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We study the ¯nite-sample properties of some of the standard techniques used to 
estimate modern term structure models. For sample sizes and models similar to those 
used in most empirical work, we reach three surprising conclusions. First, while 
maximum likelihood works well for simple models, it produces strongly biased par-
ameter estimates when the model includes a °exible speci¯cation of the dynamics of 
interest rate risk. Second, despite having the same asymptotic e±ciency as maximum 
likelihood, the small-sample performance of E±cient Method of Moments (a com-
monly used method for estimating complicated models) is unacceptable even in the 
simplest term structure settings. Third, the linearized Kalman ¯lter is a tractable 
and reasonably accurate estimation technique, which we recommend in settings 
where maximum likelihood is impractical. 

Keywords: No-arbitrage models; E±cient Method of Moments; dynamic risk premia; 
simulation inference; Kalman ¯lter. 

1. Introduction 

Starting with Vasicek (1977) and Cox et al. (1985), an enormous literature 
has focused on building and estimating dynamic models of the term structure. 
By specifying particular functional forms for both the risk-neutral dynamics 
of short-term interest rates and the compensation investors require to bear 
interest rate risk, these models describe the evolution of yields at all matu-

rities. Much of the literature focuses on the a±ne class characterized by Du±e 
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and Kan (1996). This class allows multiple state variables to drive interest 
rates and has the computationally convenient feature that bond yields are 
linear functions of these variables. The ¯rst generation of a±ne models, 
including multivariate generalizations of Vasicek and Cox et al., imposed two 
specializing assumptions: the state variables are independent and the price of 
risk is a multiple of interest rate volatility. Given these restrictions, esti-
mation of the models' parameters is reasonably simple. 

The estimation results revealed limitations in the models. For example, 
Dai and Singleton (2000) ¯nd strong evidence of nonzero correlations among 
the state variables. Du®ee (2002) ¯nds that the restriction on the price of risk 
implies unrealistic behavior for bonds' excess returns. Moreover, there is 
evidence of nonlinearity in expected interest rate movements that is incon-
sistent with these models.1 In response to these limitations, researchers have 
introduced more °exible, \second generation" models. For example, Dai and 
Singleton (2000) estimate a±ne models in which the state variables are 
allowed to be correlated, while retaining the assumption that the price of risk 
is proportional to volatility. Du®ee (2002) constructs a multifactor a±ne 
model with a more general speci¯cation for the dynamics of the price of risk 
than in Dai and Singleton (2000). Duarte (2004), Ahn et al. (2002), and 
Leippold and Wu (2002) construct models with fairly general speci¯cations of 
the price of risk that produce nonlinear dynamics.2 

Although these new models are a signi¯cant improvement over earlier 
models, their ability to capture the observed dynamics of bond yields is not 
yet clear because the corresponding empirical literature is relatively imma-

ture. This is due to both the quick pace of the modeling advances and the 
di±culty of estimating some of these more complex models. Maximum like-
lihood is asymptotically e±cient, but its ¯nite-sample properties in the con-
text of these models are not clear. Moreover, for many of these models the 
probability distribution of discretely sampled bond yields is unknown or 
intractable. Alternative techniques include moment-based methods and 
simulation methods. The optimal technique is di±cult to determine due to 
our limited understanding of the properties of these techniques when applied 
to sophisticated term structure models. 

1 Nonlinearities are documented in Pfann et al. (1996), Aït-Sahalia (1996), Conley et al. (1997), 
and Stanton (1997). 
2 Other nonlinear models include Longsta® (1989), Beaglehole and Tenney (1992), Con-
stantinides (1992), and Ahn and Gao (1999). The latter two have prices of risk that are more 
°exible than those in Dai and Singleton (2000). Stanton (1997) and Boudoukh et al. (2010) are 
nonparametric (and therefore nonlinear) models of both physical drifts and prices of risk. 
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In this paper we study the ¯nite-sample properties of three prominent 
techniques used to estimate second-generation term structure models, in 
settings close to those facing researchers estimating these models. The ¯rst 
technique we study is maximum likelihood (the method of choice when the 
state variables can be precisely inferred by the econometrician), used, for 
example, by Pearson and Sun (1994), Chen and Scott (1993), Aït-Sahalia and 
Kimmel (2010), and Brandt and He (2002). We employ exact maximum 
likelihood when the likelihood function is known, and simulated maximum 
likelihood when it is not, using the method of Pedersen (1995) and Santa-
Clara (1995). The second technique we study is the E±cient Method of 
Moments of Gallant and Tauchen (1996) (used, for example, by Dai and 
Singleton, 2000; Ahn et al., 2002; Andersen and Lund, 1997; Gallant and 
Tauchen, 1997). It is the most widely used alternative when maximum 
likelihood is infeasible, because it is tractable and can attain the same 
asymptotic e±ciency as maximum likelihood. This technique uses an auxili-
ary model. We follow common practice by choosing a semi-nonparametric 
model; thus we refer to this technique as EMM/SNP. The ¯nal method is a 
variant of the Kalman ¯lter. This may or may not be maximum likelihood, 
depending on the setting. For each technique, we use Monte Carlo simu-

lations to determine the behavior of the estimators for sample sizes and 
models similar to those used in most empirical work. To keep the size of the 
paper manageable, we restrict our attention to models in the a±ne class with 
independent factors. We examine models in both the \essentially a±ne" class 
of Du®ee (2002) and the \semi-a±ne" class of Duarte (2004). 

Though we consider only a few of the in¯nite number of possible models, our 
results allow us to draw three main conclusions that apply much more generally. 
Each stands in surprising contrast to what we would expect based solely on 
asymptotic considerations. The ¯rst conclusion is that when the term structure 
model does not include a highly restrictive form of the price of risk, maximum 
likelihood does a poor job of estimating the parameters that determine expected 
changes in interest rates. The estimates are strongly biased and estimated with 
little precision. One implication is that conditional expectations of bond returns 
implied by maximum likelihood parameter estimates di®er substantially from 
their true values. This behavior is related to the well-known downward bias in 
estimates of the speed of mean reversion of highly persistent processes such as 
bond yields. While Ball and Torous (1996) ¯nd that high persistence in bond 
yields does not pose a serious problem in estimating ¯rst-generation models, we 
¯nd that it causes major problems in estimating second-generation models due 
to their more °exible speci¯cation of the dynamics of the price of risk. 

Estimation of Dynamic Term Structure Models 
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Our second conclusion is that the performance of EMM/SNP is unac-
ceptable in even the simplest ¯rst-generation term structure settings, where 
maximum likelihood methods work well. This conclusion is particularly 
surprising because EMM/SNP attains the same asymptotic e±ciency as 
maximum likelihood. The explanation for this poor performance involves the 
asymmetry of the EMM criterion function and is thus fairly technical. 
Section 8 describes the basic intuition, and a more complete discussion of the 
problem is in Du®ee and Stanton (2008). The main result is that while the 
high persistence of bond yields drives a wedge between the ¯nite-sample and 
asymptotic properties of all estimation techniques, the consequences of this 
wedge are much more dramatic for EMM. 

This is a discouraging conclusion because EMM/SNP is a tractable 
method for estimating models for which maximum likelihood is infeasible. 
However, our third conclusion is more positive. We ¯nd that the Kalman 
¯lter is a reasonable choice even when it does not correspond to maximum 
likelihood. In many second-generation term structure models, the standard 
Kalman ¯lter cannot be implemented because the ¯rst and second moments 
of discretely observed bond yields are unknown. For these models, we 
advocate the use of a modi¯ed Kalman ¯lter that uses linearized instan-
taneous term structure dynamics. Although this method is inconsistent, 
its ¯nite-sample biases are similar to the biases associated with maximum 
likelihood. 

In the next section we describe the estimation techniques that we examine 
in the remainder of the paper. The speci¯c term structure models that we 
consider are discussed in Sec. 3, and Sec. 4 gives details of the simulation 
procedure. Sections 5 and 6 present results for one-factor term structure 
models (Gaussian and square root respectively), Sec. 7 presents results for 
two factor models, Sec. 8 investigates in more detail the performance of 
EMM/SNP, and concluding comments are o®ered in Sec. 9. 

2. Estimation Techniques 

This section outlines the three estimation techniques whose small-sample 
properties we study in the rest of the paper: maximum likelihood (ML), 
EMM/SNP, and a variant of the Kalman ¯lter. Although we perform our 
Monte Carlo analysis using speci¯c models presented in Sec. 3, our discussion 
here is more general. 

The data are a panel of bond yields. They are equally spaced in the time 
series, at intervals t ¼ 1; . . . ; T . The random vector yt represents a length-m 

G. R. Du®ee & R. H. Stanton 
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vector of bond yields. Denote the history of yields through t as Yt ¼ 
ðy 0 1; . .  .  ; y 0 t Þ0 . Yields are a function of a length-n latent state vector xt and 
(perhaps) a latent noise vector wt : 

yt ¼ yðxt ; wt ;� 1Þ: ð1Þ 

The noise may represent market microstructure e®ects or measurement error. 
Although these are certainly plausible features of the data, the main role 
played in the literature by this noise is to give the model °exibility to ¯t high-
dimensional data with a low-dimensional state vector. The vector 1 contains 
the parameters of this function. The state vector follows a di®usion process 

dxt ¼ ðxt ;� 2Þ dt þ ðxt;� 2Þ dzt ; ð2Þ 

where 2 is the parameter vector. The density function associated with the 
noise is 

gwðw1; . .  .  ; wT Þ: ð3Þ 

For simplicity, we assume that the distribution of the noise is independent 
of xt. 

A term structure model (including a description of noise in bond yields) 
implies functional forms for (1), (2), and (3). We are interested in the 
resulting probability distribution of yields. Stack the parameter vectors 1 

and 2 into . Then we can always write the log density function of the 
data as 

log gYT 
ðYT Þ ¼  

T 

t¼1 

log gt ðyt jYt 1; Þ; 

where g1ðy1 jY0; Þ is interpreted as the unconditional distribution of y1. The 
true parameter vector is denoted 0. The primary di±culty in estimating 0 

with this structure is that the functional form for gt ðÞ is often unknown or 
intractable. 

2.1. Maximum likelihood 

The maximum likelihood estimator is the value that maximizes the (log) 
likelihood. Due to its asymptotic e±ciency, maximum likelihood is the esti-
mation method of choice in almost any econometric setting where we can 
evaluate the likelihood function. In many dynamic term structure models, 
there is a one-to-one mapping between a length-n xt and n bond yields. Thus 
we can pick any n points on the date-t yield curve, assume these yields have 

Estimation of Dynamic Term Structure Models 
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no noise, and invert the appropriate pricing equations to infer xt . 
3 This 

commonly adopted approach was ¯rst used by Pearson and Sun (1994) and 
Chen and Scott (1993). In principle, when we can identify the state we can 
estimate the model with maximum likelihood because the likelihood function 
can be expressed as the solution to a partial di®erential equation involving 
the functions and in (2).4 However, this equation can be solved in closed 
form for only for a few special cases such as the square-root di®usion model of 
Cox et al. (1985) (hereafter CIR) and the Gaussian di®usion model of Vasicek 
(1977). In many other models, the equation can only be solved numerically, 
making direct maximum likelihood via this approach infeasible. 

Another potential problem with the use of maximum likelihood is that 
when we observe m > n bond yields, there is in general no set of values of xt 
that exactly matches the m bond yields every period. One way to circumvent 
this di±culty is to assume that only n of the yields are measured without 
error and allow for noise in the remaining yields. This does not add to the 
di±culty of using maximum likelihood but has the disadvantage that the 
choice of the yields estimated without error is, necessarily, somewhat ad hoc. 
If we are unwilling to accept this assumption, or if the term structure model 
does not imply a one-to-one mapping between xt and bond yields even in the 
absence of noise as in Ahn et al. (2002), our inability to infer xt exactly will 
make maximum likelihood estimation even more di±cult. 

Much progress has been made recently in expanding the settings where 
maximum likelihood is possible. Pedersen (1995) and Santa-Clara (1995) 
develop a simulation-based approach that allows the approximation of the 
likelihood function when the state is observable and the likelihood function is 
intractable. The idea is to split each observation interval into small sub-
intervals. The conditional distribution of the state approaches the normal 
distribution as the length of the subintervals shrinks toward zero. If a par-
ticular observation interval is split into k pieces, the method involves simu-

lating a large number of paths for the ¯rst k 1 of the subintervals, then for 
each path calculating the likelihood of jumping from the value at subperiod 
n 1 to the (next observed) value at subperiod k. As both the number of 
simulated paths and the number of subintervals per observation become 

3 When the true parameters are used, this inversion always produces an admissible state 
vector. However, for an arbitrary parameter vector, the resulting state vector may be inad-
missible. For example, observed bond yields might imply negative values for state variables 
that ought never to be negative. 
4 This equation is known as the Kolmogorov forward equation (see Øksendal, 2002, for further 
information). Lo (1988) describes the use of this equation to implement maximum likelihood. 

G. R. Du®ee & R. H. Stanton 
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large, the average of these normal likelihoods converges to the true likelihood 
of moving from one observed value to the next. Aït-Sahalia (1999, 2008) 
proposes an alternative estimation procedure for this case. He develops a 
series of approximations to the likelihood function that are tractable to 
estimate and converge to the true likelihood function. Aït-Sahalia and 
Kimmel (2010) apply this technique to term structure modeling. The econ-
ometrician controls the accuracy of the approximation by choosing the order 
of the approximating series. Finally, when the underlying state cannot be 
exactly observed due to measurement error, Brandt and He (2002) and Bates 
(2006) have recently developed techniques that allow calculation of an 
approximate likelihood function for certain classes of term structure models. 

We estimate a variety of models with maximum likelihood. The 
implementation di®ers depending on the model. If the model is Gaussian, we 
assume that bond yields are all observed with error and use the Kalman ¯lter, 
as discussed in Sec. 2.3. If the model is not Gaussian we assume that m ¼ n 
bond yields are observed without error. In this case we use the exact like-
lihood function if it is known. If not, we use the Pedersen/Santa-Clara 
technique, following the implementation in Brandt and Santa-Clara (2002). 
Because the technique is designed to simulate conditional densities rather 
than unconditional densities, we condition the likelihood of the data on the 
¯rst observation. 

2.2. E±cient method of moments 

When maximum likelihood is infeasible, the most commonly used method for 
estimating term structure models is the E±cient Method of Moments 
(EMM), a path simulation method. Simulations produced with the dynamic 
model are used to draw indirect inferences about the density function 
gYT 

ðYT Þ. These simulations can be used to calculate arbitrary population 
moments as functions of the parameters of the process being estimated, which 
can be compared with sample moments estimated from the data.5 Since it is 
never evaluated, the true density function gYT 

ðYT Þ can be intractable or even 
unknown, and the data can be observed with or without noise, since adding 
noise to simulated data is trivial. The de¯ning characteristic of EMM is the 
choice of moments to simulate. Following Gallant and Tauchen (1996), EMM 
uses the score vector from some tractable auxiliary model. Although the 
technique is well known, we go through the details here to motivate our later 
discussion of the ¯nite-sample behavior of EMM. 

5 Du±e and Singleton (1993) discuss the properties of simulation estimators in general. 
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Let f be some auxiliary function that (perhaps approximately) expresses 
the log density of yt as a function of Yt 1 and a parameter vector 0: 

f ðyt jYt 1; 0Þ: 
The ¯rst step in EMM is to calculate the parameters of the auxiliary function 
that maximize the (pseudo) log likelihood. Equivalently, the parameter 
vector T is the vector that sets the sample mean of the derivative of the log-
likelihood function to zero. 

1 
T 

T 

t¼1 

@f ðyt jYt 1; Þ 
@� ¼ T 

¼ 0: 

The Central Limit Theorem implies that 

T
p 

ð T 0Þ !  
d 
Nð0; d 1Sd 1Þ; ð4Þ 

where the convergence is in distribution. The matrices S and d are de¯ned as 

S ¼ E 
@f 
@� 

@f 
@� 0 ¼ 0 

ð5Þ 

and 

d ¼ E 
@f 

@� @� 0 ¼ 0 

: 

Intuitively, d transforms the variability of the moment vector S into the 
variability of the auxiliary parameters. 

The second step in EMM is to simulate a long time series Ŷ N ð Þ ¼  
ðŷ1ð Þ0; . . . ; ŷN ð Þ0Þ0 using the true model (1), (2) and (3). If the discrete 
density of bond yields conditional on is known, yields can be generated from 
this density. Otherwise the continuous process (2) is discretized.6 The 
simulated time series is used to calculate the expectation of the score vector 
associated with the auxiliary model: 

mT ð �; T Þ ¼  
1 
N 

N 

¼1 

@f ðŷ ð Þ jŶ 1ð Þ; Þ 
@� ¼ T 

: ð6Þ 

The arguments of f in (6) are explicit to show that the score vector is cal-
culated using the combination of simulated yields and parameters from the 
original data YT . As  N approaches in¯nity, this sample mean approaches the 

6 Discretization techniques are discussed in Kloeden and Platen (1992). 
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expectation of the score vector evaluated at T : 

lim 
N!1 

mT ð �; T Þ ¼  E 
@f ðyt ð ÞjYt 1ð Þ; Þ 

@� ¼ T 

; 

where Yt 1 and yt are drawn from the distribution of bond yields as deter-
mined by . 

The Central Limit Theorem determines the asymptotic distribution of mT : 

T
p 

mT ð 0;� T Þ !  
d 
Nð0; C ð 0Þd 1Sd 1C ð 0ÞÞ ð7Þ 

where 

C ð Þ ¼  lim 
T!1 

@mT ð �; Þ 
@� 0 ¼ T 

¼ 
@mT ð �; Þ 

@� ¼ 0 

: 

The inner part of the variance-covariance matrix in (7) is the variance-
covariance matrix of the auxiliary parameters from (4). This inner matrix is 
pre- and post-multiplied by the sensitivity of mT to the auxiliary parameters. 

The distribution in (7) can be simpli¯ed by recognizing that Cð 0Þ ¼  d, so  
that 

T
p 

mT ð 0;� T Þ !  
d 
Nð0; SÞ: 

This asymptotic result leads to the EMM estimator 

T ¼ argmin mT ð �; T Þ0S 1 
T mT ð �; T Þ: ð8Þ 

where ST is the sample counterpart to (5): 

ST ¼ 
1 
T 

T 

t¼1 

@f 
@� 

@f 
@� 0 ¼ T 

: 

An estimate of the asymptotic variance-covariance matrix of ^ T is 

T ¼ 
1 
T 

½ðMT Þ0S 1 
T ðMT Þ� 1; 

where 

MT ¼ 
@mT ð �; T Þ 

@� 0 ¼ T 

: 

If there are more moment conditions (length of ) than parameters (length of 
), then under the null hypothesis, 

J ¼ TmT ð T ;� T Þ0S 1 
T mT ð T ;� T Þ 

Estimation of Dynamic Term Structure Models 

1250008-9 

Q
ua

rt
. J

. o
f 

Fi
n.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 W
SP

C
 o

n 
09

/0
3/

12
. F

or
 p

er
so

na
l u

se
 o

nl
y.

�

�
� � � �

����
� �

� �

�
�

� � � � �

�
�
����
� �

� �
�
����
� �

�

�

�
�

� � �

� �� �����
� �

� �

�

� � �

�
����
� �

�

�

� � �

ffiffiffiffi 

ffiffiffiffi 

X 



is asymptotically distributed as a 2ðqÞ random variable, where q is the 
number of over-identifying moment conditions. 

This estimation procedure does not specify which auxiliary log-likelihood 
function to use. Gallant and Tauchen (1996) note that if the distribution 
implied by the auxiliary model is close to that implied by the true underlying 
model, then the estimates obtained should be close to those obtained using 
maximum likelihood. A common choice of auxiliary model is a semi-non-

parametric (SNP) description of the data (outlined in Appendix A), in large 
part motivated by its asymptotic properties. Gallant and Long (1997) show 
that with this choice of auxiliary model, EMM asymptotically attains the 
e±ciency of maximum likelihood. 

Although it is desirable to use estimation techniques that have good 
asymptotic properties, their ¯nite-sample properties are more important in 
practice. The ¯nite-sample properties of EMM/SNP have been studied in 
several contexts.7 However, this earlier work has not examined settings that 
contain the salient features of bond yield data: highly persistent and highly 
correlated multivariate time series. The most relevant work is Zhou (2001), 
who studies methods to estimate the parameters of a square-root di®usion 
model of the instantaneous interest rate. In this univariate setting, he ¯nds 
that when the data are highly persistent, the performance of EMM/SNP is 
mixed. There is good reason to suspect that the performance of EMM/SNP 
will deteriorate in a multivariate setting. E±cient Method of Moments is a 
GMM estimator, and it is well known that the ¯nite-sample properties of 
GMM can deteriorate seriously as the number of over-identifying restrictions 
increases (see, for example, Tauchen, 1986; Kocherlakota, 1990; Ferson and 
Foerster, 1994; Hansen et al., 1996). Because SNP puts little structure on 
data, the number of SNP parameters that are used to summarize a multi-

variate time series can be large. An SNP speci¯cation uses a minimum of 
mðm þ 1Þð3 2Þ parameters to ¯t an m-dimensional time series, and usually 
many more than this. 

2.3. The Kalman ¯lter 

Filtering is a natural approach when the underlying state is unobserved. The 
Kalman ¯lter corresponds to ML when the state vector dynamics are Gaus-

sian and the noise is also normally distributed. In non-Gaussian settings, 
given an analytic conditional density for the state vector, exact nonlinear 

7 See, for example, Chumacero (1997), Andersen et al. (1999), and Andersen and Sørensen 
(1996). 
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¯ltering is possible but numerically demanding, especially for nonscalar xt . 
We are unaware of any empirical term-structure implementations of exact 
¯ltering when the dynamics of xt are nonlinear.

8 

Approximate linear ¯ltering is easier to implement. The Kalman ¯lter has 
been applied to term structure models in which xt has a±ne dynamics and thus 
analytic expressions of the ¯rst two moments of the conditional density are 
available.9 Outside the Gaussian class of term structure models, parameter 
estimates obtained directly from Kalman ¯lter estimation are inconsistent. 
There is Monte Carlo evidence that when the underlying model is linear but 
heteroskedastic, the inconsistency may be of limited importance in practice.10 

In this paper we examine the empirical performance of a variant of the 
Kalman ¯lter. To introduce this variant, we ¯rst review the extended Kalman 
¯lter. The observation equation expresses observed yields, yt, as a linear 
function of the unobservable state, xt, plus measurement error t . The tran-
sition equation expresses the discrete-time evolution of xt as linear in xt . 
These equations are determined by the parameters of the term structure 
model . The term \extended" means that the parameters of the linear 
functions may depend on the underlying state xt. The structure is 

yt ¼ H0ð Þ þ H1ð Þ0xt þ t ; ð9Þ 

xtþ1 ¼ F0ðxt ;� Þ þ F1ðxt;� Þxt þ vtþ1; ð10Þ 

Eð t Þ ¼ 0; Eðvtþ1Þ ¼ 0; Eð t 
0 
tÞ ¼ Rð Þ; Eðvtþ1v 0 tþ1Þ ¼ Qðxt;� Þ: 

In (9), H0 and H1 are not functions of xt . Although there are no additional 
complications introduced by allowing for such dependence, the term structure 
models we examine have pricing formulas that satisfy (9). The con-
temporaneous prediction of the state vector and its associated variance-
covariance matrix are denoted x p 

tjt and Ptjt, respectively. One-step-ahead 
forecasts of the state vector and observable vector, are denoted x p 

tþ1jt and 
y p 
tþ1jt and the variance-covariance matrices of these forecasts are denoted 

Ptþ1jt and Vtþ1jt , respectively. 

8 The exact ¯lter of Kitagawa (1987) is implemented by Lu (1999) for a Constantinides (1992) 
model, which has Gaussian dynamics for the state vector. For a discussion of the high com-
putational cost of Kitagawa's ¯lter, see the comments by Kohn and Ansley (1987) and Martin 
and Raftery (1987). 
9 Applications include Pennacchi (1991), Chen and Scott (2003), Duan and Simonato (1999), 
Lund (1997), de Jong (2000), Geyer and Pichler (1999), and Jegadeesh and Pennacchi (1996). 
10 Some results are in de Jong (2000) and Duan and Simonato (1999). In addition, in certain 
cases, as in Lund (1997), the approximation error can be reduced using iterative techniques or 
numerical integration. 
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The extended Kalman ¯lter is estimated using the standard Kalman ¯lter 
recursion, though the resulting parameter estimates are generally inconsist-
ent. The recursion begins with a candidate parameter vector . This vector is 
used to calculate an unconditional expectation and variance-covariance 
matrix for x1, which we can denote x p 

0j0 and P0j0. (If closed-form expressions 
for these moments are unavailable, the moments can be produced with 
simulations.) The steps in the recursion are 

(1) Use x p 
tjt and to evaluate the matrices F0ðxt ;� Þ; F1ðxt ;� Þ, and Qðxt ;� Þ. 

Denote these values by F0t , F1t , and Qt. This is the step that creates 
inconsistency in the estimates, because the ¯ltered xt is used instead of 
the (unknown) true xt. 

11 

(2) Compute the one-period-ahead prediction and variance of xtþ1, x p 
tþ1jt ¼ 

F0t þ F1tx p 
tjt and Ptþ1jt ¼ F1tPtjtF 0 1t þ Qt . 

(3) Compute the one-period-ahead prediction and variance of ytþ1, y p 
tþ1jt ¼ 

H0 þ H 0 1x p 
tþ1jt and Vtþ1jt ¼ H 0 1Ptþ1jt H1 þ R. 

(4) Compute the forecast error in ytþ1, etþ1 ¼ ytþ1 y p 
tþ1jt . 

(5) Update the prediction of xtþ1, x p 
tþ1jtþ1 ¼ x p 

tþ1jt þ Ptþ1jt H1V 1 
tþ1jtetþ1 and 

Ptþ1jtþ1 ¼ Ptþ1jt Ptþ1jt H1V 1 
tþ1jtH 0 1Ptþ1jt . 

The estimated parameter vector T solves 

T ¼ argmax 
T 

t¼1 

f ðet ; Vtjt 1Þ; 

where the period-t approximate log-likelihood is 

f ðet; Vtjt 1Þ ¼ �  
1 
2 

m logð2 Þ þ log jVtjt 1j þ e 0 t V 1 
tjt 1et : 

This ¯lter requires a closed-form expression for the discrete-time dynamics 
of xt. In many term structure settings, there is no such expression. In such 
cases we advocate the use of a variant of the Kalman ¯lter, where (10) is  
replaced with a linearization of the instantaneous dynamics of xt in (2). The 
linearization is taken in the neighborhood of x p 

tjt . The time between discrete 
observations is denoted t. The linearization is (suppressing the dependence 
on parameters) 

xtþ1 ¼ F0t þ F1txt þ vtþ1; ð11Þ 

11 The distribution of the shock also a®ects the consistency of the estimates. See Duan and 
Simonato (1999) for a detailed discussion. 
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F0t ¼ ðx p 
tjt Þ� 

@� ðxt Þ 
@x 0 t xt ¼x p 

tjt 

x p 
tjt t; ð12Þ 

F1t ¼ I þ 
@� ðxtÞ 
@x 0 t xt ¼x p 

tjt 

t; ð13Þ 

Qt ¼ ðx p 
tjt Þ ðx p 

tjt Þ0 t: ð14Þ 

In (11) through (14), two new approximation errors are added to that 
caused by evaluating dynamics at the ¯ltered xt instead of at the true xt . The 
¯rst is the use of the instantaneous dynamics of xt as a proxy for the discrete-
time dynamics of xt. The second is the linearization of these dynamics. 

An estimate of the asymptotic variance-covariance matrix of the estimated 
parameters T is based on the outer product of ¯rst derivatives of the log 
likelihood function, 

T ¼ 
1 
T 2 

T 

t¼1 

@f 
@� 

@f 
@� 0 ¼ T 

: 

Because the log-likelihood function is misspeci¯ed for non-Gaussian models, a 
theoretically more robust estimate of the variance-covariance matrix uses 
both ¯rst and second derivatives of the log likelihood function. In practice, 
however, we have found that when estimating term structure models, 
numerical di±culties in the calculation of second derivatives outweigh the 
value of using this more robust estimator. 

3. Model Description 

The focus of this paper, as of most of the literature in this area, is on esti-
mating models within the a±ne framework of Du±e and Kan (1996). There 
are n state variables, denoted xt �ð xt;1; . .  .  ; xt;nÞ0 . Uncertainty is generated 
by n independent Brownian motions. Under the equivalent martingale 
measure these are denoted zt �ð zt;1; . .  .  ; zt;nÞ0; corresponding Brownian 
motions under the physical measure are represented without the tildes. The 
instantaneous nominal interest rate, denoted rt , is a±ne in the state: 

rt ¼ 0 þ xt : 

Here, 0 is a scalar and is an n-vector. The equivalent-martingale dynamics 
of the vector xt determine bond prices. We consider two special cases of this 
framework. In both of them the individual elements of xt are independent. 
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The ¯rst is when these elements follow Gaussian processes: 

dxit ¼ ðk i kixitÞdt þ i dzit: 

The second is when these elements follow square-root di®usion processes: 

dxit ¼ ðk i kixitÞdt þ i xit 
p 

dz it: 

Du±e and Kan show that we can write the price and yield of a zero-coupon 
bond that matures at time t þ in the form 

Pðxt ;� Þ ¼  exp½Að Þ �  Bð Þ0xt ; ð15Þ 

Y ðxt ;� Þ ¼ ð1 Þ½� Að Þ þ Bð Þ0xt : ð16Þ 

In (15) and (16), Að Þ is a scalar function and Bð Þ is an n-valued function. 
Explicit solutions can be calculated for the special cases we consider, given 
the results of Vasicek (1977) and Cox et al. (1985). 

3.1. The price of risk 

The dynamics of xt under the physical measure are determined by specifying 
the dynamics of the market price of risk. De¯ning s t as the state price 
de°ator for time-t pricing of time-s payo®s, we can write 

d t 

t 
¼� rtdt 

0 
t dzt: ð17Þ 

The element i of the n-vector t represents the price of risk associated with 
the Brownian motion zit. When the equivalent-martingale dynamics are pure 
Gaussian di®usions we use the following form for the price of risk: 

it ¼ 1 
i ð i1 þ i2xitÞ: 

This form is a special case of the \essentially a±ne" models in Du®ee (2002). 
When the equivalent-martingale dynamics are pure square-root di®usions we 
use the following form: 

it ¼ 1 
i ð i1 þ i2 xit 

p Þ: 

This \semi-a±ne" speci¯cation is introduced in Duarte (2004). In either case, 
when i2 ¼ 0 we are in the \completely a±ne" world of Dai and Singleton 
(2000). When i2 ¼ 0, the individual elements of t can change sign 
depending on the shape of the term structure (i.e., depending on the elements 
of xt ). Thus investors' willingness to face certain types of interest-rate risk can 
switch sign in a way that is not possible when i2 ¼ 0. 
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3.2. Interest rate dynamics under the physical measure 

The general representation of the state price de°ator's dynamics in (17) allow 
us to write the dynamics of xt under the physical measure. For the Gaussian 
case the physical dynamics are 

dxit ¼ k i þ i1 �ð ki i2Þxit dt þ i dzit : 

Note that under the physical measure the dynamics of xit are also Gaussian. 
This equivalence between equivalent martingale and physical dynamics does 
not carry over to the case of square-root di®usions under the equivalent 
martingale measure. In this case the physical dynamics are 

dxit ¼ k i þ i1 xit 
p �ð k i2Þxit dt þ i xit 

p 
dzit: ð18Þ 

These dynamics are nonlinear if i1 ¼ 0. Stationarity of xt in the Gaussian 
case is equivalent to ki i2 > 0. The same condition ensures stationarity of 
xit in (18). Stationarity is also ensured in this case if ki i2 ¼ 0 and i1 < 0. 

4. Details of the Simulation Procedure 

We study one-factor and two-factor a±ne term structure models. For each 
choice of n, we consider both Gaussian dynamics and square-root di®usion 
dynamics. We further break down these models into the ¯rst-generation 
version (Vasicek for Gaussian and CIR for square-root di®usion) and a ver-
sion that generalizes the price of risk. For Gaussian dynamics this general-
ization is an a±ne price of risk and for the square-root di®usion this is 
Duarte's semi-a±ne price of risk. 

The \true" parameters for all of these processes are based on the results of 
¯tting the models to Treasury yields. We used implied zero-coupon month-

end bond yields computed by Rob Bliss from coupon bond yields, and are 
indebted to him for sharing the data. For the two-factor semi-a±ne model the 
parameters were estimated using data from 1971 through 1998. For all other 
models the parameter estimates are based on data from 1970 through 2001. 
(The use of two samples is accidental.) 

Most of the simulated data samples we examine contain 1,000 weeks 
(a little more than 19 years) of bond yields. Typically the samples include 
yields on bonds with maturities of 3 months, 1 year, and 10 years. 
Occasionally we consider only two yields. In this case we drop the one-year 
yield. We also occasionally consider ¯ve yields. In this case we add yields for 
maturities of six months and ¯ve years. In most of the simulations, the bond 
yields are given by the sum of the model-implied bond yields and normally 
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distributed noise. The noise in each bond's yield is independent across other 
bonds and across time and has a maturity-independent variance V . When we 
use estimation techniques that rely on exact identi¯cation of the state, the 
10-year bond yield is observed without error. With n ¼ 2, the three-month 
bond yield is also observed without error. The simulated data are generated 
by discretizing the instantaneous dynamics (ten subperiods per week) using 
the Milstein Fortran code of Gallant and Tauchen. 

For each set of simulated data, we estimate the parameters of the term 
structure model using various techniques. Three of the techniques require 
simulations. For the Pedersen/Santa-Clara simulated ML procedure we 
divide each weekly interval into ¯ve subperiods and estimate the conditional 
distribution with 2,500 Monte Carlo simulations. For the Kalman ¯lter that 
uses linearized instantaneous dynamics, we estimate the unconditional ¯rst 
two moments of the state with a single path simulation of 5,000 years. We set 
the length of the path simulation in EMM at 50,000 weeks. We experimented 
with longer simulations, but increasing the simulation length had no 
appreciable e®ect on the results. For each technique we compute parameter 
estimates and their associated standard errors. We use Gallant and 
Tauchen's Fortran 77 code to estimate parameters using EMM/SNP. Our 
code to estimate parameters using the other techniques is written in Fortran 
90 and calls IMSL optimization routines (Simplex and a quasi-Newton 
optimizer). We conduct an extensive search over the parameter space to ¯nd 
the optimal parameters. 

500 Monte Carlo simulations are produced for each model. The results 
from these simulations are discussed in the next three sections. The one-factor 
Gaussian model has a simple structure that allows us to pinpoint what is 
driving the ¯nite-sample behavior of its parameter estimates. Therefore we 
devote the next section to these models. We then brie°y examine the results 
of ¯nite-sample estimation of one-factor square-root di®usion models, and 
¯nally consider two-factor models. 

5. One-Factor Gaussian Models 

In this section we make two major points. First, ML estimation of term 
structure models that allow for a general speci¯cation of the price of risk 
more precisely, models that allow the drift of the state under the physical 
measure to be unrelated to the drift under the equivalent martingale 
measure produces estimates of the dynamics of the price of risk that are 
strongly biased and imprecise. Second, the performance of EMM/SNP is 
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substantially inferior to that of ML. In particular, the estimated asymptotic 
standard errors of the parameter estimates di®er substantially from the ¯nite-
sample standard deviations of the parameter estimates. 

For the one-factor Gaussian model the equivalent martingale dynamics of 
the instantaneous interest rate are 

dr ¼ ðk krtÞdt þ dzt ð19Þ 

and the physical dynamics are 

dr ¼ k þ 1 �ð k 2Þrt dt þ dzt : ð20Þ 

The Vasicek model sets 2 ¼ 0. The more general form is an a±ne price of risk. 
As discussed in the previous section, the parameters of the model are estimated 
from the behavior of Treasury data over the past 30 years. For the Vasicek 
model, the parameters are k ¼ 0:0084, 1 ¼� 0:005, k ¼ 0:065, and 

¼ 0:0175. The mean interest rate is 0.052. The half-life of a shock to rt is 
almost 11 years; rt is close to a random walk. For the more general Gaussian 
model, we retain the same parameters identi¯ed under the equivalent martin-

gale measure and set the price of risk parameters to 1 ¼ 0:005 and 2 ¼� 0:14. 
Before we get into the details of term structure estimation, we take a look at 

the ¯nite-sample properties of the instantaneous interest rate itself. Without 
cross-sectional information, we can only identify parameters that are ident-
i¯ed under the physical measure: k þ 1, k 2, and . For the purposes of 
this exercise, we use the \true" parameters for the Vasicek model. Table 1 
displays results from Monte Carlo simulation of ML estimation of the physical 
dynamics of rt, given 1,000 weeks of observations of rt . The estimates of both 
k þ 1 and k are strongly biased. The bias in k is the standard ¯nite-sample 
bias in estimates of the autoregressive parameter of an AR process that has a 
near unit root, as noted by Ball and Torous (1996). The bias in k þ 1 is 

Table 1. Maximum likelihood parameter estimates of a Gaussian model of 
the short rate. 

True Value Mean Estimate Std Dev Mean Std Error 

ðk þ 1Þ� 103 3.4 14.5 18.3 9.8 
k 102 6.5 30.4 23.9 16.7 

103 17.5 17.5 0.4 0.4 

Note: The interest rate model is dr ¼ ðk þ 1 krt Þdt þ dz. This table 
summarizes the results of 500 Monte Carlo simulations. Each simulation 
consists of 1,000 weekly observations of the instantaneous interest rate. The 
parameters are estimated with maximum likelihood. 
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created by the same bias, since the mean interest rate is ðk þ 1Þ k. To ̄ t the 
sample mean with a biased estimate of k, the estimate of k þ 1 must also be 
biased. Also note that the sample standard deviations of these two parameter 
estimates are substantially larger (by 40% to 80%) than their corresponding 
mean standard errors. Below, we contrast these results with those from esti-
mation of the complete dynamic term structure model. 

5.1. ML estimation of Vasicek model 

We estimate the model using a panel of bond yields. The panel gives us 
information about both the physical and equivalent-martingale dynamics of 
rt, allowing us to estimate all of the model's parameters. Recall that all bond 
yields are measured with normally distributed error with standard deviation 
V

p 
. In this case the standard Kalman ¯lter produces maximum likelihood 

estimates of the model's parameters. The left side of Table 2 displays the 
results of 500 Monte Carlo simulations of Kalman ¯lter estimation. 

In contrast to ML estimation using only observations of rt, here all of the 
estimated parameters are now unbiased (or, more precisely, there is no 
statistically signi¯cant bias given 500 simulations). In addition, except for 1, 
the mean standard errors are close to the sample standard deviations of the 
parameter estimates. The reason the bias disappears when using panel data is 
that the drift of rt under the physical dynamics shares the parameter k with 
the drift of rt under the risk-neutral dynamics. The cross-section contains 
precise information about the risk-neutral drift, thus for the purposes of 

Table 2. Parameter estimates of a one-factor Gaussian model with constant price of risk. 

Kalman Filter (ML) EMM/SNP 

Parameter True Value Mean Std Dev Mean Std Err Mean Std Dev Mean Std Err 

k 103 8.4 8.4 0.24 0.23 8.0 0.34 0.20 
k 102 6.5 6.5 0.31 0.31 6.5 0.31 0.25 

103 17.5 17.5 1.02 0.99 12.2 3.76 1.23 

1 103 5.0 5.0 2.33 3.35 4.2 2.55 0.66 

V
p 

103 6.0 6.0 0.09 0.09 6.0 0.11 0.08 

Note: The model is given by Eqs. (19) and (20) in the text, with 2 ¼ 0. This table summarizes 
the results of 500 Monte Carlo simulations. With each simulation, 1,000 weeks of yields on 
bonds with maturities of 3 months, 1 year, and 10 years are observed with iid measurement 
error. The standard deviation of the error is V

p 
. The parameters of the model are estimated 

with the Kalman ¯lter (which is ML) and with EMM/SNP. The mean number of over-
identifying moments with EMM/SNP is 23.6. The EMM 2 test rejects the model at the 5% 
level in 43.2% of the simulations and rejects at the 1% level in 28.6% of the simulations. 
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estimating k the ML estimation procedure essentially discounts the imprecise 
information contained in the physical drift. This is why the standard devi-
ation of the estimates of k using panel data is less than 2% of the corre-
sponding standard deviation using only time series data. Here we are simply 
restating the point made by Ball and Torous (1996) in the context of CIR-
type models. Note that the panel contains much more information about the 
speed of mean reversion than does the time series of rt even though the bond 
yields are observed with error. (No measurement error was introduced in the 
simulated time series of rt .) 

5.2. ML estimation of the general Gaussian model 

We now extend the analysis to the a±ne speci¯cation for the price of interest 
rate risk. The price of risk is linear in rt such that the speed of mean reversion 
under the physical measure k 2 ¼ 0:205. Therefore rt is not as persistent 
as in the Vasicek model estimated above. As in that model, the Kalman ¯lter 
corresponds to maximum likelihood. 

The left side of Table 3 displays the results of 500 Monte Carlo simulations 
of ML estimation. Estimates of the parameters identi¯ed under the equiv-
alent martingale measure are close to unbiased and, as in the Vasicek case, 
are estimated with high precision. (The variability in the estimates is a little 
higher here than in the Vasicek case.) However, estimates of the parameters 
identi¯ed only under the physical measure are strongly biased and highly 

Table 3. Parameter estimates of a one-factor Gaussian model with a±ne price of risk. 

Kalman Filter (ML) EMM/SNP 

Parameter True Value Mean Std Dev Mean Std Err Mean Std Dev Mean Std Err 

k 103 8.4 8.4 0.31 0.30 8.4 0.47 0.37 
k 102 6.5 6.5 0.39 0.37 6.5 0.60 0.45 

103 17.5 17.7 1.04 1.02 12.2 1.58 1.57 

1 103 5.0 20.0 16.98 14.12 25.0 46.78 17.33 

2 102 14.0 37.4 24.14 20.96 43.7 53.37 25.06 

V
p 

103 6.0 6.0 0.09 0.09 6.0 0.10 0.09 

Note: The model is given by Eqs. (19) and (20) in the text. This table summarizes the results 
of 500 Monte Carlo simulations. With each simulation, 1,000 weeks of yields on bonds with 
maturities of 3 months, 1 year, and 10 years are observed with iid measurement error. The 
standard deviation of the error is V

p 
. The parameters of the model are estimated with the 

Kalman ¯lter (which is ML) and with EMM/SNP. The mean number of overidentifying 
moments with EMM/SNP is 22.5. The EMM 2 test rejects the model at the 5% level in 5.6% 
of the simulations and rejects at the 1% level in 1.4% of the simulations. 
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variable. The bias in the estimate of 1 is about one standard deviation and 
the bias in the estimate of 2 is about minus one standard deviation. 

These results for the one-factor general Gaussian model are characteristic 
of all of the models we examine that have a general speci¯cation of the price of 
risk. Because of the relative simplicity of this model, we can see clearly the 
source of the bias in the risk premium parameters. It is created by the 
decoupling of the risk-neutral dynamics from the physical dynamics. Recall 
that in the Vasicek model, the parameters identi¯ed under the risk-neutral 
measure help to pin down the drift of rt under the physical measure. When 
the dynamics of the risk premia are more °exible, the physical and risk-
neutral drifts have no common parameters. Therefore the parameters ðk þ 

1Þ and ðk 2Þ are determined exclusively by the time-series properties of 
bond yields. The near unit-root bias produces an upward-biased speed of 
mean reversion, and thus a downward-biased estimate of 2 (since k is 
determined by the cross section). Note that the bias in the speed of mean 
reversion, 0:374 0:140 ¼ 0:234, is almost identical to the bias in the speed of 
mean reversion we saw in Table 1, where only time-series information is used. 
In addition, the variability in the estimate of mean reversion from Table 1 is 
almost identical to the variability in the estimate of 2 here. 

Figure 1 displays the true and estimated drift functions for both the 
Vasicek and generalized Vasicek model. Panel A corresponds to the Vasicek 
model and Panel B corresponds to the Gaussian model with an a±ne price of 
risk. The solid lines represent true drift functions and the dashed lines rep-
resent drift functions implied by the mean parameter estimates from Kalman 
¯lter estimation. In Panel A these lines are indistinguishable. In Panel B, we 
see that the estimated drift function implies a too-high drift when rt is below 
average and a too-low drift when rt is above average. To give some intuition 
for the results, the true half-life of an interest rate shock in the a±ne-risk 
model is 3.38 years. The implied half-life is less than half as long, 1.58 years. 

Another way to interpret the magnitude of this bias is to ask what 
implications it has for the dynamics of expected excess returns to bonds. In 
this model the instantaneous expected excess return to a bond with maturity 
is 

excess rett ¼� 
1 e k 

k 
ð 1 þ 2rt Þ: 

The intuition behind this expression is straightforward. The fraction in 
this expression is the sensitivity of a bond's log price to instantaneous interest 
rates. (For k close to zero it is approximately the maturity of the bond.) The 
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term in parentheses is the di®erence between the true drift of rt and the risk-
neutral drift. The higher the true drift relative to the risk-neutral drift, the 
lower the expected excess return to the bond: investors are pricing bonds as if 
interest rates will rise less quickly (or fall more rapidly) than they are 
expected to under the physical measure. 

The estimated model implies a much wider range of expected excess bond 
returns than does the true model for a given range of rt . According to the true 
model, the expected excess return to a 10-year bond typically ranges from 
around 0% to around 6% a year. Consider, for example, three values of rt: one 
standard deviation below the mean, the mean, and one standard deviation 
above the mean. These values are 3.80%, 6.54%, and 9.27%, respectively. The 
corresponding expected excess returns to a 10-year bond are 0.24%, 3.05%, 
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Fig. 1. True and estimated drift functions for one-factor Gaussian models. 

Panels A and B display drift functions for rt from two Gaussian term structure models. The model for 
Panel A speci¯es a constant price of interest rate risk and the model for Panel B speci¯es an a±ne price of 
interest rate risk. True drift functions are illustrated with solid lines. The dashed lines are drift functions 
implied by the mean parameter estimates from 500 Monte Carlo simulations of maximum likelihood 
estimation. The simulated data consists of a panel of 1,000 weeks of yields on three bonds. The yields are all 
observed with normally distributed, iid measurement error of 60 basis points. The maturities of the bonds 
range from 3 months to 10 years. The ranges of the x axes are approximately two unconditional standard 
deviations of rt (which di®er across the models). 
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and 5.87% per year. If we use the mean parameter estimates from the model 
to predict instantaneous expected excess returns at these various values of rt, 
the range of expected excess returns would roughly triple. The expected 
excess returns are 2.04%, 5.48%, and 13.0% per year, respectively. 

The expectations hypothesis of interest rates is hard to reconcile with the 
behavior of Treasury yields. For example, Campbell and Shiller (1991) ¯nd 
that when the slope of the term structure is steep, expected excess returns to 
bonds are high. Backus et al. (2001) conclude that the evidence against the 
expectations hypothesis of interest rates is strengthened when we take into 
account ¯nite-sample biases in tests of the hypothesis. Although their anal-
ysis focused on estimating simple regressions, the result carries over to esti-
mating dynamic term structure models. The ¯nite-sample bias we document 
works against rejecting the expectations hypothesis. The negative bias in 2 

implies that when rt is low (and therefore the slope is steep), the expected 
excess returns implied by the model's parameter estimates are lower than 
those implied by the true model. This bias pushes the implied behavior of 
returns closer to that consistent with the expectations hypothesis. 

The bias in the price of risk dynamics is an important feature of term 
structure estimation, thus it is worth taking a closer look at its determinants. 
We conduct a variety of experiments to determine the sensitivity of the bias 
to variations in the amount of information in the data sample. We vary the 
number of points along the yield curve that are observed, the amount of 
measurement error in bond yields, the frequency of observation, and the 
length of the sample period. 

Given the nature of the bias, none of the results from these experiments are 
particularly surprising. More cross-sectional information (either more points 
on the yield curve or less measurement error) increases the accuracy of esti-
mates of the parameters identi¯ed under the equivalent martingale measure 
but has little e®ect on the accuracy of estimates of the parameters identi¯ed 
under the physical measure. The relevant evidence is in Tables 4 and 5. When 
¯ve points on the yield curve are used (the ¯rst set of results in Table 4), the 
standard deviations of the estimates of k �; k;� , and V

p 
drop to about 80% of 

the corresponding standard deviations when three points are used. However, 
this change has a minimal e®ect on the means and the standard deviations of 

1 and 2. The same pattern appears when only two points on the yield curve 
are used (the middle set of results in the table). Finally, when the standard 
deviation of measurement error in bond yields is set to 10 basis points instead 
of 60 (the ¯nal set of results in the table), the standard deviations of estimates 
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k �; k;� , and V
p 

drop by about three-fourths, but again the e®ect on esti-
mates of the price of risk parameters is minimal. 

Table 5 displays results based on varying the amount of information in the 
time series. In Panel A we consider both cutting the sample size in half and 
doubling the sample size. The results are easy to summarize. The standard 
deviations of all the parameter estimates decrease with the sample size. The 
bias in the estimates of the price of risk also decreases with the sample size. 
For example, doubling the sample to 2,000 weeks (more than 38 years) cuts 
the bias in the estimates of both 1 and 2 in half. Nonetheless, the mean 
parameter estimates of k and 2 imply that the half-life of interest rate shocks 
(2.16 years) is less than two-thirds the actual half-life of interest rate shocks. 

Monthly data are often used to estimate dynamic term structure 
models. Panel B reports results at this frequency. The ¯rst set of results is 

Table 5. Maximum likelihood parameter estimates of a one-factor Gaussian model with a±ne 
price of risk: Varying assumptions. 

Panel A. Weekly Observations 

500 Obs 2000 Obs 

Parameter True Value Mean Std Dev Mean Std Err Mean Std Dev Mean Std Err 

k 103 8.4 8.5 0.57 0.53 8.4 0.19 0.19 
k 102 6.5 6.5 0.71 0.66 6.5 0.23 0.22 

103 17.5 17.7 1.37 1.48 17.6 0.70 0.71 

1 103 5.0 36.9 34.99 25.57 12.4 10.27 8.70 

2 102 14.0 62.7 48.44 38.03 25.6 15.10 12.70 

V
p 

103 6.0 6.0 0.12 0.12 6.0 0.06 0.06 

Panel B. Monthly Observations 

240 Obs 480 Obs 

Parameter True Value Mean Std Dev Mean Std Err Mean Std Dev Mean Std Err 

k 103 8.4 8.4 0.67 0.61 8.4 0.37 0.37 
k 102 6.5 6.5 0.82 0.77 6.5 0.47 0.46 

103 17.5 17.7 1.52 1.50 17.6 0.99 1.03 

1 103 5.0 20.2 20.25 14.63 12.2 9.95 8.71 

2 102 14.0 37.3 26.94 21.75 25.2 13.95 12.83 

V
p 

103 6.0 6.0 0.20 0.19 6.0 0.13 0.13 

Note: The model is given by Eqs. (19) and (20) in the text. This table summarizes the results 
of four sets of 500 Monte Carlo simulations. With each simulation, yields on bonds with 
maturities of ranging from 3 months to 10 years are observed with iid measurement error. The 
standard deviation of the error is V

p 
. 
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for 240 months, which is about the length of a sample of 1,000 weeks. Thus a 
comparison of these results with those of Kalman ¯lter estimation in Table 3 
reveals the e®ects of a decrease in the frequency of observation while holding 
the length of the sample period constant. This change decreases the precision 
of the parameter estimates identi¯ed under the equivalent martingale 
measure. The standard deviations of k �; k;� , and V

p 
roughly double. It has 

a much smaller e®ect on the estimates of 1 and 2. Their standard deviations 
rise by between 10% and 20%. Moreover, the bias in these estimates is 
una®ected. Doubling the length of the data sample has the same e®ect with 
monthly data as with weekly: standard deviations of parameter estimates fall 
and the bias in the estimates of the price of risk parameters decreases. 

We now shift our attention to estimation of the Gaussian model with 
EMM/SNP. Since this technique is not as e±cient at exploiting information 
in the sample as is maximum likelihood, we expect that the performance of 
this estimator will not match that of ML. But the actual performance of 
EMM/SNP is nonetheless surprising. 

5.3. EMM/SNP estimation 

Model estimation with EMM/SNP is a two-step procedure. First, an SNP 
speci¯cation is chosen to summarize the features of the data. Second, par-
ameters of the term structure model are chosen to minimize a quadratic form 
in the score vector from this chosen speci¯cation. We follow Gallant and 
Tauchen by choosing the SNP speci¯cation through a sequential search 
process using the Schwarz Bayes criterion. This search usually resulted in a 
VAR(2) speci¯cation with no higher-order terms for the variance-covariance 
matrix of innovations. Occasionally the search resulted in a VAR(3) speci-
¯cation. These SNP speci¯cations should be good auxiliary functions because 
they capture the relevant features of the data. In particular, no higher-order 
terms for variance-covariance matrix are necessary because the models are 
Gaussian. Denoting the number of points on the yield curve by m and the lag 
length as p, there are mðmp þ 1Þ þ mðm þ 1Þ 2 SNP parameters and there-
fore an equivalent number of moment conditions. 

The right side of Table 2 summarizes the results for estimation of the 
Vasicek model. The results di®er from those produced by ML estimation in 
two important ways. First, the estimate of is strongly biased and estimated 
with low precision. The mean estimate is about 70% of its true value, while its 
standard deviation is almost four times the standard deviation of the ML 
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estimate. Second, EMM/SNP's estimates of the uncertainty in the parameter 
estimates are much too small. For example, the sample standard deviations of 
the estimates of both and 1 are more than three times the corresponding 
mean standard errors. Moreover, the 2 test of the adequacy of the model, 
based on the over-identifying moment conditions, rejects the model at the 5% 
level in more than 40% of the simulations. The rejection rate at the 1% level 
is nearly 30%. Put di®erently, if we use EMM/SNP to judge whether these 
data are generated by the Vasicek term structure model, we frequently will 
conclude that they are not. 

In Sec. 8 we discuss in detail the reasons for the poor performance of 
EMM/SNP. Here we simply preview some of the points we make later. The 
problem is with EMM, not SNP. Estimation with EMM relies on the 
asymptotic equivalence between the curvature of the auxiliary function given 
the sample data and the curvature given an in¯nite sample of data generated 
by the true parameters. When the underlying data are highly persistent, 
these curvatures are often quite di®erent from each other in ¯nite samples. 
An implication of this divergence is that the weighting matrix used in EMM 
estimation is the wrong weighting matrix. The use of a wrong weighting 
matrix results in ine±cient parameter estimates and improper statistical 
inference. 

The ¯nite-sample performance of EMM/SNP does not improve when the 
underlying model is the more general one-factor Gaussian model. The right 
side of Table 3 summarizes results for estimation of the one-factor model with 
an a±ne price of risk. The divergence between EMM/SNP and ML is con-
centrated in the estimates of the price of risk parameters. The biases in the 
estimates of 1 and 2 are about 30% larger with EMM/SNP than with ML. 
The standard deviations of these EMM/SNP estimates are more than twice 
the corresponding ML standard deviations. They are also more than twice the 
corresponding mean standard errors. Thus statistical inference is again pro-
blematic, although here the 2 test of the over-identifying restrictions does 
not tend to reject the model too often. 

In this one-factor Gaussian setting the simplest possible term structure 
model the ¯nite-sample performance of EMM/SNP diverges dramatically 
from ML. In particular, statistical inference with EMM/SNP is, to put it 
mildly, problematic, while inference with ML is well behaved. Given its 
performance in this simple setting, it is not too di±cult to predict how EMM/ 
SNP will perform in estimating the more complicated models that we 
examine later in the paper. 
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6. One-Factor Square-Root Models 

In this section, we estimate models in which the instantaneous interest rate 
follows a non-Gaussian process. The instantaneous interest rate is 

rt ¼ 0 þ xt ; ð21Þ 

where the state variable xt follows a square-root di®usion process under the 
equivalent martingale measure. 

dxt ¼ ðk kxtÞdt þ xt 
p 

dzt ð22Þ 

Under the physical measure the dynamics of xt are 

dxt ¼ k þ 1 xt 
p �ð k 2Þxt dt þ xt 

p 
dzt : ð23Þ 

This is Duarte's semia±ne extension of the translated CIR model. The 
translated CIR model sets 1 to zero. The \true" parameters of the process are 
set to the values reported in the second column of Table 6. The true value of 1 

is set to zero, although we ̄ t data simulated using the true parameters to both 
the translated CIR model and to the more general semia±ne extension. 

We examine three estimation techniques. The ¯rst is maximum likelihood 
using exact identi¯cation of the state vector. For this estimation technique 
we do not add noise to the 10-year bond yield, so that it can be inverted to 
infer the state. The three-month and one-year yields are contaminated with 
noise with a standard deviation of 70 basis points. The second is the Kalman 
¯lter and the third is EMM/SNP. For the latter two techniques, all bond 
yields are observed with measurement error with a standard deviation of 60 
basis points. Note that because of the di®erent structures of measurement 
error, the data used with ML estimation di®ers from that used with Kalman 
¯lter and EMM/SNP estimation. 

We make three main points in the following discussion. First, generalizing 
the price of risk has the same qualitative consequences for ¯nite-sample 
estimation as it does in the Gaussian model. Second, Kalman ¯lter estimation 
does not use information from the data as e±ciently as does ML estimation. 
The main consequence is that estimates of parameters identi¯ed under the 
equivalent martingale measure are estimated by the Kalman ¯lter with less 
precision than they are estimated by ML. Third, EMM/SNP is an unac-
ceptable method for estimating these models. 

6.1. ML estimation 

We ¯rst examine results of estimating the model with the restriction 1 ¼ 0. 
This restriction allows computation of the probability distribution of 
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discretely observed values of xt. We therefore implement maximum likelihood 
using the exact likelihood function. The simulation results are summarized in 
the ¯rst set of columns in Table 6. (Unlike previous tables, this table reports 
medians as well as means. We refer to the median values when discussing the 
EMM/SNP results.) Only the estimate of 2 is biased, and its bias is not 
economically large. The mean estimate of 2, combined with the value of k, 
implies somewhat faster mean reversion of rt. The implied half-life of a shock 
with the mean estimate is 4.5 years, while the true half-life is 5.3 years. 

More troubling are the large biases in the estimates of the standard errors 
of the parameters. Aside from the standard deviation of measurement error, 
the standard deviations of the parameter estimates are all much larger (on 
average, twice as large) than the corresponding mean standard errors. Thus 
with this model, unlike the purely Gaussian model considered in the previous 
section, ¯nite-sample statistical inference with ML is unreliable. 

We next examine results of estimating the more general model (allowing 

1 ¼ 0) on the same data. Because the probability distribution of discretely 
observed values of xt is not known, we use simulated ML in place of exact ML. 
The parameter space is restricted to ensure stationarity. The restriction is 
k 2 0, with the additional requirement that 1 < 0 if  k 2 ¼ 0.12 This 
restriction is occasionally binding. Of the 500 simulations, 13 produced par-
ameter estimates k 2 ¼ 0, 1 < 0. (Although this is a boundary of the 
parameter space, the process is strictly stationary.) Results from these 13 
simulations are included in the summary statistics for the parameter esti-
mates. They are not included in the summary statistics for standard errors. 

A summary of the results is displayed in the ¯rst set of columns of Table 7. 
The main point to take from the table is that the estimates of the price of risk 
parameters are strongly biased. As with the general Gaussian model, the bias 
in 1 is about one standard deviation and the bias in 2 is about minus one 
standard deviation. Although the implied drift of rt is nonlinear in rt , the bias 
is not really a consequence of nonlinear ¯nite-sample behavior. Instead, it is 
simply re°ecting the same ¯nite-sample bias in the speed of mean reversion 
that a®ected estimates of the general Gaussian model discussed in the pre-
vious section. The introduction of 1 in the model breaks the link between 
physical and equivalent martingale drifts. Therefore the physical drift is 
determined exclusively by the time-series properties of the data. Because of 
the ¯nite-sample bias in the speed of mean reversion, the parameter estimates 

12 Because we condition on the ¯rst observation, stationarity is not necessary. Nonetheless we 
explicitly impose the stationarity restriction on the estimated parameters. 
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of the physical drift imply faster mean reversion than is implied by the true 
parameters. 

Figure 2 illustrates the di®erent drifts. The solid lines in both panels dis-
play the true drift of rt as a function of rt . In Panel A, the dashed line is the 
drift implied by the mean parameter estimates from exact ML estimation of 
the restricted model (the mean estimates reported in Table 6). In Panel B, the 
dashed line is the drift implied by the mean parameter estimates from 
simulated ML estimation of the more general model. The combination of a 
positive bias in the estimate of 1 and a negative bias in the estimate of 2 

produces a drift function that intersects the x-axis at approximately the same 
point as the true drift function (thus producing the correct mean of rt ), while 
implying faster reversion to this mean at all other rt. 
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(A) Estimated model is linear 
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(B) Estimated model is nonlinear 

Fig. 2. True and estimated drift functions for a one-factor square-root model. 

Simulated data of 1,000 weeks of yields on 3 bonds are generated by a one-factor translated CIR model. 
The maturities of the bonds range from 3 months to 10 years. One bond's yield is observed without error 
and the other bonds' yields are observed with normally distributed, iid measurement error of 60 basis 
points. The true model's drift function for rt is indicated by the identical solid lines. The dashed lines are 
drift functions implied by mean parameter estimates from 500 Monte Carlo simulations of linearized 
instantaneous Kalman ¯lter estimation. The estimated model in Panel A is a translated CIR model. The 
estimated model in Panel B nests the translated CIR model by allowing for a nonlinear drift under the 
physical measure. 
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Not all of the features of ML estimation of the more general model compare 
unfavorably to ML estimation of the restricted model. There is a closer 
correspondence between standard deviations of the parameter estimates and 
mean standard errors. Thus statistical inferences concerning parameters 
identi¯ed under the equivalent martingale measure are well-behaved. 

6.2. Linearized Kalman ¯lter estimation 

First consider the simulation results for Kalman ¯lter estimation that 
imposes the restriction 1 ¼ 0. We implement the Kalman ¯lter using the 
correct functional forms for the ¯rst and second moments of the discretely 
observed data and evaluate these functions at the ¯ltered value of the state. 
The Kalman ¯lter is not ML in this non-Gaussian setting. The simulation 
results are summarized in the second set of columns in Table 6. The par-
ameter estimates are more biased than the ML estimates, although the 
di®erences are not large. For example, the mean Kalman ¯lter estimates 
imply an unconditional mean interest rate about 80 basis points below the 
mean ML estimates, which in turn is about 90 basis points below the true 
unconditional mean. The half-life of an interest rate shock implied by the 
mean Kalman ¯lter estimates is four years. 

The biggest di®erence between ML and Kalman ¯lter estimation is that 
the latter's estimates of the equivalent-martingale parameters are much less 
precise. The extreme cases are 0 and k . The standard deviations of Kalman 
¯lter estimates of these parameters are four times the standard deviations of 
ML estimates. The precision of parameters not identi¯ed under the equiv-
alent martingale measure ( 2 and V

p 
) are about the same across the two 

estimation techniques. 
Similar patterns are associated with Kalman ¯lter estimation of the more 

general model, where 1 is free. With this model we do not have functional 
forms for the the discrete-time ¯rst and second moments. Therefore the ¯lter 
is implemented using linearized instantaneous dynamics. For 24 of the 500 
simulations, the parameter estimates are on the boundary of the parameter 
space. They are treated in the same way that such simulations are treated 
with ML estimation. The estimation results are summarized in the second set 
of columns in Table 7. The mean parameter estimates produced by the 
Kalman ¯lter are close to those produced with ML. (The biases in the price of 
risk parameters are actually slightly less with the Kalman ¯lter than with 
ML.) Standard deviations of the equivalent-martingale parameter estimates 
are much larger than the corresponding standard deviations produced with 
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ML estimation. The precision of estimates of 1, 2, and V
p 

are roughly the 
same across the two estimation techniques. 

On balance, parameter estimates produced with Kalman ¯lter estimation 
have biases similar to those produced with ML estimation but are less e±-

cient. Thus not surprisingly ML estimation is preferable if it is feasible.13 If we 
are willing to assume exact identi¯cation of the state, feasibility e®ectively 
depends on computer run time. With the computer resources available to us, 
a single simulation of this one-factor square-root model (i.e., ¯nding the 
optimal parameter estimates by maximizing the likelihood function, includ-
ing an extensive search over the parameter space) takes a few hours. Of 
course, more complex models require more time; for example, the square-root 
model with two independent factors discussed in the next section takes about 
eleven hours to estimate. The current practice in term structure estimation is 
to use at least three correlated factors. Although such a model could be 
estimated using a few days of computing time, Monte Carlo analysis of the 
estimation properties is probably infeasible with current technology. For the 
models we examine, estimation with the Kalman ¯lter is about 25 to 60 times 
faster than estimation with simulated ML. 

6.3. EMM/SNP estimation 

The ¯nal sets of results in the two tables summarize EMM/SNP estimation of 
the models. They do not require a detailed analysis. There are three points to 
note. First, distributions of parameter estimates and standard errors are 
strongly skewed. The mean parameter estimates are typically nowhere near 
the true parameters, while the median estimates are closer. Second, the dis-
tributions of parameter estimates have extremely high standard deviations, 
probably driven by the tail observations. For example, in Table 7, the 
standard deviations of SNP/EMM estimates are typically about ten times 
larger than the standard deviation of Kalman ¯lter estimates. Third, tests of 
the over-identifying restrictions often reject the model. The 2 test rejects the 
model at the 5% level in more than one quarter of the simulations. In a 
nutshell, EMM/SNP is a failure at estimating the parameters of the one-
factor square-root di®usion model. 

13 There is a caveat to this conclusion. The Kalman ¯lter produces standard errors that are 
closer to the standard deviations of the parameter estimates. Thus inference with the Kalman 
¯lter is less prone to false rejections of the true parameters. 
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7. Estimation of Two-Factor Models 

In this section we brie°y consider results from estimation of two-factor ver-
sions of the Gaussian and square-root di®usion models with generalized prices 
of risk. We do this primarily to con¯rm that our conclusions based on one-
factor models carry over to two-factor models. We also use a two-factor 
setting to evaluate the performance of the Kalman ¯lter when the true model 
exhibits nonlinear dynamics. 

7.1. A two-factor Gaussian model with a±ne risk premia 

The model is 

rt ¼ 0 þ x1t þ x2t ; ð24Þ 

where the equivalent martingale dynamics of the state variables are 

dxit ¼� kixit dt þ i dz it; ð25Þ 

and the physical dynamics are 

dxit ¼ i1 �ð ki i2Þxit dt þ i dzit : ð26Þ 

The measurement error in bond yields has a standard deviation of 20 basis 
points. The true parameters of the process and a summary of the results of 
Kalman ¯lter (ML) estimation of the model are displayed in Table 8. The 
table also summarizes the results of estimation with EMM/SNP. 

There are two main points to take from these results. The ¯rst is that the 
properties of the Kalman ¯lter estimates are similar to those in the one-factor 
case. The price of risk parameters are biased and estimated imprecisely. The 
true speeds of mean reversion of the factors, ki i2, are 0.60 and 0.15. The 
mean estimated speeds of mean reversion are 0.86 and 0.36, and the resulting 
biases of 0.26 and 0.21 are of the same order of magnitude as the standard 
deviations of the estimated parameters. To put these biases in a more 
intuitive perspective, the true half-lives of interest rate shocks are 1.2 years 
and 4.7 years for the two processes. The half-lives corresponding to the mean 
parameter estimates are 0.9 years and 1.9 years, respectively. From this 
perspective, the bias is larger for the more persistent process, as we expect. 

The second main point is that EMM/SNP performs much worse than the 
Kalman ¯lter. The distribution of the parameter estimates of the price of risk 
are highly skewed. The standard deviations of these estimates are around 5 to 
10 times the standard deviations of the corresponding Kalman ̄ lter estimates. 
The distributions of standard errors are also strongly biased and skewed. 
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The main conclusion we draw from these results is that the ¯nite-sample 
estimation properties that we examined extensively in the one-factor Gaus-

sian setting carry over to this two-factor setting. We now consider whether 
the same conclusion can be drawn for square-root di®usion models. 

7.2. A two-factor square-root model with nonlinear risk premia 

The model is 

rt ¼ 0 þ x1t þ x2t ; ð27Þ 

where the equivalent martingale dynamics of the state variables are 

dxit ¼ ðk Þi ki xitdt þ i xit 
p 

dzit ; ð28Þ 

and the physical dynamics are 

dxit ¼ ðk Þi þ i1 xit 
p �ð ki i2Þxit dt þ i xit 

p 
dzit: ð29Þ 

We estimate the model with simulated ML and with the Kalman ¯lter. The 
measurement error in bond yields has a standard deviation of 20 basis points. 
For estimation with simulated ML, we observe the 3-month and 10-year yields 
without error. For estimation with the Kalman ¯lter, all yields are measured 
with error. Estimation results with EMM/SNP are not reported because of the 
failure of this technique on the simpler one-factor square-root model. 

Unlike the one-factor square-root model we examined, here the true values 
of i2 di®er from zero. Another di®erence is that here we do not impose 
stationarity on the parameter estimates produced with simulated ML. (The 
true model exhibits stationarity.) Since simulated ML conditions on the ¯rst 
observation, we can estimate the model without imposing stationarity and 
then take a separate look at the sets of parameter estimates that imply 
nonstationary rates. Stationarity is imposed on parameter estimates pro-
duced with the Kalman ¯lter. 

The true parameters of the process and a summary of the estimation results 
are displayed in Table 9. We ¯rst examine the results for ML estimation. 
Estimates of the parameters identi¯ed under the equivalent martingale measure 
are unbiased, while estimates of the price of risk parameters are strongly biased. 
As we have seen elsewhere in this paper, the biases are in the direction of faster 
mean reversion of the states. The drift functions of both state variables are 
displayed in Fig. 3. The solid lines are the true drift functions.14 The dashed lines 
are the drift functions implied by the mean parameter estimates. 

14 Note that they do not display much nonlinearity. Recall from Sec. 4 that the parameters are 
based on results of ¯tting the term structure model to Treasury data. 
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Nonstationary term structure behavior is implied by parameter estimates 
of 71 of the 500 Monte Carlo simulations. These simulations are characterized 
by negative estimates of both ki i2 and i1. (In almost all of these simu-

lations x1t is nonstationary and x2t is stationary.) The negative i1 induces 
mean-reverting behavior for small xit and the negative ki i2 induces mean-

averting behavior for large xit. For the purposes of stationarity, the latter 
term dominates, but in any ¯nite sample the former term may dominate. 
Therefore parameter estimates that imply nonstationarity do not necessarily 
correspond to mean-averting behavior in the sample. 

We now turn to the Kalman ¯lter estimates. Of the 500 Monte Carlo 
simulations, 126 produced a set of parameter estimates that are on the 
boundary of the parameter space. As in one-factor square-root model, Kal-

man ¯lter estimates of equivalent-martingale parameters are not strongly 
biased but are much estimated with much less precision than ML estimates. 
Biases in estimates of the price of risk parameters are similar to the biases in 
the ML estimates, and the precision of these parameter estimates is close to 
(but somewhat less than) the precision of the corresponding ML estimates. As 
with the case of the two-factor Gaussian model, the main conclusion we draw 

Table 9. Parameter estimates of a two-factor square-root model with nonlinear risk 
premium. 

Simulated ML Linearized Kalman Filter 

Parameter True Value Mean Std Dev Mean Std Err Mean Std Dev Mean Std Err 

0 102 3.6 3.7 0.93 0.88 5.3 9.72 15.96 
k 1 102 4.0 4.0 0.26 0.28 4.4 2.40 2.02 
k 2 102 0.3 0.3 0.04 0.04 0.4 0.42 0.52 
k1 102 70.0 69.9 2.18 2.25 70.7 3.67 3.77 
k2 102 3.0 3.0 0.40 0.41 3.0 0.93 0.87 

1 102 8.9 9.0 0.49 0.54 8.8 1.41 1.28 

2 102 5.2 5.2 0.32 0.36 5.1 0.97 0.91 

11 102 20.0 14.3 10.65 11.44 9.1 17.64 16.17 

21 102 0.5 8.1 10.98 7.63 9.8 14.05 15.51 

12 102 66.0 35.4 56.19 59.11 13.5 65.86 65.61 

22 102 5.0 40.6 47.28 36.16 46.5 48.13 35.62 

V
p 

103 2.0 2.0 0.04 0.05 2.0 0.03 0.03 

Note: The model is given by Eqs. (27) through (29) in the text. This table summarizes the 
results of 500 Monte Carlo simulations. With each simulation, 1,000 weeks of yields on three 
bonds with maturities of 3 months, 1 year, and 10 years are observed. For \Simulated ML", 
the 3-months and 10-year yields are observed without error and the 1-year yield is observed 
with normally distributed, iid measurement error. The standard deviation of the error, V

p 
, is  

20 basis points. 
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from these results is that the ¯nite-sample estimation properties that we 
examined extensively in the one-factor square-root setting carry over to this 
two-factor setting. 

8. Interpreting the Finite-Sample Behavior of EMM 

One of the more surprising results documented in the previous sections is the 
poor ¯nite-sample performance of EMM/SNP. Because EMM is a GMM 
estimator, a natural reaction is to blame the usual GMM suspects: too many 
moments or poorly chosen moments. In this section we argue that a more 
subtle e®ect is at work. The problem is with the matrix used to weight 
the moments, not with the moments themselves. When the data are highly 
persistent, the ¯nite-sample variance-covariance matrix of the EMM 
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(a) First state variable 
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(b) Second state variable 

Fig. 3. True and estimated drift functions for a two-factor nonlinear model. 

Simulated data of 1,000 weeks of yields on 3 bonds are generated by a two-factor square-root di®usion 
model with nonlinear drifts. The maturities of the bonds range from 3 months to 10 years. Two of the 
bonds' yields are observed without error and the other bond's yield is observed with normally distributed, 
iid measurement error of 20 basis points. The true model's drift functions for the state variables are 
indicated by the solid lines. The dashed lines are drift functions implied by mean parameter estimates from 
500 Monte Carlo simulations of simulated maximum likelihood. 
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moments is unlikely to look anything like the ¯nite-sample estimate of this 
matrix. 

For clarity, we illustrate this problem in the starkest possible setting: when 
the auxiliary likelihood function is the true likelihood function. Thus the 
moments used by EMM are optimal, in the sense of asymptotic e±ciency. To 
clearly highlight the issues, we do not examine a term structure model here. 
Instead, we examine a Gaussian AR(1) process, 

yt ¼ 0 þ 0yt 1 þ t;  t N ð0;� 0Þ: 
Stack the parameters into the vector 0 ¼ ð  0 0 0Þ0 . We can estimate 0 

given a time series of data y0; . . . ; yT . We ¯rst discuss some features of ML 
estimation, then turn to EMM estimation. 

8.1. ML estimation of an AR(1) 

Denote the true log-likelihood function conditional on an unknown parameter 
vector as f ðyt jyt 1; Þ. Its derivative with respect to is 

hðytjyt 1; Þ� 
@f ðyt jyt 1; Þ 

@� 
¼ 1 

et 
etyt 1 

�ð1 2Þð1 e 2 
t Þ 

@ ; 

where the ¯tted residual is 

et ¼ yt yt 1: 

Denote the ML parameter estimate (conditioned on observation y0) as  T . 
This estimate sets the mean derivative equal to zero: 

hT ð T ; YT Þ ¼ 0; hT ð �; YT Þ� 
1 
T 

T 

t¼1 

hðyt jyt 1; Þ: 

We can think of ML as a GMM estimator where the moment vector is 
hðytjyt 1; Þ. The estimates of and are the usual ordinary least-squares 
parameter estimates and the estimate of is the mean of the squared ¯tted 
residuals. This parameter vector is biased but consistent, the bias arising 
because the sample means of t and yt 1 are correlated. 

The asymptotic variance of the moment vector h evaluated at 0 is S T , 
where 

S ¼ 1 

1 EðyÞ 0 

EðyÞ Eðy 2Þ 0 

0 0 1 ð2 Þ 

@ : 
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Here, EðyÞ ¼  0 ð1 0Þ and Eðy 2Þ ¼ EðyÞ2 þ 0 ð1 2 
0Þ. An estimate of 

S can be calculated from the outer product of h: 

ST ¼ 
1 
T 

T 

t¼1 

hðyt jyt 1; T Þhðyt jyt 1; T Þ0: 

One way to judge the accuracy of this variance estimate is to use it to test 
the hypothesis that 0 is the true parameter vector. (Although the moment 
vector is identically zero when evaluated at the ML estimate, it is a random 
variable when evaluated at some other parameter vector such as 0.) If the 
¯nite-sample variance of hT ð 0; YT Þ is close to ST , then the following like-
lihood ratio test statistic should have a distribution close to a 2ð3Þ: 

LR ¼ ThT ð 0; YT Þ0S 1 
T hT ð 0; YT Þ: ð30Þ 

The di®erence between the ¯nite-sample and asymptotic distributions of this 
statistic is a common metric for evaluating GMM estimation techniques. 
Below we use Monte Carlo simulations to compute the true distribution of 
this statistic. 

8.2. EMM estimation of an AR(1) 

Now consider estimating the same model with EMM, using the true likelihood 
function as the auxiliary model. Because EMM requires two sets of parameter 
estimates, denote the parameter vector for the auxiliary model as p ¼ ða b  vÞ0 . 
The ML estimate of this vector is denoted pT . The model's simplicity allows us 
to express the EMM moment vector analytically. It is 

mT ð �; pT Þ ¼ v 1 
T 

âT þ b̂T Eðy; Þ 

âT Eðy; Þ þ b̂T Eðy 2; Þ 

�ð1 2Þ 1 v 1 
T â 2 

T þ b̂ 
2 
T Eðy 2; Þ þ  þ 2âT b̂T Eðy; Þ 

@ ; 

ð31Þ 

where 

âT aT ; b̂T bT ; 

Eðy; Þ� ð1 Þ; Eðy 2; Þ ¼ Eðy; Þ2 þ ð1 2Þ: 
It is well-known that when the true log-likelihood function is used as the 
auxiliary model, the EMM parameter estimates are identical to ML estimates. 
This is easily seen in (31). At ¼ pT , this moment vector is identically zero. 

Recall the general formula for the variance of the EMM moment vector in 
(7). Although Cð 0Þ and d cancel each other asymptotically, it is helpful to 
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write out ¯nite-sample estimates of Cð Þ and the auxiliary model's Hessian d. 
The estimate of Cð Þ is 

C ð Þ ¼  
@mT ð �; T Þ 

@� 0 ¼ T 

: 

The explicit representation of this matrix is 

Cð Þ 

¼� v 1 
T 

1 Eðy; Þ 
âT þ b̂T Eðy; Þ 

vT 

Eðy; Þ Eðy 2; Þ 
âT Eðy; Þ þ b̂T Eðy 2; Þ 

vT 

âT þ b̂T Eðy; Þ 
vT 

âT Eðy; Þ þ b̂T Eðy 2; Þ 
vT 

2v 1 
T ðâ 2 

T þ b̂ 
2 
T Eðy 2; Þ þ 2âT b̂T Eðy; Þ þ  Þ� 1 

2vT 

@ 
: 

This estimate is the curvature of the auxiliary function evaluated at pT , using 
an in¯nite sample generated by the parameter vector . The estimate of d is 

dT ¼� 1 
T 

1 yt 1 0 

yt 1 y 2 
t 1 0 

0 0 1 ð2 T Þ 

@ : 

This estimate is the curvature of the auxiliary function evaluated at pT , using 
the sample data. Note that if we evaluate C ð Þ at ¼ pT , it is (almost) 
identical to dT . 

15 Asymptotically both matrices converge in absolute value to 
S, as does the variance of mT . This asymptotic behavior motivates the use of 
ST as an estimate of the variance of mT . 

As with ML, we can judge the accuracy of this estimate by using it to test 
the hypothesis that 0 is the true parameter vector. If the ¯nite-sample 
variance of mT ð 0; pT Þ is close to ST , then the following J statistic should 
have a distribution close to a 2ð3Þ. 

J ¼ TmT ð 0; pT Þ0S 1 
T mT ð 0; pT Þ: ð32Þ 

Below we use Monte Carlo simulations to compute the true distributions of 
these statistics. 

Even if ST is a good approximation to the ¯nite-sample variance of 
hT ð 0; YT Þ, it will not be a good approximation to the variance of mT ð 0; pT Þ 
unless Cð 0Þ is close to dT . The greater the di®erence between 0 and pT , the 
greater the di®erence between these two curvatures. Thus it is instructive to 

15 They are not identical because the sample ¯rst and second moments of yt are not exactly 
equal to the sample ¯rst and second moments of yt 1. 
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consider an alternative statistic. 

Jalt ¼ TmT ð 0; pT Þ0C ð 0Þ 1dT S 1 
T dT Cð 0Þ 1mT ð 0; pT Þ: ð33Þ 

We refer to (33) as a \robust EMM" test statistic. It is not a statistic usually 
associated with EMM because it relies on the ability to compute Cð Þ. We  
can compute it analytically in this simple case, but when the true likelihood 
function is unknown or intractable this matrix is also either unknown or 
intractable. 

8.3. Monte Carlo results 

We use Monte Carlo simulations to study the ¯nite-sample properties of these 
estimation techniques. We set 0 ¼ 0 and 0 ¼ 1 and focus on values of 0 

that are very close to one. Given 0, we use the AR model to simulate a set of 
data YT . We then calculate the ML estimate T , the estimated asymptotic 
variance of the moments ST , the GMM moment vector hT ð 0; YT Þ, and the 
EMM moment vector mT ð 0; pT Þ. We also calculate the tests of the true 
model (30), (32), and (33). 

We summarize the behavior of the simulated ML and EMM moment 
vectors with their sample variances across the Monte Carlo simulations. We 
then compare these empirical variances to the mean, across the simulations, 
of ST . The results are displayed in Table 10. To simplify the interpretation of 
the results, the empirical variances of the individual elements of these 
moment vectors are divided by the mean of the corresponding diagonal 
elements of ST . To conserve space the table does not report the ratio of the 
variance of the EMM moment vector to the more robust estimate of its 
variance, Cð 0Þd 1 

T ST d 1 
T Cð 0Þ. We discuss this ratio in the text. 

The ¯rst two rows of the table consider the case of 0 ¼ 0:99875, which is 
the AR(1) coe±cient for weekly observations of the instantaneous interest 
rate from a Vasicek model with a speed of mean reversion of 0.065. With 
1,000 observations (the ¯rst row), the mean estimate of is biased down. If 
the data are weekly, the annual speed of mean reversion implied by this mean 
coe±cient is 0.11. 

Although the estimate of is biased, the ¯nite-sample variance of the ML 
moment is close to its estimated asymptotic value. The ratios of individual 
variances lie between 0.98 and 1.1. By contrast, the ¯nite-sample variance of 
the EMM moment vector di®er dramatically from its estimated asymptotic 
value. The ratios of individual variances range from 0.01 to 12. The main 
reason for this large divergence between ¯nite-sample and estimated 
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asymptotic behavior is that the curvature of the likelihood function in the 
neighborhood of truth di®ers from the curvature in the neighborhood of the 
ML estimates. The robust estimate of the variance of the EMM moment 
vector corrects for this di®erence in curvature. With this correction, the ratios 
of the empirical variances of the elements of the EMM moment vector to the 
corresponding diagonal elements of this robust variance estimate (not 
reported in the table) range from 1.12 to 2.20. 

Given these results concerning the accuracy of the asymptotic variance 
estimates, it is not surprising that the EMM test (32) of the hypothesis ¼ 0 

is rejected at the 5% asymptotic level in roughly three-quarters of the 
simulations. The ML test also over-rejects truth, but the empirical rejection 
rate at the 5% level is a more modest 8%. The robust EMM test rejects the 
hypothesis ¼ 0 in 12% of the simulations. Doubling the amount of data 
reduces the di®erence between the ML and EMM results, but as the second 
row of the table shows, the behavior of the EMM moment vector still di®ers 
substantially from its asymptotic behavior. 

The third and fourth rows of the table reports results for a less persistent 
process: 0 ¼ 0:95. For weekly data, this corresponds to speed of mean 
reversion of 2.67. The lower persistence produces ¯nite-sample behavior of 
the EMM moment vector that is much closer to its asymptotic behavior. For 
example, with 1,000 observations, the ratios of true variances of the three 
EMM moments to their estimated asymptotic variances range from 0.96 to 
1.13. Nonetheless, with 1,000 observations the true model is over-rejected; the 
rejection rate is 13% using the 5% asymptotic test statistic. 

Zhou (2001) also shows that EMM over-rejects the true model when the 
data exhibit high persistence. He simulates a square-root di®usion model of 
the instantaneous interest rate and calls the empirical rejection rate with 
EMM/SNP \unacceptably large." Our contribution is to explain the source 
of this behavior. It is a consequence of the fact that when the data are highly 
persistent, the curvature of the log-likelihood function evaluated using the 
sample data diverges from the curvature evaluated using the true parameters. 
More generally, convergence of the variability of the EMM moment vector to 
the variability of the auxiliary score vector requires longer samples of data 
than are usually available to the econometrician. 

In practice, we are seldom confronted with a problem in which the 
divergence between the curvature of f using the sample data and the cur-
vature using data generated by the true model is relevant: we usually do not 
know the true model. But the main message here carries over to a much 
broader class of problems. Anytime there is a divergence between the 
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properties of the sample data and the simulated data, there will also be a 
divergence in the curvature of the log-likelihood function. This situation 
arises whenever the number of moment conditions exceeds the number of free 
parameters. In this case, the moments cannot be set exactly to zero, and 
instead a quadratic form in those moments is minimized (see Eq. (8)). The 
moments are weighted by the inverse of their estimated asymptotic variance. 
If this matrix di®ers substantially from the true variance of the EMM 
moment vector, it will result in both ine±cient parameter estimates and 
incorrect statistical inference. 

As the results in this paper have shown, this is a particular problem in a 
term structure setting when SNP is used as the auxiliary model. When panel 
data are used to estimate the model, the VAR speci¯cation of SNP results in 
many over-identifying restrictions. Of course, the problem is with EMM, not 
SNP. The use of SNP simply starkly reveals the problems with EMM. In 
this section we illustrate the ine±ciency and incorrect inference in the context 
of the AR(1) model. Consider estimation of in the AR(1) model when we are 
given the true values 0 and 0. Starting with the unrestricted model, a natural 
way to extend the ML estimation procedure is to use GMM to solve 

argmin J ¼ T hTðð �; 0;� 0Þ0; YT Þ0S 1 
T hT ðð �; 0;� 0Þ0; YT Þ: ð34Þ 

Similarly, we can estimate using EMM by solving 

argmin J ¼ T mT ðð �; 0;� 0Þ0; pT Þ0S 1 
T mT ðð �; 0;� 0Þ0; pT Þ: ð35Þ 

The latter problem is equivalent to estimating the restricted model with EMM 
using SNP as the auxiliary model, where the SNP speci¯cation is a Gaussian 
AR(1). The solutions to these minimization problems will di®er. In our Monte 
Carlo simulations we also calculated these two estimates of . In the ¯nal two 
columns of Table 10 we report the standard deviations, across the simulations, 
of the estimates. (We do not report the estimated means in the table. In every 
case they are close to 0.) 

Consider the ¯rst row in Table 10. When the data are highly persistent, 
with 1,000 observations the standard deviation of the estimates based on the 
EMM solution (35) is more than twice the standard deviation of the estimates 
based on (34). In addition, with EMM, 40% of the simulations produce J 
statistics that imply rejection of the model at the 5% level. The model is also 
rejected too frequently when it is estimated with (34), but the over-rejection 
rate is quite modest. The ine±ciency and poor inference associated with 
EMM remains when the amount of data is doubled (the second row). With 
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less persistent data (the third and fourth rows), the relative e±ciency of 
EMM improves substantially. 

The main message to draw from this extended discussion is that the ¯nite-
sample behavior of the EMM moment vector has little in common with its 
estimated asymptotic behavior unless the distribution of the data implied by 
the EMM parameter estimates is close to the distribution of the data sample. 
The distributions need to be su±ciently close so that the curvature of the 
auxiliary function is similar across the two distributions. If the true model is 
su±ciently tractable, we can adjust for di®erences in curvature to produce 
more reliable estimates. However, the usual application of EMM is to esti-
mate models that are intractable. Thus as a practical matter there appears to 
be little we can do to shore up the performance of EMM. 

9. Conclusions 

The analysis in this paper leads to several important conclusions. First, 
despite its well-known asymptotic optimality properties, maximum likelihood 
yields highly biased parameter estimates in settings representative of those 
used in the estimation of modern term structure models. This di®ers from the 
results of Ball and Torous (1996). They ¯nd that when cross-sectional 
information is used in estimation, the bias in the estimated speed of mean 
reversion and price of risk disappears. However, they only consider very 
simple forms for the market price of interest rate risk. Their conclusion does 
not hold when we allow the price of risk to be more °exible, such as the forms 
speci¯ed by Duarte (2004) and Du®ee (2002). Once the physical and equiv-
alent-martingale drifts are decoupled, the use of cross-sectional information 
can no longer eliminate the time-series related bias in the estimated speed of 
mean reversion. 

Our second conclusion is that, despite its asymptotic equivalence to 
maximum likelihood, the E±cient Method of Moments is an unacceptable 
alternative to maximum likelihood in ¯nite samples. Most surprisingly, this is 
true even in settings where maximum likelihood performs well. Much larger 
samples are required for the small-sample performance of EMM to approach 
its asymptotic behavior than is the case for ML. 

Our third conclusion is that the Kalman ¯lter is a reasonable alternative to 
maximum likelihood, even in non-Gaussian settings where the two are not 
equivalent. Unsurprisingly, when feasible, ML usually makes more e±cient 
use of the information in the sample than does the Kalman ¯lter, but the 
Kalman ¯lter is vastly superior to EMM. 
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These results underscore the importance of performing detailed Monte 
Carlo analysis to study the small-sample properties of new estimators, rather 
than merely relying on their asymptotic properties. As we have shown in this 
paper, even techniques that are asymptotically equivalent can have very 
di®erent properties when used on ¯nite samples. 

Appendix. SNP as the Auxiliary Model for EMM 

The standard auxiliary model for use with EMM has become the SNP (for 
SemiNonParametric) model of Gallant and Tauchen (1992) (see also the 
user's guide, Gallant and Tauchen, 1998). It consists of writing the con-
ditional density of the dataset under analysis in the form of a Hermite 
polynomial multiplied by a normal density, i.e., 

f ðyt jxt 1;� Þ ¼ cðxt 1Þ hðzt jxt 1Þ ½� 2 ðztÞ; 
where 

. ð Þ represents the standard normal p.d.f., 

. hðzt jxt 1Þ is a Hermite polynomial in zt, 

. cðxt 1Þ is a normalization constant (equal to 1 hðs jxt 1Þ ½� 2 ðsÞ ds), and 

. zt is a normalized version of yt, de¯ned by 

zt ¼ R 1 
x;t 1ðyt x;t 1Þ; 

where x;t 1 is the conditional mean, and Rx;t 1 the Cholesky decomposition 
of the conditional variance of yt . This speci¯cation allows great °exibility in 
¯tting the conditional distribution. In particular, we are free to choose: 

. the dimensionality of the Hermite polynomial in z, Kz (allows for non-
Gaussian behavior). 

. the degree of the polynomial in x that makes up each of the coe±cients 
in the Hermite polynomial, Kx (another way to allow for conditional het-
erogeneity). 

. the number of lags of x in the Hermite polynomial, Kp. 

. the number of lags in a VAR speci¯cation for x;t 1, L . 

. the degree of an ARCH (or GARCH, setting Lg > 0) speci¯cation for the 
scale transformation Rx;t 1, Lr . 

Choice of an appropriate speci¯cation is performed by using a model selection 
criterion, such as the Schwarz Bayes information criterion (see Schwarz, 
1978), which rewards good ¯t while penalizing over-parametrization. Gallant 
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and Tauchen (1998) discuss a search strategy for ¯nding an appropriate 
parametrization for a given problem. 
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