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Abstract

The expected change of a long-maturity Treasury yield conditional on the contemporaneous
change of a short-maturity Treasury yield varies widely during the past 60 years. The
projection coefficient ranges from around 0.2 in the mid-1960s to well above 1.0 in the late
1990s. Accompanying this long upward time trend are considerable swings over the course
of a few years. This variation appears to be connected to changing reactions of yields to
real-side news and monetary policy shocks, but straightforward stories such as changes in
monetary policy regimes do not appear consistent with the evidence.
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1 Introduction

How do innovations in long-term Treasury yields covary with innovations in short-term Trea-

sury yields? The empirical properties of this joint variation help distinguish among different

economic theories of the term structure. In this research I examine regressions of short-

horizon (daily and monthly) changes in long-term yields on contemporaneous changes in

short-term yields, focusing on the estimated coefficient’s variation over time. Conceptually

similar exercises first appear in Estrella and Hardouvelis (1990) and Thorton (2018), who

estimate rolling regressions of changes in Treasury bond yields on contemporaneous changes

in the Fed funds rate.1 The analysis here closely relates to Hanson, Lucca, and Wright

(2021), as discussed in more detail below.

Figure 1 sets the stage for the analysis. It displays parameter estimates from rolling

regressions of one-day and one-month changes in the seven-year Treasury yield on corre-

sponding changes in the one-year Treasury yield. The sample ranges from June 1961 through

September 2008. I cut the sample off at this date because term structure dynamics shift

substantially at the onset of the Great Recession owing to the zero lower bound.

The figure reveals remarkably wide variation over time in the regression coefficient, which

I label “long–short sensitivity.” It hovers around 0.3 through the mid-1960s, then rises

erratically through the late 1980s until it reaches about 1.0. During the 1990s and 2000s,

long–short sensitivity ranges from around 0.5 (the late 1990s) to about 1.5 (the early 2000s).

A no-arbitrage term structure model provides a useful lens to interpret this evidence. The

level of long–short sensitivity is increasing in the persistence of short-rate innovations under

the equivalent-martingale measure. We can think of the regression coefficient as an overall

measure of this persistence, integrated across all innovations to the state variables driving the

short rate. Therefore the coefficient depends on both the conditional covariance matrix of

these innovations and the Q-persistence of the individual innovations. Evidence drawn from

the existing term structure literature points to variation in conditional covariance matrices

rather than variation in Q-persistence as the primary driver of the patterns in Figure 1.

Stories involving time-varying volatilities easily spring to mind. Different types of news

have different implications for long–short sensitivity. News about technological change

and news about long-run inflation can produce high sensitivity through real and inflation-

1The earliest version of Thorton (2018) appeared in 2007.
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expectation channels respectively. Transitory supply disruptions and monetary policy shocks

can produce low sensitivity. Hanson and Stein (2015) add the important caveat (applied

in their case to monetary policy shocks) that news can simultaneously affect physical ex-

pectations of future short rates and bond risk premia, complicating equivalent-martingale

dynamics. Changes over time in the relative importance of these types of news will drive

corresponding changes in long–short sensitivity.

Armed with this logic, I investigate empirically the links between the macroeconomy and

long–short sensitivity. The evidence here points to a real-side explanation for time-varying

sensitivity, although the nature of that explanation remains elusive.

The first set of results attempt to explain variations in long–short sensitivity with mea-

sures of conditional macroeconomic volatility and real output. The general upward trend in

long–short sensitivity since 1961 coincides with the Great Moderation’s declining real-side

volatility. Yet aside from that trend, there are no robust connections between long–short sen-

sitivity and either broad measures of macroeconomic volatility or the level of macroeconomic

activity.

Reactions to macroeconomic announcements provide stronger evidence tying long–short

sensitivity to real-side macroeconomic news. Consider a nonfarm payroll announcement on

day t that exceeds expectations. Bond yields of all maturities typically increase in response

to this news. Condition these responses on the level of long–short sensitivity for days sur-

rounding day t, excluding day t. Label this neighborhood sensitivity “overall” sensitivity, in

the sense that the local regression coefficient integrates over all innovations on these dates.

Payroll announcements occurring at times when overall sensitivity is higher are accompa-

nied by smaller responses of one-year yields. Responses of seven-year yields to the announce-

ments do not vary with overall sensitivity. Therefore “announcement-specific” sensitivity of

nonfarm payroll surprises is high when overall long–short sensitivity is high. By contrast,

announcement-specific sensitivity of inflation news (CPI, PPI, and their core counterparts)

is unrelated to overall sensitivity.

This evidence suggests that high-sensitivity periods are characterized by a different mix of

real-side news, but not inflation news, then are low-sensitivity periods. Some real-side news

corresponds to high Q-persistent innovations to rates, while other real-side news corresponds

to low Q-persistent innovations. When overall sensitivity is high, conditional volatilities of

the latter types of real-side news are high relative to conditional volatilities of the former
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types.

Intriguingly, the wedge between announcement-specific sensitivities to real news and in-

flation news has a counterpart with two types of FOMC news. Responses of yields to Fed

funds surprises on FOMC days vary systematically across periods of low and high overall

sensitivity. Seven-year yields respond more strongly to Fed funds surprises when overall

sensitivity is high, hence Fed funds announcement-specific sensitivity tracks overall sensitiv-

ity. However, announcement-specific sensitivity to forward guidance surprises is unrelated

to overall sensitivity.

These results point to a straightforward monetary policy interpretation of variations

in long–short sensitivity. The central bank’s policy rule varies over time in aggressiveness

towards real-side shocks. When the rule is more (less) aggressive, real-side news has relatively

large (small) effects on near-term forecasts of short rates and smaller (larger) effects on

longer-term forecasts. Similarly, a monetary policy shocks under an aggressive regime are

anticipated to die out more quickly than are such shocks under a less-aggressive regime.

However, the patterns in Figure 1 do not line up well with previously identified regime shifts

in the central bank’s policy strategies. Nor is there an intuitive reason why aggressiveness

to real-side shocks will vary without corresponding variation in aggressiveness to inflation

shocks.

As noted above, high long–short sensitivity corresponds to high Q-persistence of short-

rate innovations. Under the physical measure this can be explained both by high P-persistence

and a positive relation between short-rate innovations and bond risk premia. These are not

mutually exclusive explanations. Even in a 65-year sample, conditional estimates of long-run

short-rate persistence and risk premia are accompanied by fairly large standard errors. That

said, the data point clearly towards higher P-persistence when sensitivity is high. Point

estimates do not support a significant risk premium interpretation, but the standard errors

cannot rule one out.

Hanson et al. (2021) arrive at a substantially different conclusion in their analysis of long–

short sensitivity. They focus on the 2000 through 2019 sample, documenting that regression

coefficients of changes in longer-term yields on shorter-term yields decrease significantly

with the horizon over which the changes are measured. This evidence is consistent with a

positive relation between short-rate innovations and risk premia, which they argue is driven

by slow-moving capital in the fixed-income sector.
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My interpretation of this recent period differs from (and is less economically interesting

than) the interpretation of Hanson et al. (2021). In brief, the sample yield dynamics were

highly unusual. Two large and long-lasting events dominate the 2000 and later period.

During both events (2000 through mid-2005 and October 2007 through 2017), shorter-term

yields dropped steadily and substantially over two years, flattened out, and eventually rose.

I find that short-horizon (daily) long–short sensitivity varied systematically during these

events, creating the patterns observed by Hanson et al. (2021).

The next section provides some introductory evidence on long–short sensitivity. Section

3 provides intuition from no-arbitrage term structure models. Section 4 examines macroeco-

nomic connections. Section 5 takes a close look at term structure properties during the 21st

century. Section 6 concludes.

2 An Empirical Overview

I use changes in yields as proxies for innovations in equivalent-martingale expectations of

future short rates. To derive the relationship between changes in yields and innovations,

define the innovation from t− 1 to t in Q-expected average short rates over T periods as

ΔEQ
t (r(T )) ≡ EQ

t

(
1

T

t−1+T∑
h=t

rh

)
− EQ

t−1

(
1

T

t−1+T∑
h=t

rh

)
. (1)

The first Q-expectation on the right is, aside from convexity, the yield at t on a T -period

bond. The second Q-expectation is the period-(t− 1) expectation of this yield (again, aside

from convexity). We do not observe this expectation, but we observe the period-(t−1) yield

on a T -period bond.

Rewrite (1) to connect it to changes in yields as

ΔEQ
t (r(T )) =

(
EQ

t

(
1

T

tf−1+T∑
h=t

rh

)
− EQ

t−1

(
1

T

t−2+T∑
h=t−1

rh

))
− 1

T

(
EQ

t−1(rt−1+T )− rt−1

)
. (2)

The large term in parentheses on the right of (2) is close to the first difference of the T -

maturity yield because convexity at t differs little from convexity at t − 1. The magnitude

of the second term is determined by T . For example, using daily data with T equal to one
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year, the second term is the Q-expected short rate in 365 days less the current short rate,

divided by 365. Hence second term on the right is small when T is large, either because the

horizon is long in calendar terms or the data are high frequency.

I therefore apply the approximation

ΔEQ
t (r(T )) ≈ y

(T )
t − y

(T )
t−1 (3)

using maturities sufficiently long that the second term on the right of (2) is irrelevant.

Approximate the conditional projection of the innovation in long-horizon expected short

rates on the contemporaneous innovation in shorter-maturity expected short rates as

Projt

(
ΔEQ

t

(
r(T long)

) ∣∣∣∣ΔEQ
t

(
r(T short)

))
=Projt

(
Δy

(long)
t

∣∣∣∣Δy
(short)
t

)
=StΔy

(short)
t (4)

where the dependence of long–short sensitivity St on the maturities is implicit. The condi-

tional regression form is

Δy
(long)
t = StΔy

(short)
t + et. (5)

Empirical implementation of (5) uses maturities of seven years and one year. Data

availability determines the choice of long horizon. Standard datasets of Treasury yields begin

in 1961. Gürkaynak, Sack, and Wright (2007) argue that owing to the maturity structure of

Treasury coupon bonds, yields for zero coupon bonds are reliable for maturities greater than

seven years only after August 1971. The one-year horizon ensures that the approximation

(3) is accurate. Zero-coupon yields are interpolated by the Federal Reserve Board following

the procedure of Gürkaynak, Sack, and Wright (2007).

Figure 1, discussed in Section 1, estimates St using fixed-coefficient rolling regressions

Δy
(7yr)
t = SΔy

(1yr)
t + et. (6)

The estimate for day t uses 80 observations of daily changes in yields from trading day t−79

to trading day t. The estimate for month t uses 36 observations of monthly changes in yields

from month t − 35 to month t. Regression (6) does not include constant terms to avoid

throwing away information about the common trend in one-year and seven-year yields. This
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choice is consistent with (4).

Before attempting to link variations in long–short sensitivity to macroeconomic trends, it

helps to understand other differences between high-sensitivity periods and short-sensitivity

periods. I estimate (6) using daily data for each calendar quarter. This produces regression

coefficients for all 190 quarters from 1961Q2 through 2008Q3. I then sort the 190 quarters

into four groups formed by quartile break points of the coefficient.

Within a group, I construct a panel of observations of daily changes in the one-year yield

and contemporaneous changes in instantaneous forward rates calculated by Gürkaynak et al.

(2007). For each quartile group, I regress daily changes in instantaneous forward rates on

daily changes in the one-year Treasury yield,

Δf
(h yr)
t = ShΔy

(1yr)
t + e

(h)
t , h = 1, . . . 7. (7)

Panel A of Figure 2 displays the standard deviations of daily changes in forward rates.

These volatilities vary substantially across the quartile groups, but not in a way that lines up

cleanly with the quartile index. The quartile with the lowest quarterly long–short sensitivities

has (for the most part) the smallest volatilities, while the quartile with second-lowest long–

short sensitivities has the largest volatilities.

Panel B of Figure 2displays the estimated regression coefficients from (7). The panel

shows, not surprisingly, that the impliedQ-persistence of short-rate innovations varies sharply

across the quartiles. Consider quartile 1 (lowest quarterly long–short sensitivities). For this

quartile, forward-rate sensitivities die out monotonically and quickly. The four-year instan-

taneous forward rate is largely insensitive to the one-year yield. Forward-rate sensitivities

for quartile 4 rise with maturity, then decline slowly. The coefficients exceed one for all

displayed maturities.

The next section uses a no-arbitrage framework to put formal structure on the different

yield dynamics embodied by Figure 2.

3 Some No-Arbitrage Intuition

An economic theory designed to explain the patterns in Figures 1 and 2 requires considerable

time-variation in yield dynamics. This section uses intuition from no-arbitrage term structure
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models to put some structure on admissible theories. To preview the results, variations

in long–short sensitivity can be produced by both variations in the covariance matrix of

innovations to state variables that drive yields and variations in the equivalent-martingale

persistence of these state variables. Evidence in the term structure literature points to the

former channel rather than the latter.

3.1 A Canonical Discrete Time Gaussian Setting

The absence of arbitrage implies that the yield of a default-free m-period zero-coupon bond

is

y
(m)
t ≡ − 1

m
logP

(m)
t = − 1

m
log
(
EQ

t

(
e−

∑m−1
i=0 rt+i

))
, (8)

where the rt is the one-period interest rate and Q superscript refers to an expectation under

the equivalent-martingale measure. Inspection of (8) reveals that the yield equals the Q-

expected mean short rate over the life of the bond, adjusted for convexity. The convexity

adjustment is small for maturities studied in this paper.2

Dynamics of the short rate determine the long–short sensitivity. The Gaussian framework

of Joslin, Singleton, and Zhu (2011) helps us understand what properties of these dynamics

are plausibly associated with variation in the long–short sensitivity. An n-dimensional state

vector denoted xt drives variations in the short rate. The individual elements of xt have

no economic content because the vector can be translated, scaled and rotated without any

observable implications. Fundamental factors (e.g., the state of the macroeconomy; risk-

bearing capacity of financial intermediaries) are unspecified combinations of the canonical

factors. The canonical model of Joslin et al. (2011) rotates and scales the state vector such

that the short rate is

rt = rQ + ι′xt (9)

where ι is an n-vector of ones.

The state’s dynamics under the physical measure are

xt = μ+ φxt−1 + εt, εt ∼ N(0,Σ). (10)

2The Internet Appendix uses a back of the envelope calculation to estimate this adjustment is less than
20 annualized b.p. for the ten-year yield.
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The covariance matrix Σ is positive definite but otherwise unrestricted. Bonds are priced by

the state’s dynamics under the equivalent martingale measure,

xt = φQxt−1 + εQt , εQt ∼ N(0,Σ). (11)

Identifying assumptions in the canonical model are the absence of a constant term in (11),

a lower triangular φ and a φQ determined entirely by its eigenvalues. For example, if the

eigenvalues are real and distinct, the matrix is diagonal with eigenvalues d1 through dn on

the diagonal,

φQ = diag( d1 . . . dn ). (12)

The matrix φQ determines the speed of mean reversion of the state vector under Q-

dynamics. Forecasts of the state under Q are

EQ
t xt+j =

(
φQ
)j
xt. (13)

For the case of real and distinct eigenvalues, plug (12) into (13) to produce element-by-

element forecasts,

EQ
t

⎛⎜⎜⎝
x1,t+j

...

xn,t+j

⎞⎟⎟⎠ =

⎛⎜⎜⎝
dj1x1,t

...

djnxn,t

⎞⎟⎟⎠ . (14)

Therefore eigenvalue i determines the speed of mean reversion under Q for element i of the

canonical state vector. Joslin et al. (2011) show that the eigenvalues of the canonical φQ

determine the speed of mean reversion under Q of all rotations of the canonical state vector.

In this homoskedastic model the convexity adjustment in (8) is constant over time. There-

fore the bond’s yield is

y
(m)
t =c(m) +

1

m

m−1∑
i=0

EQ
t rt+i

=c(m) + rQ +
1

m

(
ι′

m−1∑
i=0

(
φQ
)i)

xt

=c(m) + rQ +
1

m

(
I − (φQ

)m) (
I − φQ

)−1
xt (15)
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where the m-dependent constant term on the right is the convexity adjustment. Thus, bond

yields are (aside from a constant) averages of equivalent-martingale expectations of short

rates over the life of the bond.

Similarly, the one-period forward rate at t for lending from t+m to t+m+ 1 is (again,

aside from a constant) the equivalent-martingale expectation of the m-ahead short rate.

Formally,

f
(m)
t =c(m+1) − c(m) + EQ

t (rt+m)

=c(m+1) − c(m) + ι′
(
φQ
)m

xt. (16)

3.2 Long–Short Sensitivity in the Model

To connect this model to long–short sensitivity, consider one-period innovations in forward

rates and yields. Denoting innovations with tildes, forward rate innovations are

f̃
(m)
t ≡ f

(m)
t − Et−1

(
f
(m)
t

)
= ι′

(
φQ
)m

εt. (17)

Yield innovations are averages of forward rate innovations,

ỹ(m) ≡ y
(m)
t − Et−1

(
y
(m)
t

)
=

1

m

(m−1)∑
i=0

f̃
(i)
t

=
1

m

(
I − (φQ

)m) (
I − φQ

)−1
εt. (18)

Consider projecting the innovation in the m1-maturity yield on the contemporaneous

innovation in the m2-maturity yield. The population regression coefficient is

Cov
(
ỹ
(m1)
t , ỹ

(m2)
t

)
Var

(
ỹ
(m2)
t

) =
m2

m1

ι′
(
I − (φQ

)m1
) (

I − φQ
)−1

Σ
((

I − (φQ
)m2
) (

I − φQ
)−1
)′
ι

ι′ (I − (φQ)m2) (I − φQ)−1Σ
(
(I − (φQ)m2) (I − φQ)−1)′ ι . (19)

Equation (19) tells us that long–short sensitivity is determined by the eigenvalues of Q

and the covariance matrix of the state innovations.
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Straightforward intuition explains the roles of these parameters. To highlight the role of

the eigenvalues, consider the special case of a one-dimensional state vector. Then φQ is a

scalar which we can think of as its eigenvalue d. In this case, (19) simplifies to

One factor version:
Cov

(
ỹ
(m1)
t , ỹ

(m2)
t

)
Var

(
ỹ
(m2)
t

) =
m2

m1

(1− dm1)

(1− dm2)
. (20)

A long–short sensitivity regression corresponds to m2 less than m1. When d is close to one,

the state is highly persistent under Q. Then short-term and long-term yields react similarly

to an innovation. When d is closer to zero, long-term yields react relatively less, resulting in

a smaller long–short sensitivity.

The covariance matrix of state innovations affects long–short sensitivity in a multifactor

setting. The simplest multifactor model has a state vector with independent elements, as in

the two-factor version

Two factor version: Σ =

(
Σ11 0

0 Σ22

)
, φQ = diag( d1 d2 ),

Cov
(
ỹ
(m1)
t , ỹ

(m2)
t

)
Var

(
ỹ
(m2)
t

) =

(1−d
m1
1 )(1−d

m2
1 )

(1−d1)2
Σ11 +

(1−d
m1
2 )(1−d

m2
2 )

(1−d2)2
Σ22

(1−d
m2
1 )

2

(1−d1)2
Σ11 +

(1−d
m2
2 )

2

(1−d2)2
Σ22

. (21)

The relative variances of the two factor innovations determine which eigenvalue plays a larger

role in determining the long–short sensitivity. Section 3.4 presents a more general two-factor

example in which the factor innovations are correlated.

3.3 Implications of Giacoletti, Laursen, and Singleton (2021)

Of course, the rolling regression estimates of Figure 1 imply that this constant-coefficient

model is misspecified. Either Q-persistence of the state vector, the covariance matrix of

state-vector innovations, or both must vary over time. Evidence from the term structure

literature casts considerable doubt on the importance of time-varying persistence. This

evidence relies on the fact that Q-persistence of the state can be inferred from the shape of

the term structure.
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Inspection of (15) reveals that the state affects yields through the state’s Q-persistence.

Beginning with Chen and Scott (1993), the term structure literature recognizes that equa-

tions such as (15) can be inverted to infer an n-dimensional state vector from n yields.

Given n yields, the remaining shape of the yield curve is determined by the model param-

eters. Therefore the cross-section of term structure shapes can be used to infer the state’s

Q-persistence.

Giacoletti, Laursen, and Singleton (2021) produce rolling regression estimates of φQ for

a three-factor version of the model described here. For the period 1971 through 2014, they

conclude that the matrix is “. . . virtually fixed over the entire sample. . . ” (p. 409). A slightly

more nuanced interpretation of their rolling estimates is that largest estimated eigenvalue is

constant throughout the sample. The other two estimated eigenvalues exhibit no time trend

from 1971 through the early 1990s. Around 1994, these two eigenvalues move slightly in

opposite directions until the beginning of the global financial crisis in the fourth quarter of

2008.

The evidence of Giacoletti et al. (2021) casts substantial doubt on the possibility that

variations in long–short sensitivity exhibited in Figure 1 can be attributed to variations in

the state’s Q-persistence. Economic models designed to explain variations in long–short sen-

sitivity should focus on variations in the conditional covariance matrix of factor innovations.

3.4 A Stylized Example of Fundamental Innovations

Empirical results in the next section motivate this two-factor example. Yields react to

news about both inflation and real activity. Thus, we can think of innovation-specific long–

short sensitivity; sensitivity associated with inflation news and sensitivity associated with

real activity news. Overall long–short sensitivity is (roughly) a weighted average of these

innovation-specific sensitivities.

If we apply the simple two-factor model of (21) to this setting, innovation-specific long–

short sensitivity is fixed by the eigenvalues, while overall long–short sensitivity depends on

the relative variances of inflation and real activity news. The more general example here

illustrates how innovation-specific long–short sensitivity can depend on both eigenvalues and

the covariance matrix of innovations.

News about inflation and real activity arrives at t. This news affects the term structure
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through a mapping from fundamental news to state-variable innovations,

εt = Hξt, ξt ∼ N(0, I2×2), (22)

where the first and second elements of the vector ξt contain inflation and real activity news

respectively. For simplicity, inflation and real activity news are uncorrelated. The covariance

matrix of state-variable innovations in (10) and (11) is

Σ = HH ′. (23)

Pinning down the model requires specifying H and the eigenvalues ofφQ.

Consider two choices for H , labeled Case 1 and Case 2.

Case 1: H =

(
1 0

−0.5 1

)
; (24)

Case 2: H =

(
1 0.8

−0.5 −0.3

)
. (25)

For both cases, the eigenvalues of φQ are

φQ =

(
0.993 0

0 0.9

)
. (26)

Think of time as measured in months. From (13), the equivalent-martingale half-lives of two

factors are a little more than eight years and a little more than six months.

Figure 3 summarizes the model’s intuition with different choices of H . Consider the effect

of fundamental news on current and Q-expected future short rates. Revisions in the i-ahead

Q-forecast are

EQ
t (rt+i)− EQ

t−1(rt+i) =
(

1 1
) (

φQ
)i
Hξt. (27)

Figure 3 plots these forecasts for one-unit innovations in inflation and real activity. The

scaling of the figure is arbitrary because the units of inflation and real activity are not

specified.

Cases 1 and 2 exhibit the same response of Q-expected future short rates to positive
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inflation news. The blue lines show that the short rate immediately increases and is antici-

pated to continue to increase for roughly the next 18 months. The short rate is anticipated

to slowly decline after about 18 months.

The response of Q-expected future short rates to real activity news differs considerably

between the two cases. With Case 1, the short rate immediately jumps, then is expected

to quickly decline. This monotonic behavior is similar to the pattern observed with quartile

1 in Figure 2’s Panel B. Innovations in Q-expected future short rates are close to zero for

horizons beyond three years. With Case 2, the immediate reaction of the short rate is much

weaker than in Case 1. The short rate is anticipated to rise for a few years, then slowly

decline. This nonmonotonic pattern is similar to the pattern observed with quartile 4 in

Figure 2’s Panel B.

Measure long–short sensitivity with the population coefficient for regressing changes in

the seven-year yield on changes in the one-year yield. A news-specific sensitivity is defined

as the coefficient when the other type of news is shut off. The inflation-specific and real

activity-specific sensitivities for Case 1 are 1.05 and 0.20 respectively. The overall sensitivity

is 0.64. The corresponding sensitivities for Case 2 are 1.05 (unchanged from Case 1), 0.97,

and 0.99.

Case 2’s greater Q-persistence of short rates is attributable to greater Q-persistence of

real activity innovations. With Case 1, the model’s lower eigenvalue entirely determines the

reactions of forward rates to real activity news. With Case 2, both eigenvalues determine

these reactions.

This highly stylized no-arbitrage model is open to various interpretations. There is no

monetary authority nor a monetary policy function. Nonetheless, informally we might think

of these two cases as roughly capturing active and passive monetary policy with respect

to real activity. Other interpretations are possible. This example says nothing about risk

premia since only the equivalent-martingale measure is modeled. We could add physical

measure dynamics that would allow for greater (or less) variation over time in risk premia

with Case 2 than with Case 1. But long–short sensitivity, by itself, says nothing about risk

premia dynamics.
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4 Exploring Economic Interpretations

This section investigates empirically whether the changes in the economic environment can

explain the time-variation documented in Figure 1. To preview the results, the strongest

evidence relates long–short sensitivity to the responsiveness of the one-year yield to real-side

news, and the responsiveness of the seven-year yield to Fed funds surprises.

Recall the definition of conditional long–short sensitivity St embedded in (4) and (5).

Discussion in the previous section motivates the functional form

St = S(Σt−1), (28)

where Σt is the time-t conditional covariance matrix of innovations to the canonical state

vector that drives the term structure. Generalizing the example of Section 3.4, we can add

a little economic content by writing the n-vector of innovations to canonical state variables

in (22) as a function of fundamental economic news,

εt︸︷︷︸
n×1

= Ht−1︸︷︷︸
n×p

ξt︸︷︷︸
p×1

, Vart−1(ξt) = Ωt−1, (29)

where p-dimensional economic news is in the vector ξt. Then the conditional covariance

matrix of the canonical state vector is

Σt = HtΩtH
′
t. (30)

This setup leads to a functional form for long–short sensitivity of

St = S(Ht−1,Ωt−1). (31)

If we could observe fundamental economic news, we could infer Ht period-by-period. We

could also construct estimates of Ωt, and thus estimate the function (31). Unfortunately,

substantial research fails to identify observable fundamental news that drives much of the

innovations in bond yields. In other words, we know little about the elements of ξt in (29).

More precisely, we observe types of macroeconomic news that clearly move bond prices.

However, this news arrives infrequently. Kuttner (2001), Cochrane and Piazzesi (2002), and
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Piazzesi (2005) conclude that yields across the term structure react strongly to monetary

policy shocks identified with high-frequency data. Similarly, Gürkaynak, Sack, and Swanson

(2005) show that the news components of many macroeconomic data releases are correlated

with contemporaneous changes in bond yields. Yet monetary policy shocks are realized

only once every six weeks or so. Swanson and Williams (2014) calculate that collectively,

macroeconomic announcements explain, in an R2 sense, less than 20% of the daily changes

in bond yields.

I therefore adopt two less direct approaches to connect long–short sensitivity to economic

fundamentals.

4.1 Conditional Long–Short Sensitivity Regressions

The approach here approximates the unknown function (31) with an affine function of observ-

ables that are plausibly connected to long–short sensitivity. Put differently, the observables

are proxies for the unknown Ωt and Ht.

Natural proxies for conditional volatilities of fundamental shocks (the unknown Ωt) are

conditional volatilities of broad categories of observed macroeconomic and financial variables.

The mapping from fundamental news to bond yields, captured by Ht, might depend on the

state of the economy. Investors predict how the Fed will react to the fundamental news.

Their predictions might differ across booms and recessions, or across normal and abnormal

times. The mapping from fundamentals to yields might also depend on the level of short-

term rates. Swanson and Williams (2014) use zero-bound logic to argue that the response

of short-term rates is muted when these rates are particularly low, even if not at the lower

bound.

A regression approach conditions long–short sensitivity on proxies for conditional volatil-

ity and conditional sensitivity. Write conditional sensitivity in (5) as

St = b′Wt, (32)

where the vector Wt contains conditioning information including a constant (normalized to

one).

I include three broad measures of conditional volatility constructed by Jurado, Ludvigson,

and Ng (2015). Their monthly indexes are averages, across a wide variety of time series, of
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square roots of forecast error variances. McCracken and Ng (2016) list all 279 time series.

One set of indexes captures overall macroeconomic uncertainty and another captures financial

uncertainty. Ludvigson, Ma, and Ng (2021) carve out “real” uncertainty from macroeconomic

uncertainty by excluding time series related to money, credit, interest rates, exchange rates,

price levels, and the stock market. The remaining time series relate to output, income,

housing, the labor market, inventories, and business orders. The measures of volatility in Wt

are one-month-ahead measures of real uncertainty, overall macroeconomic uncertainty, and

financial uncertainty for the calendar month prior to day t’s calendar month.3

My proxy for the state of the macroeconomy is the Brave-Butters-Kelley coincident index

described by Brave, Butters, and Kelley (2019). The monthly index measures the deviation

of economic growth from a long-term historical average. The absolute value of this index

captures deviations from normal times. I use the one-year Treasury bond yield as a proxy for

the level of short-term rates. The coincident index value for day t’s conditioning information

is for the calendar month prior to day t’s calendar month. The one-year yield conditioning

information for day t is the yield as of day t− 1.

Table I contains the results. On balance, the estimates do not support any relation that

is both economically strong and consistent across the entire sample period. Over the full

sample, only one coefficient is economically significant. A one standard deviation decrease

in the real volatility index corresponds to an increase in the long–short regression coefficient

of about 0.15. Underlying that inverse relation is the sharp break in real-side volatility

associated with the Great Moderation beginning in the mid-1980s. Splitting the sample

in half effectively throws away the information in the break. The table reveals that for

both halves, the estimated coefficient on real volatility is positive, economically small, and

statistically insignificant.

Two other full-sample parameter estimates are statistically significant, but that’s a reflec-

tion of more than 11,000 observations rather than economic importance. For example, a one

standard deviation decrease in the one-year yield raises the long–short regression coefficient

by only 0.045. Moreover, the estimated coefficient switches sign between the first-half and

second-half samples.

It is worth highlighting the strong positive relation between real activity and long–short

sensitivity in the second half of the sample. As is well-known, real activity drops sharply

3Thanks to Sydney Ludvigson for maintaining these data on her website.

16



throughout 2001, peaks in the first half of 2004, and drops again throughout 2008. A glance

at Figure 1 reveals the same pattern in rolling regression estimates of long–short sensitivity.

However, the largest variation in real activity occurs during the 1970s and early 1980s,

without any corresponding variation in long–short sensitivity.

4.2 Macroeconomic Announcements

Bond yields react to macroeconomic statistical releases. This section asks whether the mag-

nitudes of these reactions vary with the level of overall long–short sensitivity. The model of

Section 3.4 provides one motivation for this exercise (and also motivates the term “overall

long–short sensitivity”). Changes in the reactions of yields to macroeconomic news produce

changes in the covariance matrix of term structure factor innovations, which in turn produce

changes in long–short sensitivity.

Another motivation turns this logic around. Instead of explaining long–short sensitivity

using information from macroeconomic announcements, we can use long–short sensitivity to

better understand how macroeconomic news affects the term structure. A decades-old, ever-

growing literature builds dynamic macroeconomic models with term structure implications.

The information in conditional long–short sensitivity can identify periods when reactions of

yields to macroeconomic news are relatively strong and relatively weak.

Following an interest rate literature dating to at least Grossman (1981), we observe the

news content of government statistical releases, defined as the announced values less forecasts

from Money Market Services. For each news announcement, we also observe changes in bond

yields from the end of the previous day through the end of the announcement day.

We do not observe directly long–short sensitivity. Thus I approximate it using a local

regression. To fix ideas, consider a particular type of announcement a, say nonfarm payroll,

with an announcement on day τ . The estimate of long–short sensitivity for day τ uses daily

changes in yields for the 40 trading days prior to τ and the 40 trading days after τ , excluding

all days in this range with the same type of announcement a. Using these observations, I

regress changes in the seven-year yield on contemporaneous changes in the one-year yield.

No constant term is included.

Denote this coefficient estimate for the day τ announcement as Ŝτ . Express the reaction

of the m-maturity bond yield to the announcement as a function of this estimated long–short
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sensitivity,

Δy(m)
τ = ba0,m + bam(Ŝτ )η

a
τ + eaτ,m, bam(Ŝτ ) ≡

(
ba1,m + ba2,m

Ŝτ − Ŝτ

SD(Ŝτ )

)
. (33)

In (33), ηaτ is the news in announcement type a on day τ . This news is normalized to a

mean-zero, unit standard deviation random variable.

Using (33), we can define announcement-specific long–short sensitivity; the expected

response of the seven-year bond yield to the news relative to the expected response of the

one-year bond yield to the news. This sensitivity is

Sa(Ŝτ ) =
ba7yr(Ŝτ )

ba1yr(Ŝτ )
. (34)

There is no reason for this announcement-specific long–short sensitivity at τ to equal the

overall long–short sensitivity at τ . The latter averages across all types of news that drive

bond yields.

I use eight types of announcements for which at least 200 months of announcement

surprises are available. This set includes four announcements about inflation (CPI, core CPI,

PPI, core PPI) and four announcements more closely related to the real economy (nonfarm

payroll, retail sales excluding autos, durable goods orders, and initial unemployment claims).

Initial unemployment claims are announced weekly. All other announcements are monthly.

Announcement news for four of the series (CPI, PPI, nonfarm payroll, durable goods) begin

in October 1985. Core CPI, Core PPI, and retail sales excluding autos begin in August 1989.

Initial claims begins in July 1991. Regressions use data through September 2008.

Before discussing the results, two features of this 1985 through 2008 period are worth

mentioning. First, as Figure 1 shows, rolling-regression estimates of long–short sensitivity

average about one during this period. Second, as mentioned in Section 4.1, in this sample

period there is a strong positive relation between real activity and long–short sensitivity.

Since the sample from 1961 through 1984 does not exhibit this strong relation, it is possible

that announcement-level results for 1985 and up are not informative about the entire sample.

Table II contains results. Estimates of regression (33) coefficients ba1,m and ba2,m are

in the columns labeled “Surprise” and “Interaction” respectively. The table also reports
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estimates of announcement-specific long–short sensitivity (34). This sensitivity is estimated

for both the mean value of Ŝτ over the announcement sample and for a value of Ŝτ that is

one standard deviation greater than the mean. The table’s final column tests whether the

difference between these values is statistically significant. Generalized Method of Moments

(GMM) standard errors for (34) incorporate uncertainty in both the seven-year and one-year

regressions (33). None of the standard errors in the table account for sampling uncertainty

in Ŝτ .

The table shows that variation in overall long–short sensitivity is a real-side phenomenon,

and is unrelated to inflation news. Inflation announcement estimates are reported in Panel A.

Estimates of ba1,m in (33) are similar to those reported by Gürkaynak et al. (2005), although

they examine somewhat different maturities. News of higher CPI and Core CPI raise one-year

and seven-year yields, while new of higher Core PPI raises the seven-year yield. News about

PPI does not significantly affect yields. The important result in Panel A is that responses of

yields to inflation announcements do not vary with overall long–short sensitivity. Estimates

ba2,m are all economically insignificant and statistically indistinguishable from zero.

Real-side announcement estimates are reported in Panel B. Announcement types are

ordered by the R2 of (33) for the one-year yield. (The R2 ordering is unchanged if the

coefficient ba2,m is fixed to zero.) Across all announcements, good news about real activity

raises bond yields, although R2s vary widely across announcement types. All estimates of

ba1,m are positive and statistically different from zero at the 5% critical value.4

A more important result for this paper is that when local overall long–short sensitivity

is high, these real-side announcement surprises have smaller effects on the one-year yield

than when local overall sensitivity is low. For example, when local overall sensitivity is one

standard deviation higher than usual, the effect on the one-year yield of a unit SD nonfarm

payroll surprise drops by 25%, from 1.9 bp to 1.5 bp. Statistical reliability of this inverse

relation is greater for announcements more closely related to bond yields (nonfarm payroll,

retail sales) or are observed more frequently (initial unemployment claims). Local overall

sensitivity is less strongly related to the relation between announcement surprises and the

seven-year yield. The “Interaction” estimates for the seven-year yield are all closer to zero

than are the corresponding estimates for the one-year yield.

As a consequence of these patterns, higher overall long–short sensitivity corresponds to

4I reverse the sign of news of initial claims for unemployment.
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higher announcement-specific long–short sensitivity. This conclusion is statistically reliable

only for nonfarm payroll because the standard errors are considerably smaller than for other

announcement types. The high R2s of the nonfarm payroll regressions account for the low

standard errors. Estimates in the columns labeled ‘Mean’ and ‘Mean +1 SD’ show that when

local overall sensitivity is at its sample mean (1.07), estimated nonfarm payroll sensitivity

is 0.92. When overall sensitivity is one standard deviation higher (1.32), estimated nonfarm

payroll sensitivity is 1.15. Both retail sales ex autos and durable goods have larger estimated

differences between the ‘Mean’ and ‘Mean +1 SD’ than does nonfarm payroll, although the

standard errors are an order of magnitude larger for these announcements.

A final observation rounds out the discussion of Table II. Across Panels A and B, all but

one of the ‘Mean’ values of announcement-specific long–short sensitivity are about 1.0, as

is overall long–short sensitivity during the sample period spanned by these announcements.

The exception is Core PPI, for which the standard error is extremely large.

This similarity suggests that a wide variety of types of macroeconomic news might have,

on average, similar long–short sensitivity. Some types of news have large effects on yields

(e.g., nonfarm payroll), and others have smaller effects (e.g., CPI). Yet across these macroe-

conomic announcements, the relative effects of news on one-year and seven-year bonds are

similar. However, as we see in the next subsection, long–short sensitivity of monetary policy

surprises differs considerably from long–short sensitivities documented in this subsection.

4.3 Monetary Policy Surprises

This section extends the macroeconomic announcement methodology to FOMC announce-

ments. Two complications arise. First, monetary policy surprises are measured by unex-

pected changes in interest rates (e.g., the Fed funds target was unexpectedly increased),

rather than by unexpected components of statistical releases (e.g., nonfarm payroll was

100,000 larger than expected). Second, monetary policy announcements are multidimen-

sional, conveying information about both current and expected future levels of the Fed

funds rate.

Swanson (2021) argues that FOMC policy surprises prior to 2009 can be decomposed into

news about the current Fed funds rate and orthogonal news about Q-expected future Fed

funds rates during the next year (forward guidance). After 2008, FOMC announcements also
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contain news about large scale asset purchases (LSAP), but that news is irrelevant to the

sample period studied here. Swanson constructs Fed funds news and forward guidance news

as fixed-coefficient linear combinations of changes in Fed funds futures, Eurodollar futures,

and Treasury bond yields in small time windows around FOMC announcements. I use his

data. The sample contains 154 observations from July 1991 through September 2008.

Stack the two-dimensional monetary policy news for the FOMC announcement on day

τ in the vector ηfτ , where “f” denotes FOMC. Swanson scales the news so that both types

have a unit variance over the July 1991 through June 2019 sample. Regress one-day changes

in yields on this news, allowing the regression coefficient to depend on the estimated overall

long–short sensitivity on day τ .

Δy(m)
τ = bf0,m + bfm

′
(Ŝτ )η

f
τ + efτ,m, bfm(Ŝτ ) ≡

(
bf1,m + bf2,m

Ŝτ − Ŝτ

SD(Ŝτ)

)
. (35)

Define surprise-specific long–short sensitivity following (34). Intuitively, this ratio mea-

sures the reaction of the seven-year bond to a Fed funds or forward guidance surprise relative

to the reaction of the one-year bond to the same surprise. More broadly, define FOMC-

specific long–short sensitivity. Since there are two components to the news vector, this

FOMC-specific sensitivity depends on the covariance matrix of the news:

Sf(Ŝτ ) =
bf7yr

′
(Ŝτ )V̂ar(η

f)bf1yr(Ŝτ )

bf1yr
′
(Ŝτ )V̂ar(ηf)b

mps
1yr (Ŝτ )

. (36)

The covariance matrix in (36) is the sample covariance of the data.

Recall that Section 4.2 shows the one-year yield reacts less to real-side news when overall

long–short sensitivity is high. A similar relation is mechanically almost impossible with Fed

funds surprises. No-arbitrage ties innovations in the one-year yield tightly to news of current

and Q-expected Fed fund rates over the next year. Any systematic variation of Fed funds

announcements with bond yields will appear, if at all, at longer maturities.

Table III contains the estimation results. The presentation mirrors Table II. In Panel A,

estimates of regression (35) coefficients bf1,m and bf2,m are in the columns labeled “Surprise”

and “Interaction” respectively. The table also reports estimates of surprise-specific long–

short sensitivity (34) at the mean value of Ŝτ and a value of Ŝτ that is one standard deviation
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greater than the mean. The panel’s final column tests whether the difference between these

values is statistically significant. Panel B reports estimates of (36) at the mean value of Ŝτ

and one standard deviation greater than the mean.

Panel A reveals that one-year and seven-year bond yields respond strongly to FOMC

surprises to Fed funds and forward guidance. The estimated bf1,m coefficients are overwhelm-

ingly significant for both types of surprises and both yields. Similar evidence for different

maturities is in Swanson (2021). Note the high R2s relative to those in Table II. Since

monetary policy news is defined directly in terms of high-frequency changes in interest rates

around FOMC announcements, the explanatory power of this news for one-day changes in

yields is inherently larger than for news defined as unexpected components of macroeconomic

statistical announcements.

Estimates of bf2,m reveal that the seven-year yield reacts more to the Fed funds surprise

when overall long–short sensitivity is high. A one standard deviation positive Fed funds

surprise raises the seven-year yield by 2.7 bp when overall long–short sensitivity is at its

mean (for this sample, 1.08), and raises the yield by 4.5 bp when this sensitivity is one

standard deviation above its mean (1.35). By contrast, the responses of one-year and seven-

year yields to forward guidance surprises are insensitive to the level of overall long–short

sensitivity.

In combination, these estimates imply that higher overall long–short sensitivity corre-

sponds to higher Fed funds long–short sensitivity, but not forward guidance long–short sen-

sitivity. Panel B aggregates across both types of FOMC surprises, thus the estimates in the

panel are weighted averages of the results in Panel A.

Fed funds surprises are similar to real-activity surprises in the sense that their relative

effects on yields vary with the overall level of long–short sensitivity. However, note that the

announcement-specific long–short sensitivity for Fed funds is considerably smaller for Fed

funds surprises than for any of macroeconomic announcements examined in Table II. Fed

funds surprises are associated with much faster decay, under Q, of short-rate innovations

than are other surprises.

To summarize the announcement-level results, long–short sensitivity of real-side surprises

and Fed funds surprises positively covaries with overall long–short sensitivity. It takes only a

small leap to hypothesize that overall long–short sensitivity is created by time-varying long–

short sensitivity of real-side news and news about the central bank’s short-rate policy. We
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cannot test directly this hypothesis because we do not directly observe this news outside of

well-defined announcements.

A large literature in macro-finance constructs dynamic models of macroeconomic news,

monetary policy, and bond yields. Each parameterized model pins down long–short sensitiv-

ity, given specified long and short maturities. Models with regime shifts in monetary policy,

such as in Campbell, Pflueger, and Viceira (2020), will produce variations over time in long–

short sensitivity. However, although monetary policy is clearly characterized by changes in

regimes over time, these changes do not line up cleanly with the time-variation in long–short

sensitivity apparent in Figure 1.

Bae, Kim, and Kim (2012) use both narrative evidence and statistical tests to infer U.S.

monetary policy regime changes from 1956 through 2005. They identify regimes with ending

dates of 1968Q1, 1979Q4, 1985Q1, and 1997Q1. A glance at Figure 1 reveals that long–short

sensitivity is moderately stable during only one of these periods (1985Q2 through 1997Q1).

It varies widely during each of the other identified regimes.

Hanson et al. (2021) propose a risk-premium explanation for variations in long–short

sensitivity. I take a close look at their conclusion in Section 5. In the next subsection I

examine whether risk compensation is associated with long–short sensitivity over the 1961

through 2008 sample.

4.4 Expected Excess Returns

The persistence of short-rate innovations under the equivalent-martingale measure deter-

mines long–short sensitivity. Changes in Q dynamics associated with changes in long–short

sensitivity are necessarily accompanied either accompanied by corresponding changes in

physical dynamics and/or changes in the wedge between Q and physical dynamics. Changes

in the wedge are equivalent to changes in risk premia dynamics.

This section asks empirically whether changes in either physical dynamics or risk premia

are associated with changes in long–short sensitivity. In brief, the available evidence points

to changes in physical dynamics rather than risk premia.

Mechanically, the yield on an m-maturity bond is the sum of mean expected future short

rates and the expected log excess return to the bond over its life,

y
(m)
t = y

(m)(P )
t + y

(m)(Q−P )
t , (37)
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y
(m)(P )
t ≡ 1

m

m−1∑
i=0

Et (rt+i) , y
(m)(Q−P )
t ≡ y

(m)
t − y

(m)(P )
t . (38)

If the expectations in (38) were observed, we could connect physical measure expectations

to long–short sensitivity using rolling regressions. Simply replace the long-maturity yield

change on the left side of (6) with the change in expected future short rates y
(m)(P )
t .

Since we do not observe expected future short rates, we can replace them with realizations.

Applying monthly data to the sensitivity of the seven-year yield to one-year yield, a natural

regression is

1

m

[( 83∑
i=0

(rt+i)

)
−
(

83∑
i=0

(rt−1+i)

)]
= b0 +

(
b1 + b2Ŝt

)
Δy

(1yr)
t + et,t+83 (39)

where Ŝt is an estimate of seven-year–one-year sensitivity for month t. However, the left side

of (39) spans seven years. There are only seven non-overlapping observations in the sample

studied here. Reliable statistical inference of (39) is impossible.

I therefore estimate a more informal version of (39),

rt+12 − rt−1 = b0 + (b1 + b2Dt)Δy
(1yr)
t + et,t+12 (40)

where Dt is a dummy variable that equals zero if t is prior to 1985 and one otherwise. We

know from Figure 1 that long–short sensitivity is on average much higher when Dt = 1

than when Dt = 0. Therefore regression (40) tests whether a change in the one-year yield

forecasts a larger change in the short rate over the next year when sensitivity is high than

when sensitivity is low. One-month Treasury rates are taken from the CRSP Riskfree Rate

file.

A qualitatively converse regression replaces the future change in the short rate on the

left of (40) with the realized one-year excess return to the seven-year bond. The regression

is

ex7yr
t,t+12 = b0 + (b1 + b2Dt)Δy

(1yr)
t + et,t+12, (41)
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where the excess return is defined as

ex7yr
t,t+12 ≡ 7y

(7yr)
t − 6y

(6yr)
t+12 − 1

12

11∑
i=0

rt+i.

Regression (41) tests whether an increase in the one-year yield forecasts a higher excess

long-term bond return over the next year through 1984 than from 1985 through 2008.

Table IV contains results. The first reported regression confirms what is obvious from

Figure 1: long–short sensitivity is substantially lower in the 1961–1984 sample than in the

1985–2008 sample. A ten basis point monthly change in the one-year yield corresponds to

an increase in the seven-year yield of about 5.0 bp and 8.5 bp respectively. The p-value of a

Wald test of equality is less than 0.1%.

The second reported regression is (40). For the same 10 bp increase in the one-year yield,

the early sample point estimate implies that the one-month rate increases by about 7 basis

points over the 12 months. The late sample point estimate implies a much larger increase of

more than 23 basis points. The hypothesis of equality is overwhelmingly rejected.

By contrast, future excess bond returns are statistically unrelated to the change in the

one-year yield in both the early and late samples. In (41), the estimates of b1 and b2

indicate that higher long–short sensitivity is associated with lower sensitivity of risk premia

to changes in the one-year yield rather than higher sensitivity. But the standard errors

are large. Estimates of both b1 and b2 are statistically indistinguishable from zero and

indistinguishable from each other.

5 Long–Short Sensitivity in the 21st Century

Data samples used in the previous sections end just prior to the onset of the global financial

crisis. Hanson et al. (2021) examine long–short sensitivity during 2000 through 2019. They

document and attempt to explain a surprising fact. During this period, estimates of long–

short sensitivity decline substantially with the horizon over which changes in yields are

measured. This horizon dependent pattern does not hold over the 1971 through 1999 period.

Hanson et al. (2021) argue that the inverse relation between the horizon and estimated

long–short sensitivity reflects time-varying risk premia, perhaps due to limited capital. For

concreteness, consider news at day t that lowers current and expected future short rates.
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Fixed-income arbitrageurs make money, raising their available capital and temporarily low-

ering their required risk premium on bonds. This decrease in risk premia puts additional

downward pressure on longer-term yields, making them more responsive on day t to the news

than in the absence of the risk-premium effect. Over time, the extra capital shifts out of the

fixed income space, causing longer-term yields to partially revert.

My view is that this pattern is less economically interesting than suggested by Hanson

et al. (2021). Instead, is created by some sample-specific variation over time in long–short

sensitivity.

5.1 Horizon Dependence

Table V reports estimates of long–short sensitivity for different horizons and sample periods.

The bond’s maturities are one and seven years. The first row of results confirms what

we already know from Figure 1. Sensitivity is much lower in the first part of the sample.

For the 1961 through 1989 period, estimates are a little above 0.5 for the daily, monthly,

and quarterly horizons. The daily estimate is a little greater than the estimates for the

other horizons, but all point estimates are statistically indistinguishable from 0.55. During

the 1990s, long-term yields are much more sensitive to short-term yields than earlier. The

estimates decline with horizon, from 1.0 (daily) to 0.8 (quarterly). That said, none of the

estimates differ statistically from one at the 5% level.

As shown by Hanson et al. (2021), sensitivity declines strongly with horizon in the 2000

and later period. The daily coefficient is about one, while the hypothesis that sensitivity

equals one is rejected at the 1% level for both monthly and quarterly horizons.

Yield dynamics during the 2000 and up period differ noticeably in other ways as well.

Table VI reports the first three autocorrelations of monthly changes in yields for the sample

periods considered in Table V. The striking result in the table is the sharp difference between

the one-year and seven-year autocorrelations for the 2000 through 2022 period. The one-year

yield is highly positively autocorrelated, while the seven-year yield is close to a martingale.

5.2 A broader view of the term structure

Figure 4 illustrates the source of these autocorrelations for 2000 through 2022. Two long-

lived events dominate this sample: early 2000 through mid-2005 and October 2007 through
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2017. During both events, shorter-term yields steadily declined over the course of two years,

flattened out, and eventually steadily rose. During these same events, longer-term yields

declined much less than shorter-term yields and bounced around. The only similar event

during the 1961 through 1999 period occurred during the early 1990s, although the initial

descent and subsequent rise in shorter-term yields both were much steeper than during the

more recent events.

These patterns produce positive autocorrelation in one-year yields but not long-term

yields. It is worth emphasizing that during both events, the steady decline in one-year

yields was unanticipated. Traders in the one-year bond would have left substantial money

on the table if at, say, month-end January 2001 (when the one-year yield had declined 120

basis points in two months) or month-end November 2007 (when the one-year yield had

declined 80 basis points in a month) they expected the one-year yield to continue to decline

precipitously.

Minutes from the FOMC provide narrative evidence. During a conference call in Jan-

uary 2001, the FOMC decided to reduce the Fed funds target from 6.5% to 6.0%. At its

regular meeting on January 31 it reduced the target to 5.5%. The FOMC minutes refer

to this reduction as an aggressive “front-loaded” easing policy: “...the stimulus provided

by the Committee’s policy easing actions would help guard against cumulative weakness

in economic activity and would support the positive factors that seemed likely to promote

recovery later in the year.” At its meeting on December 11 2007, the FOMC lowered its

target by 25 basis points. The minutes reveal uncertainty about whether future changes

would be positive or negative. “Some members noted the risk of an unfavorable feedback

loop in which credit market conditions restrained economic growth further, leading to addi-

tional tightening of credit; such an adverse development could require a substantial further

easing of policy. Members also recognized that financial market conditions might improve

more rapidly than members expected, in which case a reversal of some of the rate cuts might

become appropriate.”

5.3 Testing Possible Explanations

The lens of Hanson et al. (2021) provides a straightforward interpretation of the behavior

of long-term yields during these events. As short rates begin to decline, long-term bond
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prices rise, building up arbitrageur capital and lowering the risk premium. Over time this

capital flows out, partially reversing the initial decline in long-term yields. However, capital

is replenished by the continued decline in short rates. We can test an empirical implication of

this theory by regressing the change in the seven-year yield on the contemporaneous change

in the one-year yield and the lagged multiperiod change in the one-year yield. The logic

implies that the coefficient on the lagged change is negative, picking up the risk-premium

reversal.

I test this hypothesis, as well as others, using the general regression implemented at the

daily frequency

Δy
(7yr)
t−1,t = b0 + btΔy

(1yr)
t−t,t + bL

1

K
y
(1yr)
t−1,t−K + et−1,t. (42)

The subscripts on changes in yields specify the dates over which the changes are measured.

Different parametric assumptions for bt produce different regressions. The capital-flow ex-

planation corresponds to the case of

Case 1 : bt = b1. (43)

With this case, the one-day change in the seven-year yield is regressed on the contempora-

neous change in the one-year yield and the average of the past K day change in the one-year

yield.

Panel A of Table VII reports tests of (43) using K = 40 days. Results are not sub-

stantially different when using K = 20 or K = 60. The table presents results for three

separate samples. The coefficient on the lagged change in the one-year yield is negative and

statistically significant for all three. As suggested by the evidence of Hanson et al. (2021),

the estimate is much larger (in absolute value) for the 2000 through 2022 period than for

either 1961 through 1989 or 1990 through 1999.

This evidence supports the limited capital explanation. However, an alternative expla-

nation for the large negative coefficient in 2000 through 2022 does not rely on arbitrageurs

or capital flows. With this alternative, (43) is misspecified. The two large events during

the 21st century were characterized by a specific type of conditional long–short sensitivity.

When the Federal funds rate began to decline at the beginning of these events (before they

were “events”), investors anticipated these changes would be highly persistent. Thus longer-

term yields reacted strongly. As the funds rate continued to decline investors interpreted

28



these subsequent changes in funds rate as less persistent. Expressed differently, investors

became more confident the bottom was near when rates were cut further. Therefore bt in

(42) declined as rates dropped during 2001–2002 and from October 2007 through 2008.

This is a sample-specific explanation, not a statement of the population properties of

yields. Figure 3 of Cieslak (2018) supports this explanation. The figure displays the time

path of the Fed funds rate along with monthly Blue Chip forecasts of future Fed funds rates.

The forecast horizons range from the nowcast to four quarters ahead. First consider the 2000

through 2005 period. As the funds rate began its decline in 2000 from 6%, forecasts of future

rates were declining with the forecast horizon. When the funds rate reached 4%, forecasts

were flat across horizons rather than declining. When the funds rate reached 2%, forecasts

were increasing with the forecast horizon. Forecasts continued to increase in the horizon as

the rate fell to 1%. The figure tells a similar story beginning in late 2007, although the zero

lower bound makes the story somewhat mechanical. When the funds rate is at its lower

bound, forecasts necessarily cannot decline.

Reconsider (42) from this explanation’s perspective. As rates continue to fall at the

beginning of these two events, the fixed-coefficient version (43) overestimates the decline

in the seven-year yield as the one-year yield declines. Including the lagged change in the

one-year yield helps correct this overestimate. A negative coefficient on this lagged change

pushes the fitted change in the seven-year yield higher, consistent with the data.

This explanation and the one of Hanson et al. (2021) are not mutually exclusive. To

distinguish their effects, I choose two ad hoc parametric forms for the conditional variation

in the contemporaneous regression coefficient bt in (42). Define an indicator variable that

equals one if the current change in the one-year yield is in the same direction as the recent

trend in the one-year yield. The variable is

It =

⎧⎨⎩1, Δy
(1yr)
t−1,tΔy

(1yr)
t−K,t−1 > 0;

0, otherwise.
(44)

The simplest way to introduce conditional long–short sensitivity into (42) is

Case 2 : bt = b1 + b2It. (45)

With this case, long–short sensitivity equals b1 + b2 if the current change is in the same
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direction as the change over the previous K periods and b1 otherwise. A version that better

reflects the evidence in Cieslak’s figure has long-short sensitivity depend on the magnitude

of the lagged change,

Case 3 : bt = b1 + b2|Δy
(1yr)
t−K,t−1|It. (46)

Panels B and C of Table VII reports regression results for cases (45) and (46) respectively,

using K = 40 days. Results are similar for choices of K = 20 or K = 60. The results

convey three clear messages. First, the 2000 through 2022 sample exhibits economically and

statistically strong conditional long–short sensitivity. From Panel B, the estimated coefficient

conditioned on reversing direction (the indicator (44) is 0) is 1.18, and is 0.89 conditioned

on continuing in the same direction. The estimates of long–short sensitivity from Panel C

exhibits much more variation. Figure 5 displays the fitted values of (46). Although the mean

fitted value is about 1.1, conditional sensitivity drops below 0.4 at points during 2001 and

2008.

Second, the two earlier samples exhibit no evidence of such conditional sensitivity. All

of the relevant t-statistics are less than one in absolute value. This contrast is consistent

with the dominant role played by the two large events during the 2000 through 2022 sample.

Third, the lagged change in the one-year yield does not predict reversals in the seven-year

yield during the 2000 through 2022 sample. The point estimates for both (45) and (46) are

positive. The hypothesis that the coefficient is zero cannot be rejected at the 10% level for

either case.

From a bird’s eye view, Table VII tells the same story that begins with Figure 1 and con-

tinues through the macroeconomic regression evidence of Section 4. Long–short sensitivity

varies widely over time. Unfortunately, Table VII also shares a limitation with this other

evidence: the absence of clear economic explanations that are consistent with this evidence.

6 Concluding Remarks

This paper presents a combination of surprising and disappointing evidence. The sensitivity

of long-maturity Treasury yields to changes in short-maturity Treasury yields varies sur-

prisingly widely over time. A twenty-year trend towards increasing sensitivity ends in the

mid-1980s with a coefficient of about one. The coefficient subsequently varies between 0.5
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and 1.5. Although potential explanations are abundant, attempts to link this time-variation

to underlying economic drivers are disappointingly largely unsuccessful.

The strongest evidence indicates that variations in long–short sensitivity are connected to

real-side news and monetary policy shocks rather than inflation news. Whether the nature

of the real-side news changes over time, or instead whether anticipated monetary policy

reactions to the news changes over time, is not pinned down here.

The behavior of long–short sensitivity during 2000 and later period is particularly un-

usual. It is highly sensitive to recent changes in yields. When yields change on day t in the

same direction that they’ve changed over the past couple of months, long–short sensitivity

is considerably lower than it is when the changes in yields are in the opposite direction.

Economic explanations for this unusual behavior must await future research.
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Table I
Conditional Regressions of Changes in the Seven-Year Yield

on Changes in the One-Year Yield, June 1961–September 2008

Daily changes in the seven-year Treasury yield are regressed on contemporaneous daily
changes in the one-year Treasury yield

Δy7yrt = b0 +
(∑

bi (explanatory vari)
)
Δy

(1yr)
t + et

Explanatory variables are a constant, monthly measures of one-month-ahead conditional
volatility from Jurado et al. (2015) and Ludvigson et al. (2021), a monthly measure of
the deviation of economic growth from trend, the absolute value of this deviation, and the
one-year bond yield. The constant is normalized to one. The other explanatory variables
are normalized to mean-zero, unit variance variables. Asymptotic standard errors are in
parentheses. They are adjusted for generalized heteroskedasticity. Asterisks represent two-
sided p-values at the 10%, 5%, and 1% significance levels.

Explanatory 6/1961–8/2008 6/1961–12/1984 1/1985–9/2008
Variables 11,786 Obs. 5,866 Obs. 5,920 Obs.

Constant 0.765∗∗∗ 0.508∗∗∗ 1.000∗∗∗

(0.014) (0.031) (0.026)

Real Volatility −0.154∗∗∗ 0.035 0.012
(0.022) (0.035) (0.044)

Macro Volatility 0.023 −0.054∗ −0.027
(0.020) (0.032) (0.042)

Financial Volatility −0.020 −0.049∗ 0.021
(0.021) (0.026) (0.020)

Real Activity Gap 0.009 0.001 0.152∗∗∗

(0.019) (0.023) (0.030)

Abs(Real Activity Gap) 0.041∗∗ 0.004 0.005
(0.018) (0.018) (0.025)

One Year Yield −0.045∗∗∗ 0.058∗∗ −0.038
(0.014) (0.028) (0.023)
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Table IV
Regressions of Changes in Yields and Excess Bond Returns

on the Change in the One-Year Yield, July 1961 through September 2008

The explanatory variable in all regressions is the change in the one-year Treasury yield
from the end of month t − 1 to the end of month t. The first column lists the dependent
variables. The regressions are estimated over the entire data sample, allowing the coefficient
for t prior to 1985 to differ from the coefficient for t after 1984. Asymptotic Newey-West
standard errors are in parentheses. The lag length is 1.25 times the number of overlapping
observations (which is zero for the first regression). The final column lists a two-sided p-
value for a test of the hypothesis that the coefficients are equal across the early and late
samples. One, two, and three asterisks represent two-sided p-values at the 10%, 5%, and 1%
significance levels.

Dependent 1961:7–1984:12 1985:1–2008:9 Test of
Variable Obs Coef Obs Coef R2 Equality

Contemporaneous Change 282 0.480∗∗∗ 285 0.843∗∗∗ 0.67 0.000
in 7 Year Treasury Yield (0.034) (0.046)

Change in 1 Month Bill 282 0.731∗∗∗ 273 2.383∗∗∗ 0.08 0.001
Rate from Month t− 1 (0.180) (0.477)
to Month t + 12

Log Excess Return to 7 282 −0.794 273 −1.592 0.00 0.712
Year Bond from Month (0.932) (1.980)
t to Month t+ 12
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Table V
Long–Short Sensitivity for Different Horizons and Periods

The table reports coefficients from univariate regressions of changes in the seven-year Trea-
sury yield on contemporaneous changes in the one-year Treasury yield. Changes are mea-
sured over successive days, months, or quarters. Regressions for monthly and quarterly
horizons use non-overlapping observations. Asymptotic standard errors, adjusted for gener-
alized heteroskedasticity, are in parentheses. The number of observations is in brackets.

Sample Daily Monthly Quarterly

June 15 1961–Dec 29 1989 0.57 0.51 0.52
(0.02) (0.04) (0.05)
[7114] [342] [114]

Jan 3 1990–Dec 31 1999 1.01 0.92 0.82
(0.04) (0.08) (0.11)
[2482] [119] [39]

Jan 4 2000–Dec 30 2022 1.01 0.78 0.68
(0.03) (0.08) (0.07)
[5752] [275] [91]
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Table VI
Autocorrelations of Monthly Changes in Yields

Δy
(m)
t = b

(m)
i + ρ

(m)
i Δy

(m)
t−i + e

(m)
t,i

The table reports ρ
(m)
i from these univariate regressions of monthly changes in Treasury

yields on lagged monthly changes of the same yield. Standard errors, adjusted for generalized
heteroskedasticity, are in parentheses. One, two, and three asterisks represent two-sided p-
values versus zero at the 10%, 5%, and 1% significance levels.

One Year Yield Seven Year Yield
Sample i = 1 i = 2 i = 3 i = 1 i = 2 i = 3

1961:6–1989:12 0.14 −0.12 −0.08 0.07 −0.08 −0.07
(Obs = 342 - i) (0.09) (0.11) (0.08) (0.08) (0.08) (0.08)

1990:1–1999:12 0.37∗∗∗ 0.10 0.07 0.19∗ 0.00 0.01
(Obs = 119 - i) (0.10) (0.11) (0.10) (0.10) (0.07) (0.10)

2000:1–2022:12 0.36∗∗∗ 0.38∗∗∗ 0.23∗∗ 0.06 −0.13∗ 0.07
(Obs = 275 - i) (0.07) (0.09) (0.10) (0.07) (0.07) (0.06)
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Table VII
Daily Changes in the 7-Year Yield

Regressed on Contemporaneous and Lagged Changes in the 1-Year Yield

The table reports OLS estimates of one-day changes on the seven-year yield on contempo-
raneous and the 40-day lagged change in the one-year yield,

Δy
(7yr)
t−1,t = b0 + btΔy

(1yr)
t−t,t + bL

(
1

40
y
(1yr)
t−1,t−40

)
+ et−1,t,

for different parametric choices of bt described in the text. Yields are measured in annualized
percent. Standard errors, adjusted for generalized heteroskedasticity, are in parentheses.
One, two, and three asterisks represent two-sided p-values versus zero at the 10%, 5%, and
1% significance levels.

Constant Term Conditional Term
Sample for bt for bt bL

Panel A: Constant bt

June 1961–December 1989 0.578∗∗∗ −0.131∗∗∗

(7,074 obs) (0.019) (0.051)

Jan 1990–December 1999 1.010∗∗∗ −0.236∗∗∗

(2,442 obs) (0.035) (0.092)

Jan 2000–December 2022 1.018∗∗∗ −0.372∗∗∗

(5,712 obs) (0.027) (0.083)

Panel B: Include Dummy for Same Sign of Current, Lagged Change in 1 Yr

June 1961–December 1989 0.569∗∗∗ 0.017 −0.149∗∗

(0.035) (0.048) (0.065)

Jan 1990–December 1999 0.981∗∗∗ 0.055 −0.311∗∗

(0.078) (0.100) (0.148)

Jan 2000–December 2022 1.180∗∗∗ −0.286∗∗∗ 0.031
(0.045) (0.066) (0.117)

Panel C: Dummy is Multiplied by Absolute Lagged Change in 1 Yr

June 1961–December 1989 0.567∗∗∗ 0.017 −0.170∗∗∗

(0.023) (0.019) (0.058)

Jan 1990–December 1999 1.045∗∗∗ −0.166 −0.104
(0.057) (0.163) (0.135)

Jan 2000–December 2022 1.159∗∗∗ −0.529∗∗∗ 0.169
(0.031) (0.078) (0.105)
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Figure 1. Coefficients from regressions of changes in the seven-year Treasury yield on contem-
poraneous changes in the one-year Treasury yield. Regressions of daily changes use rolling
samples of 80 trading days. Regressions of monthly changes use rolling samples of 36 months.
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A.  Standard Deviations of Daily Changes
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B.  Projections on Daily Changes of One-Year Yield

Figure 2. Properties of instantaneous forward rates. All quarters from 1961Q2 through
2008Q3 are sorted into four equal-sized groups using quarterly estimates of long–short sen-
sitivity, as described in the text. Quarters in the first (fourth) quartile have the lowest
(highest) estimated long–short sensitivity. Panel A displays, for each group, standard devi-
ations of daily changes in instantaneous forward rates. The forward-rate horizons are one to
seven years. Panel B displays, for each group, estimates of regressions of daily changes in
the forward rates on contemporaneous daily changes in the one-year Treasury yield.
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Figure 3. Properties of a stylized no-arbitrage term structure model. Inflation and real
activity news at t alter the equivalent-martingale expected short rate at t+ i months ahead.
The figure displays i-ahead innovations for two different model parameterizations.
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Figure 4. Month-end yields on zero-coupon Treasury bonds with maturities from one to ten
years. Observations prior to September 1971 include maturities only through seven years.
Gürkaynak et al. (2007) interpolate these yields from prices of traded Treasury bonds.
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Figure 5. Regression estimates of the sensitivity of daily changes in the seven-year Treasury
yield to the contemporaneous change in the one-year Treasury yield. The specification of
conditional sensitivity is described by (46) in the text. The sample is 2000 through 2022.
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