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1 Introduction 

Stock returns are correlated with both contemporaneous and future stock return volatility, 

a pattern often termed asymmetric volatility. Theory offers many potential explanations for 

this well-known relation but the evidence stubbornly refuses to fit well with any of them. The 

earliest proposed explanation is the “leverage effect” formalized in Black (1976) and Christie 

(1982). It implies that stock returns are negatively associated with volatility because changes 

in stock prices affect firms’ financial leverage. This implication is consistent with the return-

volatility relation in aggregate stock returns. However, the limitations of this explanation 

are now well-known. In particular, Duffee (1995) notes one of the embarrassing facts for this 

hypothesis: at the firm level, stock returns and volatility are contemporaneously positively 

correlated. 

Although this positive relation is hard to reconcile with the leverage effect, it is consistent 

with a generalization of the logic underlying the leverage effect. The leverage effect is a 

special case of what we can call “economic balance sheet” explanations for a link between 

returns and volatility. The composition of a firm’s economic balance sheet changes when the 

value of the firm changes (although the accounting balance sheet may be unaltered). The 

leverage effect emphasizes the change in the relative values of debt and equity, but, as noted 

by Rubinstein (1983), the relative values of a firm’s assets will also change. Consider, for 

example, a firm with multiple assets that differ in their volatilities. An increase in the value 

of the firm is, on average, associated with an increase in the value of riskier assets relative to 

less-risky assets, and thus overall volatility of the firm tends to rise. To complicate matters, 

if some of these assets are growth options, then the standard inverse relation between an 

option’s moneyness and its return volatility can produce an ambiguous link between returns 

and volatility. 

In this paper I test the empirical relevance of these balance sheet explanations. I em-

phasize two main implications. First, balance-sheet effects for a given firm should be the 

same regardless whether the change in firm value is the result of an idiosyncratic shock or a 

marketwide shock. Second, balance-sheet effects should differ across firms based on the rela-

tive importance of the firms’ growth options. To partially control for business-cycle effects, I 

focus on the relation between stock returns and the volatility of the idiosyncratic portion of 

firms’ stock returns. I follow Sagi and Seasholes (2001) and use firms’ book-to-market ratios 

as proxies for the importance of growth options among the firms’ assets. 

The weight of evidence presented here, which is drawn from 40 years of data on U.S. 

firms, supports the view that balance-sheet effects drive a positive relation between returns 

and idiosyncratic volatility. A positive shock to a firm’s stock return corresponds to an 
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increase in idiosyncatic volatility; the strength of this relation does not depend on whether 

the shock is a marketwide or idiosyncratic shock. In addition, firms with high betas have a 

larger positive relation between aggregate stock returns and contemporaneous idiosyncratic 

return volatility than do firms with low betas. Finally, book-to-market ratios are very strong 

cross-sectional predictors of the strength of asymmetric volatility. Firms with lower book-to-

market ratios (suggestive of growth options that are more in-the-money) have, on average, a 

less positive relation between returns and idiosyncratic volatility than do firms with higher 

book-to-market ratios. 

An obvious limitation of this story is that it is incapable of explaining the negative 

relation between returns and volatility at the aggregate level. A complete explanation of 

the return-volatility relation needs more than balance-sheet effects, but I do not attempt to 

explore the potential sources of the aggregate-level relation. The only use I make of aggregate 

volatility here is to shed some light on the issue of “asymmetric correlations.” Earlier research 

concluded that correlations among aggregate stock returns in different countries tend to be 

higher when markets fall than when markets rise, a pattern termed asymmetric correlations. 

Ang and Chen (2002) find the same pattern with portfolios of U.S. stocks. The usual 

interpretation is that marketwide shocks are larger in absolute value when stock prices are 

falling. The evidence here indicates another reason for asymmetric correlations–idiosyncratic 

volatility is higher on days when the market rises. I find that for correlations between 

individual stocks, close to half of the difference between up-market correlations and down-

market correlations is attributable to the behavior of idiosyncratic volatility. 

The results are not all supportive of balance-sheet effects. Changes in the structure of 

a firm’s assets and liabilities owing to a change in firm value should persist until the firm 

alters its mix of assets and liabilities. But Figlewski and Wang (2000) point out that the 

return-volatility relation seems too short-lived to be consistent with persistent changes in 

balance sheets. Similarly, I find that the cross-sectional predictive power of beta and book-

to-market ratios is short-lived. This pattern is a little hard to reconcile with balance-sheet 

effects, although I make some efforts to explain it away. 

The outline of the remainder of this paper is as follows. Section 2 explains how this paper 

fits into the existing literature. Section 3 provides a theoretical framework that motivates 

the empirical tests that are described in Section 4. Results are reported in Section 5. Some 

concluding comments are contained in the final section. 
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2 What we know about asymmetric volatility 

At the aggregate level, stock returns are negatively correlated with both contemporaneous 

volatility (i.e., returns are negatively skewed) and future volatility. Black (1976) emphasized 

the role of leverage in explaining this relation. The leverage hypothesis implies a negative 

return-volatility relation for individual firms, which was consistent with Black’s view of the 

evidence. But, as discussed in Duffee (1995), the evidence was misinterpreted. Instead, firm-

level returns and volatility are typically contemporaneously positively correlated (positive 

skewness). Simkowitz and Beedles (1978) first documented the positive skewness of firm-

level returns, a pattern that is periodically rediscovered. Duffee (1995) and Braun, Nelson, 

and Sunier (1995) find no clear relation between firm-level returns and future volatility. 

Nonetheless, Black’s work was followed by research to test further the implications of 

the leverage hypothesis. Christie (1982), Cheung and Ng (1992), and Duffee (1995) all 

found that firms with larger debt/equity ratios exhibited stronger negative relations between 

returns and volatility, consistent with the leverage hypothesis. Unfortunately, all of this 

evidence is statistically suspect. Christie does not report any formal statistical tests of the 

link between debt/equity ratios and the return-volatility relation. Cheung-Ng and Duffee’s 

statistical tests rely on the (invalid) assumption that firms’ stock returns can be treated as 

independent across firms. Moreover, Schwert (1989) finds that the aggregate debt/equity 

ratio explains only a small part of aggregate stock return volatility. Overall, it is fair to 

conclude that there is minimal evidence to support the leverage hypothesis. 

The difference between aggregate and firm-level behavior tells us that multiple expla-

nations are likely needed to explain the return-volatility relation. One effect operates at 

the market level and produces a negative relation; another operates at the firm level and 

produces a positive relation. Marketwide effects are easy to envision but hard to verify. It 

is possible that asset returns are simply more volatile in recessions. For example, inflation, 

commodity prices or interest rates may fluctuate more at those times, leading to higher asset 

volatility at precisely those times when asset values are low. We can think of this as a funda-

mental link between asset returns and asset return volatility. Although this fundamental link 

is plausible, Schwert (1989) finds only weak evidence that macroeconomic volatility explains 

aggregate stock return volatility. 

An alternative explanation for the negative return-volatility relation at the aggregate level 

is “volatility feedback.” This hypothesis takes changes in volatility as exogenous. Pindyck 

(1984) posits that investors’ required risk premia change with changes in volatility. Thus 

investors bid up (down) stock prices when they perceive decreases (increases) in volatility. 

Although the hypothesis is intuitive, supporting evidence is weak. French, Schwert, and 
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Stambaugh (1987) and Campbell and Hentschel (1992) note that the leverage effect is not 

strong enough to produce the large inverse relation between aggregate returns and volatility 

in the data, leading them to conclude that the volatility feedback hypothesis is probably 

correct. But Poterba and Summers (1986) argue that changes in volatility appear to be 

too short-lived to lead to large changes in investors’ valuations. In addition, a large body 

of research finds that changes in aggregate stock return volatility are unaccompanied by 

corresponding changes in expected future aggregate stock returns.1 Finally, the volatility 

feedback hypothesis leaves unanswered the question of what causes volatility to change in 

the first place. 

To summarize, the return-volatility relation at the aggregate level has received much 

attention, yet its determinants remain largely a mystery. By contrast, the positive return-

volatility relation at the firm level has received comparatively little attention, but is perhaps 

easier to explain. One explanation uses the same logic that is employed in the leverage 

hypothesis: changes in firm value are typically accompanied by changes in the relative values 

of items on a firm’s “economic” (i.e., true) balance sheet. 

The displaced diffusion model of Rubinstein (1983) is the simplest framework that can 

generate a positive return-volatility relation through balance-sheet effects. The model allows 

for the leverage effect to be reversed if firms hold more riskless assets than they have issued 

as debt. The broader message of Rubinstein’s model is that a mixture of assets induces a 

positive return-volatility relation. The formal model in the next section goes into this in 

more detail, but the basic idea is simple. Shocks to firm value are caused by shocks to asset 

values. Riskier assets have larger absolute shocks, thus a positive (negative) shock to firm 

value is typically accompanied by a increase (decrease) in the value of the firm’s risky assets 

relative to the value of its less-risky assets. Sagi and Seasholes (2001) use a generalization 

of this idea to attempt to explain momentum in stock prices. 

A more complicated relation between returns and volatility results if some of the assets 

held by a firm are growth options. The importance of growth options in the stock market is 

indicated by the analysis of Berk, Green, and Naik (1999). They conclude that a variety of 

stylized facts about the predictability of stock returns are explained by the presence of such 

options. The existence of growth options produces an ambiguous relation between returns 

and volatility. For firms with both low-volatility assets in place and high-volatility growth 

options, the mixture-of-assets effect leads to a positive relation. Offsetting this is negative 

relation between the moneyness of a call option and its instantaneous return volatility. For 

1See Whitelaw (2000) for a discussion and references. Wu (2001) concludes that the volatility feedback 
hypothesis has merit, but his model assumes that aggregate risk premia are determined entirely by the level 
of aggregate volatility. Since risk premia are positive on average, the model essentially forces risk premia to 
vary positively with volatility. 
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example, if the option value increases, the firm will have a relatively larger share of high-

volatility assets but the volatility of the growth option will fall. 

Hong and Stein (1999) and Chen, Hong, and Stein (2001) offer another explanation 

for a firm-level relation between returns and volatility. They argue that changes in stock 

prices affect the identity of the marginal investor. The model relies on investor heterogeneity 

combined with short-sale constraints. As a stock’s price declines, the marginal investor tends 

to shift to those who are more bearish. The information held by these bearish investors is 

then revealed, which can lead to further declines in the stock price. Because this effect 

induces negative skewness in stock returns, it cannot be the only reason why firm-level 

returns and volatility are related. One difference between their story and balance-sheet 

effects is persistence: Balance-sheet effects should generate a relation between returns and 

future volatility as well as contemporaneous volatility. 

Aside from work on the leverage effect, there is scant empirical evidence on the deter-

minants of the firm-level return-volatility relation. A notable recent effort is Chen et al. 

(2001), which finds some support for their model. They also document a pattern they did 

not anticipate: firms that experience increases in value over the past three years tend to have 

more negatively-skewed returns. They interpret the result in terms of stock-price bubbles. I 

argue later that the result can be interpreted as evidence of balance-sheet effects. 

3 Models of balance-sheet effects 

The goal of this paper is to investigate empirically the importance of balance-sheet effects, 

and in particular the role of growth options, in explaining the return-volatility relation at the 

firm level. This section sets up two models that provide the testable hypotheses. The model 

in Section 3.1 is basically Rubinstein’s displaced diffusion model set in a dynamic framework. 

For tractability reasons, it does not include any growth options. Sagi and Seasholes (2001) 

and Berk et al. (1999) amply illustrate the difficulties involved in dynamic models with 

growth options. The model in Section 3.2 is a stripped-down framework that illustrates the 

effects of growth options. 
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3.1 A dynamic displaced-diffusion model 

3.1.1 Asset dynamics 

Firms are indexed by i = 1, . . . , N . The  value  of  firm  i is the sum of the assets held by the 

firm. Firms invest in riskless and risky assets. The notation is 

Vi(t) =  Ai(t) +  Bi(t) 

where Vi(t) is the  value of the  firm,  Bi(t) is the amount of riskfree bonds it holds, and Ai(t) 

is the value of its risky assets. The dynamics of the bonds held by firms satisfy 

dBi 
= rdt 

Bi 

where for simplicity the instantaneous interest rate is assumed to be constant. The risky 

asset has dynamics that depend on both market-wide and idiosyncratic shocks. I assume 

asset return dynamics of the form 

� � � � 
dAi βi 

∗σmA(t) dZm(t) 
= µiA(t)dt + . (1)

Ai σI dZi(t)iA(t) 

Because our interest is in the volatility of asset returns, the drift function µiA(t) is not given 

any structure. There are both marketwide (dZm) and idiosyncratic (dZi) shocks to asset 

values. The effects of these shocks depend on the firm’s asset beta βi 
∗ and the volatility 

functions σmA(t) and  σI The asterisk on beta is used to differentiate the asset beta iA(t). 

from the stock return beta. The subscripts on σmA(t) indicate that this is the volatility of 

marketwide asset shocks. The superscript and subscripts on σI 
iA(t) indicate that this is the 

volatility of idiosyncratic (I) shocks to firm  i’s asset value. 

The aggregate value of risky assets is the sum of all N firms’ asset values: 

N � 
A(t) ≡ Ai(t). 

i=1 

To determine the dynamics of A(t), sum the dynamics of the individual firm asset values 

and assume that N is sufficiently large that the idiosyncratic terms can be ignored. The 

result is �NdA βi 
∗Ai(t) 

= µA(t)dt + i=1 σmA(t)dZm(t). 
A 

�N Ai(t)i=1 

Again, the drift term is left unspecified. The dynamics of marketwide volatility σmA(t) are  
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assumed to take the form 

dσmA 
= αmA(t)dt + γmσmA(t)dZm(t). 

σmA 

This functional form was chosen to allow for a “fundamental” contemporaneous correlation 

between aggregate asset returns and volatility. The key parameter is γm, which determines 

the sign of this correlation. I will assume it is negative because its role is to capture a 

marketwide force that produces a negative relation between aggregate asset returns and 

aggregate asset return volatility. Since research to date has been unsuccessful at explaining 

the nature of the aggregate-level relation, γm is taken as exogenous. I include σmA(t) in  

the diffusion component because it simplifies the math that follows; nothing important is 

lost if it is removed. Because aggregate asset return volatility depends only on dZm, it  is  

instantaneously perfectly correlated with aggregate asset returns. This assumption is not 

important either, but adding an independent source of variation in σmA(t) adds nothing to 

the intuition of the model. 

Volatility dynamics for firm-specific shocks differ in two ways from the volatility dy-

namics for aggregate shocks. First, I do not include any fundamental correlation between 

idiosyncratic volatility and asset-return shocks. Second, I allow idiosyncratic volatility to 

vary independently of asset returns. The dynamics are 

dσI 
iA = αi(t)dt + γi

I dZiV (t)  (2)  
σI 

iA 

where the dZiV (t) is independent dZi(t) and  dZm(t). I do not require that dZiV (t) be in-

dependent of dZjV . In other words, shocks to firms’ idiosyncratic asset volatilities can be 

contemporaneously correlated. These dynamics are an oversimplification of reality (as we will 

see in the empirical results that follow), but the setup is sufficient to illustrate balance-sheet 

effects. 

3.1.2 Stock value dynamics 

The value of a firm Vi(t) is the sum of the claims on the firm’s assets. Claims on firms’ assets 

are held by stockholders and bondholders, or 

Vi(t) =  Si(t) +  Li(t) 

Debt issued by the firm is denoted Li(t) and is assumed to be default-free. (Firms go out of 

business before their asset values fall below the value of their debt.) The value of stock is 
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Si(t). The dynamics of the bonds issued by firms are 

dLi 
= rdt. 

Li 

The dynamics of the firm’s stock value Si(t) are denoted 

� � �� 
dSi σm dZm(t)iS (t) = µis(t)dt + . (3)
Si σiS

I (t) dZi(t) 

Substitution of (1) into (3) allows us to express the volatility functions in (3) in terms of the 

underlying asset volatilities and the firm’s risky asset value relative to its stock value: 

Ai(t)
σm β ∗ 

iS (t) =  i σmA(t),
Si(t) 

Ai(t)
σI σI (4)iS(t) =  iA(t). 

Si(t) 

The return to the aggregate stock market is 

dS 
= µmS(t)dt + σmS (t)dZm(t)

S 

where � 
β∗ 

i Ai(t)
σmS (t) =  σmA(t)

S(t) 

and S(t) denotes the sum of individual firm stock values. The instantaneous beta of a firm’s 

stock return is (using somewhat informal notation) 

� 
Covt (dS/S, dSi/Si) Ai(t)βi 

∗/ (Ai(t)βi 
∗)

βi(t) ≡ = . 
Vart(dS/S) Si(t)/S(t) 

Our primary interest here is in the dynamics of idiosyncratic stock return volatility. From 

(4), these dynamics can be expressed as 

� � � � 
dσI Bi(t) − Di(t) β∗ dZm(t)iS i σmA(t) 

= αiS (t)dt + + γi
I dZiV (t). (5)

σI Si(t) σI dZi(t)iS iA(t) 

Equation (5) says there are two reasons why idiosyncratic stock return volatility varies 

unexpectedly over time. The first is a balance-sheet effect. If B(t) > D(t), an unexpected 

increase in the firm’s stock price corresponds to higher stock return volatility because the 

value of the firm’s riskier assets rises relative to the value of its less risky assets. If the 
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inequality is reversed, this effect is dominated by the leverage effect; the firm is effectively 

less leveraged, and its stock return volatility falls. Second, idiosyncratic volatility can vary 

independently over time. 

3.1.3 Testable implications 

Consider the theoretical population regression coefficient from a regression of (log) instanta-

neous idiosyncratic stock return volatility on either the idiosyncratic return to firm i’s stock 

or the return to the aggregate stock market. The former regression coefficient is (after some 

algebra) � � 
Covt σiS

I dZi, dσiS
I /σiS

I Bi(t) − Di(t)
λiI ≡ = . (6)

Vart(σI Ai(t)iS dZi) 

This coefficient can be thought of as a measure of the asymmetric volatility induced by 

balance-sheet effects. The coefficient from a population regression of idiosyncratic volatility 

on market returns is � � 
Covt dS/S, dσiS

I /σI Bi(t) − Di(t)
λim ≡ iS = βi(t). (7)

Vart(dS/S) Ai(t) 

The logic of (7) is straightforward, given (6). The stock’s beta converts the market return 

into its effect on the firm’s return. If, say, this beta is zero, the change in the value of the 

market has no effect on the value of the firm, and thus does not alter the firm’s capital 

structure. 

Equations (7) and (6) provide the first two testable implications of the model. 

Hypothesis 1. The cross-sectional mean of λim should equal the cross-sectional mean of 

λiI plus the cross-sectional covariance between λiI and β: 

λim = λiI + Cov(λiI , βi) 

To see this, take the cross-sectional mean of (7), then set the mean beta to one and 

substitute in (6). 

Hypothesis 2. Holding all else constant, firms with larger betas should have more extreme 

values of λim. 

In other words, holding constant the measure of balance-sheet-induced volatility asym-

metry, firms with higher betas should have larger responses of volatility to market 

returns. The caveat that all else is held constant is important because of potential 

cross-correlation between βi(t) and  (Bi(t) − Di(t))/Ai(t). 
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Another potentially testable implication of the model is the leverage effect. Holding all 

else constant, firms with a higher debt/asset ratio should have more negative coefficients λim 

and λiI . But the requirement “all else constant” is almost impossible to impose in such a 

test. Because of the tax advantage of debt, firms have an incentive to increase their leverage 

until the marginal risk of financial distress exceeds the marginal tax benefit. A firm with 

a relatively high proportion of low-risk assets is able to increase its leverage more than a 

firm with a low proportion of low-risk assets. In the context of the model, this means that 

cross-sectionally there should be a positive correlation between Bi(t) and  Di(t). Thus the 

unconditional cross-sectional relation between Di(t)/Ai(t) and either λim or λiI is unclear. 

Although this paper does not focus on the behavior of aggregate volatility, it is useful 

to express the population regression coefficient from a regression of aggregate stock return 

volatility on aggregate stock returns. The formula for the coefficient is more complicated 

than the above formulas because there are two other effects that operate at the market level. 

The first is the fundamental link between returns and volatility captured by γm. The second 

is an additional balance-sheet effect. At the firm level, there is a mixture of assets (Ai(t) 

and Bi(t)) with different levels of risk; this induces a positive relation between returns and 

volatility. At the aggregate level, there is not only this breakdown between aggregate risky 

assets A(t) and aggregate riskfree assets B(t), but also between low-beta stocks and high-

beta stocks. Thus even if firms had no riskfree assets, the mixture-of-assets effect would 

show up at the aggregate level. The regression coefficient is 

� 
Covt (dS/S, dσmS /σmS ) (βi 

∗)2Ai(t) γm
= [B(t) − D(t)] � + � 

(β∗Ai(t))Vart(dS/S) ( βi 
∗Ai(t))2 i 

S(t) 

Vart(βi 
∗Ai(t)) − Covt(Ai(t), (βi 

∗)2Ai(t))
+ (8)

Et(βi 
∗Ai(t))2 

In (8), the covariances and means are cross-sectional. In the special case of no cross-sectional 

variation in asset betas, the first term on the right reduces to (B(t) − D(t))/A(t) and  the  

third term on the right disappears.2 

This model implies that balance-sheet-induced volatility asymmetries are measured by 

the ratio (Bi(t) − Di(t))/Ai(t). This ratio should not be taken too seriously, because it 

is simply the easiest way to illustrate balance-sheet effects in a model. In reality, firms 

have a variety of assets that differ in riskiness, including assets that have nonlinear payoffs. 

This leads to a key question: Is there any information on firm’s (accounting) balance sheets 

that can be used to determine the importance of (economic) balance-sheet-induced volatility 

2Note that the numerator in the third term on the right hand side can be written as E(x/y)E(xy)−[E(x)]2 , 
where x = βi 

∗Ai(t) and  y = βi 
∗ . 
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asymmetries? The approach I take here is to use a firm’s book-to-market ratio as a crude 

proxy for the relative importance of growth options among the firm’s assets. I motivate this 

choice in the next subsection. 

3.2 Growth options 

An important kind of asset for many firms is the option to grow. More precisely, a firm 

may have the option to spend money to aquire an asset that generates cash flows. The 

presence of growth options among a firm’s assets has two competing effects on the return-

volatility relation. The first is the same that operates in the model of Section 3.1. A 

mixture of assets with different levels of risk induces a positive relation. An opposite effect is 

the negative relation between a call option’s value and its return volatility. The net effect is 

ambiguous, as this simple model illustrates. (A more complicated model would not eliminate 

the ambiguity.) 

I examine a single firm with two assets. The first is a real asset with value A(t). The 

instantaneous standard deviation of returns to the asset is σA. Again for simplicity, assume 

that the firm just purchased the asset, so its book value is also A(t). The asset will pay no 

dividends through some fixed time T . The second asset is a growth option. The firm has the 

option to spend K to double the size of its real assets. In other words, the firm can spend 

K to acquire another asset worth A(t). To make it easy to value this option, it expires at 

time T . The interest rate is fixed at zero. In a diffusion world, the option can be valued 

by the Black-Scholes formula. Denote its value by C(A, t; K, T ). The derivative of the call 

price with respect to the underlying asset’s value is denoted δ(A, t; K, T ). 

The market value of the firm is 

V (t) =  A(t) +  C(A, t; K, T ). 

Assume the firm is entirely equity financed. Then the instantaneous standard deviation of 

the firm’s stock return is 

A(t)
σS (t) = (1 +  δ(A, t; K, T )) σA. 

V (t) 

We are interested in how this standard deviation varies with the stock price. Some algebra 

reveals (suppressing the arguments of V, A, C, and  δ) 

 � 
  log σS V/A   δ C A 

= A + (1 +  δ) − δ (9)
  log V (1 + δ)2  A V V 
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The sign of (9) is ambiguous. When the option deep out of the money, the mixture of high 

and low risk assets dominates the pure call option relation. Thus the sign is positive. When 

the option is deep in the money, volatilities of the two assets converge and the only effect 

is the call option relation. As the option value rises, δ(A, t; K, T ) approaches one and (9) 

approaches −K/(A+C +K). This ratio is the same implied by the displaced diffusion model 

when a firm has assets of 2A(t) and debt of K. 

The market-to-book ratio for the firm is 

A(t) +  C(A, t; K, r, T )
V (t)/A(t) =  . 

A(t) 

The relation between this ratio and the derivative in (9) is also ambiguous. Figure 1 illus-

trates the relation for a given set of parameters. For low market-to-book, the return-volatility 

relation is positive and decreasing. For very high market-to-book, the relation is negative 

and increasing because −K/(A + C − K) goes to zero as A and C increase. 

This setup implied that a firm’s book-to-market ratio was determined by the moneyness 

of its option. In the empirical work that follows we will examine cross-sectional variation 

in book-to-market ratios, which can vary not only because of cross-sectional variation in 

moneyness but in cross-sectional variation in the amount of options held by firms. This 

second source of cross-sectional variation adds to the ambiguity of the relation between the 

derivative in (9) and book-to-market. Without going into details, the effects of more options 

(say, the option to triple the size of the firm for a strike price of 2K) are to increase the 

market-to-book ratio and magnify the derivative in (9). Since the sign of this derivative is 

ambiguous, so is the cross-sectional variation with book-to-market. 

The only clear conclusion we can draw from this analysis of growth options is that the 

presence of growth options should affect the return-volatility relation. We cannot sign this 

relation, except to note that it is unlikely that the various effects at work will exactly cancel 

each other out. The model implies that book-to-market measures the importance of growth 

options, which is in line with the logic of Berk et al. (1999) and Sagi and Seasholes (2001). 

This leads to 

Hypothesis 3a. (growth option version) The cross-sectional relation between firms’ book-

to-market ratios and the sensitivity of stock return volatility to stock returns should 

be nonzero. 

A popular alternative interpretation of book-to-market, due to Fama and French (1995), 

is that the ratio measures financial distress. Financially-distressed firms are likely to have 

greater operating leverage than less-distressed firms. For example, financially-distressed firms 
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are likely to have less cash flow relative to their operating expenses. Operating leverage works 

like financial leverage from the perspective of the return-volatility relation. High financial 

leverage (higher book-to-market) should therefore correspond to a more negative relation 

between stock returns and stock return volatility. This leads to an alternate version of the 

hypothesis: 

Hypothesis 3b. (financial distress version) The cross-sectional relation between firms’ 

book-to-market ratios and the sensitivity of stock return volatility to stock returns 

should negative. 

If hypothesis 3b is confirmed in the data, we cannot distinguish between these two views 

of book-to-market. Conveniently, however, the data firmly reject this latter hypothesis. I 

turn to the data next. 

4 The econometric methodology 

4.1 The data 

Stock return data are from the 2001 version of the Center for Research in Security Prices 

(CRSP) NYSE/Amex/Nasdaq daily file. The analysis is restricted to common stocks of 

domestic firms. (These are securities with CRSP sharecodes of 10 or 11 over their entire 

sample.) I follow Chen et al. (2001) by dropping stocks with market capitalizations below 

the 20th percentile of NYSE-listed stocks. The method used to eliminate these securities 

is discussed below. I use the return to the CRSP value-weighted index as a measure of 

aggregate stock returns. 

Year-end market value of equity is from CRSP. Accounting information is from Com-

pustat annual files. Book value of equity is constructed using the definition in Table I of 

Fama and French (1995). Book value of debt is the sum of short-term liabilities, long-term 

liabilities, and preferred stock. I do not require that firms have December fiscal year-ends, 

therefore the numerators and denominator in BE/ME and D/ME are sometimes not mea-

sured simultaneously. Because the extremely high debt/equity ratios of financial firms might 

skew the results, I drop such firms from any analysis that uses Compustat data. 

4.2 The effects of using discretely-measured returns 

The model describes the behavior of instantaneous stock returns, while in practice we observe 

returns over discrete horizons. This discrepancy drives a wedge between the implications of 
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the model and the behavior of observed returns. To fix ideas, assume that we observe 

continuously-compounded returns at equally spaced intervals 1, . . . , K. The idiosyncratic 

component of the return to firm i’s stock from the end of period k − 1 to the  end of period  

k is denoted i(k) and the standard deviation of this discretely-measured return is DEVi(k). 

(In practice, the idiosyncratic component and its standard deviation must be estimated, as 

discussed below.) The relation between i(k) and  DEVi(k) is a noisy estimate of the in-

stantaneous relation between returns and volatility because the model implies that volatility 

is persistent. For example, a return shock in the first day of a month will affect volatility 

throughout the month, while a return shock in the last day of the month will not. 

An obvious alternative is to examine the relation between i(k) and future volatility 

DEVi(k + j), j  >  0. But this relation depends on the amount of persistence in volatility. 

Shocks to volatility that are the result of balance-sheet effects are probably long-lived. They 

should die out only as firms’ capital structures change. One caveat is that if firms’ growth 

options have short tenors, balance-sheet effects owing to such options will be short-lived. 

The relation between i(k) and  DEVi(k + j) may also affected by fundamental shocks to 

asset return volatility that are correlated with idiosyncratic return shocks. Such shocks are 

ruled out in the model (there is no dZi(t) term in (2)) but that is largely for convenience. 

Thus if the predictive power of i(k) for DEVi(k + j) dies off quickly, we cannot necessarily 

conclude that balance-sheet effects are non-existent or short-lived; it may simply reflect low 

persistence of unmodeled fundamental shocks. 

4.3 Estimation of idiosyncratic returns 

I estimate idiosyncratic daily stock returns for security i with rolling regressions used out-

of-sample. Days are indexed by d. The regression equation is 

ri(d) =  bi0 + bi1rm(d) +  bi2ri(d − 1) + bi3rm(d − 1) + i(d). (10) 

I estimate this equation using the first 500 daily non-missing observations of log returns for 

security i, then use the resulting parameter estimates to produce out-of-sample residuals 

i(d) for the next 60 valid observations (501 through 560). The procedure is repeated by 

estimating the equation over observations 61 through 560, using the estimated parameters 

to produce residuals for observations 561 though 620, and so on. The return ri(d) is set  to  

a missing value if it is missing in the CRSP data or if either of the prices on days d − 1 or  

d are bid-ask averages instead of transaction prices. Although CRSP data begin with July 

1962, programming considerations led me to ignore all returns prior to January 1963. 

Throughout this paper I refer to the shocks i(d) as idiosyncratic  shocks.  This is a bit  
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of a stretch since only a single common factor was removed from firm-level stock returns. 

I experimented with including industry stock returns along the lines of Campbell, Lettau, 

Malkiel, and Xu (2001), but the results were almost identical. 

The model of balance-sheet effects implies that (10) is misspecified because a firm’s stock 

return beta should vary with stock prices. If a firm exhibits a positive relation between 

returns and volatility, it should also exhibit a positive relation between idiosyncratic returns 

and conditional beta. Although models that allow betas to vary with returns can be esti-

mated (see, e.g., Braun et al. (1995)), the broad cross-section of firms used in this paper 

makes such an approach too time-consuming. The misspecification will show up in both 

higher average variances of idiosyncratic returns and noisy estimates of beta. The important 

issue for the purposes of this paper is whether the misspecification will bias the observed 

relation between returns and idiosyncratic return volatility. Because the bias in beta (and 

therefore in the idiosyncratic variance) is symmetric in shocks to returns, it should not affect 

the main results here. 

The standard deviation of idiosyncratic daily returns is (crudely) estimated with the 

absolute value of the day’s idiosyncratic return. The use of absolute values instead of squares 

follows Duffee (1995) and is motivated by the evidence in Davidian and Carroll (1987) that 

absolute values are more robust to outliers. 

I also examine monthly idiosyncratic returns. These returns, which are indexed by t, are  

the sum of daily returns. I estimate the standard deviation of month t’s idiosyncratic return 

with the square root of the sum of squared daily idiosyncratic returns in the month. 

dNt dNt � � 
i(t) =  i(j), DEVi(t) =  [ i(j)]2 

j=d1 j=d1 

where the days in month t are indexed d1, . . . , dNt . Monthly returns and standard deviations 

are set to a missing value if there are fewer than 15 days in the month with valid observations. 

The aggregate return to the stock market in month t is the sum of daily log returns to the 

CRSP value-weighted index. The standard deviation of this monthly return is estimated 

with the square root of the sum of squared demeaned daily returns in the month, where the 

mean is calculated over the entire sample period (not just over the days in the the month). 

4.4 The regression equations 

The starting points of the empirical analysis are the hypothetical regressions of instantaneous 

idiosyncratic return volatility on market returns (7) and idiosyncratic returns (6). Because 

these returns are uncorrelated by construction, I combine the regressions and estimate at 
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the daily frequency 

| i(d)| 
= ci,j + λi,m,j rm(d− j) +  λi,I,j i(d− j) +  vi,j (d), j  = 0, . . . , 3 (11) | i| 

In (11), rm(d) is the daily market return. In the hypothetical regressions changes in volatility 

are expressed in relative (i.e., log) terms. Because the log transformation is susceptible to 

inliers, I follow Duffee (1995) by normalizing absolute residuals by the mean absolute residual 

instead of taking logs. Lags from j = 0  to  j = 3 are considered to examine the persistence 

of the return-volatility relation, as discussed in Section 4.2. The coefficients λi,m,j are the 

counterpart to λim in (7) and the coefficients λi,I,j are the counterpart to λiI in (6). 

At the monthly frequency the regression is 

log DEVi(t) =  ci,j + λi,m,j rm(t− j) +  λi,I,j i(t− j) +  vi,j (t), j  = 0, . . . , 3 (12) 

where rm(t) is the monthly market return. I use the log transformation in (12) because 

inliers are not a problem with monthly volatility estimates. 

4.5 Estimation procedure 

The trickiest problem to address in estimating (11) and (12) is the contemporaneous cor-

relation in the residuals across firms. Formally, the shocks to idiosyncratic asset volatility 

dZiV (t) in (2) may be correlated across i. One way to address the problem is to assume 

that correlations among residuals can be picked up with calendar dummies, as in Chen et al. 

(2001). That method is unappealing here because a primary focus of this paper is in how the 

estimated coefficients λi,m,j and λi,I,j vary across firms with different betas, debt/equity, and 

book/market. Calendar dummies pick up shocks that are common across all firms, but it is 

likely that firms with, say, similar book/market ratios have residuals that are more closely 

correlated than firms with dissimilar book/market ratios. 

This problem is similar to the problem of estimating asset-pricing models with a panel 

data set that has more firms than time periods. Thus I adopt an estimation technique 

inspired by Fama and MacBeth (1973). For each firm i, I estimate (11) and (12) over each 

calendar year from 1965 through 2001, depending on data availability. (Because daily stock 

return residuals are constructed out-of-sample, no residuals are available for earlier years.) 

For example, if a stock has been continuously listed over the entire sample period, it will 

have 37 estimates of (11), corresponding to calendar years 1965 through 2001. Then cross-

sectional regressions (e.g., λ̂i,m,j on firm i’s beta) are estimated separately for each year. 

Finally, the means of the yearly cross-sectional results are used as cross-sectional parameter 
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estimates for the entire 37 years. Their standard errors are based on the sample standard 

deviations of the 37 sets of parameter estimates. 

This cross-sectional approach will require year-by-year estimates of firm i’s stock return 

beta. These estimates are produced with the regression (10) used in constructing daily 

idiosyncratic returns. Recall that this regression was estimated using an out-of-sample rolling 

procedure. The beta that I use for firm i in a given year is the sum 

β̂i ≡ b̂i1 + b̂i3 

where the right-hand-side estimates are taken from the regression (10) used in constructing 

the idiosyncratic return on the first day of the year. Because this idiosyncratic return is 

estimated out-of-sample, the beta is uncorrelated with any shocks realized in that year. 

The cross-sectional regressions will use the level of firm i’s idiosyncratic return volatility 

as a control variable. I measure this volatility using the same regression used to construct 

the yearly beta estimates. The volatility measure is the in-sample standard deviation of the 

residuals, which I denote D DEVi (daily deviation). 

5 Results 

5.1 Time-series results 

To put the firm-level results in context, I first look at the return-volatility relation at the 

market level. The market-level analogues to (11) and (12) are 

|r̃m(d)| 
= cj + λj rm(d − j) +  vj (d) |r̃m| 

where rm(d) is the demeaned daily market return, and 

log σm(t) =  cj + λj rm(t − j) +  vj (t). 

where σm(t) is the square root of the sum of squared demeaned daily returns in month t. For  

comparability with the firm-level results, the regressions are estimated separately for each 

year from 1965 to 2001. Table 1 reports the mean estimated coefficients and the standard 

errors of the estimates. The results are consistent with the large literature that documents 

an inverse relation between aggregate stock returns and aggregate stock return volatility. A 

negative stock return corresponds to higher contemporaneous volatility (negative skewness) 

as well as higher volatility over the next month. The higher volatility then dies out. 
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I now turn to the results of estimating the firm-level regressions (11) and (12). The 

sample of firms used in these regressions requires some additional explanation. As discussed 

in Section 4.4, the regressions are estimated separately for each calendar year. Consider, say, 

1975. Firms that have year-end 1974 market capitalizations less than the 20th percentile of 

the distribution of the NYSE-listed firms at year-end 1974 are dropped. For a remaining firm 

i, the daily regression is estimated if there are at least 200 valid observations in 1975. An 

observation is valid if, for day d in 1975, i(d) and  i(d − j) are non-missing. Day d − j does 

not need to be in 1975. I drop all of firm i’s daily results from 1975 if any of the four daily 

regressions cannot be estimated. The remaining year-1975 sample consists of 1090 firms. 

The resulting 1090 sets of parameter estimates from (11) are then averaged, producing a 

single set of mean parameter estimates for 1975. This average is computed using both equal 

weights and year-end 1974 market capitalization weights. The same procedure is followed 

for the monthly regressions, for which a minimum of nine observations is required. The 

year-1975 sample size for the monthly regressions is 1100 firms. 

After 37 sets of mean parameter estimates are calculated for the years 1965 through 2001, 

a grand mean of parameter estimates is computed by averaging across the years (using equal 

weights). These means are reported in Table 2. Standard errors are in parentheses. One 

and two asterisks denote significance at the 5% and 1% levels of significance, respectively. 

The column labeled ‘mean number of firms’ reports the mean, across years, of the number 

of firms for which regressions were estimated. 

There are two broad conclusions to draw from Table 2. First, there is a strong, positive, 

short-lived relation between returns and idiosyncratic return volatility. Consider the results 

of the daily regressions. Regardless of whether the return is the market return or the firm’s 

idiosyncratic return, volatility is substantially higher both on the day of the return and 

the next day. The point estimates imply that the level of volatility on a day when the 

return shock is one percent is about 1.06 times the corresponding level on a day when the 

return shock is minus one percent. (This conclusion holds whether equal weights or market 

capitalization weights are used.) The next day, volatility is about 1.02 times higher. This 

positive relation dies off by the third day. The results of the monthly regressions confirm 

this result. The month-level contemporaneous relation is positive for both market returns 

and idiosyncratic returns, although the standard errors on the market return coefficients are 

too large to pin down the relationship very precisely. 

This positive relation is not a surprise, given earlier research. We know firm-level stock 

returns are positively skewed, which (given that market stock returns are negatively skewed) 

implies that idiosyncratic returns are positively skewed. The positive relation between mar-

ket returns and idiosyncratic volatility is consistent with the comment by Stivers (2000) that 
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firm-level return dispersion is higher on days when the market goes up. 

The second broad conclusion is that this positive return-volatility relation is reversed 

within a month. High returns (either market or idiosyncratic) in month t are followed by 

low idiosyncratic volatility in months t + 1 through t + 3. Standard errors on the market 

returns are too high to reject the hypothesis that they are zero, but the statistical evidence 

for idiosyncratic returns is overwhelming. 

How should we interpret this curious dynamic pattern? The model of balance-sheet effects 

presented earlier cannot, by itself, fit these dynamics. A positive contemporaneous return-

volatility relation is easily explained by changing relative asset values. But this positive 

relation should persist until the firm’s economic balance sheet is altered. There is nothing 

in the model that gives us a reversal of the original positive relation. 

One ad-hoc way to explain this pattern is to add another kind of fundamental shock to 

the model of balance-sheet effects. Assume that firm-level asset returns and future asset-

return volatility are negatively correlated. If, say, investors receive news that future cash 

flows are likely to be lower than usual, they also learn that these future cash flows are likely 

to be more volatile than usual. This fundamental shock produces a negative relation between 

current returns (a revision in my expectation of future cash flows) and future volatility (when 

the cash flows are realized). If this negative relation is sufficiently strong it will dominate a 

positive return-volatility relation induced by balance-sheet effects. 

If this (after-the-fact) explanation is correct, it has a testable implication. Balance-sheet 

effects are present for more than a couple of days; they are simply obscured by another 

effect after that time. Therefore cross-sectional regressions that test for balance-sheet effects 

should indicate their presence in the days and months after the positive return-volatility 

relation has disappeared in the time series. I now turn to these cross-sectional tests. 

5.2 Cross-sectional results 

The first cross-sectional test is taken from Hypothesis 1 in Section 3.1.3. Intuitively, the 

hypothesis says that the effect of a market return on idiosyncratic volatility is the same as 

the effect of an idiosyncratic return, once the market return is scaled by the firm’s beta. For 

each regression, I construct the difference between the cross-sectional mean of the coefficient 

on the market return and its value implied by Hypothesis 1: 

hi,j ≡ λi,m,j − λi,I,j − Cov(λi,I,j , β̂i), j  = 1, . . . , 3. 

The hypothesis implies hi,j = 0.  

As noted in Section 4.5, cross-sectional tests are performed separately for each calendar 
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year from 1965 through 2001. To illustrate the procedure, consider the results for a single 

year. In 1975 the equal-weighted mean of λi,m,0 in daily data is 7.19. The corresponding mean 

of λi,I,0 is 3.59 and the covariance between λi,I,0 and β̂i is −0.53. The result is hi,j = 4.13. 

I also construct hi,j using market capitalization weights for the means and covariance. This 

weighted hi,j is 4.92. I follow this procedure for each calendar year and then compute grand 

means and standard deviations. 

The results are not reported in any table because they are easy to summarize. In no case 

can the hypothesis that hi,j = 0 be rejected. Across eight different regressions (four each for 

daily and monthly returns) and two weighting methods, no t-statistic exceeds 1.2 in absolute 

value. Overall, there is no evidence that market returns (scaled by beta) have a different 

effect on idiosyncratic volatility than do idiosyncratic returns. 

Hypothesis 2 in Section 3.1.3 and Hypotheses 3a and 3b in Section 3.2 suggest tests using 

cross-sectional regressions. Hypothesis 2 implies that if the market-return coefficient λi,m,j 

is  regressed on firm  i’s beta, then holding all else constant, the sign of the coefficient should 

be the sign of the average balance-sheet effect. Hypotheses 3a and 3b imply that if either 

the market-return coefficient λi,m,j or the idiosyncratic-return coefficient λi,I,j is regressed 

on firm i’s book/market ratio, the coefficient should be nonzero (although only Hypothesis 

3b says what the sign should be). 

Although this paper focuses on the role of beta and book/market, earlier literature jus-

tifies including other variables. One is the debt/equity ratio, motivated by the leverage hy-

pothesis. Two others are motivated by the results of Chen et al. (2001). They show that the 

amount of skewness in firms’ returns is related to market capitalization and volatility. There-

fore I use five explanatory variables in the cross-sectional regressions: Beta, book/market, 

debt/equity, log of market cap, and log of the standard deviation of daily idiosyncratic 

returns. 

Because the cross-sectional regressions are estimated for each calendar year, I need yearly 

values of these explanatory variables. Section 4.5 discusses the construction of the yearly 
ˆestimates of beta βi and the standard deviation of daily idiosyncratic returns D DEVi. 

Balance-sheet variables are taken from the previous year-end. These cross-sectional vari-

ables are all realized by the beginning of the year for which the cross-sectional regression is 

estimated. 

The sample of stocks used in these cross-sectional regressions is smaller than the sample 

used in the time-series regressions reported earlier. As mentioned in Section 4.1, I drop 

nonfinancial firms. In addition, to reduce the importance of outliers, I drop those firms with 

book-to-market or debt-to-equity ratios in the top or bottom two percent of their respective 

distributions. (This is done year-by-year.) Because of these restrictions, and because a 
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number of firms in the CRSP dataset do not have balance sheet information in Compustat, 

the sample sizes for the cross-sectional regressions are about one-third smaller than those 

for the time-series regressions. 

Summary statistics for the variables used in the cross-sectional regressions are reported in 

Table 3. The summary statistics are computed separately for each year, then averaged (equal 

weights) across all years. Except for the debt/equity ratio, means and medians are roughly 

equal. Debt/equity is strongly positively skewed. The median firm has a debt/equity ratio of 

less than one-third while the mean ratio exceeds one-half. The mean and median values of log 

size are not particularly informative because no adjustment is made for inflation. No inflation 

adjustment is needed in the cross-sectional regressions because market capitalizations are all 

measured on the same date. 

The cross-sectional regression is 

λi,j,k = b0,j,k + b1,j,kβ̂i + b2,j,kBEi/MEi + b3,j,kDi/MEi + b4,j,k log(MEi) 

+ b5,j,kD DEVi + ζi,j,k, j  = {m, I}, k  = 0, . . . , 3. 

The estimates for daily returns are displayed in Table 4 and those for monthly returns are 

displayed in Table 5. There are four main results that are worth highlighting. 

The first main result is that cross-sectionally, firms with higher betas have a stronger 

positive contemporaneous relation between market returns and idiosyncratic volatility. (The 

relevant regressions are the first row in each table.) The statistical significance is overwhelm-

ing; the respective t-statistics on beta for daily and monthly return horizons are 7.5 and 3.5. 

Moreover, the magnitudes of the coefficients on beta are roughly what we expect if the con-

temporaneous return-volatility relation is driven by balance-sheet effects. A comparison of 

the mean estimates in Tables 2 with these cross-sectional results reveals that if a firm has a 

zero beta, then (holding everything else in the regression constant) it exhibits no clear re-

lation between market returns and idiosyncratic volatility. (The relation is slightly positive 

with daily returns and slightly negative with monthly returns.) 

Viewed in isolation, this result strongly supports the conclusion that balance-sheet effects 

drive the positive short-run relation between returns and idiosyncratic volatility. However, 

the results of the regressions that explain cross-sectional variations in the relation between 

market returns and future idiosyncratic volatility cast some doubt on this view. (These 

are the next three rows in the tables.) Balance-sheet effects should be persistent, but the 

predictive power of beta disappears after the next day. Unless this can be explained away, 

it is strong evidence against the balance-sheet effect story. 

My interpretation of this pattern is that beta plays two roles in the relation between 
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market returns and idiosyncratic volatility. The first role is the one emphasized in Hypothesis 

2: The effect of a market return on a firm’s balance sheet depends on the firm’s beta. The 

second role is a cross-sectional relation between beta and the volatility asymmetry built into 

a firm’s balance sheet. This additional role is the subject of the second main result in Tables 

4 and  5.  

Firms with higher betas have a less positive overall volatility asymmetry. The evidence 

is clear in the cross-sectional regressions that explain the strength of the relation between 

idiosyncratic returns and idiosyncratic return volatility. (These are the bottom four rows in 

each table.) For daily returns, higher betas correspond to less positive asymmetric volatility 

at all lags. The statistical strength of this cross-sectional relation is extremely strong, with 

t-statistics ranging from −2.6 to  −4.1. For monthly returns, higher betas correspond to less 

positive asymmetric volatility at lags zero and one. This direct relation between beta and 

asymmetric volatility contaminates the indirect role that is the subject of Hypothesis 2. The 

relation between beta and volatility asymmetry was not predicted (and not ruled out) by 

the theory of Section 3. In the context of that theory, I could posit a negative cross-sectional 

relation between a firm’s beta and the dispersion among the volatilities of its assets. But 

this is simply an after-the-fact story without any testable implications. 

The third main result is that book-to-market ratios are strongly positively associated with 

asymmetric volatility. For daily returns, the coefficients on BE/ME for all eight regressions 

are positive, and five are significant at the one percent level. For monthly returns, the 

statistical significance is concentrated in the first two months. Three of these four regressions 

have a coefficient on BE/ME that is significant at the one percent level and the remaining 

coefficient is significant at the five percent level. 

The point estimates on BE/ME imply a significant economic effect. Consider, for ex-

ample, a typical firm with a BE/ME ratio that is one standard deviation above the mean 

in a given year. Using the summary statistics in Table 3, the firm has a BE/ME ratio of 

1.07. Combining this figure with the mean point estimates for monthly returns in Table 5, 

the firm will have an elasticity of idiosyncratic volatility with respect to contemporaneous 

idiosyncratic returns of 0.54. This is over three times the implied elasticity of 0.17 for a 

typical firm with a book-to-market ratio of 0.329 (one standard deviation below the mean). 

This evidence on BE/ME is important because it supports the view that balance-sheet 

effects are positive and persistent, but obscured at longer lags by the presence of some 

other effect. In Table 2 the positive relation between daily idiosyncratic returns and daily 

idiosyncratic return volatility dies out after the first lag, but in Table 4 the predictive power 

of BE/ME does not. Table 2 also indicates that the positive relation between monthly 

idiosyncratic returns and monthly idiosyncratic return volatility is reversed at the first lag, 
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but in Table 5 the predictive power of BE/ME remains positive and significant. One bit of 

evidence that points away from a balance-sheet effect is that the predictive power of BE/ME 

dies off after the first monthly lag. Although some decrease is to be expected if balance-sheet 

effects drive the return-volatility relation (as firms adjust their balance sheets over time), if 

we take these results at face value they indicate that firms adjust their balance sheets within 

a few months. That seems a little too fast. (This argument is adapted from a similar one in 

Figlewski and Wang (2000).) 

The positive sign on BE/ME is explained by the model of growth options in Section 3.2. 

The positive sign indicates that firms with more of their value tied up in growth options 

have more negative relations between returns and volatility. This is consistent with the view 

that as options are more in-the-money, their return volatility falls. If the valuable growth 

options held by firms tend to have short maturities (say, once an option is deep in the money, 

the firm needs to act quickly before another firm grabs the opportunity), the model is also 

consistent with the decreasing significance of BE/ME as lag length increases. 

The problem with the growth option interpretation is that it is a weak test. Hypothesis 

3a allows for either a positive or negative relation between book-to-market and asymmetric 

volatility; it simply says there should be some relation. These results do, however, allow us 

to draw one firm conclusion. We cannot say that high book-to-market firms are typically 

financially distressed, and therefore have more operating leverage. If Hypothesis 3b were 

true, these firms should exhibit a more negative relation between returns and volatility, 

which is overwhelmingly rejected in the data. 

The role of BE/ME in predicting variations in volatility asymmetry can be used to explain 

an empirical result in Chen et al. (2001). They find that stocks that have increased in value 

over the past three years exhibit a more negative relation between returns and volatility 

than do stocks that have decreased in value. Increases in stock prices typically correspond 

to decreases in BE/ME (working through the denominator). The lower BE/ME corresponds 

to a more negative relation between returns and volatility. 

The fourth and final main result is that debt/equity ratios have no statistically signif-

icant link to asymmetric volatility. Across the daily and monthly regressions, none of the 

coefficients on debt/equity is statistically significant at the five percent level. This conclu-

sion differs from those of Christie (1982), Cheung and Ng (1992), and Duffee (1995). One 

possible reason for the conflicting results is that the earlier work did not take into account 

cross-sectional correlations among the firm-level regressions. Another possibility is that the 

linear framework of (4) and (5) is misspecified. The earlier research focused more on rank 

correlations than on a parametric relation. 

Overall, these results lend support to the hypothesis that the positive short-run relation 
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between firm-level returns and idiosyncratic volatility is the result of balance-sheet effects. 

But are any hypotheses are ruled out by these results? The question is a little hard to 

answer because, as discussed by Chen et al. (2001), there are no economic models that 

naturally generate a positive return-volatility relation. They suggest that firms’ managers 

may attempt to hide bad news and trumpet good news. However, a story about manager 

behavior is hard to reconcile with the predictive role of beta in the relation between market 

returns and contemporaneous idiosyncratic return volatility (the top two rows of the tables). 

In order to explain this result, managers must choose to release news of any kind (good or 

bad) when the firm’s stock price rises owing to a general increase in the market, and refrain 

from releasing the news when the market is falling. It is not clear why such behavior would 

benefit managers. 

Another possible story is that returns and idiosyncratic volatility move together because 

news about firms’ projects is inherently positively skewed. Either a firm finds a positive NPV 

project, or it doesn’t. No news is bad news, because an advance was not made, and a project 

was not started. Although plausible, this story has the same problem with the market return– 

idiosyncratic volatility relation. Why should a positive market return correspond to greater 

revelation of firm-specific news? In addition, why should BE/ME predict the strength of the 

relation between returns and future idiosyncratic volatility? Only a model of balance-sheet 

effects appears to fit all of this evidence. 

5.3 Asymmetric correlations 

Correlations among equity returns tend to be higher when the returns are negative than 

when they are positive. At the international equity market level this was first documented 

by Erb, Harvey, and Viskanta (1994). Additional evidence is in Longin and Solnick (2001) 

and Ang and Bekaert (1999). In the U.S. market, Ang and Chen (2002) find the same result 

for portfolios. The evidence in Tables 1 and 2 cast some light on the source of asymmetric 

correlations. 

A little formalism will help. Consider returns to two firms, r1 and r2, and the return 

to the entire stock market, rm. To make this example as simple as possible, all returns are 

mean zero, and firm-level returns consist of a common factor and an idiosyncratic factor, 

ri = rm + i, i = 1, 2. 

Their correlation, conditioned on some information Ω, is 

Var(rm|Ω)
Cor(r1, r2|Ω) = . (13)

Var(rm|Ω) + Var( i|Ω) 
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Asymmetric return correlations are produced if either Var(rm|rm < 0) > Var(rm|rm > 0) or 

Var( i|rm > 0) > Var( i|rm < 0). 

Researchers, especially in the literature on international stock markets, have typically 

focused their interpretations of asymmetric correlations on the latter inequality–the behavior 

of Var(Fc). For example, Das and Uppal (1999) assume that a common factor can periodically 

jump. If the mean jump size is negative, correlations in down markets can be higher than 

correlations in up markets. This emphasis on common shocks in explaining correlations in 

international stock markets is not unreasonable, given the recent behavior of these markets. 

The negative skewness of aggregate U.S. stock market returns is also consistent with a model 

in which common shocks occasionally exhibit downward jumps. 

The results in Table 2 point to the conclusion that, at least for individual stocks, a pos-

itive covariance between market returns and idiosyncratic volatility also drives asymmetric 

correlations. The question I address here is how much of the asymmetry in daily stock return 

correlations is the result of variability in idiosyncratic volatility. I use (13) to decompose 

changes in correlations. Implicitly, I am considering correlations between two firms with 

betas of one. Because the nonlinearity of (13) I use a first-order approximation: 

  
Var(rm) Var( i) ∆Var(rm) ∆Var( i)

∆Cor(r1, r2) ≈ − 
Var(rm) + Var(  i) Var(rm) + Var(  i) Var(rm) Var( i) 

The term in brackets tells us that the change in volatility is driven equally by the percentage 

changes in the variances of the market return and the idiosyncratic return. Therefore the 

fraction of the difference between up-day correlations and down-day correlations that is due 

to idiosyncratic volatility is approximately (using down-market variances as the starting 

point) 
(Var( i|down) − Var( i|up))/Var( i|down)

F ≡ (14)
Var(rm|up)/Var(rm|down) − Var( i|up)/Var( i|down) 

To estimate this ratio I construct, for each firm i, measures of idiosyncratic variance 

conditioned on the market return. They are 

V ARi(up) = mean[  2 
i |rm(d) > rm], V ARi(down) = mean[  2 

i |rm(d) < rm]. 

The corresponding ratio is 

RAT IOi ≡ V ARi(up)/V ARi(down). 
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Similarly, I construct measures of the conditional variance of market returns: 

V ARm(up) = mean[r̃ 2 |rm(d) > rm], V ARm(down) = mean[r̃ 2 |rm(d) < rm],m m 

RAT IOm ≡ V ARm(up)/V ARm(down). 

Then an estimate of the fraction in (14) for firm i is 

1 − RAT IOi
F̂i = . (15)

RAT IOm − RAT IOi 

I follow the procedure used throughout this paper and construct these variances and 

ratios for each year from 1965 through 2001. I calculate cross-sectional statistics for each 

year, then report the time-series means of these cross-sectional statistics. The results are in 

Table 6. Panel A reports conditional variances for the market return. For the typical year, 

the ratio of up-day variance to down-day variance is 0.92. The ratio tends to be lower in 

years when variances are higher, which is why the ratio of the mean up-day variance to the 

mean down-day variance is only 0.81. 

Panel B reports results for idiosyncratic volatility. It reports cross-sectional results for 

two groups: All firms in the sample and the 500 largest firms in the sample. The two groups 

have similar mean ratios of up-market variance to down-market variance (about 1.14). These 

mean results are for the typical firm in the typical year. However, years in which variances 

are higher are also years in which the up-day and down-day idiosyncratic variances are closer 

together. Therefore the ratio of the mean up-day variance to the mean down-day variance 

is closer to one (about 1.06). 

I use (13) to estimate yearly cross-correlations between firm-level stock returns. The mean 

of these estimates are reported in the Table. The implied correlations are, not surprisingly, 

higher on down days. I also compute (15) for each firm. A few firms have RAT IOi very close 
ˆto RAT IOm, which blows up Fi. Therefore I report the median value instead of the mean. 

(This is also why I report separate results for the largest 500 firms instead of reporting value-

weighted means.) For both the sample of all firms and the sample of the largest firms, over 

40 percent of the difference in correlations between down days and up days is due to higher 

idiosyncratic volatility on up days. Again, these results are for the typical firm in the typical 

year. In high-variance years market asymmetries are larger and idiosyncratic asymmetries 

are less smaller, thus (15) calculated using the time-series means of the variances is 0.35 for 

all firms and 0.21 for the largest 500 firms. Regardless of which set of estimates is used, the 

conclusion is that asymmetric idiosyncratic volatilities play a significant, but not dominant, 

role in explaining asymmetric correlations. 
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6 Concluding comments 

The most robust conclusion in this paper is that asymmetric volatility has multiple causes. 

Balance-sheet effects are a potential source of asymmetric volatility, and the evidence in 

this paper is broadly supportive of the hypothesis that such effects drive a positive relation 

between returns and volatility. But balance-sheet effects are incapable of explaining either 

the negative relation between aggregate stock return and aggregate stock return volatility 

or the quick reversal of the positive relation between firm-level idiosyncratic returns and 

idiosyncratic return volatility. The success of the balance-sheet hypothesis lies in its ability 

to explain two previously undocumented facts: the strength of asymmetric volatility varies 

cross-sectionally with beta and book/market. 

This cross-sectional predictability is fairly short-lived, which poses a problem for the 

balance-sheet hypothesis. This feature of the data needs to be explored in more detail. 

Perhaps it says something about the time to expiration of in-the-money growth options. 

Alternatively, it may reflect the speed at which firms adjust their asset mix over time. 

However, we cannot rule out the possibility that it means we need a theory other than 

balance-sheet effects to explain the empirical evidence in this paper. 
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Horizon 0 
Lag of return 

1 2 3 

Daily −8.522 
(3.655) 

−10.585 
(2.060) 

−9.917 
(2.357) 

−6.812 
(2.095) 

Monthly −1.602 
(0.579) 

−1.381 
(0.432) 

−0.426 
(0.413) 

0.530 
(0.450) 

Table 1: The relation between aggregate stock returns and aggregate stock return volatility 

Aggregate stock return volatility is regressed on either contemporaneous or lagged aggregate 
stock returns. Daily volatility is measured with the absolute demeaned return to the CRSP 
value-weighted index and monthly volatility is measured by the square root of the sum of 
squared demeaned returns in the month. The regressions are 

|r̃m(d)| 
= c + λrm(d− lag) + v(d), lag = 0, . . . , 3 (Daily) |r̃m| 

log σm(t) =  c + λrm(t− lag) + v(t), lag = 0, . . . , 3 (Monthly) 

Separate regressions are run for each year from 1965 through 2001. The table reports the 
mean estimates of λ. Standard errors are computed from the sample standard deviations of 
the yearly estimates. 
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Cross-correlation with 
Firm-level statistic Mean Median Std dev Beta BE/ME D/ME log(ME) 

Beta 1.064 1.008 0.482 1 

BE/ME 0.699 0.639 0.370 −0.185 1 

D/ME 0.552 0.328 0.715 −0.149 0.424 1 

log(ME) 13.008 12.795 1.279 −0.113 −0.175 −0.091 1 

log(D DEV) −3.974 −3.983 0.366 0.621 −0.139 −0.096 −0.545 

Table 3: Summary statistics for explanatory variables used in cross-sectional regressions 

For each year-end from 1964 through 2000, stock return betas, book/market and debt/equity 
ratios, market capitalizations, and the standard deviation of daily returns are calculated for a 
sample of stocks. The mean sample size (across years) is 921 stocks. Year-end cross-sectional 
summary statistics are computed for each year. This table reports the time-series means, 
across years, of these cross-sectional statistics. 
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1st stage 
Explanatory 2nd stage regression coefs 
variable Lag Beta B/ME D/ME log(ME) log(D DEV) 

Market 0 2.591 0.528 0.088 0.162 0.759 
return (0.343)∗∗ (0.324) (0.135) (0.119)∗ (0.491) 

1 1.065 0.390 0.097 −0.257 −0.206 
(0.219)∗∗ (0.297) (0.162) (0.106)∗ (0.400) 

2 −0.076 1.181 −0.044 −0.135 0.563 
(0.239) (0.374)∗∗ (0.150) (0.079) (0.375) 

3 −0.152 1.106 −0.178 −0.011 1.078 
(0.223) (0.346)∗∗ (0.143) (0.095) (0.402)∗∗ 

Idiosyncratic 0 −1.032 4.466 −0.110 −0.381 0.847 
return (0.357)∗∗ (0.458)∗∗ (0.247) (0.188)∗ (0.648) 

1 −0.424 1.117 −0.025 −0.137 0.049 
(0.102)∗∗ (0.137)∗∗ (0.119) (0.056)∗ (0.250) 

2 −0.232 0.562 0.080 −0.065 −0.144 
(0.077)∗∗ (0.107)∗∗ (0.079) (0.037) (0.199) 

3 −0.197 0.224 0.140 −0.012 0.109 
(0.076)∗∗ (0.097)∗ (0.071)∗ (0.036) (0.152) 

Table 4: Cross-sectional variation in the daily stock return–volatility relation 

In the first stage the following time-series regression is estimated for individual firms i. 

| i(d)| 
= ci + λi,mrm(d− lag) + λi,I i(d− lag) + vi(d), lag = 0, . . . , 3 | i| 

This table reports results from a second-stage cross-sectional regression. The estimates of 
λi,m and λi,I are regressed on firm i’s beta, book equity/market equity, debt/market equity, 
log market equity, and log standard deviation of idiosyncratic daily returns. The first and 
second stage regressions are estimated for each year from 1965 through 2001. The second 
stage regressions have a mean of 921 firms. The table reports the means, across years, of 
these yearly parameter estimates. Standard errors are computed from the sample standard 
deviations of the yearly estimates. Asterisks denote t-statistics that exceed the 5% and 1% 
significance levels (2-tailed). 
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1st stage 
Explanatory 2nd stage regression coefs 
variable Lag Beta B/ME D/ME log(ME) log(D DEV) 

Market 0 0.235 0.231 −0.040 0.013 0.184 
return (0.066)∗∗ (0.104)∗ (0.045) (0.035) (0.161) 

1 −0.103 0.277 −0.064 −0.006 0.195 
(0.065) (0.092)∗∗ (0.044) (0.034) (0.132) 

2 −0.023 0.055 −0.030 0.009 0.001 
(0.072) (0.085) (0.054) (0.027) (0.142) 

3 −0.038 0.113 −0.054 0.035 −0.164 
(0.068) (0.075) (0.054) (0.030) (0.131) 

Idiosyncratic 0 −0.211 0.490 0.018 −0.070 0.122 
return (0.044)∗∗ (0.060)∗∗ (0.047) (0.024)∗∗ (0.101) 

1 −0.080 0.179 −0.021 −0.017 0.055 
(0.031)∗∗ (0.046)∗∗ (0.031) (0.018) (0.093) 

2 0.017 0.022 −0.001 0.011 0.022 
(0.040) (0.038) (0.043) (0.014) (0.084) 

3 −0.004 −0.091 −0.012 −0.025 −0.045 
(0.027) (0.047) (0.045) (0.016) (0.069) 

Table 5: Cross-sectional variation in the monthly stock return–volatility relation 

In the first stage the following time-series regression is estimated for individual firms i. 

log DEVi(t) =  ci + λi,mrm(t− lag) + λi,I i(t− lag) + vi(t), lag = 0, . . . , 3 

This table reports results from a second-stage cross-sectional regression. The estimates of 
λi,m and λi,I are regressed on firm i’s beta, book equity/market equity, debt/market equity, 
log market equity, and log standard deviation of idiosyncratic daily returns. The first and 
second stage regressions are estimated for each year from 1965 through 2001. The second 
stage regressions have a mean of 918 firms. The table reports the means, across years, of 
these yearly parameter estimates. Standard errors are computed from the sample standard 
deviations of the yearly estimates. Asterisks denote t-statistics that exceed the 5% and 1% 
significance levels (2-tailed). 
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Panel A. Aggregate returns (×102) 

Var(rm|up)/ 
Var(rm|up) Var(rm|down) Var(rm|down) 

0.713 0.880 0.918 
(0.088) (0.153) (0.055) 

Panel B. Firm-level returns  (×102) 

All firms Largest 500 firms 

Mean [Var( |up)] 5.985 
(0.584) 

3.757 
(0.408) 

Mean [Var( |down)] 5.563 
(0.553) 

3.574 
(0.418) 

Mean [Cor(ri, rj |up)] 0.156 
(0.008) 

0.198 
(0.010) 

Mean [Cor(ri, rj |down)] 0.187 
(0.013) 

0.234 
(0.015) 

Mean [Var( |up)/Var( |down)] 1.145 
(0.010) 

1.128 
(0.010) 

Median fraction of asymmetric 
correlation due to asymmetric 
idiosyncratic volatility 0.467 0.429 

(0.058) (0.056) 

Table 6: Daily stock return volatility conditional on the sign of the market return 

Idiosyncratic daily stock returns for firm i, denoted , are residuals from regressions of firm-
level stock returns on the market return. Days are sorted into ‘up’ and ‘down’ samples 
by whether the market return exceeds its sample mean. In each calendar year from 1965 
through 2001, variances of market and idiosyncratic returns are computed for both samples. 
Panel A reports for the market the mean variances and mean ratio of up-day variance to 
down-day variance, where the means are taken over the 37 yearly observations. Panel B 
reports time-series means of cross-sectional mean variances, variance ratios, and implied 
cross-correlations between firms’ stock returns. Correlations are estimated by the ratio of 
the market’s variance to the sum of the market’s variance and idiosyncratic variance. Panel 
B also reports the time-series mean of the cross-sectional median of equation (15) in the text. 
This equation estimates the fraction of the difference in up-day and down-day correlations 
that is due to changes in idiosyncratic volatility. Standard errors are computed from the 
sample standard deviations of the yearly values. 
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Figure 1: The return-volatility relation as a function of a firm’s market-to-book ratio. 

The figure assumes that a firm’s book equity equals the value of an asset in place. Market 
equity V is the sum of its existing assets and an option to double the amount of its assets. 
The figure plots   log σV /  log V . 
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