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ABSTRACT 

To test whether expected excess bond returns are correlated with particular macroeconomic 
variables, the relevant null hypothesis is that expected excess returns are stochastic, per-
sistent, and independent of the variables. However, current methods used to test this 
hypothesis—forecasting regressions and joint dynamic models of the term structure and 
macroeconomic variables—do not use this null. Their null is that excess returns are seri-
ally uncorrelated. This paper presents a dynamic model that satisfies the appropriate null. 
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1 Introduction 

Tests of the expectations hypothesis document conclusively that premia on Treasury bonds 

vary with the shape of the term structure. Returns to long-term bonds less returns to short-

term bonds can be predicted with spreads, including both the spread between forward rates 

and short-maturity yields as in Fama and Bliss (1987) and yield spreads as in Campbell and 

Shiller (1991).1 

Campbell (1987) notes that spreads are powerful instruments for detecting variations in 

term premia because changes in expected excess returns to long-term bonds are automatically 

compounded in the prices of these bonds, and thus in the spread between long-term and short-

term bond yields. Put differently, there is an accounting relation linking expected excess 

returns to forward rates. Yet the same accounting relation that makes spreads powerful 

instruments also makes them, in a sense, uninformative. Variations in expected excess 

returns can be detected with spreads regardless of the reasons for the variation, hence this 

evidence says nothing about the underlying determinants of term premia. 

Beginning with Kessel (1965) and Van Horne (1965), economists have proposed various 

theories of time-varying term premia. Many theories imply that term premia are correlated 

with the state of the economy. For example, if term premia reflect risk compensation, premia 

will vary with the price of interest rate risk and the amount of interest rate risk. Plausible 

stories link both to the macroeconomy. Other theories, such as investor overreaction to 

information (see, e.g., Shiller et al. (1983)) are not as closely tied to economic conditions. 

One way to help test these theories is to determine whether expected excess bond returns 

are correlated with measures of macroeconomic conditions such as economic activity, infla-

tion, and indicators of monetary policy. Researchers use two methods to look for evidence 

of such correlations. The first follows Fama and Schwert (1977) by regressing excess bond 

returns on lagged macroeconomic variables. The second follows Ang and Piazzesi (2003) by 

estimating parsimonious models that specify the joint dynamics of the term structure and 

specified macroeconomic variables in a no-arbitrage setting. To oversimplify, the results of 

this research are mixed. Many tests find no relation between expected excess returns and a 

wide variety of macroeconomic variables. Others, especially recent work using either long-

horizon return regressions or dynamic term structure models, find strong ties between term 

premia and the macroeconomy. 

In this paper I argue that for the purpose of inferring a relation between term premia 

and the macroeconomy, all of these tests use an irrelevant null hypothesis. Either explicitly 

1Term premia can vary either because of variations in expected excess returns or variations in conditional 
variances of yields, through Jensen’s inequality. The focus in this paper, as in almost all of the literature on 
term premia, is on variations in term premia associated with the former channel. 
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or implicitly, existing research uses as its null the hypothesis that excess bond returns are 

uncorrelated across time. The alternative hypothesis is that expected excess returns vary 

with the macroeconomy. But that null hypothesis has already been strongly rejected. The 

current debate should not be about predictability of excess returns; it should be about 

the sources of predictability. A more relevant null hypothesis is that expected excess bond 

returns are stochastic, persistent, and independent of the macroeconomy. To simplify the 

exposition, I refer to the former null hypothesis as the restrictive null and the latter null 

hypothesis as the general null. 

In principle, regression-based tests can incorporate the general null hypothesis by ad-

justing the covariance matrix of parameter estimates for persistence in the residuals. For 

these regressions, the important question is whether finite-sample properties of test statistics 

are similar to the asymptotic properties. The consequences for estimation of dynamic term 

structure models are more severe. Existing dynamic models typically rule out the general 

null hypothesis by construction. In other words, the models offer only a choice between term 

premia that are correlated with macroeconomic variables and term premia that are constant 

over time. 

I develop a dynamic term structure model that satisfies the general null hypothesis. 

The model is nested in a broader model that satisfies the alternative hypothesis, in which 

term premia are imperfectly correlated with macro variables. I apply the model to the 

joint behavior of inflation, output growth, and Treasury yields. Using U.S. data from 1961 

through 2005, I estimate the model imposing the general null hypothesis, as well as the model 

that does not impose this restriction. For comparison, I also estimate the more standard 

macro-finance dynamic term structure model, in which term premia vary only with macro 

variables. 

I find that the standard model—which assumes that term premia depend only on infla-

tion, output growth, and the short rate—is grossly inconsistent with the data. The general 

null—that term premia vary, but do not depend on these three variables—is statistically 

rejected in favor of the alternative hypothesis. However, the economic significance of the 

rejection is weak, in the sense that little of the variation in expected excess returns is as-

sociated with these three variables. This is consistent with Cochrane and Piazzesi (2005), 

who note that the factors that explain the vast majority of time-variation in yields are not 

important for explaining variations in expected excess returns. Moreover, forecasts of excess 

returns produced by the model satisfying the general null are more plausible than those pro-

duced by the alternative hypothesis. The alternative model appears to overfit substantially 

the behavior of expected returns during the Fed’s monetarist experiment. 

Armed with the estimates of these models, I reconsider the evidence of return-forecasting 
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regressions. Monte Carlo simulations generate finite-sample distributions of the regressions’ 

test statistics. These distributions are calculated both under the restrictive and general nulls. 

Finite-sample distributions based on the general null differ sharply from both their corre-

sponding asymptotic distributions and the finite-sample distributions based on the restrictive 

null. Consider, for example, an out-of-sample test of a forecasting regression. Finite-sample 

rejection rates at five percent asymptotic critical values can exceed twenty percent when 

calculated using the general null, even though rejection rates are close to five percent when 

calculated using the restrictive null. The underlying source of the poor performance is that 

under the general null, variations in expected excess returns are highly persistent. Even 

test statistics produced with out-of-sample forecasting regressions have poor finite-sample 

properties, in part because the standard assumption that true residuals are orthogonal to 

each other does not hold. 

The next section discusses forecasting regressions. It reviews both methodological ap-

proaches and existing evidence, then presents some new results. Section 3 discusses dynamic 

term structure models. It also reviews existing evidence, then presents a new dynamic model. 

The model is estimated in Section 4. Section 5 uses the model to construct finite-sample 

distributions of test statistics from forecasting regressions. The final section concludes. 

2 Forecasting regressions 

This section discusses the use of forecasting regressions to test whether expected excess bond 

returns covary with macroeconomic conditions. The first subsection describes the standard 

methodological approach and reviews earlier evidence. It concludes that the existing lit-

erature does not test the general null hypothesis against the alternative hypothesis that 

particular macro variables are correlated with expected excess bond returns. The second 

subsection helps to fill this gap in the literature. To preview the results, both in-sample and 

out-of-sample regressions indicate that annual excess returns are predictable with a combi-

nation of inflation, output growth, and the short rate. Regressions with quarterly excess 

returns do not support this conclusion. 

2.1 The standard approach 

The main goal of this strand of research is to identify variables that help predict future 

excess returns to bonds (and perhaps other assets). The earliest work includes Kessel (1965) 

and Van Horne (1965). Foreshadowing the debate to come, Kessel finds that term premia 

are positively associated with the level of interest rates and Van Horne finds the opposite; 
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both claim their results are consistent with economic theory. 

The modern literature begins with Fama and Schwert (1977), who ask whether excess 

returns are forecastable with short-term nominal interest rates. They estimate a regression 

that can be written as 
f f (1)Ri,t+1 − Rt = b0 + b1Rt + ei,t+1 

where Ri,t+1 is the simple return to bond i from period t to period t +1  and  Rf is the simple t 

riskfree return from t to t + 1,  which  is  known  at  t. 2 The null hypothesis is that expected 

excess returns are constant, so b1 is zero and the residuals are serially uncorrelated. They 

conclude that short-term interest rates cannot predict excess returns to Treasury bonds over 

return horizons ranging from one to six months. 

During the 1970s and 1980s, researchers actively debated the existence of time-varying 

expected excess asset returns. The assumption of serially uncorrelated residuals is appropri-

ate in that context, and is adopted in almost all of the articles summarized here. Nonetheless, 

Fama and Schwert calculate sample autocorrelations of fitted residuals and note that their 

persistence implies the presence of time-varying expected returns that are uncorrelated with 

the short-term interest rate. 

Part of this early literature follows Fama (1976) by using measures of volatility to predict 

excess returns.3 Such regressions appear in Shiller et al. (1983), Lauterbach (1989), and 

Klemkosky and Pilotte (1992). A broad summary of the results is that measures of volatility 

have only weak forecast power for excess returns. A more successful approach follows Fama 

(1984) in using information from forward rates to forecast returns. The classic references are 

Fama and Bliss (1987), Campbell (1987), and Stambaugh (1988). More recent evidence is in 

Cochrane and Piazzesi (2005). This research, conducted under the null that excess returns 

are unforecastable, conclusively rejects the null. 

The same null hypothesis can be rejected using other forecasting variables. Keim and 

Stambaugh (1986) and Fama and French (1989) find that variables derived from stock prices 

predict both excess stock returns and excess bond returns.4 An appealing interpretation of 

this result is that variations in term premia are driven by the business cycle, but by itself, 

the evidence is inconclusive. The accounting relation that limits our ability to interpret the 

forecast power of forward rates and spreads applies as well to the forecast power of variables 

2They actually regress nominal returns on the riskfree return and ask whether the estimated coefficient 
differs from one. 

3Unlike Fama and Schwert, Fama does not regress excess returns on truly predetermined variables. He 
regresses time-t excess returns on an estimate of time-t interest-rate volatility that uses information realized 
after time t − 1. 

4Most of this evidence is based exclusively on U.S. data. A notable exception is Ilmanen (1995), who uses 
term spreads and stock-price variables to predict excess returns to bonds issued by a variety of governments. 
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based on stock prices. The dividend/price decomposition described in Campbell and Shiller 

(1988) says that there is a mechanical relation between today’s stock price and expectations 

of future returns. Thus variables constructed using today’s stock prices will have forecast 

power for future excess bond returns as long as expected excess returns on stocks and bonds 

have common components, regardless of the reasons for the common components. 

Ferson and Harvey (1991, 1993), Baker et al. (2003), and Ludvigson and Ng (2005) fore-

cast excess bond returns using variables derived from the prices of risky securities and other 

variables that are related to macroeconomic conditions. For simplicity I refer to the former 

variables as price-based variables. In these regressions, variables related to the macroe-

conomy such as short-term interest rates, inflation, and measures of output growth often 

contribute to the forecasting power of the regression. The statistical evidence in Baker et al. 

(2003) and Ludvigson and Ng (2005) is particularly strong. Both papers look at excess 

returns over holding periods of at least a year. These two papers also break from the tra-

dition of Fama and Schwert (1977) by explicitly accounting for general serial correlation in 

the regression residuals. However, their discussions of the finite-sample properties of their 

techniques rely on the restrictive null adopted by Fama and Schwert. 

Even if we ignore statistical issues associated with these forecasting regressions, their re-

sults do not demonstrate that macroeconomic variables are correlated with expected excess 

bond returns. In the language of least squares, these regressions reveal partial correlations 

instead of unconditional correlations. The reason why these two measures differ is straight-

forward. Price-based variables are noisy measures of expected excess returns. For example, 

yield spreads depend on both expected excess bond returns and expected changes in future 

short rates. If the macroeconomic variables are correlated with the noise (e.g., today’s short 

rate is correlated with expected changes in future short rates), they will help forecast excess 

returns in such regressions even if such variables are independent of expected excess returns. 

In order to be sure that the macro variables have independent forecasting power, they must 

appear in the regression without price-based variables.5 

Aside from Fama and Schwert (1977), there is little direct evidence in the literature 

concerning the forecast power of exclusively non-price-based macroeconomic variables. The 

closest references are Friedman (1979) and Huizinga and Mishkin (1984). Friedman relates 

expected excess returns to macroeconomic activity, but he measures expected excess returns 

using forward rates less survey forecasts of short-term interest rates. Unlike Fama and 

Schwert, he finds term premia are related to short-term interest rates, but not to other 

macroeconomic measures. Huizinga and Mishkin use inflation to forecast real returns, but 

5The methodology adopted in these papers is consistent with their primary objective, which is effectively 
to maximize the variation in excess bond returns that can be explained by lagged variables. 
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not excess returns, on a variety of assets. The next subsection helps fill this gap in the 

literature. It also gives us a benchmark with which to evaluate the role of the null hypothesis 

in forecasting regressions. 

2.2 Some new evidence 

This subsection uses inflation, output growth, and short-term interest rates to forecast excess 

bond returns. Tests of the hypothesis that these variables have no forecast power are con-

ducted using both the restrictive null that excess returns are unforecastable and the general 

null that excess returns are stochastic and uncorrelated with the explanatory variables. 

2.2.1 Data 

The data are quarterly from 1961Q2 through 2005Q4. Inflation, denoted πt, is the annualized 

log change in the GDP price deflator from quarter t−1 to quarter t. Output growth, denoted 

Δgt, is the annualized log change in real GDP from quarter t − 1 to quarter  t. The nominal 

short rate, denoted rt, is the annualized yield on the three-month Treasury bill as of the end 

of the quarter. 

The literature on forecasting bond returns uses two types of excess returns. One approach 

follows Fama and Bliss (1987) by using annual log returns to zero-coupon Treasury bonds 

in excess of the yield on a one-year zero-coupon Treasury bond. The annual return horizon 

implies that the regressions must use either a fairly small number of observations or use 

overlapping observations. Another approach uses shorter-horizon returns, as in Keim and 

Stambaugh (1986). I consider both types of excess returns here. 

Denote the annualized yield on an n-quarter zero-coupon bond at the end of quarter t 
(n)

by y . The log return to this bond over the next year (i.e., from the end of quarter t to thet 

end of quarter t + 4) less the yield on a one-year zero-coupon Treasury bond is 

� � n n − 4(n) (n) (n−4) (4)
rxt,t+4 = y − yt+4 − yt . (2)t4 4 

The lower case rx denotes a log return. The zero-coupon bond yields are from the Federal 

Reserve Board. The starting date of the sample is determined by the availability of these 

data. 

I use monthly returns to maturity-sorted Treasury portfolios (from the Center for Re-

search in Security Prices) to construct quarterly excess returns. Denoting the simple net 

return to portfolio p in month m of quarter t + 1  as  Rt
p 
+1(m), the quarterly simple gross 
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return from the end of quarter t to the end of quarter t + 1  is  

� ��  ��  � 
Rp ≡ 1 +  Rp 1 +  Rp 1 +  Rp . (3)t,t+1 t+1(1) t+1(2) t+1(3) 

This return corresponds to rolling over a position in portfolio p every month. Simple excess 

quarterly returns are produced by subtracting the simple gross return to a three-month 

Treasury bill that matures at the end of the quarter, or 

= RpRXt,t 
p 

+1 t,t+1 − exp(yt 
(1)
/4). (4) 

The upper case RX denotes a simple return. 

2.2.2 Regressions 

Excess bond returns rx(n) 
and RXp are regressed on quarter-t values of inflation, out-t,t+4 t,t+1 

put growth, and the short rate. The regressions for annual excess returns use overlapping 

observations. The regressions are estimated using the entire sample of 1961 through 2005 

as well as the more recent sample of 1985 through 2005. The shorter sample is singled out 

because of the evidence of regime changes over the full sample, as discussed in more detail 

in Section 4.1. Regime changes do not invalidate these regressions because the orthogonality 

conditions are unaffected. However, they affect estimates of dynamic term structure models, 

and one of the goals of this exercise is to compare results from forecasting regressions with 

model-based estimates. 

To limit the size of the tables I consider only two maturities. For annual returns, they are 

the bonds with original maturities of two and seven years. For quarterly returns, they are 

the portfolios with original maturities between two and three years and five and ten years. 

For each regression, a Wald test is constructed of the hypothesis that the coefficients 

on the predetermined variables are all zero. This hypothesis is embedded in two different 

maintained hypotheses: The restrictive null that forecast errors are serially uncorrelated 

and the general null that forecast errors contain persistent components unrelated to the 

explanatory variables. For the restrictive null, the robust Hansen-Hodrick method is used 

to estimate the covariance matrix of parameter estimates (Hansen and Hodrick (1980), Ang 

and Bekaert (2006)). With this null the test is asymptotically distributed as a χ2(3). For 

the general null, the method of Newey and West (1987) is used with four lags for quarterly 

returns and seven lags for annual returns. These choices of Newey-West lag lengths are 

arbitrary, but alternative choices do not lead to qualitatively different results. This test is 

also asymptotically distributed as a χ2(3) if the lag length captures all of the serial correlation 
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in the residual. 

2.2.3 Forecasting out of sample 

I use the out of sample forecast encompassing test of Ericsson (1992) as an additional test of 

these regressions. The following description of the procedure applies to forecasts of annual 

excess returns. The procedure for quarterly excess returns is slightly simpler because the 

observations do not overlap. 

Estimate the return-forecasting regression using observations 1 through R of the macro 
(n) (n)

variables and observations rx through rx of annual excess returns. Given the esti-1,5 R,R+4 

mated parameters, forecast rx(n) 
using observation R+4 of the macro variables. DenoteR+4,R+8 

(n)
the realized forecast error by uun,1, where the first subscript refers to a forecast error from an 

unrestricted regression. Then repeat this exercise using an additional observation, so that 

the new regression uses observations 1 through R + 1, and so on. The result is a time series 

of one-step-ahead forecast errors u(n) 
with length P = T − R − 7, where T is the total un,t 

number of quarters in the sample period. Construct a time series of restricted forecast errors 
(n)
u using the same methodology, where the forecasting regression uses only a constant term. r,t 

The first subscript refers to a forecast error from a restricted regression. 
(n) (n) (n)

The test statistic is the t statistic of a regression of u on u − u No constant r,t r,t un,t. 

term is included in the regression. Under the restrictive null assumption that returns are 

serially uncorrelated (aside from induced serial correlation through the use of overlapping 

observations), the asymptotic distribution of the statistic is approximately standard nor-

mal.6 The alternative hypothesis is that the statistic exceeds zero. Therefore the null of no 

forecastability is tested using the one-sided critical value for a normal distribution. 

For the full sample 1961 through 2005, I use R = 100, thus P = 72 for annual excess 

returns and P = 78 for quarterly excess returns. I do not apply this procedure to the shorter 

sample because there are insufficient data to both reliably estimate the return-forecasting 

regression and construct a reasonably long time series of out of sample forecasts. I construct 

the t statistic with robust Hansen-Hodrick standard errors. 

The distribution of this statistic under the general null is not known. More importantly, 

the statistic is not appropriate to tests of the general null because the forecasts are not 

truly out of sample. If both the forecasting variables and true expected excess returns 

are persistent, then in-sample predictability will correspond to out-of-sample predictability. 

Consider, for example, forecasting excess returns with inflation when the true data-generating 

6The precise asymptotic distribution of the statistic depends on the asymptotic ratio of P/R, but the 
results of Clark and McCracken (2001) indicate that critical values from a standard normal distribution are 
reasonably accurate (although slightly conservative) for the case of three forecasting variables. 
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process implies that expected excess returns are determined by some independent, persistent 

variable ωt. If  ωt and inflation are correlated in a sample, the in-sample regression will find 

that inflation forecasts expected excess returns. Then one-step-ahead expected excess returns 

and inflation are also likely to be correlated because both are persistent. 

2.2.4 Results 

Tables 1 and 2 present results for annual and quarterly return horizons, respectively. The 

results in Table 1 show over the full sample of 1961 through 2005, inflation, output growth, 

and the short rate collectively have substantial information about future excess returns. For 

both two-year and seven-year bonds, the R2 in the full sample exceeds 10 percent, and sta-

tistical tests that the coefficients are all zero are rejected at the asymptotic one percent level. 

The choice of restrictive versus general null makes little difference to the statistical strength 

of this rejection. In addition, tests for out-of-sample forecastability reject the restrictive null. 

(The five percent critical value is 1.645.) Recall, though, that the properties of this test are 

unknown under the general null. The forecast power is less impressive in the most recent 

sample. Over 1985 through 2005, only excess returns to the two-year bond appear fore-

castable. Surprisingly, the statistical strength of the forecastability appears stronger under 

the general null than under the restrictive null. 

The results of Table 2 temper the apparently strong evidence of Table 1. Using quarterly 

returns over 1961 through 2005, the joint statistical significance of the three forecasting 

variables is marginal at best. The test statistics for the in-sample regressions are all in 

the neighborhood of 10 percent asymptotic critical values. Evidence of forecastability from 

the out-of-sample tests is even weaker. For the 1985 through 2005 sample, any evidence of 

predictability from in-sample regressions disappears. 

On balance, these results are muddled. We might be tempted to downweight the an-

nual results relative to the quarterly results because of well-known statistical problems with 

regressions involving overlapping regressions. However, there may truly be more evidence 

of predictability using the annual excess returns because of the definition of “excess” for 

these returns (subtracting the one-year yield instead of the three-month yield). Both the 

annual and quarterly in-sample regressions are subject to the predictive regressions bias of 

Stambaugh (1999), but not the out-of-sample regressions. 

Knowledge of the finite-sample distributions of the test statistics helps to better evalu-

ate this regression evidence. Monte Carlo simulations are commonly used to evaluate the 

accuracy of asymptotic inference. To generate such simulations we need a joint model of the 

term structure, inflation, and output growth that satisfies the relevant null hypothesis. The 

development of such models is discussed in the next section. The finite-sample properties of 

9 



the regressions estimated here are discussed in Section 5. 

3 Dynamic term structure models 

This section describes how dynamic term structure models are used in practice to draw in-

ferences about the determinants of term premia; it also describes how they should be used 

to draw such inferences. The first subsection describes standard models and reviews earlier 

evidence. The second subsection explains in more detail how dynamic models can be used to 

test hypotheses about term premia. The third subsection develops a dynamic term structure 

model that satisfies both the general null hypothesis and (by relaxing some parameter re-

strictions) the alternative hypothesis that term premia are correlated with inflation, output 

growth, and the short rate. 

3.1 The standard approach 

Ang and Piazzesi (2003) construct a model that describes the joint dynamics of the term 

structure, inflation, and real activity, while simultaneously guaranteeing the absence of ar-

bitrage opportunities in the bond market. This line of research has grown explosively in 

the past few years.7 Before discussing the implications of these models for term premia, it 

is helpful to address a semantic issue. Ang and Piazzesi refer to inflation and real activity 

as “macro” variables, and distinguish them from three “latent” variables. Both macro and 

latent variables determine term structure dynamics. The language of this decomposition 

is unusual because the short-term interest rate is typically also viewed as a macro variable 

reflecting monetary policy. Evans and Marshall (2002) contrast the more typical decomposi-

tion with that of Ang and Piazzesi. This is purely semantic because the three latent variables 

in Ang and Piazzesi can be rotated into the short rate (perhaps observed with noise) and 

two other latent variables. The discussion in this section treats the short rate as a macro 

variable. 

Following Ang and Piazzesi, a common dynamic modeling approach assumes that a low-

dimensional state vector drives the joint dynamics of the term structure and a few macro 

variables such as inflation and/or output growth. Given parameter estimates of the model, 

we can calculate properties of the term structure, such as the fraction of variation in expected 

excess returns on a n-period bond that is attributable to shocks to each element of the state 

vector. 
7Recent work includes Rudebusch and Wu (2004, 2005), Ang and Bekaert (2005), Dewachter and Lyrio 

(2004a), Dewachter et al. (2004b), and Hördahl et al. (2005a,b) 
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Depending on the chosen functional form, expected excess bond returns are said to be 

closely associated with short-term rates, inflation, output growth, or employment growth. 

For example, Ang, Dong, and Piazzesi (2005) argue that more than half of the variation in 

expected excess quarterly returns to five-year bonds is driven by the level of inflation. Ang, 

Piazzesi, and Wei (2005) find extremely strong statistical evidence linking both the level of 

the short rate and output growth to term premia. Law (2004) finds that all variation in term 

premia is driven by real economic activity, inflation, and monetary policy (the Fed funds 

rate). 

These apparently strong, yet conflicting results about term premia raise a red flag. Even 

setting aside this concern, it is difficult to draw conclusions about term premia from this 

evidence because the models are not designed to address specific null hypotheses. The typical 

paper sets up its preferred model, specifies some parameter restrictions for tractability, then 

estimates the model. The implications of the parameter estimates are then summarized and 

interpreted. In particular, there is no discussion of what parameter restrictions are required 

for expected excess returns to be unforecastable with macro variables, nor are there tests of 

such restrictions. The next subsection describes some of the relevant issues. 

3.2 Testing hypotheses about term premia 

How can dynamic term structure models be used to test formally the hypothesis that a 

particular vector of observed macroeconomic variables ft is unrelated to expected excess 

bond returns? To answer this question, it helps to recall how we use forecasting regressions 

to test this hypothesis. We regress a bond’s excess return in t+1 on ft. Under the null, future 

excess returns do not covary with ft. The power of this test depends, in part, on the standard 

deviation of the innovation component of the bond’s return. A larger standard deviation 

corresponds to reduced power because it corresponds to more noise in sample covariances. 

Now consider testing this hypothesis using a complete dynamic model of both bond yields 

and the macro variables. In principle, this is a more powerful approach than a forecasting 

regression because the model exploits information from the bond’s return innovation. This 

innovation can be decomposed into two types of news: news about future short rates and news 

about expected future excess returns. If expected excess returns are unrelated to ft, then  

innovations in ft are orthogonal to innovations in future expected excess returns. Thus under 

the null, contemporaneous covariances between innovations in ft and news about expected 

future excess returns are zero. Hence the complete dynamic model can use information both 

from lead-lag covariances (as in forecasting regressions) and contemporaneous covariances. 

Note, though, that neither return innovations nor the two types of news can be observed 
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directly. Instead, they are all artifically constructed as parameterized functions of a state 

vector, where the functions are forced to be internally consistent (i.e., the generated return 

innovation must equal the sum of the two types of generated news). Thus any null and 

alternative hypotheses that the econometrician wants to test must be built into the functional 

form of news about expected excess returns. To test hypotheses concerning the relation 

between expected excess returns and the macro variables, the model needs to be sufficiently 

flexible to allow news about expected excess returns to have either a zero contemporaneous 

covariance with ft (the null) or a nonzero covariance. 

Unfortunately, almost all existing models used to describe the joint dynamics of bond 

yields and macro variables lack this flexibility. The models are so parsimonious that they 

rule out the possibility that term premia vary independently of the macro variables included 

in the model. For example, Ang, Dong, and Piazzesi (2005) use three state variables that are 

equivalent to output growth, inflation, and an unobserved short-term interest rate. Hence 

the only possible news about future expected excess returns must be macroeconomic news. 

Law (2004) allows for an additional state variable to capture similar dynamics, but imposes 

parameter restrictions that rule out the possibility of stochastic expected excess returns 

that are independent of the macroeconomy. An exception is Duffee (2006), who imposes no 

restrictions on the dimension of the state vector. He estimates part of the joint dynamics 

of inflation and the term structure and finds almost no relation between inflation and term 

premia. 

The next subsection presents an example of a dynamic term structure model that is suf-

ficiently flexible to allow expected excess returns to vary, either independently of inflation, 

output growth, and the short rate, or predictably with any of these variables. Although nec-

essarily less parsimonious than the typical model in the literature, it is sufficiently tractable 

to estimate and to use in Monte Carlo simulations. 

3.3 A new dynamic model 

As in Ang and Piazzesi (2003), the period-t term structure and state of the economy is 

determined by a state vector with two types of factors. I refer to them as “macro” and “term 

premia” factors. The only role played by the term premia factors is to capture variations in 

expected excess returns that are unrelated to the macro factors. 

12 
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3.3.1 Factors and factor dynamics 

The macro factors are inflation, output growth, and the continuously-compounded short 

rate. They are stacked in a vector 

� �∗ 
ft = π̃t Δ̃gt r̃t . (5) 

The tildes distinguish these factors from observed inflation, output growth, and the short 

rate. The relation between ft and observed macro variables is established later. For now it 

is sufficient to note that a Kalman filter setting is used, so we can think of the difference 

between ft and its observed counterpart as measurement error. 

There are three term premia factors stacked in a vector ωt. (The choice of three is dictated 

by the number of macro factors, as discussed in the context of equation (16) below.) The 

complete state vector is � �∗ 
xt = ft 

∗ ωt 
∗ . (6) 

Because the short rate is included in xt, the loading of the short rate on xt has a simple 

form. Using standard affine term structure notation, it is 

� � 
r̃t = δx 

∗ xt, δx 
∗ = 0 0 1 0 0 0  . (7) 

The evolution of the state vector in this discrete-time model is described by a Gaussian 

vector autoregression. Formally, the dynamics are 

xt = μx + Kxxt−1 + Σx x,t,� x,t ∼ N(0, I). (8) 

The specific matrices are given by 

μf Kf 03×3 Σf 03×3
μx = , Kx = , Σx = . (9)

03×1 03×3 Kω 03×3 Σω 

The matrices Kf Kω, Σf , and  Σω are 3 × 3. Both Σf and Σω are lower triangular. The 

process is assumed to generate stationary dynamics, so that the unconditional expectation 

of xt is 

E(x) = (I − Kx)
−1μx. (10) 

With this specification, ft and ωt are independent. Therefore there is no information in 

the term premia factors about the evolution of the short rate. If investors were risk-neutral, 

bond prices would be determined exclusively by ft. Thus the only role played by the term 
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premia factors is to drive expected excess returns. 

3.3.2 Bond pricing 

The period-t price of a zero-coupon bond that pays a dollar at the end of period t + n is 

given by the law of one price, 

� � 
(n) (n−1)˜ ˜P = Et P (11)t t+1 Mt+1 

where Mt is the stochastic discount factor. Again, tildes represent true prices. Actual prices 

are observed with measurement error. The stochastic discount factor is 

Mt+1 = exp  −hr̃t −   ∗ t x,t+1 − 
1 
  ∗ t t (12)

2 

where h is the length of a period (in years), and  t is the period-t compensation investors 

require to face factor risk. The functional form for  t is in the essentially affine class of 

Duffee (2002), 

Σx t =  0 +  1xt. (13) 

The parameterizations of the vector  0 and the matrix  1 are 

 0f
 0 = (14)

03×1 

and 
 1f I3×3

 1 = , (15)
03×3 03×3 

where  0f is a vector of length three and  1f is a 3 × 3 matrix. The identity matrix in the 

upper right quadrant of  1 is a normalization. (We can always transform a model with an 

arbitrary invertible matrix L in the upper right quadrant into a model with the identity 

matrix in the upper right quadrant by redefining the term premia factors as ωt 
∗ = Lωt.) 

An alternative, and perhaps more intuitive, representation of the compensation investors 

demand to face uncertainty in xt is 

 0f +  1f ft + ωt
Σx t = (16)

03×1 

The top element on the right of (16) is the compensation investors demand to face macro 

risk. The compensation depends on the macro factors through  1f and on the  term  premia  
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factors. Term premia factor i affects only the risk compensation for macro factor i. (This  

is why the number of term premia factors equals the number of macro factors.) Investors 

require no compensation to face uncertainty in the term premia factors. 

Under the equivalent martingale measure, the dynamics of xt are 

q qxt = μx
q + Kx

qxt−1 + Σx x,t,� x,t ∼ N(0, I), (17) 

where 

μq
x = μx −  0, Kx

q = Kx −  1. (18) 

Log bond prices are affine in the state vector. Using lower case to denote log prices, the 

notation is 
(n) ∗ p̃ = An + B xt. (19)t n 

Solving recursively using the law of one price, the loadings of the log bond price on the 

factors are given by 
∗ ∗ −1 )nB = −hδ (I − Kq) (I − (Kq ) . (20)n x x x 

The constant term is 

n−1 
∗ −1 n ∗ An = −hδ nI − (I − Kq) (I − (Kq) ) Eq(x) +  

1 
BiΣxΣ ∗ Bi, n = 2, . . .  (21)x x x x2 

i=1 

with A1 = 0. The notation Eq(x) denotes the equivalent-martingale unconditional expecta-

tion of x and is the counterpart of (10). 

The log return to a n-period bond from  t to t+ 1  is  

(n−1) (n) ∗ ∗ ∗ p̃t+1 − p̃t = hr̃t + Bn−1( 0 +  1xt) − 
1 
Bn−1ΣxΣx 

∗ Bn−1 + Bn−1Σx x,t+1. (22)
2 

The log of the gross expected return to an n-period bond from t to t + 1  is  

� � 
˜(n−1)

/ ˜(n) ∗ log Et P P = hr̃t + Bn−1 (23)t+1 t ( 0 +  1xt). 

The first term on the right of (23) is the riskfree return and the second is the time-varying 

compensation investors require to face uncertainty in xt. The exposure to xt is Bn 
∗
−1 and 

the compensation per unit of xt risk is, from (13), Σx t. 
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3.3.3 From factors to observables 

I use a state-space setting to relate the model’s factors to observable macro variables and 

bond yields. At the end of each quarter, an econometrician observes inflation πt, output 

growth Δgt, the short rate rt, and  d yields on multiperiod bonds with maturities n1, . . . , nd. 

Stack these observables in a vector 

� �∗ 
(n1) (nd)zt = πt Δgt rt yt . . .  yt . (24) 

The relation between factors and observables is 

03×1 I3×3 03×3 ft 
zt = + + ηt, ηt ∼ N(0, H). (25)

Ay Bfy  Bωy ωt 

The vector Ay and matrices Bfy  and Bωy are 

⎛ ⎞ ⎛ ⎞ 
1 1 ∗An1 Bn1n1 � � n11 ⎜ ⎟ 1 ⎜ ⎟

Ay = − 
h 
⎝ . . .  ⎠ , Bfy  Bωy = − 

h 
⎝ . . .  ⎠ . (26) 

1 1 ∗And B 
nd nd nd 

In the state-space setting the usual interpretation of ηt is measurement error. For inflation 

and output growth, a broader interpretation is more reasonable. Observed inflation consists 

of an underlying level of core inflation and transitory inflation shocks owing to short-lived 

factors such as temporary refinery capacity problems. Bond yields at the end of period t are 

unaffected by the transitory inflation shock in period t because investors know it will not 

persist. Similarly, observed output growth consists of a core component and a transitory 

component due to, say, weather-related shocks to consumer spending. 

3.3.4 Discussion 

This model will look familiar to those who follow the details of macro-finance dynamic 

models. If we remove the term premia factors, it is the Taylor rule model of Ang, Dong, 

and Piazzesi (2005).8 The only difference between their model and the model here is the 

added generality to risk compensation. In their model, required compensation to face the 

risk of, say, inflation is determined by the levels of inflation, output growth, and the short 

rate. Here compensation is also allowed to depend on a latent factor that has dynamics 

independent of the macro factors. With the restriction  1f = 0 in (15) and (16), expected 

8This is strictly true only after rotating their factors so that their latent factor is identical to the unob-
served short rate, but this is without loss of generality. 
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excess bond returns are stochastic, persistent, imperfectly correlated across bond maturities, 

and independent of the macro factors. In this special case, which corresponds to the general 

null defined in the introduction of this paper, the magnitude of shocks to expected excess 

returns are determined by the volatility matrix Σω and their persistence is determined by 

the feedback matrix Kω. This restriction can be tested against the alternative hypothesis 

 1f = 0.  

Naturally, the specification of risk premia in (16) is critical to distinguishing between 

macro and non-macro influences on term premia. But independence between the macro and 

term premia factors is also vital. To understand why, adopt the restriction of the general 

null  1f = 0 but replace the matrix of zeros in the upper right quadrant of Kx in (9) with 

free parameters. Then the evolution of the term premia factors depends only on term premia 

factors, but the evolution of the macro factors depends on both sets of factors. 

With this alternative model, shocks to the macro factors are independent of expected 

excess returns at all leads and lags. Therefore a variance decomposition of expected excess 

returns assigns all of the variance to shocks to the term premia factors. But such a decompo-

sition is not the right way to think about the model. A more appropriate perspective follows 

the projection decomposition of Bikbov and Chernov (2006). The intuition behind their 

projection is the same as the intuition of the forecasting regressions discussed in Section 2: 

is there information in macro factors about future excess returns? With this alternative 

model, expected excess returns from t to t + 1 are no longer orthogonal to the history of 

macro factors ft, ft−1, . . . , hence the model does not satisfy the general null notwithstanding 

the restriction  1f = 0.  

A limitation of this model is that there is no additional information in the term structure 

that helps to forecast inflation, output growth, or the short rate. The history of these macro 

variables is sufficient to form minimum-variance forecasts. However, it is straightforward to 

relax this limitation without altering the interpretation of the term premia factors. Simply 

expand the vector of fundamentals ft to include one or more latent factors, and expand the 

dimensions of the matrices in (9), (14), and (15) accordingly. These latent factors reflect 

information that investors have about the evolution of the macro factors that is not contained 

in the macro factors themselves. They are identified from the term structure. Under the 

general null, the additional factors do not affect risk premia. I do not attempt to estimate 

this expanded version here. 

Another limitation of the model is its Gaussian structure. Although Gaussian models 

are standard in the macro-finance literature, innovations in observed bond yields are not 

homoskedastic. Gaussian models are used both because they are simple and because the 

research focuses on capturing the dynamics of expected excess returns. Gaussian models 
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offer great flexibility in fitting these dynamics, while researchers have only recently worked 

out the mathematics of non-Gaussian term structure models with flexible specifications of 

risk premia. Cheridito et al. (2005) and Dai et al. (2006) develop flexible non-Gaussian 

specifications. Presumably the main methodological point of this paper—that the general 

null should be used instead of the restrictive null—can be implemented in such non-Gaussian 

models, but I do not investigate this issue. 

Perhaps the most important objection to this model is that it offers no economic intuition 

for the presence of the term premia factors. The lack of intuition has led some readers to call 

this a nihilistic model of term premia. Buraschi and Jiltsov (2005) and Wachter (2006) are 

examples of the alternative approach, in which investors’ preferences are expressly tied to 

the money supply or real consumption. But the model does not say that variations in term 

premia have no economic foundation. Instead, the model is a diagonostic tool to help us 

determine whether an econometrician has identified that foundation correctly. In this sense, 

the model is an intermediate step in the direction of a correctly specified economic model of 

premia, not an end in itself. 

4 Model estimation 

This section applies the framework of Section 3.3 to U.S. data. Three versions are estimated 

with maximum likelihood (ML). The first is the standard Taylor rule macro-finance model, 

where the term premia factors are excluded. In this version, expected excess returns vary 

only with the macro factors. The second version satisfies the general null hypothesis. Term 

premia factors are included, and are the only factors allowed to affect expected excess returns. 

The third version satisfies the alternative hypothesis, where all factors can affect expected 

excess returns. To simplify the exposition, I refer to these as the “standard,” “general null,” 

and “alternative” models respectively. 

A roadmap to this long section is useful. The first subsection describes the data and the 

two sample periods over which the models are estimated. The second subsection summarizes 

the parameters to be estimated and the third explains the estimation procedure. The fourth 

subsection describes how information about the estimated models is presented in various 

tables. The fifth subsection discusses in detail the results for the full sample period 1961 

through 2005. The sixth contains a briefer discussion of results for a shorter, more recent 

period. 

A preview of the results may help to keep the big picture in sight. One clear conclu-

sion is that the standard macro-finance model is markedly inferior—both statistically and 

economically—to the other models. Another conclusion is that the general null is statistically 
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rejected in favor of the alternative model. But we should be very cautious about reading 

much into this statistical rejection. The economic significance of the rejection is small, in 

the sense that little of the variability in expected excess bond returns is associated with 

variability in inflation, output growth, or the short rate. More importantly, the rejection of 

the general null hypothesis appears to be due to overfitting. The greater flexibility of the 

alternative model leads to implausible estimates of expected excess returns. 

4.1 Data and sample periods 

The data on inflation, output growth, and the short rate are the same used in the forecasting 

regressions of Section 2.2.1. Yields on zero-coupon Treasury bonds with maturities ranging 

from one to ten years are from the Federal Reserve Board. The three models are estimated 

over both the full sample period 1961 through 2005 and the more recent period 1985 through 

2005. When estimating over the full sample, I use yields on bonds with maturities of one, 

two, three, five, and seven years. When estimating over the more recent sample, I also use 

the yield on a ten-year bond. This yield is not available for every observation in the full 

sample. 

The choice of sample period reflects a tradeoff between statistical power and economic 

plausibility. The implications of the model for term premia behavior rely on the assumption 

of parameter stability. The model requires that investors’ expectations of future short-term 

interest rates are given by forecasts from a constant-parameter vector autoregression. Yet 

there is strong evidence that the past 50 years are not characterized by a single regime. 

The major break occurred at the beginning of Volcker’s tenure as Chairman of the Federal 

Reserve Board.9 The accompanying disinflation was largely completed by the end of 1984, 

although the dynamic regime-switching term structure models of Ang and Bekaert (2005) 

and Dai et al. (2005) find some evidence of instability after 1984. 

Building a regime-switching model that satisfies the general null hypothesis is well beyond 

the scope of this paper. Therefore I simply estimate the model separately over the two periods 

and examine informally the economic plausibility of the results. 

4.2 Summary of free parameters 

The dynamics of the macro factors are determined by the parameters of a vector autore-

gression. These parameters are contained in the vector μf and the matrices Kf and Σf . To  

simplify estimation, the unconditional means of the macro factors are fixed to their sample 

9See Gray (1996). 
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means. This restriction pins down μf given Kf . There are a total of 15 free parameters in 

Kf and Σf . 

In the standard macro-finance version of the model, expected excess bond returns are 

determined both by the three elements of the vector  0f in (14) and by the nine elements of 

the matrix  1f . The version satisfying the general null hypothesis excludes  1f and adds the 

15 parameters in the matrices Kω and Σω. The version satisfying the alternative hypothesis 

adds back the nine elements of  1f . Hence parameterizing expected excess returns for the 

standard model requires 12 free parameters, compared with 18 for the general null and 27 

for the alternative hypothesis. 

Each of these specifications can be reasonably described as too many parameters fitting 

too few observations. Individual parameters are estimated with little precision, making it 

impossible to make strong statements about the precise functional form of risk premia. For 

many purposes, more parsimonious specifications are preferred. But the goal here is to see 

which class of model is more consistent with the data, not to choose a preferred version of 

any one of these specifications. Thus I do not estimate any versions of these models that 

impose additional restrictions on expected excess returns. 

I use a diagonal covariance matrix H of measurement error in (25). The standard devia-

tions of measurement error of inflation and output growth are free parameters. Yields other 

than the riskfree rate share an identical standard deviation of measurement error, which 

is also a free parameter. The standard deviation of measurement error for the short-term 

interest rate is fixed at zero. 

The main reason I rule out measurement error in the short-term rate is to ensure that 

the estimation results are informative about the behavior of real-life excess bond returns. 

The excess log return to an n-period zero-coupon bond is, in terms of its yield, 

(n) (n) (n−1)
r = h[ny − (n − 1)y − rt]. (27)e,t+1 t t+1 

Decomposing this return into model-implied excess return and measurement error produces 

� � 
(n) (n) (n) (n−1)
r = r̃ nη − (n − 1)η − ηr,t , (28)e,t+1 e,t+1 + h t t+1 

(n) (n)
where r̃e,t+1 is the model’s counterpart to (27), η is the measurement error for the n-period t 

bond yield at time t, and  ηr,t is the contemporaneous measurement error of the short rate. 

The overall goal here is to better understand the properties of observed excess returns by 

studying the properties of model-implied excess returns. The smaller is the term in brackets 

in (28), the more relevant will be the results of this exercise. 

In practice, setting the measurement error of the short rate to zero is sufficient to make 
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the term in brackets very close to zero. Not only is ηr,t identically zero, but the standard 

deviation of measurement error in the other bond yields is very small. (These results are 

discussed in more detail below.) If, however, the standard deviation of measurement error 

in the short rate is specified as a free parameter, it can exceed 40 basis points, depending 

on the sample period and the version of the model that is estimated. This choice allows the 

model to better fit observed inflation and output. Thus the choice made here is to give up 

some accuracy in the fitting these latter variables in order to better fit bond returns. 

To summarize, the version of the model corresponding to the standard macro-finance 

setup has 30 free parameters, the version satisfying the general null has 36 free parameters, 

and the version satisfying the alternative hypothesis has 45 free parameters. 

4.3 Estimation technique 

Maximum likelihood estimation is implemented using the Kalman filter. Nonlinear opti-

mization is required to find the solution. A common problem in estimation of dynamic term 

structure models is the bumpy surface of the likelihood function. The following procedure is 

used to find a global maximum. For each version of the model, one hundred different start-

ing values are used. Given a starting value, five iterations of Simplex are used sequentially, 

followed by a derivative-based algorithm that uses analytic first derivatives. The parameter 

vector with the highest likelihood value across these 100 starting values is then used as a 

starting value for an additional five rounds of Simplex and derivative-based optimization. 

In an effort to keep the optimization algorithm from exploring parts of the parameter 

space that are implausible, the likelihood value is set to a very large negative number if the 

parameters satisfy any of the following conditions. First, at least one eigenvalue of Kx
q is 

less than minus one. Second, for at least one of the bonds used in estimating the model, the 

unconditional mean yield exceeds 1.5 times the corresponding sample mean yield. Third, for 

at least one of the bonds used in estimating the model, the unconditional mean slope of the 

yield curve (mean bond yield less mean short rate) exceeds twice the corresponding sample 

mean. The Matlab code used to estimate the model is available on the author’s web site. 

4.4 A guide to the results 

Six sets of parameter estimates are produced, corresponding to three models and two sample 

periods. To conserve space, I report parameter estimates only for the alternative model. Pa-

rameter estimates based on the full and shorter samples are in Tables 3 and 4, respectively.10 

Standard errors, computed using the outer product of first derivatives, are in parentheses. 

10Estimates for the other models are available on the author’s web site. 
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The only clear message to take from these tables is that, as noted in Section 4.2, there is 

not enough information in the sample to identify individual parameters associated with term 

premia. The standard errors on these estimates are extremely large. Tables 5 and 6 are more 

helpful in evaluating the models. The forms of these two tables are described here, while the 

results are discussed in the next two subsections. 

Table 5 summarizes how the different versions of the model fit the data. We want to 

know which version has the best specification of compensation for bond risk. Thus two 

important metrics for evaluating the relative performance of the estimated models are the 

cross-sectional fit of bond yields and the ability to forecast future bond yields. In practice, 

ML estimation chooses parameters to optimally trade off accuracy in fitting bond yields 

with accuracy in fitting the macro variables. Hence misspecification of risk premia can (and 

in practice, does) show up in a poor fit of the macro variables. Therefore we should also 

evaluate the ability of the models to fit the macro data. 

Table 5 reports log-likelihood values for each model. It also reports sample standard 

deviations of fitted measurement error for inflation, output growth, and the seven-year bond 

yield. (Recall that the short rate is observed without error.) The fitted measurement error 

for quarter t is defined as the actual quarter-t value less the filtered value, where the filtered 

value is based on information through quarter t. Finally, the table reports root mean squared 

errors for one-quarter-ahead forecasts of inflation, output growth, the short rate, and the 

yield on a seven-year bond. These errors are defined in the usual way for a Kalman filter. 

Table 6 summarizes some of the sample properties of excess quarterly log bond returns 

implied by the estimated models.11 The returns are constructed as follows. For each esti-

mated model, there is a time series of the filtered state vector xt. Filtered log prices, and 

therefore filtered yields, can be computed from this state vector using (19). Then a time 

series of filtered quarterly excess returns to an n-period bond can be computed using the 

filtered version of (27). The table reports sample means and standard deviations of excess 

log returns to both two-year and seven-year bonds. 

An excess return is the sum of its conditional mean and its shock. Because the terms are 

uncorrelated, the excess return variance is the sum of the variances of the two components. 

Formally, � � 
(n)

Var r̃e,t+1 = B ∗  1Var(xt)  ∗ Bn−1 + B ∗ ΣxΣ ∗ Bn−1. (29)n−1 1 n−1 x 

The first term on the right of (29) is the variance of one-quarter-ahead expectations of 

11We could also examine population properties of the models. But because most of the estimated models 
have dynamics that are close to unit roots, population properties, especially covariances, are not necessarily 
similar to in-sample properties. The population properties are highly sensitive to the estimated persistence of 
the state vector. Therefore these properties are estimated with little precision, making them uninformative 
measures for model comparison. 
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quarterly excess returns. Table 6 reports the ratio of this term (computed using the sample 

variance of the filtered state vector) to the sample variance of excess returns. 

The table also reports the fraction of the sample variance of the conditional mean at-

tributable to the sample variance of macro factors. For the standard model, this is identically 

one. For the general null, it is identically zero. For the alternative model, it is the part of 

the first term on the right of (29) that is attributable to the upper left (3 x 3) submatrix of 

the sample variance of xt. 12 

Finally, Table 6 reports the theoretical first-order autocorrelation coefficient of one-

quarter-ahead expectations of quarterly excess returns. This coefficient is 

B∗  1KxVar(xt) 
∗ Bn−1

AR(1) coefficient = n−1 1 . (30)
Bn 

∗
−1 1Var(xt) ∗ 

1Bn−1 

The results in these tables, along with some supporting evidence, are interpreted in the 

next two subsections. 

4.5 Results for the full sample 

Over the period 1961 through 2005, the standard macro-finance model does a very poor job 

fitting the data relative to the other two models. This is immediately obvious from a glance 

at the log-likelihoods in Table 5. The log-likelihood of the standard model is more than 650 

below the log-likelihoods of the other models. Below I offer an economic interpretation of 

this failure. 

Statistically, the general null is rejected in favor of the alternative model. The difference 

in log-likelihoods between the general null and alternative model is about 46. As reported in 

Table 3, this difference allows us to reject the general null in favor of the alternative model 

at any conventional significance level. Yet although the statistical rejection is strong, the 

economic significance of the rejection is not. According to Table 6, under the alternative 

hypothesis macro factors account for only a quarter of the expected excess return variances. 

The remainder is driven by term premia factors. More importantly, as we shall see, a de-

tailed examination of forecasts from these models reveals that only the general null produces 

intuitively reasonable estimates of expected excess returns. 

12In a finite sample, there is also a component attributable to the sample covariance between the macro 
factors and the term premia factors, but this component is small. In population, this component is zero. 
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4.5.1 Cross-sectional properties 

The poor performance of the standard model over the full sample is most apparent in the 

model’s ability to fit inflation. Table 5 reports that the standard deviation of inflation’s 

measurement error is 1.89 percent with the standard model and only 0.50 percent with the 

general null. (It is slightly lower with the alternative model, at 0.43 percent.) Visual evidence 

of measurement errors is in Fig. 1. The figure plots actual inflation and output growth, along 

with filtered values from the models. Panel A compares actual inflation (black line) with 

filtered values from the standard model (blue line) and the general null (red line). Filtered 

values from the alternative model are similar to those from the general null, thus they are 

not displayed. Filtered values from the model satisfying the general null closely track actual 

inflation. Their sample correlation is 0.98. However, filtered values from the standard model 

often diverge substantially from actual inflation. Their correlation is only 0.63. 

The intuition behind this evidence is straightforward. Expected excess returns fluctuate 

over time, but these fluctuations are not closely tracked by the levels of the macro variables. 

To break the link between macro variables and term premia, the general null and the alter-

native model include term premia factors. The standard model must resort to breaking the 

link between observed inflation and “inflation” as measured by the model. 

Estimates from all three models describe output growth as the sum of a low-volatility, 

persistent process and a white-noise shock. Only the former component affects the term 

structure. Panel C of Fig. 1 displays actual output growth (black line) with filtered values 

from the standard model (blue line) and the general null (red line). Filtered values from the 

alternative model are similar to those from the general null. The correlation between actual 

and filtered values is about 0.2 for the standard model and 0.25 for the general null. 

All of the models fit the cross-section of the term structure well. By construction, they 

all fit the short rate without error. Table 1 reports that measurement error at the long end 

is small. For the general null and alternative models, the standard deviation of measurement 

error is less than one-tenth of a basis point. Not surprisingly, the standard model is not as 

accurate, but its long-bond yield measurement error has a standard deviation of only eight 

basis points. 

4.5.2 Forecasting 

Table 5 documents that aside from the standard model’s forecast of inflation (which is very 

poor owing to its high measurement error), the RMSEs of the competing models are all 

within a few basis points of each other. For example, the lowest RMSE for output growth is 

only four basis points less than the highest RMSE. Similar differences are seen in the RMSEs 
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of the short rate and the seven-year bond yield. 

Since the alternative model nests the general null, it is not surprising that its one-quarter-

ahead forecasts of the seven-year bond yield are more accurate than those of the general null. 

However, forecasts from the standard model are also more accurate than those of the general 

null. At first glance, this is quite surprising, since the general null has three factors devoted 

to explaining variations in expected excess returns, while the standard model must explain 

these variations using macro factors. 

Related surprising results are seen in Panel A of Fig. 2. The figure displays one-quarter-

ahead expectations of the excess return to the seven-year bond. Forecasts from the standard 

model are in black, forecasts from the general null are in blue, and forecasts from the al-

ternative model are in red. Forecasts from the standard and alternative models are much 

more variable than those from the general null. Their standard deviations are 1.5 percent, 

2.0 percent, and 0.75 percent respectively. Again, given that the general null has so much 

flexibility in specifying term premia, why are its forecasts of excess returns so stable relative 

to the other models? 

At the core of the answer is a point noted in Section 3.2. A dynamic term structure model 

requires that the innovation in a bond’s return equals the sum of news about future short 

rates and news about future expected excess returns. Both types of news can be described 

as “physical measure” news. In particular, news about future short rates is news about the 

physical-measure expectation of mean short rates over the life of the bond. Because these 

expectations are determined entirely by macro variables, news about future short rates is 

driven only by shocks to inflation, output growth, and the short rate. 

With both the standard model and the alternative model, shocks to macro variables are 

allowed to affect physical-measure expectations of future short rates differently than they 

affect equivalent-martingale expectations of future short rates. With the general null, these 

macro shocks are required to have identical effects on physical and equivalent-martingale 

expectations. This additional restriction gives the general null less flexibility in generating 

news about future short rates. In the data, imposing this restriction makes news about 

future short rates look a lot like the bond return’s entire innovation. Thus there is not much 

left over to be explained by news about future expected excess returns. I illustrate this 

argument by taking a close look at the way these models interpret the events of 1980Q4. 

4.5.3 What happened at the end of 1980? 

Panel A of Table 7 reports that from 1980Q3 to 1980Q4 inflation jumped two percent, short 

rates jumped three percent, output growth jumped eight percent (recall that all these figures 

are annualized), and the seven-year yield rose about 50 basis points. 
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The panel also reports corresponding filtered values, along with the 1980Q3 forecasts of 

the 1980Q4 values. Recall that the models share the same functional form for macroeconomic 

dynamics. Nonetheless, the filtered values and forecasts differ because the parameters of 

these dynamics differ across the models. For example, the standard model predicts, as of 

1980Q3, that the short rate will fall 50 basis points over the next quarter. The alternative 

model predicts a decline of only 20 basis points. These models also disagree about the 

expected future direction of the seven-year yield. The general null predicts it will fall about 

20 basis points from 1980Q3 to 180Q4, the standard model predicts it will rise five basis 

points, and the alternative model predicts that it will increase about 20 basis points. 

Panel B reports the implied realized shock to the seven-year bond yield. (We could also 

use the realized shock to the bond’s return. Both can be decomposed into different kinds of 

news.) It ranges from 73 basis points, as calculated by the general null, to 33 basis points as 

calculated by the alternative model. Part of this shock is due to news about the mean short 

rate over the next seven years. Formally, this news is, for n = 28, 

n−1 � �1 1 � 
(Et − Et−1) rt+i = 0 0 1  (I − Kf )

−1 I − Kf
n 

f,t, (31) 
n n

i=0 

where f,t is the realized shock to the macroeconomic variables. According to the general 

null, this news should raise the bond yield by 60 basis points. This leaves only 13 basis 

points of news of higher future expected excess returns. 

By contrast, both the standard model and the alternative model indicate that news about 

future average short rates raises the bond yield by about 150 basis points. Therefore news 

about future expected returns lowers the yield by about one full percentage point. This 

is why (as seen in Fig. 2) both the standard model and the alternative model indicate a 

large drop in expected excess returns, to below −6 percent/quarter as of 1980Q4. According 

to the general null, the expected excess return to the bond in 1980Q4 is about 40 basis 

points/quarter. The forecasts from the standard and alternative models turn out to be more 

accurate than those of the general null: The seven-year bond yield jumps 300 basis points 

over the next three quarters. 

The obvious interpretation of these contrasting results is that the standard and alternative 

models overfit the data. The parameter estimates of all of the models are blessed with 

hindsight, but the general null is less able to take advantage of this hindsight because of the 

restriction linking physical and equivalent-martingale expectations of the short rate. 

Forecasts of long-run inflation offer additional evidence that the standard and alternative 

models are too accurate. Direct survey evidence concerning investors’ beliefs is available 

from Blue Chip Economic Indicators. In October 1980, the ten-year inflation forecast (GDP 
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deflator) from this survey was 8.25 percent/year.13 The models can be used to calculate 

the expected mean ten-year inflation rate as of the end of September 1980. The general 

null produces a forecast of 9.5 percent/year, which is modestly higher than actual investors’ 

forecasts. But the standard and alternative models produce dramatically lower forecasts of 

5.4 percent and 5.0 percent respectively. Although inconsistent with what investors believed 

at the time, these low forecasts are more consistent with subsequent realizations (inflation 

averaged four percent from 1980Q4 through 1990Q3). 

The overfitting apparent in this particular observation is an extreme example of the 

overfitting that occurs throughout the sample. Panel A in Fig. 2 provides convincing visual 

evidence that the fitted time series of expected excess returns for the standard and alternative 

models are implausible. For example, there is only one quarter for which the general null 

model produces an expected excess quarterly return to the seven-year bond of more than 

2.5 percent (10 percent/year). There are 12 such quarters for the standard model and 23 for 

the alternative model. There are no quarterly observations for which the general null model 

produces an expected excess quarterly return less than −1.5 percent. There are 10 and 19 

quarters for the standard and alternative models, respectively. 

Thus, although the alternative model is statistically superior to the general null, its fit 

of the data is unreasonable. The general null is a more sensible interpretation of the data. 

4.6 Results for the later sample 

Interest rate behavior in the post-disinflationary period differs substantially from its full-

sample behavior. However, from the perspective of model evaluation, there is little difference 

between the full sample and the shorter, more recent sample. Thus this discussion is relatively 

brief. 

Four main points carry over from the full sample results. First, the standard macro-

finance model is markedly inferior to both the general null and the alternative model. Over 

the period 1985 through 2005, the difference between the log-likelihood of the standard model 

and either of the other log-likelihoods exceeds 400. Second, the general null is statistically 

rejected in favor of the alternative model. The LR test in Table 4 rejects the null at all 

conventional significance levels. Third, the point estimates of the alternative model indicate 

that the macro factors account for relatively little of the variation in expected excess returns. 

The evidence in Table 6 indicates a range of 10 to 30 percent of the variance of one-quarter-

ahead expected excess returns is attributable to variations in inflation, output growth, and 

the short rate. 
13The data are available from the Philadelphia Federal Reserve at www.phil.frb.org/files/spf/cpie10.txt. 
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Fourth, the alternative model (but not the standard model) appears to overfit expected 

excess returns. Panel B of Fig. 2 plots one-quarter-ahead expectations of excess quarterly 

returns to a seven-year bond. It is apparent from the figure that the expected excess returns 

calculated using the alternative model are much more volatile than those calculated using 

the other two models. The standard deviation of these expectations is 0.89 percent for the 

alternative model, compared with 0.51 percent and 0.47 percent for the standard and general 

null, respectively. There are no quarters for which either the standard model or the general 

null has an expected excess quarterly return less than −1 percent (−4 percent/year). There 

are two such quarters for the alternative model. There are no quarters for which the standard 

model has an expected excess quarterly return greater than 2.5 percent (10 percent/year). 

The general null has three such quarters, while the alternative model has seven. 

The main difference in the estimated models across the two sample periods appears in 

the cross-sectional fit of inflation. In contrast to the full sample, there were no significant, 

long-lived swings in inflation during the period 1985 through 2005. As seen in Panel B of 

Fig. 1, the models all characterize inflation during the later period as the sum of a highly 

persistent, low volatility latent process and substantial idiosyncratic noise. Table 5 reports 

that the standard deviation of measurement error in inflation is around 0.9 percent for each 

model. Correlations between observed inflation and the underlying latent process range from 

0.26 for the general null to 0.39 for the alternative model. 

One apparently puzzling result in Table 5 is that the RMSE for one-quarter-ahead fore-

casts of the seven-year bond yield is actually lower for the general null (0.69 percent) than for 

the alternative model (0.76 percent). How is this possible, given that the alternative model 

nests the general null? The reason is that these RMSEs are somewhat misleading. Forecast 

errors are calculated for observations 1985Q1 through 2005Q4, where the first forecast error 

is the difference between the filtered seven-year bond yield and the unconditional expected 

seven-year yield. All other forecast errors use conditional expectations. The unconditional 

yield curve implied by the estimates of the general null is closer to the sample mean yield 

curve than is the unconditional yield curve for the alternative model. However, the uncondi-

tional variances of yields are so large that the forecast error of the first observation has only 

a trivial effect on the log-likelihood. When the first observation is dropped in computing 

the RMSEs, the RMSEs for the general null and alternative model are 0.58 and 0.57 percent 

respectively. 

For this shorter sample, as for the full sample, the general null appears to be a reasonable 

interpretation of the data. Although its conditional forecasts of future bond yields are slightly 

less accurate than the forecasts of the alternative model, the time series of expected excess 

returns produced by the alternative model seem to know too much about the future. 
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4.7 Further discussion 

It is worth emphasizing that the results in this section apply only to inflation, output growth, 

and the short rate. They do not show that term premia are unrelated to other macroeconomic 

measures. Ludvigson and Ng (2005) argue that by focusing on a couple of variables thought to 

summarize the state of the economy, researchers can easily fail to uncover true predictability 

of excess returns. A narrower interpretation of the results here is more appropriate. The 

evidence shows that when we use a term structure model broader than the standard macro-

finance framework, there is little evidence that the macro variables typically viewed as the 

main determinants of nominal bond yields—inflation, output growth, and the short rate— 

drive much variation in term premia. 

One striking feature of the estimated models that satisfy the general null is extremely high 

persistence of expected excess returns. Table 6 reports the AR(1) coefficients of one-quarter-

ahead expected excess returns are in the neighborhood of 0.9 based on full-sample estimates 

and in the neighborhood of 0.95 based on later-sample estimates. This high persistence has 

important implications for the finite-sample properties of forecasting regressions, as examined 

in the next section. 

5 Finite-sample properties of forecasting regressions 

This section studies finite-sample properties of forecasting regressions when the true data-

generating process satisfies either the restrictive or general null hypothesis. Given a data-

generating process, Monte Carlo simulations produce distributions of regression coefficients 

and associated test statistics. Two issues are addressed. First, for realistic sample sizes, how 

close are finite-sample distributions of test statistics to standard asymptotic distributions? 

Second, are finite-sample distributions associated with the restrictive null hypothesis, in 

which returns are completely unforecastable, similar to those associated with the general 

null hypothesis? 

The main conclusion is that for the regressions estimated in Section 2.2, finite-sample 

distributions of test statistics under the general null have little in common with either asymp-

totic distributions of these tests or finite-sample distributions under the restrictive null. After 

adjusting the estimated test statistics for their finite-sample properties, all regression evi-

dence of return predictability presented in Section 2.2 disappears. 

5.1 Overview 

Hodrick (1992) and Stambaugh (1999) discuss, in the context of forecasting stock returns, 
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finite-sample properties of forecasting regressions under the restrictive null hypothesis that 

excess returns are serially uncorrelated. They identify two reasons why finite-sample proper-

ties diverge from asymptotic properties. First, typical choices of instruments used to forecast 

are both persistent and contemporaneously correlated with returns, leading to a predictive 

regressions bias. Second, estimates of the variability in parameter estimates are poor when 

overlapping observations are used in estimation. The additional problem introduced with the 

general null hypothesis is that the residual in a forecasting regression is serially correlated 

under the null. 

The analysis here is restricted to studying the finite-sample properties of the in-sample 

and out-of-sample regressions estimated in Tables 1 and 2. Excess returns over annual 

and quarterly horizons to two-year and seven-year bonds are regressed on inflation, output 

growth, and the short rate. As in these tables, here annual returns are log returns and 

quarterly returns are simple returns. (Table 2 reports results for returns to maturity-sorted 

portfolios of bonds. The simulation evidence here uses returns to individual bonds.) 

I use two “true” data-generating processes. The first satisfies the restrictive null and 

the second satisfies the general null. Parameters for the second process are the parameters 

for the general null estimated over 1985 through 2005. Parameters for the first process are 

identical, except that the term premia factors are excluded. Thus the two processes have 

identical finite-sample properties of the regressions’ explanatory variables. The processes 

differ only in the serial correlation properties of the regression residuals. 

Using estimates from the later sample instead of the full sample emphasizes the wedge 

between the restrictive and general nulls. The later-sample estimates imply higher persis-

tence of expected excess returns than do the full-sample estimates. Greater persistence raises 

the variability of sample covariances between forecasting instruments and true residuals. 

Regardless of the data-generating process, a simulation proceeds as follows. An initial 

draw of the state variables is taken from their unconditional multivariate normal distribution. 

Subsequent draws use their conditional multivariate normal distribution. The length of each 

simulation is 179 quarters, which is the length of the full sample studied in this paper. 

Regressions are estimated with OLS. For the restrictive null, the covariance matrix of the 

parameter estimates is computed using the robust Hansen-Hodrick approach. For the general 

null, the Newey-West procedure is used with three lags for quarterly return horizons and 

seven lags for annual return horizions. These choices mimic those used in the regressions 

reported in Tables 1 and 2. Out-of-sample regressions are implemented exactly as described 

in Section 2.2.3. 
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5.2 Results 

The results of these simulations are easy to summarize. Regression tests that have good 

finite-sample properties under the restrictive null have poor finite-sample properties under 

the general null. Accordingly, it is important to rely neither on asymptotic properties, nor 

on finite-sample properties based on the restrictive null. 

Detailed evidence, based on 5000 Monte Carlo simulations, is reported in Table 8. The 

first three columns specify the simulation: the type of regression (in-sample or out-of-sample), 

the return horizion, and the bond’s maturity. The fourth and fifth columns concern the χ2(3) 

tests of the restrictive null. The fourth column reports finite-sample rejection rates of tests of 

the null hypothesis when using the asymptotic five percent critical value. The fifth reports 

true finite-sample critical values at a five percent rejection rate. Columns six and seven 

contain the same information for the general null. 

First consider the properties of these regressions under the restrictive null. The results are 

unsurprising. Differences between finite-sample and asymptotic rejection rates are larger for 

in-sample regressions than out-of-sample regressions. They are also larger for regressions that 

use overlapping observations than those that do not.  Thus at one  extreme  are out-of-sample  

tests using non-overlapping observations. For these regressions (the final two columns in the 

table), finite-sample rejection rates at the asymptotic five percent critical value are about 

five percent. At the other extreme are in-sample regressions using quarterly observations 

of annual returns. For these regressions, finite-sample rejection rates at the asymptotic five 

percent critical value are around eighteen percent. 

Under the general null hypothesis, the finite-sample properties of the regressions are 

substantially worse. For the in-sample tests, finite-sample rejection rates based on the general 

null are typically nearly twice the corresponding finite-sample rejection rates based on the 

restrictive null. Differences are more dramatic for out-of-sample tests. For these tests, finite-

sample rejection rates based on the general null are typically between two and three times the 

corresponding finite-sample rejection rates based on the restrictive null. For example, out-

of-sample tests using nonoverlapping observations have finite-sample rejection rates between 

ten and twenty percent at the asymptotic five percent critical value. 

After correcting for the finite-sample properties of the test statistics, all statistical evi-

dence of return forecastability in Tables 1 and 2 disappears. None of the joint tests has a 

test statistic anywhere near the true finite-sample critical values reported in Table 8. Hence 

properly interpreted, the regression evidence supports the same qualitative conclusion drawn 

from estimation of dynamic term structure models: the general null hypothesis is a reason-

able description of the data. 
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6 Conclusion  

Imagine that a researcher wishes to determine whether expected excess bond returns are 

correlated with a particular measure of macroeconomic activity; say, employment growth. 

One of the main messages of this paper is that it is hard to test this hypothesis accurately. 

The proper null hypothesis is that expected excess returns vary over time, but are uncorre-

lated with employment growth. Regression-based tests of this hypothesis, such as regressing 

excess bond returns on lagged employment growth, have finite-sample properties that are 

not close to standard asymptotic properties. Moreover, these finite-sample properties can-

not be approximated accurately using a model that satisfies the restrictive null hypothesis 

of serially uncorrelated excess returns. 

This paper develops a dynamic term structure framework that can be used to either test 

directly whether expected excess returns vary with specified measures of macroeconomic 

activity or to construct finite-sample distributions for regressions. From a modeling perspec-

tive, the key component of this framework is a set of latent factors that affect only expected 

excess returns and are independent of all other factors in the model. When applied to data 

over 1961 through 2005, the model indicates that expected excess returns are only weakly 

related to inflation, output growth, and the short rate. 
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Table 1. Predicting annual excess bond returns 

The return to a k-year zero-coupon Treasury bond from quarter t to quarter t + 4  less  the  
quarter-t yield on a one-year Treasury bond is regressed on the three-month T-bill yield 
as of the end of quarter t, the change in the log GDP price deflator from t − 1 to  t, and  
the change in log real GDP from t − 1 to  t. All variables are expressed in percent and 
the predetermined variables are expressed in annual terms. Two sets of standard errors are 
reported in parentheses. The first are generalized Hansen-Hodrick standard errors. The 
second are Newey-West standard errors, using seven lags. The column labeled “Joint test” 
reports Wald tests of the hypothesis that all coefficients equal zero. Asymptotic p-values, 
based on a χ2(3) distribution, are in brackets. The final column reports a t-test, described in 
Section 2.2.3, that evaluates the contribution of the explanatory variables to out-of-sample 
forecasts of returns. Under the null, the asymptotic 5% critical value is 1.64. This statistic 
is constructed only for the full sample period. 

Sample Maturity Output Joint Out of 
(# obs) (years) Inflation growth short rate R2 test P-val sample 

1961:2–2005:4 2 −0.339 −0.107 0.229 0.14 2.09 
(175) (0.141) (0.051) (0.122) 13.09 [0.004] 

(0.137) (0.052) (0.105) 12.63 [0.005] 

7 −1.449 −0.279 0.641 0.12 1.67 
(0.528) (0.197) (0.572) 13.91 [0.003] 
(0.498) (0.208) (0.472) 12.53 [0.006] 

1985:1–2005:4 2 −0.069 −0.213 0.220 0.16 
(80) (0.202) (0.088) (0.125) 13.56 [0.004] 

(0.196) (0.075) (0.106) 23.90 [0.000] 

7 0.413 −0.071 0.392 0.02 
(0.858) (0.432) (0.630) 0.96 [0.812] 
(0.863) (0.396) (0.527) 1.64 [0.650] 
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Table 2. Predicting quarterly excess bond returns 

Excess quarterly simple returns to portfolios of Treasury bonds from the end of quarter t to 
the end of quarter t+ 1 are regressed on the three-month T-bill yield as of the end of quarter 
t, the change in the log GDP price deflator from t− 1 to  t, and the change in log real GDP 
from t − 1 to  t. All variables are expressed in percent and the predetermined variables are 
expressed in annual terms. Two sets of standard errors are reported in parentheses. The 
first are generalized Hansen-Hodrick standard errors. The second are Newey-West standard 
errors, using four lags. The column labeled “Joint test” reports Wald tests of the hypothesis 
that all coefficients equal zero. Asymptotic p-values, based on a χ2(3) distribution, are in 
brackets. The final column reports a t-test, described in Section 2.2.3, that evaluates the 
contribution of the explanatory variables to out-of-sample forecasts of returns. Under the 
null, the asymptotic 5% critical value is 1.64. This statistic is constructed only for the full 
sample period. 

Sample Maturities Output Joint Out of 
(# obs) (years) Inflation growth short rate R2 test P-val sample 

1961:2–2005:4 2 < τ  ≤ 3 −0.187 −0.041 0.136 0.04 0.95 
(178) (0.080) (0.048) (0.112) 5.92 [0.116] 

(0.089) (0.050) (0.082) 6.17 [0.104] 

5 < τ ≤ 10 −0.356 −0.053 0.213 0.04 0.86 
(0.146) (0.083) (0.188) 6.43 [0.093] 
(0.150) (0.083) (0.143) 7.04 [0.071] 

1985:1–2005:4 2 < τ  ≤ 3 −0.013 −0.049 0.114 0.03 
(83) (0.192) (0.066) (0.084) 2.76 [0.431] 

(0.155) (0.059) (0.082) 3.19 [0.363] 

5 < τ ≤ 10 0.014 0.007 0.230 0.03 
(0.381) (0.137) (0.171) 2.01 [0.570] 
(0.288) (0.128) (0.167) 2.00 [0.573] 
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Table 3. Estimates of a dynamic term structure model for 1961 through 2005 

The joint dynamics of inflation πt, output growth Δgt, and the short rate rt are described by the 
model of Section 3.3. The model is estimated with maximum likelihood over the period 1961Q2 
through 2005Q4, using these data as well as yields on zero-coupon bonds with maturities of one, 
two, three, five, and seven years. Standard errors are in parentheses and the p-value of a likelihood 
ratio test is in brackets. 

Panel A. Macro factor dynamics 

Uncon Kf Σf × 103 Std dev of obs 
mean πt−1 Δgt−1 rt−1 πt Δgt rt error ×102 

πt 0.0375 0.769 −0.471 −0.014 6.457 0.672 
(–) (0.340) (0.843) (0.079) (0.836) (0.076) 

Δgt 0.0337 0.032 1.061 0.018 −2.644 1.249 3.239 
(–) (0.168) (0.350) (0.036) (1.163) (2.221) (0.188) 

rt 0.0573 0.330 0.486 0.865 1.520 −8.696 5.434 0 
(–) (0.414) (1.038) (0.103) (2.086) (3.759) (6.011) (–) 

Panel B. Price  of  macro risk  

λ1f LR test 
λ0f πt Δgt rt of λ1f = 0  

πt −0.008 1.443 −0.007 0.093 91.20 
(0.248) (2.032) (4.935) (0.477) [.000] 

Δgt 0.004 −0.578 −0.011 −0.027 
(0.097) (0.799) (1.935) (0.191) 

rt 0.018 −0.112 −0.361 −0.118 
(0.042) (0.356) (0.863) (0.074) 

Panel C. Term premia factor dynamics 

Kω Σω × 103 

ω1t−1 ω2t−1 ω3t−1 ω1t ω2t ω3t 

ω1t 1.480 0.282 0.362 1.502 
(37.81) (122.0) (9.457) (13.34) 

ω2t −0.200 0.310 −0.065 −0.222 0.150 
(5.456) (19.74) (1.362) (5.181) (3.054) 

ω3t 0.001 6.407 0.091 −3.983 −1.742 0.916 
(208.6) (599.3) (47.77) (17.54) (40.82) (4.786) 
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Table 4. Estimates of a dynamic term structure model for 1985 through 2005 

The joint dynamics of inflation πt, output growth Δgt, and the short rate rt are described by the 
model of Section 3.3. The model is estimated with maximum likelihood over the period 1985Q1 
through 2005Q4, using these data as well as yields on zero-coupon bonds with maturities of one, 
two, three, five, seven, and ten years. Standard errors are in parentheses and the p-value of a 
likelihood ratio test is in brackets. 

Panel A. Macro factor dynamics 

Uncon Kf Σf × 103 Std dev of obs 
mean πt−1 Δgt−1 rt−1 πt Δgt rt error ×102 

πt 0.0241 0.906 −0.067 0.005 1.471 0.864 
(–) (0.305) (0.599) (0.029) (1.378) (0.122) 

Δgt 0.0307 −0.233 0.479 −0.004 0.030 1.277 1.928 
(–) (0.866) (0.593) (0.135) (3.326) (4.070) (0.240) 

rt 0.0475 0.950 0.876 0.862 2.511 0.592 3.855 0 
(–) (2.625) (3.354) (0.372) (1.790) (4.493) (1.332) (–) 

Panel B. Price  of  macro risk  

λ1f LR test 
λ0f πt Δgt rt of λ1f = 0  

πt −0.007 0.108 0.160 0.003 44.00 
(0.024) (0.491) (0.678) (0.084) [.000] 

Δgt −0.001 0.244 −0.081 −0.025 
(0.034) (1.110) (0.605) (0.087) 

rt 0.031 −0.753 −0.546 −0.016 
(0.087) (1.566) (2.204) (0.232) 

Panel C. Term premia factor dynamics 

Kω Σω × 103 

ω1t−1 ω2t−1 ω3t−1 ω1t ω2t ω3t 

ω1t 0.571 0.111 −0.881 0.378 
(20.53) (23.91) (46.39) (0.726) 

ω2t 0.102 0.529 −1.544 0.350 0.079 
(33.88) (39.50) (77.02) (1.652) (0.234) 

ω3t −0.234 0.281 1.360 −0.013 −0.042 0.010 
(8.641) (10.13) (19.08) (0.514) (0.523) (0.497) 
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Table 5. The performance of alternative term structure models 

Three versions of a dynamic term structure model are estimated with maximum likelihood 
over two sample periods. Model 1 restricts term premia to be determined only by inflation, 
output growth, and the short rate. Model 2 restricts term premia to be orthogonal to these 
variables. Model 3 is unrestricted. Measurement error is defined as the actual value in 
quarter t less its filtered value. The table reports standard deviations of this measurement 
error for inflation, output growth, and the seven-year bond yield. The table also reports the 
root mean squared error of one-quarter-ahead forecasts of these variables and the short rate. 
The forecasts are produced using the Kalman filter. 

1961–2005 sample 1985–2005 sample 
Model 1 Model 2 Model 3 Model 1 Model 2 Model 3 

Number of 
free parameters 30 36 45 30 36 45 

Log likelihood 7318.3 7979.7 8025.3 4249.4 4664.3 4686.3 

Standard deviation of measurement error 

Inflation (%) 1.89 0.50 0.43 0.85 0.93 0.87 
Output growth (%) 3.29 3.24 3.23 1.80 1.79 1.94 
7-year yield (b.p.) 4.83 0.08 0.08 5.31 0.02 0.02 

Root mean squared error of one-quarter-ahead forecasts (%) 

Inflation 1.93 1.12 1.06 0.86 0.87 0.87 
Output growth 3.25 3.22 3.21 1.91 1.96 1.96 
Short rate 1.09 1.14 1.07 0.62 0.62 0.60 
7-year yield 0.65 0.68 0.65 0.81 0.69 0.76 
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Table 6. Model-implied behavior of quarterly excess returns 

Parameter estimates of a dynamic term structure model are used to calculate sample prop-
erties of quarterly log excess bond returns. The excess return in quarter t is the sum of 
its expectation as of t − 1 and a shock. The table reports the fraction of the variance of 
excess returns that is attributable to the former channel. The variance of the conditional 
expectation is further decomposed into a component associated with variations in macro 
variables (inflation, output growth, and the short rate) and an orthogonal, non-macro com-
ponent. The table reports the fraction attributable to the macro variables. It also reports 
the first-order serial correlation of the conditional expectation of log excess returns. 

The model is estimated over two samples and in three versions. Model 1 restricts term 
premia to be determined only by inflation, output growth, and the short rate. Model 2 
restricts term premia to be orthogonal to these variables. Model 3 is unrestricted. 

1961–2005 sample 1985–2005 sample 
Model 1 Model 2 Model 3 Model 1 Model 2 Model 3 

Mean (%/q) 
2-year bond 
7-year bond 

0.24 
0.41 

0.24 
0.40 

0.25 
0.39 

0.45 
1.21 

0.45 
1.20 

0.45 
1.20 

Standard deviation (%/q) 
2-year bond 1.63 
7-year bond 4.43 

1.64 
4.40 

1.64 
4.40 

1.15 
3.98 

1.15 
4.00 

1.15 
4.00 

Fraction of return variance due to 
variation in conditional expectation 

2-year bond 0.09 0.03 
7-year bond 0.11 0.03 

0.23 
0.20 

0.02 
0.02 

0.03 
0.01 

0.05 
0.05 

Fraction of variance of conditional expectation 
due to variation in macro variables 

2-year bond 
7-year bond 

1 
1 

0 
0 

0.22 
0.30 

1 
1 

0 
0 

0.27 
0.11 

AR(1) of conditional expectation 
2-year bond 0.55 0.92 
7-year bond 0.54 0.86 

0.48 
0.53 

0.97 
0.73 

0.98 
0.95 

0.78 
0.76 

42 



Table 7. A close look at 1980Q3 and 1980Q4 

Parameter estimates of a dynamic term structure model are used to interpret the change in infla-
tion, output growth, and interest rates from 1980Q3 to 1980Q4. Three versions of the model are 
estimated. Model 1 restricts term premia to be determined only by inflation, output growth, and 
the short rate. Model 2 restricts term premia to be orthogonal to these variables. Model 3 is unre-
stricted. Panel A reports observed values of inflation, output growth, the short rate (three-month 
T-bill), and the yield on a seven-year Treasury bond. The model assumes that all but the short 
rate are observed with noise, thus the true values are unobserved and must be filtered from the 
data. The panel reports Kalman filtered values for both 1980Q3 and 1980Q4, as well as Kalman 
filter forecasts, based on data through 1980Q3, of the 1980Q4 values. Panel B decomposes the 
associated shock to the seven-year bond yield into news about average short rates over the next 
seven years and news about risk premia. 

Panel A. Applying the Kalman filter 

Output 7-year 
Inflation growth Short rate bond yield 

Raw data 
1980Q3 8.97 −0.67 11.74 11.37 
1980Q4 11.08 7.35 14.73 11.92 

1980Q3 contemporaneous filtered values 
Model 1 6.92 1.90 11.74 11.35 
Model 2 9.15 1.49 11.74 11.37 
Model 3 8.83 1.15 11.74 11.37 

1980Q3 forecast of 1980Q4 values 
Model 1 6.60 2.17 11.24 11.40 
Model 2 9.19 1.38 11.03 11.19 
Model 3 8.62 1.29 11.54 11.59 

1980Q4 contemporaneous filtered values 
Model 1 8.43 −0.13 14.73 11.89 
Model 2 10.54 1.52 14.73 11.92 
Model 3 10.19 0.49 14.73 11.92 

Panel B. Decomposing the 1980Q4 filtered shock to the seven-year bond yield 

News about Risk premia news Risk premia news 
Total future related to unrelated to 
shock short rates macro factors macro factors 

Model 1 0.49 1.39 −0.90 – 
Model 2 0.73 0.60 – 0.13 
Model 3 0.33 1.50 0.50 −1.68 
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Table 8. Finite-sample properties of regressions that forecast excess bond returns 

This table summarizes results from 5000 Monte Carlo simulations. The “true” data-generating 
processes of yields, inflation, and output growth are based on an estimated dynamic term 
structure model. Under the restrictive null, expected excess returns are constant. Under the 
general null, they vary over time, but are independent of inflation, output growth, and the 
short rate. 

For each simulation, 179 quarters of data are generated. Excess bond returns are calcu-
lated in two ways. The quarter t + 1 simple excess return is the simple return to the n-year 
bond from t to t + 1 less the contemporaneous simple return to the three-month bond. The 
annual log excess return from t to t + 4 is the log return to the n-year bond less the quarter-t 
yield on a one-year bond. 

Excess returns are regressed on the quarter-t values of inflation, output growth, and the 
short rate. The in-sample test statistic is a Wald test of the hypothesis that the coefficients 
are jointly zero. The table reports the empirical rejection rate using the five percent critical 
value for a χ2(3) distribution, as well as the finite sample five percent critical value. Similar 
statistics are reported for the out-of-sample t-test of Ericsson (1992). This t-test has an 
asymptotic N(0,1) distribution and is discussed in more detail in the text. 

Restrictive null General null 
Rejection True 5% Rejection True 5% 

Type of Type Maturity rate at 5% critical rate at 5% critical 
regression of return (years) asy crit val value asy crit val value 

In-sample Annual 2 0.180 14.19 0.312 23.79 

In-sample Annual 7 0.178 14.03 0.234 17.05 

In-sample Quarterly 2 0.103 9.84 0.265 19.31 

In-sample Quarterly 7 0.098 9.85 0.167 13.23 

Out-of-sample Annual 2 0.087 2.11 0.207 3.66 

Out-of-sample Annual 7 0.087 2.09 0.128 2.54 

Out-of-sample Quarterly 2 0.054 1.68 0.205 3.38 

Out-of-sample Quarterly 7 0.050 1.64 0.097 2.13 
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A. Actual and fitted inflation B. Actual and fitted inflation 
1961−−2005 1985−−2005 
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C. Actual and fitted output growth D. Actual and fitted output growth 
1961−−2005 1985−−2005 
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Fig. 1. A comparison of observed inflation and output growth with model-implied estimates. 

The black lines in each panel are actual inflation (Panels A and B) and output growth (Panels 

C and D) over the specified dates. The blue and red lines represent filtered values of latent, 

“core” inflation and output growth based on estimates of two dynamic term structure models 

of inflation, output growth, and the term structure. The model underlying the blue line is 

a standard macro-finance model, where term premia are entirely determined by inflation, 

output growth, and the short rate. The model underlying the red line is the “general null” 

model, where term premia are orthogonal to these variables. The models are estimated 

separately over the 1961–2005 and 1985–2005 samples. 
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A. Fitted expected excess quarterly B. Fitted expected excess quarterly 
returns to 7−year bond, 1961−−2005 returns to 7−year bond, 1985−−2005 
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Fig. 2. Model-implied estimates of expected excess quarterly returns to a seven-year Treasury 

bond. The lines represent one-quarter-ahead expected excess returns (nominal return less 

return to a 90-day T-bill), where the expectations are based on estimates of three dynamic 

term structure models of inflation, output growth, and the term structure. One model (black 

line) is a standard macro-finance model, where term premia are entirely determined by the 

inflation, output growth, and the short rate. Another model (blue line) is the “general null” 

model, where term premia are orthogonal to these variables. The final model (red line) 

is unrestricted. The models are estimated separately over the 1961–2005 and 1985–2005 

samples. 
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