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Properties of the estimated five-factor model

No stationary term structure model is credible unless it implies unconditional properties of

yields and returns that are in the ballpark of observed sample properties. Similarly, model-

implied principal components of yields must look like principal components in the data. This

appendix discusses these basic term structure properties for the estimated five-factor model.

The main conclusion is that the model does a good job reproducing the relevant properties

of the yields used in estimating the model. A ten-year bond yield, which is not included

in estimation, reveals evidence of model misspecification that is not easily addressed. This

yield is produced by the Federal Reserve Board

The solid lines in Panels A and B of Figure A1 are model-implied unconditional means

and standard deviations of bond yields. The diamonds are sample values. The two sets

of means line up closely for those maturities used in estimation. For example, the largest

difference between model-implied and sample means is 26 basis points (the three-month

bond). The model does less well in fitting the mean ten-year yield. Its sample mean of

7.2 percent is considerably higher than the model-implied mean of 6.5 percent, although

well within the 95 percent confidence bounds. These bounds, displayed as dashed lines, are

wide owing to the high persistence of yields. The model is not quite as successful at fitting

unconditional standard deviations. The inverse relation between volatility and maturity is

stronger in the model than in the data, which is most noticeable at the ten-year maturity.

Panel C of the figure reports model-implied unconditional Sharpe ratios for annual log

returns. The ratio is
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The subscript on the variance denotes a conditional variance. Since the model is Gaussian,

this does not vary across t. The diamonds are corresponding sample values, although they are

computed by replacing the conditional variances in the above equation with unconditional
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variances. The two sets of values roughly coincide. However, the model-implied Sharpe

ratios decline more sharply with maturity than do sample Sharpe ratios. (There is no

sample Sharpe ratio at ten years because a nine-year yield is not used.) Panel D of Figure

A1 is the serial correlation function of the risk premium factor.

Figure A2 is the paper’s Figure 1, modified to include the ten-year yield. It displays

the loadings of observed bond yields on the factors, and its construction is discussed in the

text of the paper. For the purposes of this appendix, the main feature of this figure is the

divergence between the fitted and actual loadings for the ten-year bond yield. Panels C and

D show clear differences between sample and analytic loadings of the ten-year yield on the

fourth and fifth factors. In economic terms, the differences are small; around five basis points

of annualized yields for a one-standard-deviation shock to a factor. But the differences also

point to a limitation of this affine class of models.

Certain types of shocks to the term structure are ruled out owing to the assumed VAR

dynamics of the factors. Consider, for example, the loadings in Panel D for the fifth factor.

A reasonable description of the sample values (the diamonds) is that they are approximately

zero for maturities below five years, and between three and five basis points for five-year and

ten-year yields. That description cannot be reproduced by the analytic loadings. In this

class of models that assume VAR dynamics, a shock that affects yields at long maturities

must also affect yields at short maturities. The only difference in loadings across maturities

is the exponent on Kq. Thus to fit the sample loadings for the fourth and fifth factors, the

estimated Kq must generate cycles as the exponent increases. At the maximum likelihood

estimates, the cycles that fit maturities through five years do not fit the ten-year loading.

What happens if the ten-year yield is included in estimation? The results are summarized

in Alternative Figure A1 and Alternative Figure A2. The analytic loadings closely reproduce

all of the sample loadings (AF A1). But this modification comes at a substantial cost in

fitting the physical dynamics of the term structure. Recall that with the parsimonious

risk specification used here, the feedback matrices in the physical and equivalent-martingale

measures share 20 parameters. The values needed to fit the sample loadings produce wildly

unrealistic behavior of the short rate. In AF A1, the unconditional mean is close to minus

one percent and the unconditional standard deviation is about 6.5 percent (both expressed

in annual terms). Annual unconditional Sharpe ratios at the short end of the term structure

are about one. These results account for my choice to exclude the ten-year bond yield when

estimating the model.
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Parameter estimates for three-factor and four-factor models

Point estimates of the three-factor and four-factor models are contained in Tables A1 and

A2, respectively. No standard errors are reported because I did not perform Monte Carlo

simulations with these models.

The macroeconomic link to the risk premium factor

Table 6 in the paper explains the hidden component of the risk premium factor with macroe-

conomic variables. Table A3 repeats the regressions, replacing the hidden component with

the entire risk premium factor.
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Table A1. Three-factor model

See the notes to Table 1 in the text.

Factor
1 2 3

Loading of short rate on factors 0.125 0.409 0.411

Kq 0.981 0.117 0.198
0.021 0.845 −0.406
0.007 −0.021 0.885

diag(Ω1/2)× 104 27.842 7.497 2.568

λ0 × 104 −3.427 −1.637 0.0

λ1(L) −0.024 0.346 0.460

Constant term in short rate (×102) 1.016

Std dev of measurement error (×104) 0.638

Table A2. Four-factor model

See the notes to Table 1 in the text.

Factor
1 2 3 4

Loading of short rate on factors 0.124 0.407 0.506 0.262

Kq 0.975 0.115 0.269 0.007
0.022 0.849 −0.528 −0.341
0.007 −0.016 0.781 −0.344

−0.002 0.005 0.020 0.991

diag(Ω1/2)× 104 27.816 7.538 3.092 0.783

λ0 × 104 −3.910 −2.153 0.0 0.0

λ1(L) −0.030 0.343 0.610 0.239

Constant term in short rate (×102) 1.069

Std dev of measurement error (×104) 0.547
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Table A3. Projections of the risk premium factor on macroeconomic variables, 1964 through
2007

A five-factor term structure model is estimated with the Kalman filter. Bond risk premia
are constrained to vary with a single risk premium factor. Monthly smoothed estimates of
the risk premium factor are regressed on contemporaneous realizations of other variables.
Industrial production growth and CPI inflation are both month-t predictions of month-(t+1)
values, from individual ARMA(1,1) models. Ludvigson-Ng construct eight principal compo-
nents of many macro and financial time series. The first is a “real activity factor,” which
here is normalized to positively covary with industrial production growth. Each variable
used in the table is normalized to have a unit standard deviation. The table reports point
estimates and t-statistics. The latter are adjusted for 15 lags of moving average residuals.
P -values of joint tests that coefficients on Ludvigson-Ng factors two through eight equal zero
are in square brackets. The column labeled ρ15 is the serial correlation of residuals at the
15th lag. The sample is January 1964 through December 2007.

Include LN Ind. prod. LN real LN
factors 2-8? growth Inflation activity (real activity)3 ρ15 R2

No −0.14 −0.22 - - −0.03 0.05
(−1.23) (−1.40)

No - - −0.14 - 0.00 0.02
(−0.86)

Yes - - −0.14 - 0.02 0.11
[0.156] (−0.91)

No - - −0.29 0.24 0.01 0.05
(−1.83) (4.06)

Yes - - −0.30 0.24 0.05 0.14
[0.147] (−1.94) (3.51)
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B. Unconditional standard deviations
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D. Persistence of premia shocks

Fig. A1. Properties of an estimated five-factor Gaussian term structure model estimated
with monthly data from 1964 to 2007. Sample values calculated using the same data are
displayed with diamonds. The dashed lines are two-sided 95 percent confidence intervals
calculated from Monte Carlo simulations. The Sharpe ratios in Panel C are for annual log
returns in excess of the one-year bond yield. In the model, a single factor drives variation
over time in bond risk premia. Panel D reports the model-implied serial correlation of the
factor.
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A. First two factors
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B. Third factor
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C. Fourth factor

0 50 100
−10

−5

0

5

10

15

Maturity (months)

A
nn

ua
liz

ed
 b

as
is

 p
oi

nt
s

D. Fifth factor

Fig. A2. Estimated yield loadings for a five-factor Gaussian term structure model estimated
with monthly data from 1964 to 2007. The factors are principal components of shocks to
the term structure. They are scaled by estimated standard deviations of the shocks. The
diamonds are coefficients from regressions of observed yields on smoothed estimates of the
factors. The dashed lines are two-sided 95 percent confidence intervals calculated from Monte
Carlo simulations. Note the vertical scales of Panels A and B differ from those of Panels C
and D.
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Alternative Fig. A1. Properties of an estimated five-factor Gaussian term structure model
estimated with monthly data from 1964 to 2007. The model summarized here is estimated
using a ten-year bond yield in addition to the bonds used in estimating the original model.
Sample values calculated using the same data are displayed with “o.” The dashed lines
are two-sided 95 percent confidence intervals calculated from Monte Carlo simulations. The
Sharpe ratios in Panel C are for annual log returns in excess of the one-year bond yield. In
the model, a single factor drives variation over time in bond risk premia. Panel D reports
the model-implied serial correlation of the factor.
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C. Fourth factor
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D. Fifth factor

Alternative Fig. A2. Estimated yield loadings for a five-factor Gaussian term structure model
estimated with monthly data from 1964 to 2007. The model summarized here is estimated
using a ten-year bond yield in addition to the bonds used in estimating the original model.
Sample The factors are principal components of shocks to the term structure. They are
scaled by estimated standard deviations of the shocks. The diamonds are coefficients from
regressions of observed yields on smoothed estimates of the factors. The dashed lines are
two-sided 95 percent confidence intervals calculated from Monte Carlo simulations. Note the
vertical scales of Panels A and B differ from those of Panels C and D.

9


