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This appendix reports details, additional empirical analysis, and some discussion of the

evidence in “Expected Inflation and Other Determinants of Treasury Yields.” Section I

contains details about measures of expected inflation. Section II discusses whether sticky

information accounts for the observed low inflation variance ratios. Sections III and IV

contain details about estimates of short-horizon and long-horizon inflation variance ratios,

respectively. Section V presents additional results about inflation variance ratios in the

model of Bansal and Shaliastovich (2013). Section VI presents additional results about

inflation variance ratios in the models of Wachter (2006) and Ermolov (2015). Section

VII describes the dynamic model in detail. Finally, Section VII discusses how news about

expected inflation affects the term structure’s level, slope, and curvature.

I. Details about Measuring Inflation Expectations

A. Point-in-Time and Average Price Levels

As described in the main text, this research uses inflation forecasts from two Blue Chip

(BC) surveys and the Survey of Professional Forecasters (SPF). Respondents to the BC

Economic Indicators Survey (EI) and the BC Financial Forecasts Survey (FF) forecast CPI

inflation. Respondents to the SPF forecast the GDP price index.

Because of the difference between point-in-time price levels and average-over-time price

levels, survey forecasts do not match up exactly with expectations in the accounting de-

composition of the text’s Section I.A. In the decomposition, expected inflation over the life

of a bond is the expected log change in the price level from the date when a bond’s yield

is observed to the date when the bond matures. (This change is divided by the bond’s

maturity.) This is a log change in point-to-point prices. Forecasting in practice focuses on

time-averaged inflation. For example, the SPF tracks forecasts of the GDP Price Index in

future calendar quarters. This price index is an average of prices in the quarter. The BC

survey has forecasts of the quarter-to-quarter percentage change in the CPI, where quarterly

CPI is defined as the average of the three monthly CPI values in the quarter.

Figure IA1 contrasts the theory and practice. At date T1 in 1997Q2, agents make predic-

tions about the one-year bond yield at T2, a date in 1997Q3 that is precisely three months

after T1. At T1 agents also make predictions about average inflation during the life of the

bond. The bond matures at T3 in 1998Q3, precisely one year after T2. Therefore, at T1 agents

forecast the log change in prices from T2 to T3. This time span is indicated in the figure with
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a line from T2 to T3. At T2, the bond yield is realized and agents have updated predictions

about inflation during the life of the bond. The difference between the inflation predictions

at T2 and T1 is the news about expected inflation, as defined in the text’s equation (4).

Researchers do not observe these T2-to-T3 inflation forecasts. In practice, surveys taken

at dates T1 and T2 ask for predictions of quarter-to-quarter inflation for calendar quarters

1997Q4 through 1998Q3. Combining these calendar-quarter predictions creates forecasts of

the log change from average prices during 1997Q3 to average prices during 1998Q3. The line

in the figure labeled “Practice” connects the average of 1997Q3 to the average of 1998Q3.

Inflation news as defined by the theory will differ from inflation news as measured using

surveys. The primary reason is that none of the point-to-point change in prices has been

realized at T2, but part of the average-to-average change has been realized at T2. Therefore,

investors at T2 know more about the average-to-average measure of inflation than they do

about the point-to-point measure.

A stark example is helpful. Imagine that expected inflation is always 5% per year. Vari-

ability in realized inflation is due entirely to permanent shocks to prices that are completely

unforecastable. As a result, there is no news revealed between T1 and T2 about the expected

log price change from T2 to T3. However, at date T2 agents know the price-level shocks that

have been realized since the beginning of 1997Q3. If these shocks are, on average, positive

(negative), agents will predict an inflation rate from 1997Q3 to 1998Q3 that is greater (less)

than 5%.

This effect of partially realized inflation raises the measured volatility of news about

expected inflation relative to the true volatility. However, the effect is unlikely to be large

even for short horizons. At long horizons it is even less important, since the distortion arises

for only part of the first quarter of inflation news.

B. An Example of Constructing Short-Horizon Inflation Expectation Shocks

Panel A of Table IAI illustrates the construction of inflation news using BC-FF survey

responses. The dates in this example correspond to those in Figure IA1. Consensus forecasts

in the table are drawn from surveys published at the beginning of June and September 1997.

The survey responses are gathered at the end of May and August, respectively, which are

the dates reported in the table. The end-May survey has consensus forecasts of quarter-

to-quarter inflation for five future quarters, from 1997Q3 through 1998Q3. The end-August
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survey has consensus forecasts for the five future quarters 1997Q4 through 1998Q4. The table

reports consensus forecasts for the four future quarters that the surveys have in common.

These quarter-to-quarter forecasts are used to calculate, for each survey, the expected

annualized log change in prices from 1997Q3 to each of the four quarters 1997Q4 through

1998Q3. The change from the end-May to end-August forecasts is defined as news about

expected average inflation. In this example, forecasts of future average inflation drop by

about 30 basis points at the one-quarter horizon. The magnitude of the decline shrinks to

about 20 basis points at the four-quarter horizon.

C. Splicing Blue Chip Data Series

The text’s Figure 1 displays monthly realizations of quarterly news about average ex-

pected inflation produced using the BC surveys. The data are from the BC-FF survey,

augmented by the BC-EI survey for news realizations that cannot be produced with the

BC-FF survey.

D. An Example of Constructing Short-Maturity Yield Shocks

The text compares two methods of forecasting short-maturity yields. One is a martingale

forecast. The other is a forecasting regression, which is equation (9) in the text. Panel B

of Table IAI illustrates the construction of short-maturity yield innovations. The first line

reports end-May yields for bonds with maturities between one and four quarters. Equation

(9) is estimated with OLS over the sample for which BC surveys are available. In-sample

fitted one-quarter-ahead forecasts as of the end of May 1997 are reported in the second

line of Panel B. Realized end-August yields are also reported, and the corresponding fitted

innovations in yields.

Panel B shows that short-maturity yields were somewhat higher in August than antic-

ipated in May, with yield innovations ranging from 3 to 30 basis points. Equation (5) in

the text expresses these innovations as the sum of news about expected future inflation,

expected future short-term real rates, and expected excess returns. Panel A shows that the

news about expected future inflation is around negative 25 basis points at these maturities.

Therefore, expected future real rates and/or expected excess returns must have increased

unexpectedly.
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II. Sticky Information?

The paper’s model treats mean survey forecasts as true expectations, albeit possibly con-

taminated with i.i.d. measurement error. Coibion and Gorodnichenko (2012, 2015) argue

that empirically, mean survey forecasts exhibit patterns consistent with informational rigidi-

ties. These rigidities imply that individual forecasters update their predictions infrequently,

inducing sluggishness in mean forecasts. If true, expectations about inflation impounded in

bond prices likely differ from those extracted from mean forecasts, since market prices are

determined by active buyers and sellers. These agents are those most likely to have recently

updated their information.

This section reviews and tests their model of rigidities using consensus forecasts from

the SPF and real-time realizations of GDP inflation. I conclude that a more plausible

interpretation of the evidence is that forecasters update frequently, and any evidence of

rigidities is an accident of the sample.

Notation in this discussion differs from that used in the text, to accommodate the lag

in reporting of quarterly inflation. Date t is the middle of calendar quarter t. At this

time NIPA releases an estimate of inflation (GDP index) during quarter t − 1. Denote

this estimate by πt|t−1, where the first part of the subscript refers to the quarter in which

the information is revealed and the second part refers to the quarter over which inflation

is measured. Respondents to the SPF predict πt|t−1 in the middle of calendar quarters

t− 1, . . . , t− 5.

Denote the full-information rational expectations (FIRE) forecast with the usual expec-

tations operator. A rational agent updates her expectation of πt|t−1 every period. These

updates are uncorrelated over time, and thus we can write the realization as the sum of news

about πt|t−1 at t, t− 1, and so on:

πt|t−1 = φ
(t)
t + φ

(t)
t−1 + φ

(t)
t−2 + . . . , Et−j−1

(
φ
(t)
t−j

)
= 0.

(This equation ignores a constant term.) The superscript on the shock φ is the date of the

inflation announcement and the superscript is the date the shock is revealed. The FIRE

expectation of inflation of t− j is

Et−j

(
πt|t−1

)
= φ

(t)
t−j + φ

(t)
t−j−1 + . . . . (IA1)
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Coibion and Gorodnichenko (2015) describe a simple model of sticky information. The

discussion here adds some notation to their framework in order to consider forecast errors

at different horizons. A fraction 1−ρ of respondents immediately update their prediction of

πt|t−1 in response to news at t−j. Therefore, the mean, across respondents, of the forecast of

πt−1 adjusts by only (1−ρ) of the true shock φ
(t)
t−j. Of those who do not update immediately,

(1− ρ) update a period later, and so on. Hence, the mean survey forecast of πt|t−1 made at

t− j is a sum of partial current and lagged shocks to the FIRE expectation. Denoting mean

survey forecasts with hats,

Êt−j

(
πt|t−1

)
= (1− ρ)φ

(t)
t−j + (1− ρ2)φ

(t)
t−j−1 + (1− ρ3)φ

(t)
t−j−2 + . . . . (IA2)

Substituting (IA1) into (IA2) expresses mean survey forecasts as deviations from FIRE

forecasts,

Êt−j

(
πt|t−1

)
= Et−j

(
πt|t−1

)− ρ

∞∑
i=0

ρiφ
(t)
t−j−i.

Therefore, the error in the mean survey forecast made at t−j is the sum of the FIRE forecast

error and the expectational error,

πt|t−1 − Êt−j

(
πt|t−1

)
=

{
πt|t−1 −Et−j(πt|t−1)

}
+ ρ

∞∑
i=0

ρiφ
(t)
t−j−i. (IA3)

These forecast errors are closely related to lagged revisions in mean survey expectations.

The revision in the mean survey expectation from t− j − 1 to t− j is

(
Êt−j − Êt−j−1

)
πt|t−1 = (1− ρ)

∞∑
i=0

ρiφ
(t)
t−j−i.

Plug this expression for forecast revisions into the survey forecast error (IA3) to produce the

relation between forecast errors and forecast revisions,

πt|t−1 − Êt−j

(
πt|t−1

)
=

ρ

1− ρ

(
Êt−j − Êt−j−1

)
πt|t−1 +

{
πt|t−1 − Et−j

(
πt|t−1

)}
. (IA4)

The term in curly brackets is unforecastable (by both FIRE and survey respondents) as

of t − j, and therefore is orthogonal to the first term on the right. Hence, (IA4) can be
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interpreted as a regression equation.

Coibion and Gorodnichenko (2012) use a variant of (IA4) to test for the presence of sticky

information, focusing on annual forecasts of inflation. An implication of (IA4) explored here

is that the coefficient on the forecast revision is independent of j. According to the model, the

length of time between the forecast t− j and the realization t does not affect the coefficient

on the forecast revision.

Table IAII reports results of estimating the regression

πt|t−1 − Êt−j

(
πt|t−1

)
= β0,j + β1,i

(
Êt−j − Êt−j−1

)
πt|t−1 + et,j (IA5)

for various choices of quarterly lags j and two sample periods. The inflation measure is

real-time GDP inflation, available from the Federal Reserve Bank of Philadelphia.1 For the

full sample (1969 through 2013), the point estimates are positive and significant, both eco-

nomically and statistically. In this respect, the results support Coibion and Gorodnichenko’s

(2012) interpretation.

However, two aspects of these results cast considerable doubt on this story. First, the

regression coefficients rise substantially as the forecast horizon increases. The estimate for

j = 1 corresponds to a value of ρ less than 0.3, while the estimate for j = 4 corresponds to

ρ = 0.65. Yet the theory does not accommodate shorter periods of inattention for near-term

inflation.

Second, the statistical significance disappears after 1984. For the 1985 through 2013

subsample, forecast revisions are only weakly associated with survey forecast errors, both

economically and statistically. For example, none of the regression R2s exceed 3%. Nason

and Smith (2014) test the sticky information hypothesis for inflation expectations and arrive

at a similar conclusion about the role of the sample period. If inattention to news about

inflation accounts for these results, inattention concentrates in the subsample when inflation

is high and volatile but casual intuition suggests that the opposite should be true.

An alternative and perhaps more plausible story is that the observed relation between

survey forecasts of inflation and realized inflation is not representative of the population

relation. It is well known that the steady increase in inflation during the late 1970s and

1Because of a Federal government shutdown, the estimate of GDP inflation for 1995Q4 was not published
by the Bureau of Economic Analysis during 1996Q1. For these regressions, the published value in 1996Q2
is treated as known by participants in 1996Q1.
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early 1980s surprised most forecasters, whether they were paying attention or not. For

example, beginning in 1978Q2, mean survey forecasts of three-quarter-ahead inflation were

revised upwards for nine straight quarters. The corresponding realized forecast errors (the

left side of (IA5)) were positive for all nine quarters.

Just as unusual was the energy price shock in 1973 and 1974. Three-quarter-ahead

inflation forecasts were revised upwards for nine straight quarters beginning in 1973Q1.

The corresponding three-quarter-ahead and four-quarter-ahead forecast errors were almost

entirely positive and occasionally extremely large.2 The errors associated with predictions

made during the first three quarters of 1973 cannot be attributed to forecaster inattention,

as the Yom Kippur War did not begin until October 1973. Subsequent forecast errors are

more reasonably associated with difficulties in predicting the peak of energy prices rather

than inattention to the OPEC oil embargo.

III. Details for Short-Horizon Estimates of Variance Ratios

Standard errors reported in the text’s Table I are estimated using Generalized Method of

Moments (GMM). The two moments for the martingale yield forecasts are the unconditional

variance of yield shocks and the unconditional inflation variance ratio. For yield forecasts

produced with the text’s equation (9), four additional moments are the OLS orthogonality

conditions. Persistent fluctuations in conditional variances are accommodated through the

use of 12 quarters of Newey-West lags for the variance moments.

The text briefly mentions measurement error and claims that the role of such error is

negligible. A simple model supports this claim. Consider a straightforward model with i.i.d.

measurement error. Observed variance ratios satisfy

observed V R =
(true π news variance) + (π measurement error variance)

(true yield innov variance) + (yield measurement error variance)
.

Since we observe both the numerator and the denominator, we can make assumptions about

the variances of measurement error to back out inflation variance ratios uncontaminated by

measurement error.

Assume, for example, that both are contaminated by i.i.d. measurement error with

a standard deviation of 10 basis points. Then the true variance ratio for the one-year

2A couple of the residuals for (IA5) are more than four standard deviations above zero.
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yield using BC forecasts is 0.064 rather than 0.074 as reported in Table I. If yields are

contaminated but inflation news is observed without error, the true variance ratio is 0.075.

In sum, measurement error is irrelevant to these results.

As noted in the text, variance ratios based on the SPF differ somewhat from those based

on BC surveys. One reason for the differences is that forecasts of CPI inflation are more

volatile than forecasts of GDP inflation. A clear example is the post-Lehman revision in

expected inflation. Figure 1 in the text shows that news about one-quarter-ahead expected

CPI inflation is negative 2%. In the text’s Figure 2, the corresponding news for expected

GDP inflation is approximately negative 1%. News about expected CPI inflation is more

volatile than news about expected GDP inflation for all maturities during the common

sample periods in the text’s Table II (1983Q1 to 2008Q2 and 2008Q3 to 2013Q4).

A more surprising reason for the differences is that yield innovations are somewhat more

volatile when measured at the end of the month (aligning them with BC surveys) than when

measured in the middle of the month (aligning them with SPF surveys). Part of this is

undoubtedly just sampling variation, and there may be month-end effects as well.

IV. Details for Long-Horizon Estimates

A. Parameterization and Cointegration

Repeating the model’s structure from the text,

πt = τt + ϕt + φt, (IA6)

τt = τt−1 + ξt, Et−1(ξt) = 0, (IA7)

ϕt = θϕt−1 + υt, Et−1(υt) = 0, (IA8)

Et−1(φt) = 0. (IA9)

Yield innovations are given by

y
(m)
t = y

(m)
t−1 + ỹ

(m)
t , Et−1

(
y
(m)
t

)
= 0, (IA10)
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for some long maturity m. The unconditional covariance matrix of shocks is

Var

((
φt ξt υt ỹ

(m)
t

)′)1/2

=

⎛⎜⎜⎜⎜⎝
σ2
φ 0 0 0

0 Ω11 0 0

0 Ω21 Ω22 0

0 Ω31 Ω32 Ω33

⎞⎟⎟⎟⎟⎠ . (IA11)

The square root in (IA11) refers to a Cholesky decomposition. The completely transitory

shock to inflation is orthogonal to all other shocks. Its realization does not affect bond

prices since it does not affect expectations of future inflation. Bond yields comove with

the permanent and transitory shocks to inflation. Yield innovations also have a component

orthogonal to inflation.

Forecasts of future inflation are formed with

Et(πt+j) = τt + θjϕt.

The innovation from t to t+ 1 in the expectation of inflation in period t+ j is

(Et+1 −Et) πt+j = ξt+1 + θj−1υt+1.

Similarly, the innovation from t to t+1 in the expectation of average inflation from t+ 2 to

t+m+ 1 is

(Et+1 − Et)
1

m

m∑
i=1

πt+i+1 = ξt+1 +
1

m
θ

(
1− θm

1− θ

)
υt+1. (IA12)

The inflation variance ratio is measured by the variance of (IA12) divided by the variance

of the yield innovation in (IA11).

Unit roots raise the issue of cointegration. Recall that both the trend τt and the bond

yield y
(m)
t are modeled as martingales. Cointegration requires that they have identical shocks.

If they did not (say, the shock to the yield at time t was the sum of the trend-inflation shock

and some other shock), then over time yields would diverge from trend inflation, as the other

shocks accumulated without dying out. Therefore, cointegration imposes

cointegration: Ω11 = Ω31, Ω32 = Ω33 = 0.
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This assumption implies an inflation variance ratio of one for long maturities. Inflation news

for large m reduces to the martingale shock (take the limit of (IA12)), which is the same as

the yield shock.

B. Measurement Error and Estimation

Recall that all observables other than the nowcast are assumed measured with error. The

measurement error for a particular observable is assumed to be i.i.d. For example, denoting

survey consensus forecasts with “s” superscripts, we have

Es
t (πt+k) = Et (πt+k) + χs

t,k, E
(
χs
t,k

)
= 0, Cov(Et(πt+k), χ

s
t,k) = 0. (IA13)

Thus, survey forecasts are noisy observations of true expectations. In principle, an econome-

trician could use the structure of (IA13) to produce more accurate forecasts than surveys.

But in practice, estimation of (IA13) introduces sampling error that degrades forecast per-

formance.

An alternative modeling assumption reverses the location of noise. Rather than assuming

that surveys contain noise, we could assume that true expectations contain noise. Formally,

Et (πt+k) = Es
t (πt+k) + χs

t,k, E
(
χs
t,k

)
= 0, Cov(Es

t (πt+k), χ
s
t,k) = 0. (IA14)

In (IA13) the measurement error is orthogonal to the true expectation, while in (IA14) it is

orthogonal to the survey forecast.

Dynamics of survey forecasts based on (IA13) differ from those based on (IA14). The

latter equation implies that survey expectations react slowly to information about future

inflation. Equation (IA14) says that the survey forecast at t of inflation at t + k does not

incorporate the information in χs
t,k. Yet we can combine (IA14) with the law of iterated

expectations to produce

Et

(
Es

t+1 (πt+k)
)
= Es

t (πt+k) + χs
t,k. (IA15)

Equation (IA15) says that the survey forecast at t+ 1 of inflation at t + k incorporates the

information in χs
t,k. In this sense survey expectations respond to information with a lag.

Evidence in this appendix supports the conclusion that survey forecasts do not react slowly.
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I use assumption (IA13) in empirical estimation both because of this evidence and because

the covariance assumption of (IA13) works when filtering the state vector from observables.

Exact filtering requires information about the conditional joint distribution of observ-

ables and factors. The model described by (IA6) through (IA11) does not specify condi-

tional distributions—it only specifies conditional first moments and unconditional second

moments. Since conditional second moments are neither known nor of direct interest here,

I use a homoskedastic Gaussian model as a misspecified model in GMM estimation. For

this misspecified model, the unconditional covariance matrix of shocks (IA11) is also the

conditional covariance matrix of shocks.

Model parameters are estimated with exactly identified GMM. The moment vector is

the score vector from maximum likelihood (ML) estimation of the homoskedastic Gaussian

model. The assumption underlying this choice is that as the number of observations goes to

infinity, the ML estimate of the covariance matrix (IA11) converges to the true unconditional

covariance matrix of shocks. It is worth emphasizing that this is an assumption, not a conclu-

sion validated by either Monte Carlo simulation or asymptotic arguments. The Kalman filter

recursion allows for computation of the homoskedastic Gaussian likelihood function. The

filter is also a straightforward method to handle the many missing observations of consensus

survey forecasts.

The score vector is identically zero at the ML estimates, and thus the GMM parameter

estimates are the ML parameter estimates. However, the covariance matrix of the estimates

is not the ML covariance matrix. I use the GMM covariance matrix with a Newey-West

adjustment for 12 quarterly lags of serially correlated moments.

The standard deviation of the yield’s measurement error is fixed at 10 basis points, a

value consistent with the analysis of Bekaert, Hodrick, and Marshall (1997). The standard

deviations of the inflation expectations’ measurement errors are set to a common value that

is a free parameter.

Table IAIII reports parameter estimates and standard errors for the trend-cycle model

of inflation and bond yields in the text’s Section II.B. I only report results for the 10-year

bond yield.

V. Time-Varying Risk Premia in the Bansal-Shaliastovich (2013) model

The text has an example that links news about expected excess returns to the mean
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slope of the term structure. Some formal derivations are below. Assume, as in Bansal and

Shaliastovich (2013), that the joint conditional distribution of the nominal stochastic dis-

count factor (SDF) and nominal bond prices is log-normal. Standard no-arbitrage arguments

imply that the expected excess log return to an m-maturity bond is

Et−1

(
ex

(m)
t

)
= −1

2
Vart−1

(
ex

(m)
t

)
− Covt−1

(
log SDFt, ex

(m)
t

)
. (IA16)

Consider the case in which both the conditional variance and covariance in (IA16) are pro-

portional to a single state variable V . The main example of this case is when the conditional

standard deviations of both log returns and the log SDF are linear in the square root of

the state variable, while the conditional correlation between log returns and the log SDF is

constant. This is a simpler setting than that studied in Bansal and Shaliastovich (2013).

In this case we can rewrite (IA16) as

Et−1

(
ex

(m)
t

)
= k1,mVt−1 + k2,mVt−1 = kmVt−1. (IA17)

Now assume that the state variable that drives variances is stationary, so unconditional

expectations exist. Multiply and divide (IA17) by its unconditional expectation to produce

Et−1

(
ex

(m)
t

)
= E

(
ex

(m)
t

) Vt−1

E(V )
. (IA18)

We can iterate this equation forward to produce multi-step forecasts,

Et−1

(
ex

(m)
t+i

)
= E

(
ex

(m)
t

) Et−1 (Vt+i−1)

E(V )
, i ≥ 0. (IA19)

Plug (IA19) into the equation for news about expected excess returns, the text’s equation

(4). The result is

η
(m)
ex,t =

1

m

m∑
i=1

E
(
ex

(m−i+1)
t+i

) (Et − Et−1)Vt+i−1

E(V )
. (IA20)

Equation (IA20) tells us that the news about expected average excess returns depends

on the size of the variance shock relative to the average level of variance, the persistence of

the variance shock, and the average compensation to holding nominal bonds. To get a sense

of an upper bound on the magnitudes of news, consider a variance shock at t that does not
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begin to die out until after the bond has matured. Denoting this shock with a tilde, the

news about expected average excess returns is

η
(m)
ex,t =

Ṽ

E(V )

1

m

m∑
i=1

E
(
ex

(m−i+1)
t+i

)
. (IA21)

Finally, plug the text’s equation (1) into (IA21), replacing the sum of expected excess log

returns with the yield spread:

η
(m)
ex,t =

(
Ṽ

E(V )

)
E
(
y
(m)
t − y

(1)
t

)
. (IA22)

The key observation from (IA22) is that the mean yield spread determines the magnitude

of news about expected excess returns. This is important because mean yield spreads are

small. Over the 1969 to 2013 sample, the mean yield spread between the five-year (10-year)

yield and the three-month yield is 117 (159) basis points.

VI. Inflation Variance Ratios in Habit Formation Models

Table IAIV reports, for Wachter’s (2006) model and Ermolov’s (2015) model, standard

deviations of yield shocks and news about expected inflation. Two sets of numbers are

reported for Wachter’s (2006) model. The second sets the correlation between consumption

and inflation shocks to zero. In the original set this correlation is negative. The increase in

variance ratios associated with the change in this coefficient indicates the sensitivity of the

variance ratio to this parameter.

In Ermolov’s (2015) model, the correlation is positive. The model-implied variance ratios

are about the same as those for Wachter’s (2006) model at short maturities, but are much

larger at long maturities.

VII. The Dynamic Model

This section contains details about the model in Section IV of the main text.

A. Matrix Calculations of News

Consider an m-period bond for which we have parameters of the affine mapping, equation
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(16) in the text. Shocks to the yield (excluding measurement error) are then

ỹ
(m)
t = B′

mΣεt.

As of time t, the average expected value of the state vector from t to t +m− 1 is

1

m

m−1∑
j=0

Et(xt+j) =
1

m

(
m−1∑
j=1

j∑
i=1

Ki−1

)
μ+

1

m

(
m−1∑
j=0

Kj

)
xt.

In the case of stationary dynamics, this can be written as

1

m

m−1∑
j=0

Et(xt+j) =

(
I − 1

m
(I −Km)(I −K)−1

)
(I −K)−1μ+

1

m
(I −Km) (I −K)−1 xt.

Write this (either the general or the stationary version) as

1

m

m−1∑
j=0

Et(xt+j) = Wm,0 +Wm,1xt.

Then average expected inflation from t+ 1 to t+m is

1

m

m−1∑
j=0

Et (πt+1+j) = Aπ +B′
πWm,0 +B′

πWm,1xt,

and the news at t about this average expected inflation is

ηπ,t = B′
πWm,1Σεt. (IA23)

Similarly, news at t about the average expected real short rate over the life of the bond is

ηr,t = (B1 −Bπ)
′ Wm,1Σεt.

Shocks to expected excess returns are calculated by subtracting shocks to average expected

inflation and real rates from the yield shock. Variances and covariances among these shocks

are computed using the covariance matrix of state-vector shocks.
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B. Measurement Error

All four consensus forecasts and seven bond yields are assumed to be observed with i.i.d.

measurement error. As with the trend-cycle model, (IA13) describes the errors in survey

forecasts. The four standard deviations of measurement errors of the consensus forecasts

are free parameters. Standard deviations of measurement errors of yields is fixed to 10 basis

points for all maturities.

C. Normalizations

Model estimation uses a factor rotation of the text’s equation (15) that sets the uncon-

ditional means of the factors to zero, diagonalizes the matrix K, and restricts the diagonal

of Σ. The rotated factors satisfy the dynamics

xt+1 = Dxt + Σεt+1, (IA24)

where D is diagonal. The matrix Σ is lower triangular with fixed diagonal elements. (In

implementation, they are fixed at 10.) The diagonal elements of D are its eigenvalues,

which are ordered from largest to smallest. These dynamics rule out complex eigenvalues.

Estimation of a version that allows for complex eigenvalues produces only real eigenvalues,

and thus (IA24) is not restrictive in practice.

The Am, Aπ, Bm, and Bπ parameters of the text’s equations (28) and (29) are unre-

stricted.

D. Local Underidentification

When the diagonal elements of D are distinct, this normalized model is identified econo-

metrically. In particular, the model is invariant to factor rotations. This invariance follows

from the property that factor i follows an autonomous process with the AR(1) coefficient

equal to Dii. When the eigenvalues of D (the diagonal elements) are distinct, other linear

combinations of these factors do not follow autonomous processes, and hence other linear

combinations are ruled out.

Additional normalizations are required when the diagonal elements are not distinct.3 If,

say, the diagonal elements Dii and Djj are equal, then any linear combination of factors i

3Recall that the model rules out complex eigenvalues. Thus, this discussion is unrelated to the algebraic
multiplicity of eigenvalues discussed in the appendix to Joslin, Singleton, and Zhu (2011).

16



and j also follows an autonomous AR(1) process. The model is locally unidentified (i.e.,

unidentified for Dii = Djj) because factor i can be replaced in (IA24) with such a linear

combination. This is equivalent to a factor rotation that changes the covariances among the

factors (elements of Σ) and the loadings of the observables on the factors (B).

Local underidentification occurs when estimated diagonal elements of D are sufficiently

close for the likelihood function to be close to flat along the dimension of such a factor

rotation. Even when the diagonal matrix is estimated with high precision, estimates of Σ

and the factor loadings of yields and inflation are estimated with extremely low precision.

Effectively, the likelihood of one factor rotation cannot be distinguished from another.

Unrestricted estimates of the normalized model reveal substantial local underidentifi-

cation. This underidentification has no effect on point estimates of the inflation variance

ratio, but makes it impossible to produce reliable confidence bounds. I therefore impose

restrictions on the Σ matrix to pin down factor rotations in the presence of nearly identical

(statistically) eigenvalues of D. Recall that the matrix is lower triangular and has diagonal

elements fixed at 10. Additional underidentification restrictions result in the form

Σ =

⎛⎜⎜⎜⎜⎝
10 0 0 0

Σ21 10 0 0

Σ31 0 10 0

Σ41 0 0 10

⎞⎟⎟⎟⎟⎠ . (IA25)

The eigenvalues of the factors are ordered in D from largest to smallest. This form therefore

limits the covariances of shocks among the less-persistent factors, forcing a particular factor

rotation even when they share the same eigenvalues.

E. Parameter Estimates and Related Information

Parameter estimates are reported in Table IAV. Asymptotic standard errors are in paren-

theses. Table IAVI gives a little more information about the local underidentification prob-

lem. It reports information for both the estimated model that uses (IA25) and an unrestricted

model. For this model, the lower triangular off-diagonal elements of Σ are all free param-

eters. This adds three free parameters relative to the restricted model. The unrestricted

model is estimated with ML.

Table IAVI shows that the two sets of point estimates produce almost identical values of
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the population standard deviation of quarterly shocks to yields. Differences are less than a

basis point of annualized yields. Uncertainty in the estimate of Σ is much larger with the

unrestricted model. The greater uncertainty makes it difficult to draw statistical inferences

about population variance ratios.

A typical way to draw such inferences is to randomly draw parameters from the distri-

bution implied by the point estimates and the covariance matrix of the estimates. We then

calculate the desired population properties, such as variance ratios, for this draw. We repeat

this procedure thousands of times, then construct confidence bounds. Because the covari-

ance matrix of shocks is the square of Σ, greater uncertainty in the parameters of Σ leads to

higher mean simulated variances. When uncertainty is small, this effect is also small.

However, Table IAVI shows that this effect is extremely large for the unrestricted model.

The mean, across simulations, of the population standard deviation of quarterly shocks to the

three-month yield exceeds 1800%. Even for the 10-year yield, the mean simulated standard

deviation of quarterly shocks is almost 600%. Therefore, simulating parameters from the

unrestricted model is effectively useless—at least for drawing inferences about variances and

variance ratios. By contrast, Table IAVI also shows that mean simulated standard deviations

for the restricted model are much better behaved.

VIII. A Reinterpretation of Level, Slope, and Curvature

Litterman and Scheinkman (1991) show that almost all of the cross-sectional variation in

bond returns can be characterized by level, slope, and curvature factors. Returns are closely

related to yield shocks, and thus it is not surprising that the same decomposition holds for

shocks. In this section I ask whether this same decomposition holds for the components of

yield shocks. To do so, I use the dynamic model of yields and expected inflation presented in

Section IV of the main text. Can news about average expected inflation also be summarized

by level, slope, and curvature? What about the innovations in yields not attributable to

news about inflation?

News about expected inflation for an m-maturity bond is defined by the text’s equation

(31). The model of Section IV implies a covariance matrix of inflation news for bonds

with the seven maturities used in estimation. Figure IA2 displays the first three principal

components (PCs) of the covariance matrix constructed using the estimated model. The

first PC is the blue line in Panel A. The second and third PCs are in Panel B, illustrated
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with a blue solid line and a blue dashed line, respectively.

The same decomposition could be produced separately for news about average expected

real rates and term premia shocks. However, since these shocks are difficult to distinguish

statistically, I sum these two shocks and produce a single PC decomposition. The first three

PCs are displayed as red lines in Figure IA2. All of the PCs are scaled to represent the effect

of a unit standard deviation shock.

The figure shows that both sets of PCs can be described as level, slope, and curvature.

For both sets, the first PC accounts for about 96% of the total variance. The most obvious

difference between the two sets is that shocks are smaller for news about expected inflation

than for combined shocks to expected future real rates and term premia.

The similarities motivate a more complicated description of yield shocks than we typically

infer from Litterman and Scheinkman (1991). There are two types of level shocks to yields.

The smaller type is a shock to average expected inflation. The larger is a shock to the

combination of expected real rates and term premia. Similarly, there are two types of slope

and curvature shocks.
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Table IAI

Predictions and Realizations of Inflation and Bond Yields, mid-1997

Panel A reports, for May and August 1997, consensus forecasts of four future quarter-to-
quarter CPI inflation rates from the Blue Chip Financial Forecast. It also reports implied
forecasts of average inflation over horizons of one, two, three, and four quarters. Differences
between the August and May forecasts are the news about expected future inflation.

Panel B reports yields on short-term zero-coupon Treasury bonds for the same two
months. The row labeled “Forecasted change” contains predicted changes in yields from
May to August. Yield forecasts are from OLS regressions using yields on three-month, 12-
month, and 18-month bonds as predictive variables. Yield innovations are realized changes
from May to August less predicted changes.

Quarter-to-quarter forecasts are in annualized percent without compounding. Average
inflation and bond yields are in annualized percent using continuous compounding.

Panel A. Inflation expectations

Quarter
Month-end,
1997 Value 1997Q4 1998Q1 1998Q2 1998Q3

May q-to-q inflation forecast 2.99 2.98 2.91 2.86
May average inflation forecast 2.94 2.94 2.92 2.89
August q-to-q inflation forecast 2.70 2.69 2.71 2.76
August average inflation forecast 2.65 2.66 2.68 2.69
August average inflation news −0.28 −0.28 −0.25 −0.21

Panel B. Bond yields

Maturity
Month-end,
1997 Value 3 mon 6 mon 9 mon 12 mon

May level 4.85 5.42 5.53 5.72
May forecasted change −0.02 −0.14 −0.20 −0.25
August level 5.13 5.30 5.40 5.66
August yield innovations 0.30 0.03 0.07 0.19
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Table IAII

Explaining Survey Forecast Errors with Forecast Revisions

The table reports estimates of (IA5), which regresses inflation forecast errors on lagged
revisions in mean survey forecasts. Mean survey forecasts of GDP inflation are from the
Survey of Professional Forecasters. Forecast errors are the difference between the quarter-
to-quarter GDP inflation rate observed at t and the mean survey forecast as of t−j. Revisions
in forecasts equal the mean survey forecast at t− j less the forecast at t− j−1. Asymptotic
standard errors are adjusted for j − 1 lags of moving average residuals. A few observations
of survey forecasts are missing.

Forecast lag j Number Coeff
(quarters) of Obs (Std Err) R2

Panel A. 1969Q1 to 2013Q4

1 179 0.41 0.05
(0.17)

2 178 0.84 0.09
(0.40)

3 177 1.22 0.09
(0.48)

4 171 1.83 0.13
(0.47)

Panel B. 1985Q1 to 2013Q4

1 115 −0.29 0.02
(0.28)

2 114 0.10 0.00
(0.31)

3 113 0.07 0.00
(0.48)

4 112 0.75 0.03
(0.45)

22



Table IAIII

Detail of Trend-Cycle Estimation of 10-year Inflation Uncertainty

The model is described by the main text’s equations (10), (11), (12), (13), and (14). The
bond’s maturity is 10 years. The bond yield and consensus forecasts of future inflation are
assumed to be contaminated by i.i.d. measurement error. The standard deviation of the
yield’s measurement error is fixed at 10 basis points. The common standard deviation of
consensus forecasts is a free parameter, denoted SD-M in the table.

This table reports the parameter estimates from GMM estimation. Asymptotic standard
errors are in parentheses. All parameters and standard errors are expressed in annualized
basis points except θ, which is persistence at a quarterly frequency.

Survey Sample θ Ω11 Ω21 Ω22 Ω31 Ω32 Ω33 Var(φt)
1/2 SD-M

BC 1980Q1–2013Q4 0.60 21.3 −24.2 80.2 13.6 24.2 57.3 56.3 10.1
(0.064) (3.1) (16.4) (51.8) (51.3) (102.1) (11.4) (47.7) (1.2)

BC 1980Q1–1982Q4 0.49 47.4 −13.3 230.7 39.1 0.30 124.8 159.5 15.6
BC 1983Q1–2008Q2 0.70 20.2 −28.6 45.6 14.1 20.4 48.6 32.4 8.9
BC 2008Q3–2013Q4 0.53 10.0 −0.8 79.6 6.2 9.0 36.8 48.1 10.9

SPF 1968Q4–2013Q4 0.74 20.5 5.5 48.2 16.4 4.3 53.7 28.4 14.9
(0.017) (3.4) (7.1) (8.8) (7.7) (4.5) (6.5) (3.1) (1.5)

SPF 1968Q4–1979Q2 0.72 23.1 20.1 73.4 −1.4 2.1 42.2 39.5 19.7
SPF 1979Q3–1982Q4 0.84 16.8 63.0 8.3 61.2 −3.0 108.2 46.1 23.7
SPF 1983Q1–2008Q2 0.75 16.6 −5.7 31.9 22.6 10.5 41.9 21.9 11.3
SPF 2008Q3–2013Q4 0.78 7.7 −12.6 33.5 −39.9 10.3 15.3 16.8 10.9
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Table IAIV

Volatilities of Shocks to Bond Yields and Expected Inflation

Implied by Models with Habit Formation

The table reports population standard deviations of quarterly shocks to yields and expected
inflation over the same horizon as the bond maturities. The population values are implied
by parameterized models described in the indicated source. The inflation variance ratio is
measured by the ratio of the latter variance to the former variance. The revised version of
Wachter’s model sets the correlation between shocks to consumption growth and inflation
to zero. Using Wachter’s notation, ρ is changed from −0.205 to 0. No other parameters are
altered. Thanks very much to Andrey for calculating the numbers for his paper.

Maturity Std Dev of Std Dev of Variance
Source (quarters) Inflation News Yield Innovations Ratio

Wachter (2006) 1 70 93 0.57
4 64 89 0.52
20 42 78 0.28
40 27 77 0.12

Wachter (revised) 1 70 85 0.68
4 64 81 0.63
20 42 70 0.35
40 27 69 0.15

Ermolov (2015) 1 85 106 0.65
4 77 94 0.68
20 47 58 0.66
40 29 41 0.50
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Table IAV

Parameter Estimates for the Dynamic Model

of Yields and Inflation Expectations

The model is described by equations (IA24), (IA25), and the main text’s equations (16) and
(17). The observables are four consensus survey forecasts of future GDP inflation and yields
of Treasury bonds with maturities of three months, one through five years, and 10 years.
The units of all observables are in basis points at annualized rates. For example, a yield
of 400 corresponds to 5% per year and a survey forecast of 300 corresponds to an inflation
forecast of 3% per year. Each observable is assumed to be contaminated with i.i.d., normally
distributed measurement error. This table reports the parameter estimates from maximum
likelihood estimation. Asymptotic standard errors are in parentheses. Note that the factor
dynamics are stationary, with the largest eigenvalue set to 0.999. Therefore, unconditional
means of the observables exist. However, since the dynamics are almost a unit root, the
standard errors on these means are extremely large.

Panel A. Factor dynamics

Index

Parameter 1 2 3 4

Di (eigenvalues) 0.999 0.885 0.854 0.704
– (0.055) (0.036) (0.082)

Σ1,i 10
(–)

Σ2,i −2.801 10
(4.495) (–)

Σ3,i −1.342 0 10
(3.605) (–) (–)

Σ4,i −0.061 0 0 10
(2.371) (–) (–) (–)
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Table IAV, continued

Panel B. Observables

Factor Loading
SD of

Observable Constant 1 2 3 4 Meas Error

1-q-ahead expected π 285.9 −2.428 0.670 −2.437 1.252 26.84
(1858.4) (0.298) (3.321) (1.087) (0.641) (2.24)

2-q-ahead expected π Implied by 1-q-ahead, factor dynamics 15.88
(1.57)

3-q-ahead expected π Implied by 1-q-ahead, factor dynamics 14.04
(1.13)

4-q-ahead expected π Implied by 1-q-ahead, factor dynamics 21.33
(1.49)

1q yield 384.7 −4.804 −7.204 −2.225 5.345 10
(3712.1) (1.432) (3.406) (9.090) (1.697) (–)

1y yield 422.3 −4.914 −7.254 −2.202 2.639 10
(3795.8) (1.432) (3.406) (9.090) (1.697) (–)

2y yield 448.1 −4.992 −6.813 −1.545 0.835 10
(3857.6) (1.442) (3.306) (8.972) (1.726) (–)

3y yield 470.9 −4.954 −6.326 −0.969 0.150 10
(3829.0) (1.358) (2.591) (8.336) (1.577) (–)

4y yield 490.6 −4.900 −5.855 −0.451 −0.225 10
(3788.5) (1.263) (1.958) (7.726) (1.480) (–)

5y yield 508.1 −4.795 −5.320 −0.064 −0.518 10
(3708.2) (1.164) (1.425) (7.109) (1.369) (–)

10y yield 565.7 −4.332 −3.622 1.182 −0.145 10
(3353.4) (1.067) (1.049) (6.444) (1.273) (–)
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Table IAVI

Model-Implied Population Standard Deviations

of Quarterly Shocks to Bond Yields

This table reports properties of two parameterized versions of the model in the main text’s
Section IV. The restricted version is described by equations (IA24), (IA25), and the text’s
equations (16) and (17). The unrestricted version replaces (IA25) with a more general lower-
triangular matrix, in which all of the off-diagonal elements are free parameters. Both models
are estimated with maximum likelihood (ML), as described in the notes to Table IAV.

The table presents the population standard deviation of quarterly shocks to bond yields
implied by the ML point estimates. It also reports mean population standard deviations
from Monte Carlo draws of the model parameters. For a given model, the distribution of
the parameters is centered at the point estimates with a covariance matrix equal to the
outer-product estimate of the covariance matrix of the estimates. The units are basis points
of annualized yields.

Restricted Unrestricted

Point Mean from Point Mean from
Maturity Estimate Simulations Estimate Simulations

Three months 95.8 137.9 95.2 1842.2

One year 84.4 129.9 84.0 1793.3

Five years 62.8 90.6 62.5 1056.7

Ten years 51.6 66.4 51.2 560.9
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Figure IA1. Time line for news about expected inflation over the life of a one-year
bond. The theory of the news decomposition assumes that we observe agents’ predictions at
dates T1 and T2 about the log change in the price level from date T2 to date T3. In practice,
we observe survey forecasts as of T1 and T2 of the log change from the average price level
in the quarter containing T2, indicated by the first shaded box, to the average price of the
quarter containing T3, indicated by the second shaded box.
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Panel A.  First principal component
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Figure IA2. Principal component decompositions of shocks to bond yields. Shocks
to nominal yields are decomposed into shocks to average expected inflation over the life of
the bond and a remainder, which is the sum of a shock to average expected real rates and
a term premium shock. The decomposition and the resulting principal components of the
shocks are calculated using a four-factor model of yields and inflation expectations estimated
over the period 1968Q4 through 2013Q4. Principal components for inflation shocks are in
blue and principal components for the remainder are in red. The third principal component
is displayed with a dashed line. The principal components all correspond to a one-standard-
deviation shock to the respective component.
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