
Ct

)−γ (
Qt

Qτ

)δ
, (28)

M$
τ

M$
t

= e−τ(τ−t)
(
Cτ
Ct

)−γ (
Qt

Qτ

)1+δ

. (29)

D/V use an estimate δ̂ = 0.8. Therefore all else constant, increase in expected inflation of

one percentage point raises real interest rates by 80 basis points. Nominal interest rates

increase by 180 basis points. Nominal bonds are priced as leveraged bets on inflation.

This form of money illusion has a variety of useful empirical implications. Real and

nominal yields move together, with nominal yields more volatile than real yields. (In D/V,

they are perfectly correlated.) A sign change in the covariance between firms’ expected

cash flows and expected inflation produces a sign change in covariances of both real and

nominal yields with stock returns. Yet the relevance of money illusion to pricing real bonds

is not obvious. The best source of data is the U.K. Barr and Campbell (1997) estimate that

monthly innovations in one-year real rates and one-year inflation expectations are negatively

correlated, a result inconsistent with money illusion. (Monthly correlations of innovations for

the ten-year horizon are close to zero.) Some visual evidence is in Figure 5, which displays

three-year nominal and real yields for the Bank of England. It also displays annual inflation

for the year beginning with month t. Realized annual inflation appears to be more closely

tied to the nominal yield than the real yield, especially during the late 1980s/early 1990s

and the 1995–2000 period.
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4.3.2 Preference shocks

Albuquerque, Eichenbaum, Luo, and Rebelo (2016) argue that shocks to investors’ time rate

of preference account for substantial variation in riskfree rates. Denoting the time rate of

preference by λt, the LRR version of their specification can be written as

Ut =
[
(1− δ)λtC

1−γ
θ

t + δ
(
Et
[
V 1−γ
t+1

]) 1
θ

] θ
1−γ

. (30)

This specification generalizes Equation (16). Asset prices are affected by the relative change

in the time rate of preference. The log change is the preference state variable, denoted

log (λt+1/λt) = Λt+1.

This change is known a period in advance. The dynamics are

Λt+1 = ρΛΛt + σΛεΛ,t. (31)

When Λt is high, investors place a relatively high value on consumption at t + 1. This

produces a high desire to save, lowering the riskless rate. The persistence of real rates owing

to preference shocks is determined by ρΛ.

Schorfheide, Song, and Yaron (2017) perform a detailed econometric analysis of the LRR

model. One of their conclusions is that preference shocks as described here are necessary to

explain much of the observed variation in risk-free rates. Albuquerque et al. (2016) estimate

the persistence parameter in (31) to be almost indistinguishable from one, producing a near

unit-root in the riskfree rate. Preference shocks help explain the observed high volatility of

bond-yield innovations relative to the volatility of expected-inflation innovations, as discussed

by Cram (2016).

In addition, their dynamics can be reverse-engineered to explain the observed time-

variation in covariances between stock returns and both nominal and real rates. The nec-

essary modeling assumption is that the countercyclical regime described in Section 2.3 is

characterized by both a negative covariance between expected consumption growth and ex-

pected inflation and a positive covariance between expected consumption growth and the

preference shock in (31). The latter covariance must be sufficiently large to overcome the
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standard positive effect of expected consumption growth on the riskfree rate. Then in the

countercyclical regime, higher expected consumption growth is accompanied by lower real

yields, lower expected inflation, and thus lower nominal yields. Nominal yields incorporate

both real yields and inflation, thus they covary more (in absolute value) with stock returns

than do real yields.

A qualitatively similar reduced-form model is described by Campbell, Sunderam, and

Viceira (2017). Rather than describe preferences or cash flows to equity, Campbell et al.

(2017) proceed directly to the real SDF. They model the log SDF from period t to t + 1

as homoskedastic. A stripped down version of their model writes the return to equity as

perfectly negatively correlated with the SDF, implying that equity has the maximum Sharpe

ratio in the economy. The equations are

mt+1 = −rt − σ2
m

2
− εm,t+1, (32)

requity,t+1 = Et(requity,t+1) + σeεm,t+1, σe > 0, (33)

where rt is the one-period riskless rate and the innovation is homoskedastic.

The riskfree rate dynamics are (again, in this stripped-down version) are

rt+1 = r(1− φr) + φrrt + ψtεr,t+1. (34)

Innovations to the riskfree rate are heteroskedastic because of the presence of the state

variable ψt. The innovation εr,t is homoskedastic with fixed covariance to the SDF innovation,

Covt(εm,t, εr,t) = σmr > 0. (35)

The state variable ψt has AR(1) dynamics

ψt+1 = ψ(1− φφ) + φψψt + εφ,t+1. (36)

Since ψt can change sign, the conditional covariance between the shock to equity and the

shock to the riskfree rate can change sign. Finally, specify the process for inflation as

πt+1 = π + ξt + επ,t+1, (37)
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where the time-varying component of the conditional mean of inflation is shares the het-

eroskedasticity of the riskfree rate,

ξt+1 = ψξξt + ψtεξ,t+1. (38)

The covariance between the homoskedastic innovations in (38) and (34) is fixed and positive,

Covt(εr,t, εξ,t) = σrξ > 0. (39)

When the state variable ψt < 0, expected inflation is countercyclical. An unexpected

drop in the SDF (an unexpected increase in equity valuation) corresponds to a decline in

expected inflation. It also corresponds to a decline in the riskfree rate. Real and nominal

bonds are therefore both speculative assets, rising in value when the economy does well.

When ψt > 0, expected inflation is procyclical, as is the riskfree rate. Real and nominal

bonds bonds are both hedging assets.

In one sense, this model successfully explains the variation over time in conditional covari-

ances between stock returns and both real and nominal yields. It has all the required moving

parts. But treating the riskfree rate (or preference shocks) as an exogeneous state variable

with properties tailored to produce the desired outcome is something less than satisfactory.

5 Consumption-based models of real-rate variation

Denoting the marginal utility of wealth by MUt, the Euler equation for a one-period real

bond satisfies

rt ≡ − logP
(1)
t = − log

[
Et

(
MUt+1

MUt

)]
. (40)

Here, marginal utility is viewed from the perspective of some fixed past date t0. Equation

(27) is the power utility version of (40). Consumption-based models have various channels

through which real rates can vary.
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5.1 Trend and mean-reverting shocks to consumption

With recursive utility and conditional log-normality of both consumption growth and the

return to total wealth, standard calculations produce

rt = (time rate of preference) +
1

EIS
Et (Δct+1)− Jensen’s inequality terms. (41)

The sign of the covariance between shocks to the short-term real rate and shocks to con-

sumption is determined by consumption dynamics. Assume that consumption has both

difference-stationary and trend-stationary components shocks. Log consumption follows

ct+1 − ct = g + xt + εc,t+1 − (1− φ)

∞∑
i=0

φiεc,t−i, εc,t ∼ N(0, σ2
c,t), (42)

where xc,t is the standard LRR part of conditional expected consumption growth,

xt+1 = θxt + εx,t+1, εx,t ∼ N(0, σ2
x,t), (43)

and the shocks εc,t produce trend-stationary innovations to consumption, in the sense that

the effect of the period-t shock on long-distant log consumption ct+τ goes to zero.

This consumption process allows for both positive and negative correlations between

aggregate stock returns and real yields. Positive realizations of the shocks εc,t and εx,t are

good news for both agents and for equity valuations, given plausible utility parameters.

With the former shock, current and expected future consumption both rise. With the latter,

expected future consumption rises (as well as expected future growth rates of consumption).

Yet the former shock lowers the riskfree rate at t, as investors foresee future decreases in

consumption growth rates. The latter shock increases the riskfree rate at t, while the latter

increases the riskfree rate at t. The idea that the relative importance of these two types of

shocks might underlie time-varying covariances between stock returns and real yields dates

to at least Campbell et al. (2009).

A straightforward way to augment this real model with inflation is through a Taylor rule.

Since (42) and (43) do not depend on a monetary policy rule, inflation is neutral here. The
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simplest Taylor rule in this setting is

it = i+ α(πt − π∗), (44)

where it is the one-period nominal rate and the coefficient α satisfies the Taylor stabilization

principle of α > 1. Combine this with the Fisher equation

it = rt + Et(πt+1) (45)

to produce

α(πt − π∗) = Et (πt1 − π∗) + (rt − r). (46)

The model is closed with the dynamics of the riskfree rate. A simple special case is ho-

moskedasticity of both types of consumption shocks, as well as a shared decay rate θ = φ < 1.

In this case the riskfree rate follows an AR(1) process,

rt+1 = r + φ(rt − r) + vt+1, vt+1 = (1/EIS)(εx,t+1 − (1− φ)εc,t+1). (47)

Following, say, Davig and Leeper (2007), who solve a regime-shifting version of this model,

the solution–in other words, a specification of inflation in terms of the riskfree rate–is

πt − π∗ =
1

α− ρ
(rt − r). (48)

Since α > 1 and ρ < 1, inflation moves in the same direction as the riskfree rate. Therefore

variations in nominal yields are magnified versions of varitions in real yields.

Viewed through the lens of this model, variations over time in the covariance between

stock returns and bond yields is driven by variations in the relative volatilities of difference-

stationary and trend-stationary shocks. The 1970s and 1980s are characterized by largely

trend-stationary shocks, while the late 1990s and 2000s are characterized by largely difference-

stationary shocks. In both periods, the covariation of nominal yields exceeds (in absolute

value) the covariation with real yields because of an aggressive monetary policy rule.

The endowment process of consumption (42) and (43) can be motivated in a production

economy with capital, in which there are both difference-stationary and trend-stationary

shocks. Liu (2017) constructs and estimates this type of model. Other motivations are easy

23



to imagine. For example, the difference-stationary component could be productivity shocks

in endogenous growth model, while the trend-stationary component could be something as

simple as government spending shocks.

Difference-stationary shocks have the flavor of long-run influences on the economy, while

trend-stationary shocks are shorter-term shocks. If so, the former type of shock should

affect current and expected future real rates into the distant future, while the latter type of

shock should have a much greater effect on current real rates than it has on expected future

real rates. This intuition suggests that when the former type of shock dominates, long-rate

volatility should be close to short-rate volatility. When the latter type dominates, short-rate

volatility should be high relative to long-rate volatility.

This intuition is consistent with the evidence in Table 4 and Figure 6. I construct

rolling estimates of conditional standard deviations of daily changes in three-month and ten-

year nominal Treasury yields. The sample period is 1961 through 2016. The conditioning

procedure is similar to that used for conditional covariances described in Section 3.3. The

two time series of standar deviations are plotted in the top panel of Figure 6. The bottom

panel displays the difference—short less long—along with conditional covariances between

daily U.S. aggregate stock returns and daily changes in the ten-year bond yield.

The pattern in the bottom panel is striking. Periods of relatively high (low) short-

maturity standard deviations correspond to periods of relatively low (high) covariances be-

tween stock returns and the ten-year yield. The relation is visually strong but clearly not

linear. For example, the spread between the three-month and ten-year volatilities is very

high in late 1973 and 1974 (the oil crisis), while the covariance is only slightly less than zreo.

Fifteen years later the spread in volatilities was similarly high, and the covariance is much

lower.

Nonetheless, Table 4 reports results of estimating a linear relation; regressing the condi-

tional covariance on the short–long difference. The estimated coefficient is negative for the

full sample as well as in early and late subsamples. The results are statistically strong only

for the full sample. Standard errors are from GMM estimation with seven Newey-West lags,

as in Section 3.3.
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5.2 Some puzzling evidence

The core idea in the previous subsection is that for part of the sample–say, in the 1970s–

the news investors receive at time t about macroeconomic growth differs in its dynamic

implications from the implications of macroeconomic news in another part of the sample–

say, the 2000s.

This section discusses related evidence from the Survey of Professional Forecasters (SPF)

predictions of GDP. Each quarter, beginning in 1968Q4, respondents forecast the quarter-

to-quarter percentage change in GDP for the current quarter (the nowcast) and the next

four quarters ahead. Therefore successive forecasts allow the construction of model-free

innovations in forecasts. The quarter-t nowcast less the quarter-(t − 1) one-quarter-ahead

forecast is the nearest-horizon forecast, while the quarter-t three-quarter-ahead forecast less

the quarter-(t− 1) four-quarter-ahead forecast is the longest available horizon forecast.

I use consensus forecasts to produce a panel of real GDP growth forecast innovations,

from 1969Q1 through 2016Q2.7 I construct the covariance matrix of innovations for three

nonoverlapping time periods, then calculate principal components for each period. The

ending point of the first sample is 1996Q4, which is the date at which the sign change in the

stock-bond correlation occurs. The ending point of the second sample is the beginning of

the financial crisis, and the ending point of the third sample is the end of the available data.

The loadings of the first two principal components are all plotted in Figure 7.

The plots are almost identical across the three samples. The first principal component

is a positive shock to GDP at each forecast horizon. The magnitude of the shock drops

montonically and swiftly from the nowcast to the three-quarter-ahead forecast, which is

almost unaffected by the shock. The second principal component is a negative shock to the

nowcast, accompanied by positive shocks at horizons one through three quarters ahead.

The first PC can be labeled a short-lived shock to expected growth rates, or a difference-

stationary shock. The second PC is harder to characterize. A negative shock to the nowcast

GDP growth is close to completely offset by a positive shock to expected one-quarter-ahead

growth. If there were no loadings of the PC on longer-horizon forecast innovations, this first

PC would be a trend-stationary shock. But the longer-horizon forecasts of GDP growth

move in the same direction as the one-quarter-ahead forecast innovation.

7A few individual forecasts are missing in the early part of the sample.
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Table 5 contains puzzling evidence about these principal components. It reports the

magnitude of the PCs and their correlations with stock returns and changes in bond yields.

A positive realization of the first PC—positive innovations in forecasted future real GDP at

all horizons—corresponds to higher stock prices, higher nominal yields, and (for the most

part) higher real yields. These correlations hold across all three samples, and are precisely

the patterns implied by the previous subsection’s model. Higher expected growth pushes up

stock prices, real rates, and, through the Taylor rule, nominal rates.

Correlations involving the second PC are much more difficult to interpret. A positive

realization of the second PC—a negative innovation to the real GDP nowcast, and posi-

tive innovations to expected future GDP growth—corresponds to higher stock prices, lower

nominal yields, and lower real yields. The stock-price reaction is plausible; cash flow news

from higher expected future GDP growth more than offsets the news of the lower nowcast.

But the sign of the change in the real yield contradicts standard intuition. The second PC

unambiguously raises future prospects relative to the present. This type of shock should

raise real rates, as investors attempt to borrow from the future. Nominal yields change in

the same way. Given the behavior of the real rate, this change is consistent with the toy

Taylor rule model of the previous section.

Understanding the properties of the second PC may be the key to understanding why

the comovement between stock returns and bond yields changes over time. The first PC

generates a positive comovement between stock returns and yields, while the second generates

a negative comovement. Table 5 reports that the magnitude of the second PC is much greater

during the pre-1997 sample than during either post-1996 samples. This evidence suggests

that the sign change in the comovement is a consequence of the decline over time in the

magnitude of second-PC type shocks.

5.3 Habit formation

Readers might be encouraged by the evidence in the previous subsection. It suggests that

time-varying stock-bond comovement are related to fundamentals such as shocks to eco-

nomic growth rates. But we are far removed from a coherent explanation grounded in a

consumption-based preference framework. As discussed in Section 4.2, long-run risk models

with high EIS produce only small shocks to real yields. This model feature, combined with
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the evidence that little of the volatility of shocks to nominal yields is attributable to inflation,

leads us to consider alternative consumption-based frameworks.

Habit formation preferences are a natural choice because of their flexibility in specifying

the determinants of real rates. Campbell and Cochrane (1999) introduce a state variable

called surplus consumption that affects marginal utility. Surplus has the AR(1) dynamics

st+1 = (1− θ0)s+ θ0st + λ(st)εc,t+1, (49)

where the shock εc,t+1 is the contemporaneous shock to consumption growth. The volatility

function λ(st) is an inverse function of surplus. A brief review of the riskfree rate mechanics

is helpful. A bad shock to consumption corresponds to a bad shock to surplus consumption.

Marginal utility is high both because of the unexpected decline in consumption and the

unexpected decline in surplus.

The mean reverting process of (49) implies that the effect of the shock is expected to

die out over time. This effect drives up real rates, since investors anticipate better times

(higher surplus) ahead. However, low surplus also raises the volatility of surplus λ(st).

This raises the desire for precautionary savings, driving down real rates. The extension of

Campbell/Cochrane preferences by Wachter (2006) allows for parameterizations that make

the net effect either positive or negative.

Campbell, Pflueger, and Viceira (2015), attempting to explain time-varying comovement

between stocks and bonds, generalize these preferences even further by specifying a more

general functional form for surplus. They use

st+1 = (1− θ0)s+ θ0st + θ1xt + θ2xt−1 + λ(st)εc,t+1, (50)

where xt is the demeaned output gap at period t. This specification allows expected future

real rates at different horizons to react non-monotonically to shocks. For example, a bad

shock at t+ 1 lowers surplus at t+ 1 through the final term in (50). It also lowers expected

surplus at t+2 through the AR(1) component (the second term on the right) and the first lag

of the output gap (the third term). The parameters determine whether surplus is expected

to rise or fall from t+1 to t+2. The same logic applies to expected surplus at t+3, working

through the second lag of the output gap. For example, the parameters can be chosen such

that the bad shock at t+1 lowers the one-period real yield, as investors anticipate even lower

27



surplus ahead, and raises the two-period real yield, as investors anticipate that surplus will

rise rapidly after the next period.

The tradeoff created by specifications such as (50) is standard. Greater flexibility can

create an opportunity to explain the time-variation in stock–bond comovement, but the

inherent reverse engineering forces researchers to look beyond the stock–bond comovement

in order to truly test the model.

6 Concluding comments

To be written . . .
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Table 2. Conditional covariances between stock returns and changes in government bond

yields

Second moments of daily aggregate stock returns and daily changes in nominal and real bond
yields are calculated for 44-day nonoverlapping rolling samples. Denote these by Ωt, i, j,
where i and j can be “s” for stocks, “n” for nominal bond yields, and “r” for real bond
yields. Conditional covariances between stock returns and changes in bond yields are pro-
jections of sample covariances on lagged second moments. The table reports the instruments
(which second moments and the number of lags) and the R2 of the projections. The table
also reports the results of regressing conditional covariances with nominal yields on condi-
tional covariances with real yields. Generalized method of moments estimation produces
asymptotic standard errors on the regression coefficient, using a Newey-West adjustment
with seven lags.

R2s Regression of nominal
Nominal Real covar on real covar

Obs Instruments Lags Covar Covar Coef R2

A. 2003–2016, US stock market, Treasury nominal and real bonds

75 Ωt,s,n,Ωt,s,r 6 0.59 0.49 2.13 0.77
(0.51)

B. 1985–2016, US stock market, Treasury nominal, Bank of England real bonds

179 Ωt,s,n,Ωt,s,r 6 0.52 0.48 1.91 0.69
(0.65)

181 Ωt,s,n,Ωt,s,r,
√
Ωt,s,s, 4 0.52 0.51 1.74 0.61√

Ωt,n,n,
√
Ωt,r,r (0.60)

C. 1985–2016, UK stock market, Bank of England nominal and real bonds

179 Ωt,s,n,Ωt,s,r 6 0.46 0.40 1.73 0.87
(0.30)

181 Ωt,s,n,Ωt,s,r,
√
Ωt,s,s, 4 0.51 0.45 1.66 0.82√

Ωt,n,n,
√
Ωt,r,r (0.31)
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Table 3. Standard deviations of news about expected inflation and yield innovations

Quarterly shocks to average expected inflation over five-year and ten-year horizons are es-
timated by Duffee (2017) from a model that assumes inflation is the sum of a martingale
and an AR(1) component. The table reports standard deviations of the shocks for various
sample periods, along with standard deviations of quarterly changes in five-year and ten-
year nominal Treasury yields. Also reported are corresponding standard deviations implied
by three macro-finance models. Each has regime shifts that drive inflation dynamics and
stock-bond correlations. Unconditional standard deviations of shocks (excluding Song) and
regime-specific standard deviations are reported.

Infl Horizon Yields
Source Period 5 Years 10 Years 5-year 10-year

SPF estimates 1968Q4–2013Q4 23 21 61 56
1968Q4–1979Q2 27 25 50 42
1979Q3–1982Q4 33 25 128 124
1983Q1–2008Q2 16 16 55 49
2008Q3–2013Q4 8 7 42 44

Burkhardt and Unconditional, 1965–2011 74 41
Hasseltoft (2012) Countercyclical infl regime 82 45

Procyclical infl regime 40 22

Song (2017) 1963–2014

Countercyclical/Active Fed 79 71
Countercyclical/Passive Fed 104 99

Procyclical/Active Fed 44 54

David and Unconditional, 1958–2010 26 19 47 33
Veronesi (2013) Regime 1∗ 12 10 21 17

Regime 2 30 20 53 35
Regime 3 17 12 30 20
Regime 4 48 29 84 49
Regime 5 9 8 16 14
Regime 6 21 15 39 28

∗ States are unobserved by investors. Reported are conditional standard deviations for
quarter t, conditioned on subjective probability that the true state at t is Regime i.
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Table 4. Conditional second moments of daily changes in nominal bond yields and stock

returns

Standard deviations of daily changes in three-month and ten-year nominal bond yields are
calculated for 44-day nonoverlapping rolling samples. Sample covariances between daily ag-
gregate stock returns and daily changes in the ten-year nominal yield are calculated for the
same samples. Conditional standard deviations and the conditional covariance are projec-
tions of sample values on lagged standard deviations and the lagged covariance. Three lags
are used, for a total of nine instruments. The table reports the R2 of the projections. The
table also reports the results of regressing the conditional covariance on the difference be-
tween the three-month conditional standard deviation and the ten-year conditional standard
deviation. Generalized method of moments estimation produces asymptotic standard errors
on the regression coefficient, using a Newey-West adjustment with seven lags.

R2s Regression of covar
on the SD spread

Sample Obs 3-month 10-year Covar Coef R2

1961–2016 320 0.70 0.63 0.52 −0.31 0.26
(0.10)

1961–1989 162 0.73 0.68 0.37 −0.13 0.20
(0.08)

1990–2016 154 0.32 0.44 0.48 -0.42 0.06
(0.57)
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Table 5. Principal components of innovations in GDP forecasts and their relation to stocks

and bonds

Quarterly innovations to forecasts of future growth of real GDP are constructed using con-
sensus forecasts from the Survey of Professional Forecasters. Innovations are available for one
through four quarters ahead. Principal components of these four time series are calculated
for three sample periods. The table reports total variance of forecast innovations explained
by the first two principal components. It also reports contemporaneous correlations of these
PCs with three time series: the quarterly excess return to the CRSP value-weighted index,
the change in ten-year nominal Treasury yield, and the change in the ten-year inflation-
indexed bond issued by the Bank of England. Surveys are conducted in the middle of the
quarter, therefore the stock and bond series are also mid-quarter to mid-quarter.

Fraction of total Contemporaneous Correlations
Variance Explained First PC Second PC

Sample 1st 2nd Stock Nominal Real Stock Nominal Real

1969Q1–1996Q4 0.58 0.29 0.23 0.30 0.15 0.19 −0.35 −0.19
(107 obs; 46 for the real bond)

1997Q1–2007Q4 0.88 0.07 0.36 0.37 0 0.14 −0.11 −0.09
(44 obs)

2008Q1–2016Q2 0.94 0.04 0.73 0.35 0.14 0.18 −0.19 −0.35
(34 obs)
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Figure 1. Rolling sample correlations between daily stock returns and changes in ten-year
nominal Treasury yields

Contemporaneous correlations between the daily return to the U.S. aggregate stock market
and the daily change in the yield on a ten-year Treasury coupon bond are constructed with
overlapping 44-day (two-month) samples. The sample range is July 1961 through December
2016.
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Figure 2. Rolling sample covariances between daily stock returns and changes in ten-year
yields

Contemporaneous covariances between daily aggregate stock returns and daily changes in
ten-year bond yields are constructed with overlapping 44-day samples. Panel A reports
covariances from 1961 through 2016 for the U.S. stock market and a nominal Treasury bond.
The period 2003 through 2016 in Panel B adds a Treasury inflation-indexed bond (in red).
The period 1985 through 2016 in Panel C uses a nominal Treasury bond (in black) and an
inflation-indexed Bank of England bond (in red). The same period in Panel D uses the daily
return to the FTSE 100. The bonds are nominal (black) and inflation-indexed (red) Bank
of England bonds.
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Figure 3. Conditional covariances with stock returns and market betas for nominal and real
ten-year bonds

Conditional covariances between daily stock returns and changes in bond yields are projec-
tions of sample covariances on conditioning instruments. Panel A is constructed using U.S.
stock returns, nominal Treasury yields, and inflation-indexed Bank of England yields. Panel
C uses exclusively UK data. For Panels B and D, the yield covariances in Panels A and C
are converted to return covariances using duration. Panels B and D report the stock-bond
return conditional covariances divided by conditional variances of stock returns. Black lines
are for nominal yields and red lines are for inflation-indexed yields. The sample is 1985
through 2016.
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Figure 4. Long-horizon forecasts of inflation

Panel A displays forecasts of average CPI inflation from t+ five years to t+ ten years. The
solid line forecasts are from Duffee (2017), using a model that assumes inflation is the sum
of a random walk, an AR(1) process, and white noise. The circles are Blue Chip survey
forecasts of CPI inflation over the same horizon. The x’s are Blue Chip survey forecasts of
GDP inflation over the same horizon. In Panel B, the solid line is an estimate of expected
inflation over the next ten years, using the same model. The dashed line is the yield on a
ten-year Treasury zero-coupon bond.
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Figure 5. U.K. real and nominal three-year yields and inflation

The red line is CPI inflation in the UK from month t to month t+ 12. The black line is the
three-year yield on a nominal Bank of England bond. The blue line is the three-year yield
on an inflation-indexed Bank of England bond. Both yields are zero-coupon yields splined
from coupon yields.
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Figure 6. Conditional volatilities of short-term and long-term nominal yields

Conditional standard deviations of daily changes in nominal Treasury yields are projectiosn
of sample standard deviations on conditioning instruments. Panel A displays conditional
standard deviations of the three-month yield (black) and the ten-year yield (red). Panel
B displays their difference (short less long) in red. Panel B also displays the conditional
covariance between daily returns to the aggregate U.S. stock market and changes in the
ten-year yield. The sample is 1961 through 2016.
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Figure 7. Principal components loadings of innovations in forecasts of GDP growth

The quarter-(t− 1) consensus forecasts of GDP growth for one through four quarters ahead,
from the Survey of Professional Forecasters, are subtracted from the quarter-t consensus
forecasts of GDP growth for zero through three quarters ahead—the same calendar quarters.
Covariance matrices these four innovations are constructed for the periods listed in the titles
of the three plots. Principal components are then calculated. For each period, loadings of
the first (in black) and the second (in red) principal components are plotted. The horizontal
axis is the forecast horizon as of quarter t− 1.
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Figure 8. Time series of principal components of innovations in forecasts of GDP growth

The quarter-(t− 1) consensus forecasts of GDP growth for one through four quarters ahead,
from the Survey of Professional Forecasters, are subtracted from the quarter-t consensus
forecasts of GDP growth for zero through three quarters ahead—the same calendar quarters.
The covariance matrix of the four innovations is constructed, and principal components of
the matrix are constructed. Panel A plots the first principal component and Panel B plots
the second.
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