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Time Variation in the Covariance between Stock
Returns and Consumption Growth

GREGORY R. DUFFEE∗

ABSTRACT

The conditional covariance between aggregate stock returns and aggregate consump-
tion growth varies substantially over time. When stock market wealth is high relative
to consumption, both the conditional covariance and correlation are high. This pattern
is consistent with the “composition effect,” where agents’ consumption growth is more
closely tied to stock returns when stock wealth is a larger share of total wealth. This
variation can be used to test asset-pricing models in which the price of consumption
risk varies. After accounting for variations in this price, the relation between expected
excess stock returns and the conditional covariance is negative.

AFTER DECADES OF RESEARCH, financial economists have tentatively concluded
that there are predictable variations in excess returns to the stock market. The
uncertainty in this conclusion is partially driven by our inability to interpret
comfortably these variations in a sensible model of asset pricing. In a world of
rational investors who care about consumption, variations in expected excess
returns should be driven by variations in either the amount of “consumption
risk” in stock returns—the conditional covariance between stock returns and
consumption—or the required compensation per unit of consumption risk. But
attempts to link these potential explanations to the data have either failed
empirically or have not been rigorously tested.

A major problem is that existing research has found little evidence for time
variation in the conditional covariance between stock returns and aggregate
consumption growth. Given this conclusion, there are only two interpretations
we can place on time-varying expected excess returns in a consumption-based
model. The first possibility is that investors are heterogeneous and there is time
variation in the conditional covariance between stock returns and the consump-
tion of marginal stockholders that is not matched by a similar variation at the
aggregate level. The second possibility is the price of consumption risk varies
through time. Neither possibility is easily tested empirically. Consumption data
on individual investors is noisy and limited, while proxies for the price of con-
sumption risk tend to be chosen based on the known behavior of expected stock
returns, making the models close to tautological.
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In this paper I re-examine the relation between aggregate stock returns and
aggregate consumption growth. As econometricians we do not observe their
conditional covariance, thus we attempt to infer it by projecting the product of
innovations to stock returns and consumption growth on a set of instruments.
Therefore, conclusions about the time variation in the conditional covariance
hinge on the econometrician’s choice of instruments. I find that instruments
related to the ratio of stock market wealth to consumption predict substantial
time variation in the conditional covariance.

An important source of this predictive power is what I call the “composition
effect,” which refers to the composition of total wealth. The role of the com-
position effect in asset pricing was first noted by Santos and Veronesi (2003).
Consumption moves with wealth. Wealth consists of both stock market wealth
and non-stock-market wealth. At times when the share of stock market wealth
in total wealth is relatively high, then (1) stock market wealth will be high rel-
ative to total consumption and (2) the sensitivity of consumption to changes in
stock market wealth will be relatively high. Hence, both the conditional covari-
ance and the conditional correlation between stock returns and consumption
growth will be above average when the ratio of stock market wealth to con-
sumption is above average. This simple theory is strongly supported in U.S.
data from 1959 to 2001. For example, point estimates of the conditional corre-
lation between monthly stock returns and monthly consumption growth over
this period range from roughly 0 to about 0.6, with the highest values reached
at the tail end of the bull market that ended in 2000.

An unfortunate consequence of this evidence is that it increases the difficulty
of explaining time variation in expected excess stock returns.1 Existing research
documents that expected excess returns tend to be high when stock valuations
are relatively low, which is also when conditional covariances are relatively
low. This pattern demands dramatically more time variation in the price of
consumption risk to explain time variation in expected stock returns. We can
think of the ratio of expected excess returns to the conditional covariance as the
price per unit of consumption risk. When I take into account the lagged response
of consumption to stock returns, I estimate that over the past 40 years this ratio
has an interquartile range from 28 to 360. Therefore, in order to fit these data,
a representative–agent model needs to imply that 10-fold swings in the price
of consumption risk are common.

A more important consequence of this evidence is that it allows us to better
test models that produce time variation in the price of consumption risk. Such
models typically imply that there is some observable variable that can be used
as a proxy for investors’ price of consumption risk. If the model is correct, the
relation between conditional covariances and expected excess returns should
depend on the level of this proxy. For example, when the price of risk is high, an
increase in the conditional covariance should correspond to a larger increase in
expected excess returns than when the price of risk is low. I test this hypothesis

1 Santos and Veronesi (2003) arrive at a somewhat different conclusion, as I discuss at various
points in the paper.
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using various proxies for the price of consumption risk. The results are not
encouraging. There is no statistically reliable evidence that, say, a higher level
of surplus consumption (and therefore presumably a lower price of consumption
risk) corresponds to a decreased sensitivity of expected excess stock returns to
the conditional covariance.

The framework I use to produce these results is in the spirit of the instru-
mental variables approach of Campbell (1987) and Harvey (1989). The product
of ordinary least-squares innovations to stock returns and consumption growth
is treated as an ex post covariance estimate. The projection of this product on a
set of instruments is the estimated conditional covariance. This setup imposes
little structure on the dynamics of the conditional covariance and is sufficiently
flexible to accommodate nonsynchronous dynamics between stock returns and
consumption. I also verify the main results with a multivariate generalized
autoregressive conditional heteroskedasticity (GARCH) model.

Section I presents the theoretical motivation behind the composition effect.
Section II discusses the econometric approach and the data. Econometric de-
tails are presented in Section III. Section IV documents time variation in the
conditional covariance. Section V links this time variation to expected excess
stock returns. Section VI uses a GARCH model to examine the conditional cor-
relation. Concluding comments are offered in Section VII.

I. The Theoretical Motivation

A. Consumption-Based Representative Agent Models

In consumption-based representative agent models, the stochastic discount
factor is tied to the behavior of aggregate consumption. Therefore, conditional
covariances between asset returns and aggregate consumption growth play a
central role in determining expected excess returns. To fix ideas, denote the
stochastic discount factor by exp(mt) and the log excess return to some asset
from t − 1 to t as rt. In this paper I focus on the excess return to the aggregate
stock market. If mt and rt are jointly conditionally normally distributed, then
no arbitrage implies

Et−1rt + 1
2

Vart−1(rt) = −Covt−1(rt , mt). (1)

In equation (1) expectations are conditioned on information available at the end
of period t − 1. The Jensen’s inequality term adjusts for the use of log returns
over a discrete horizon.

Power utility, recursive utility, and habit formation models all express mt as
a function of aggregate consumption growth and perhaps other variables. For
example, the habit formation model of Campbell and Cochrane (1999) implies

mt = k(st−1) − (1 + λ(st−1))�ct , (2)

where st is a measure of surplus consumption and �ct is log-differenced per
capita real consumption. Power utility is a special case in which k(st−1) = log δ
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(a constant) and 1 + λ(st−1) = γ (also constant). A model such as Campbell and
Cochrane’s habit formation implies

Et−1rt + 1
2

Vart−1(rt) = γt−1Covt−1 (rt , �ct) , (3)

where γ t is the state-dependent sensitivity of expected returns to the condi-
tional covariance between consumption growth and stock returns. In other
words, expected excess returns to the stock market equal the product of the
price per unit of consumption risk and the amount of consumption risk in stocks.
In Campbell and Cochrane, γt = 1 + λ(st).

An obvious way to test the time-series implications of (3) is to form conditional
second moments (indicated with hats) and then estimate an equation such as

rt + 1
2

̂Vart−1(rt) = b0 + bt−1
̂Covt−1(rt , �ct) + et , (4)

where bt−1 is a parameterized observable proxy for the representative agent’s
state-dependent price of consumption risk. Given the strong interest among
academics and market professionals in identifying and explaining fluctuations
over time in the expected aggregate stock returns, we might think that the
literature would be rife with conditional tests such as (4). Yet they are almost
nonexistent in published work. Attanasio (1991) and Ferson and Harvey (1993)
study restricted versions of (4) where b0 = 0 and bt−1 is a constant. Yogo (2003)
looks at the consumption of durables, while Li (2001) and Parker (2003) contain
brief discussions of the variation in the conditional covariance. The main reason
for this gap in the literature is that this research has identified only weak
evidence of time variation in the conditional covariance.2 This is surprising
because there is a compelling reason to believe that the conditional covariance
varies through time.

B. The Composition Effect

Time variation in the conditional covariance arises naturally in any model
in which the stock market does not account for all of investors’ wealth. A ma-
jor source of this variation is variation in the conditional correlation between
stock returns and consumption growth. As stock market wealth varies relative
to the other determinants of aggregate consumption, so will the conditional
correlation.

This point is first made clearly by Santos and Veronesi (2003) in an exami-
nation of the relative importance of labor income to consumption. They build a
model of risk-averse agents who invest in assets that pay stochastic dividends,
where the stochastic processes followed by dividend growth are fairly general.
Here I use a more simplistic model to illustrate the point. Investors consume
dividends from their total wealth. Wealth consists of stock market wealth and

2 There is stronger evidence if consumption data are not seasonally adjusted. See Attanasio
(1991) and Ferson and Harvey (1993).
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all other assets such as other claims on firms’ cash flows (e.g., corporate bonds),
real estate, and human capital. Group these other assets together and denote
real dividends to stocks and all other assets as δs,t and δo,t respectively. Aggre-
gate real consumption equals total dividends

Ct = δs,t + δo,t . (5)

For tractability I assume that dividend growth rates for both the stock mar-
ket and all other wealth are random walks with constant variances and equal
growth rates g. This growth rate is a simple net rate, as are the other rates
used in this model. Formally,

δs,t+1/δs,t = 1 + g + εs,t+1, δo,t+1/δo,t = 1 + g + εo,t+1. (6)

Again for tractability, I assume that investors are risk neutral and the real
discount rate is rf . Risk neutrality is not important; it simply allows us to
calculate easily the ex-dividend values of the stock market and all other wealth.
These values are

Ws,t = 1 + g
rf − g

δs,t , Wo,t = 1 + g
rf − g

δo,t . (7)

Therefore, the gross returns to these two forms of wealth are

Rk,t+1 = Wk,t+1 + δk,t+1

Wk,t+1
= 1 + rf + 1 + rf

1 + g
εk,t+1, k = {s, o}. (8)

The conditional variances of these returns are assumed to be constant over
time. Denote them by σ 2

s and σ 2
o , respectively. Denote their correlation by ρ.

Substitution of (7) into (5) allows us to write the change in consumption from
t to t + 1 as

Ct+1

Ct
= φt

Ws,t+1

Ws,t
+ (1 − φt)

Wo,t+1

Wo,t
, (9)

where φt is the share of stock market wealth in total wealth

φt ≡ Ws,t

Ws,t + Wo,t
. (10)

A similar derivation involving total wealth appears in Campbell (1996). Because
his focus is on long-run behavior, he linearizes and replaces the time-varying
coefficient φt with a constant coefficient. Lettau and Ludvigson (2001) and
Jagannathan and Wang (1996) follow his lead. Here it is important to retain
the time subscript in φt because the model implies that the conditional correla-
tion between the return to the stock market and consumption growth increases
in φt. For example, the conditional correlation is ρ when φt = 0 and is 1 when
φt = 1.
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With this model the conditional covariance between aggregate consumption
growth and stock returns is

Covt

(
Ct+1

Ct
, Rw,t+1

)
= 1 + g

1 + rf
σ 2

s

[
φt + (1 − φt)

(
ρ

σo

σs

)]
. (11)

This covariance depends on ρσo/σs. The available evidence indicates that stock
returns are highly volatile relative to the other determinants of consumption.
(In the United States, the standard deviation of aggregate stock returns is
about 15 times the standard deviation of consumption growth.) Therefore, this
ratio is much less than 1, which implies that the conditional covariance is an
increasing function of φt. As φt increases, consumption growth becomes more
volatile and more highly correlated with stock returns. Both effects raise the
conditional covariance.

In practice, we do not observe the stock of nonfinancial wealth.3 However, we
can infer φt from the ratio of stock market wealth to consumption

φt =
(

rf − g
1 + g

)
Ws,t

Ct
. (12)

Intuitively, when the ratio of stock market wealth to consumption is higher
than usual, it is relatively more important in determining consumption.

Before we take this model to the data, we will have to make it a little more
complicated. The complications are noted in Section II.B. Even with the compli-
cations, a robust theoretical conclusion is that the composition effect induces a
procyclical conditional covariance. Because stock prices are highly volatile and
rise as the economy booms, stocks account for a larger share of total wealth in
booms than in recessions. We know from the empirical literature on stock return
forecastability that expected excess returns are countercyclical. Even without
taking into account procyclical conditional covariances, researchers have strug-
gled to understand the observed time variation in expected returns. Once time
variation in covariances is introduced, the difficulty of explaining the behavior
of expected returns is magnified substantially.

The conclusion that the composition effect complicates our ability to explain
expected stock returns seems straightforward. However, Santos and Veronesi
(2003) conclude that empirically, the composition effect actually helps to explain
time variation in expected returns. They assume that there are two assets:
human capital and stocks. Given this assumption, the ratio of human capital to
consumption contains the same information as does the ratio of stock market
wealth to consumption. We do not observe human capital, but we observe labor
income, which is the dividend to human capital. Given certain restrictions on
the dynamics of this dividend, the ratio of labor income to consumption will
be negatively correlated with the conditional covariance between stock returns
and consumption growth.

3 In this simplistic model, we can calculate wealth if we observe dividends. But this relies on the
assumed random walk of dividend growth rates.
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Santos and Veronesi use this logic to justify regressions of stock returns on
the lagged ratio of labor income to consumption. They find a negative relation,
consistent with their theory. (They do not consider the ratio of stock market
wealth to consumption, nor do they check whether the ratio of labor income
to consumption has predictive power for the conditional covariance.) I discuss
the behavior of the labor income/consumption ratio in Section IV. Here it is
sufficient to note that notwithstanding their results, the empirical analysis in
this paper strongly supports the conclusion that conditional covariances and
expected stock returns move in opposite directions over time.

C. The Composition Effect and Heterogeneous Agents

In a world of heterogeneous agents, an equation such as (4) can provide only
indirect evidence on time variation in the risk-return tradeoff of stockhold-
ers. Because stockholder consumption is more sensitive to stock returns than
is nonstockholder consumption, the conditional covariance at the stockholder
level will exceed the conditional covariance at the aggregate level. But the cen-
tral issue here is whether time variation in the aggregate-level covariance is
associated with time variation in the stockholder-level covariance.

To understand the relation between the aggregate-level and stockholder-level
covariances, first note that with heterogeneous agents the composition effect
works at both the aggregate level and at the stockholder level. In any rea-
sonable model of the stock market and consumption, some part of aggregate
consumption will be tied to stock market wealth. Therefore, the composition of
the determinants of aggregate consumption will vary over time with the level
of the stock market. When the aggregate value of stocks is high relative to
other determinants of consumption, a larger share of aggregate consumption
is sensitive to stock market wealth. The result is a relatively high conditional
covariance between aggregate consumption and aggregate stock returns, just
as in the representative–agent setting.

At the stockholder level, the magnitude of the composition effect depends on
the stockholder’s stock wealth as a fraction of her total wealth. The relation
is not monotonic. To simplify this discussion, assume that stock returns are
uncorrelated with returns to non-stock wealth. Then the counterpart of (11) for
agent i simplifies to

Covt

(
Ci,t+1

Cit
, Rw,t+1

)
= 1 + g

1 + rf
σ 2

s φit , (13)

where φit is the ratio of stock market wealth to total wealth for agent i. The
variability of the conditional covariance for agent i depends on the variability of
φit, which in turn depends on the level of φit. Consider, for example, the effect on
φit of an increase in the value of the aggregate stock market. If agent i either has
no wealth in stocks or has her entire wealth invested in the stock market, there
is no effect on φit and the conditional covariance is constant. More generally,
the derivative of φit with respect to the log of investor i’s stock market wealth
is φit(1 − φit), which is plotted in Figure 1.
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Figure 1. Derivative of (stock wealth/total wealth) with respect to log stock wealth. Total
wealth is the sum of stock market wealth and non-stock wealth. The fraction held in the form of
stock market wealth is φ. This figure plots the derivative of φ with respect to log stock market
wealth, which is equivalent to the sensitivity of φ to the return to the stock market. The amount
of non-stock wealth is held constant in computing this derivative.

What is a reasonable value of φit for a typical stockholder? As discussed in
Jagannathan and Wang (1996), the contribution of the stock market to aggre-
gate consumption is fairly low. (For example, aggregate dividends were less
than 3% of total income from 1959 through 1992.) Thus, for a representative
agent, the typical fraction of wealth in stocks is on the left side of the figure,
say at point “A.” With heterogeneous agents, stock holdings are concentrated
among investors who hold a larger fraction of their wealth in stocks than does
the typical consumer. If that fraction lies between “A” and “B” in the figure,
then the sensitivity of φit to the stock market is higher for stockholders than it
is for the aggregate economy.

This argument suggests that variation in the marginal investor’s conditional
covariance is a scaled-up version of variation in the aggregate conditional co-
variance. If so, estimating an aggregate-level equation such as (4) helps to
evaluate heterogeneous-agent models as well as representative-agent models.
More concrete conclusions must rely on specific heterogeneous-agent models.
Unfortunately, the theory of asset markets with heterogeneous agents is not
as well developed as is the corresponding theory with representative agents.
In particular, the behavior of conditional correlations is hard to study because
dynamic equilibrium models such as Basak and Cuoco (1998) and Chan and
Kogan (2002) have a single random variable. (Shapiro (2002) is a notable ex-
ception.) We cannot even be sure that the sensitivity of the marginal investor’s
φit to the value of the stock market is positive. In the model of Basak and Cuoco,
stockholders have a leveraged position in stocks. (In Figure 1 this corresponds
to a point to the right of “1” on the x axis.) An implication of their model is that
stockholders’ conditional covariance is countercyclical because an increase in
the stock market lowers stockholders’ leverage and hence lowers the volatil-
ity of their consumption. Thus, in the absence of either a formal model of the
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composition effect in a world of heterogeneous agents or detailed information
about the wealth of the marginal stockholder, any conclusions drawn from an
equation such as (4) about the validity of heterogeneous-agent models should
be tempered with caution.

II. The Econometric Approach

A. The Regressions

Period-t excess stock returns and consumption growth can be written as sums
of one-step-ahead expectations and innovations

rt = Et−1rt + εrt , �ct = Et−1�ct + εct . (14)

The product of the innovations, when projected on investors’ information set at
time t − 1, is the conditional covariance.

As econometricians, we do not observe either the true innovations or the en-
tire set of conditioning information available to investors. A standard approach,
which I follow here, is to use forecasting regressions to construct fitted residuals
as proxies for true innovations. The product of the fitted residuals is then pro-
jected on a set of instruments identified by the econometrician. The forecasting
regressions for returns and consumption growth can be written as

rt = a′
rYr,t−1 + er,t−1,t−1,t , (15)

�ct = a′
cYc,t−1 + ec,t−1,t−1,t , (16)

where ar and ac are parameter vectors and the vectors Yr,t and Yc,t are realized
in period t or earlier. I refer to these regressions as “zero-stage” regressions,
to distinguish them from the usual first-stage and second-stage instrumental
variable regressions that are introduced below. The first time subscript on the
residuals refers to the date of the instrument vector (i.e., the period at which
the forecast is made). The second and third time subscripts are the starting and
ending dates of the dependent variable. Here those subscripts are t − 1 and t;
the stock return is calculated from the end of period t − 1 to the end of period t,
and consumption growth is the log change in consumption from t − 1 to t. Not
all of these subscripts are necessary to uniquely denote residuals of (15) and
(16), but they will be useful later when we consider n-period-ahead forecasts of
longer horizon stock returns and consumption growth.

Denote the product of the fitted residuals as

Cov∗(rt , �ct) ≡ êr,t−1,t−1,t êc,t−1,t−1,t . (17)

The asterisk indicates an ex post estimate. The ex post estimate is projected on
a set of instruments Zt−1 to produce a conditional covariance estimate:

Cov∗(rt , �ct) = a′
v Zt−1 + µt , (18)

Ĉov(rt , �ct) = â′
v Zt−1. (19)
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Equation (18) is the first-stage regression. I estimate it with OLS and test hy-
potheses about av with Wald statistics. I use a robust estimate of the variance–
covariance matrix, which implies that the statistics have asymptotic χ2 distri-
butions.

The following second-stage regression is estimated with instrumental vari-
ables:

rt + 1
2

Var∗(rt) = b0 + [b1 + b2 pt−1]Cov∗(rt , �ct) + wt . (20)

This regression is in the spirit of the instrumental regressions in Campbell
(1987) and Harvey (1989). The second term on the left side is an ex post estimate
of the variance of stock returns,

Var∗(rt) ≡ ê2
r,t−1,t−1,t . (21)

The term in square brackets on the right-hand side of (20) is an observable
proxy for the conditional price of consumption risk, which I also refer to as bt:

bt ≡ b1 + b2 pt−1. (22)

The base case of bt is power utility, or b2 = 0. A more general case is where
the observable variable pt picks up time variation in investors’ willingness to
bear consumption risk. For example, Campbell and Cochrane’s model could be
tested using bt = b1 + b2ŝt−1, where ŝt−1 is a proxy for surplus consumption.
The constant term b0 forces identification of the relation between pt and the
price of risk to be picked up exclusively through a nonlinear relation between
the conditional covariance and expected excess stock returns.

I use the generalized method of moments (GMM) technique of Hansen (1982)
to estimate jointly the zero-stage regressions and second-stage instrumental
variable regression. This allows the standard errors of the second-stage regres-
sion to incorporate the uncertainty in the fitted residuals owing to parameter
uncertainty in the zero-stage regressions. In Section III.A, I evaluate the finite-
sample properties of this method using Monte Carlo simulations.

B. Data Description and the Choice of Instruments

I use monthly data. Monthly consumption is measured by Bureau of Eco-
nomic Analysis estimates of monthly per capita expenditures on nondurables
and services, which are available beginning in January 1959. Expenditures
are in 1996 dollars. Monthly consumption growth is defined as log-differenced
consumption. I measure excess monthly returns to the aggregate stock market
by the log return to the CRSP value-weighted NYSE/Amex/Nasdaq index less
the continuously compounded yield on a 1-month Treasury bill as of the end
of the previous month. The last observation of stock returns in my sample is
December 2001.

The choice of instruments included in the vector Zt used in the first-stage
and second-stage regressions is motivated by the composition effect. The first
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Figure 2. Ratios of wealth to consumption. The top panel plots the ratio of the market capi-
talization of publicly traded stocks to total consumption on nondurables and services. The bottom
panel plots the detrended consumption–wealth ratio introduced in Lettau and Ludvigson (2001).

instrument is the ratio of stock market wealth to consumption. Stock mar-
ket wealth is measured by the month-end market capitalization of the CRSP
value-weighted index, expressed in real per capita terms for comparability to
the consumption data. I denote this ratio by ME/C. Recall that one of the sim-
plifying assumptions in the model of Section I.B is that the variance of stock
returns is constant. However, stock return volatility temporarily falls (rises)
after the market rises (falls).4 This means that an increase in ME/C is accom-
panied by a short-run decline in stock return volatility. This damps the role of
the composition effect; the decline in volatility tends to lower the conditional
covariance. To control for this effect, I also include lagged excess stock returns
in the instrument vector. Denoting the sum

∑2
i=0 rt−i by RETq

t , I include RETq
t

and RETq
t−3 in Zt.

Not surprisingly, the ratio ME/C is related to the consumption–wealth ra-
tio ĉay introduced by Lettau and Ludvigson (2001). Their ratio is the trend
deviation in the log consumption–wealth ratio, where wealth includes capital-
ized labor income. The two ratios are plotted in Figure 2. It is apparent from

4 This pattern was discovered by Black (1976) and is the subject of a large literature. See, for
example, French, Schwert, and Stambaugh (1987).
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the figure that, although the two ratios move inversely (their correlation is
about −0.58), ME/C is much more persistent than is ĉay. In quarterly data the
first-order autocorrelation coefficient of ME/C is 0.96, compared with 0.85 for
ĉay. Therefore, ĉay is more closely related to the business cycle, as noted by
Lettau and Ludvigson. The ratio ME/C is picking up lower frequency variation
in the relative importance of the public stock market. Part of the low-frequency
variation in ME/C may be variation in the proportion of stocks that are traded
publicly versus privately. Small, less-well-known firms are probably better able
to access capital through issuance of publicly traded stock today than they were
in the 1960s.

The relevant ratio from the perspective of the composition effect is ME/C.
Nonetheless, ĉay likely contains independent information about the conditional
covariance, both because of the business cycle link and because it forecasts
stock return volatility, as documented by Lettau and Ludvigson (2002a). (I look
at predictions of stock return volatility in Section VI.) I therefore also include
ĉay in the instrument vector.5 Since the consumption–wealth ratio is defined
using quarter-end data, I assume that the observation available at the end of
the first two months in each quarter is the value as of the end of the previous
quarter.

Many variables in macroeconomics and finance exhibit persistent fluctua-
tions in volatility. This empirical regularity suggests that lags of ex post co-
variance estimates should be included in Zt. From an econometric perspective,
it is more useful to use a slightly different proxy for the ex post covariance:
the product of demeaned stock returns and demeaned consumption growth.
The time series properties of this product are close to those of the ex post co-
variance, but unlike the ex post covariance this product does not depend on
parameter estimates from the zero-stage regressions. To limit the number of
explanatory variables, I use 3-month sums instead of the individual monthly
products. These sums are denoted by

CVt =
2∑

i=0

(�ct−i − �c)(rt−i − r̄). (23)

I include four nonoverlapping lags of CVt in Zt. For completeness the set of
instruments is reported in the following equation:

Zt = {
1, (ME/C)t , RET q

t , RET q
t−3, ĉayt , CVt , CVt−3, CVt−6, CVt−9

}
. (24)

I do not include the ratio of labor income to consumption in this set of instru-
ments because any information in this ratio should be subsumed in the ratio
of stock market wealth to consumption. Nevertheless, to compare my results to
those of Santos and Veronesi (2003), I report some results in which I use the
ratio of labor income to consumption instead of the ratio of stock market wealth

5 The forecasting power of ĉay for stock returns is somewhat controversial. The look-ahead bias
of the cointegrating relation is the subject of Brennan and Xia (2002), while Hahn and Lee (2001)
argue the forecasting power is not stable. See also Lettau and Ludvigson (2002b).
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to consumption. I compute this ratio using quarterly data following the defi-
nition of labor income in Lettau and Ludvigson (2001). As with ĉay, I assume
that the value available at the end of the first 2 months in each quarter is the
value as of the end of the previous quarter.

Two other instrument vectors are used in this paper. They are Yc,t, used to
construct fitted consumption growth residuals, and Yr,t, used to construct fitted
stock return residuals. Monthly consumption growth is autocorrelated, thus I
include in Yc,t a constant term and monthly consumption growth for months t
through t − 2. I experimented with a larger set of instruments that included
stock returns. These experiments led to the conclusion that the results in this
paper are unaffected by the precise composition of Yc,t. The vector Yr,t consists
of a constant and the consumption–wealth ratio ĉay. I experimented with also
including the dividend/price ratio and the slope of the term structure. The use
of this larger information set has only a minimal effect on the results, thus I
use the smaller set here.

Higher frequency data allow us to produce more accurate estimates of sec-
ond moments (see, e.g., Andersen et al. (2003)). I use the highest frequency
consumption data available. Stock return data are available at higher frequen-
cies, thus I could produce more accurate estimates of the ex post variance of
stock returns to use as the Jensen’s inequality adjustment on the left-hand
side of (20). In practice, nothing is gained by improving the accuracy of this
variance estimate because it contributes little to the overall variation of the
left-hand side of the equation. The standard deviation of the log excess return
is around 25 to 30 times the standard deviation of the Jensen’s inequality term,
regardless of how the variance is estimated. The ratio of standard deviations
of 1-month-ahead forecasts of these components is similar. (These results are
not shown in any table.) Therefore, I do not use higher frequency stock return
data in this paper.

C. Specifications of the Price of Consumption Risk

I consider various specifications of the price of consumption risk bt = b1 +
b2pt−1. The first is power utility, or b2 = 0. With b2 �= 0, I consider three choices
of pt−1. They are a measure of surplus consumption, the consumption–wealth
ratio, and the dividend–price ratio. The motivation for surplus consumption
is the implication of some habit formation models that the price of consump-
tion risk should vary with the level of current consumption relative to past
consumption. Wachter (2002) proposes a measure of past consumption growth
that arises naturally in habit formation models. I follow her suggestion and
define a proxy for surplus consumption at the quarterly frequency as

ŝt = 1 − 


1 − 
40

39∑
j=0


 j �c(t − j ), (25)

with the decay factor 
 = 0.96. For consistency with Wachter, the notation in
this equation differs from that used elsewhere in this paper. In (25), time is
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measured in quarters and �ct refers to the log change in real per capita quar-
terly consumption on nondurables and services. My proxy for surplus consump-
tion at the monthly frequency is the most recent quarterly measure of surplus
consumption.

The use of the consumption–wealth and dividend–price ratios is motivated
by the possibility that the price of consumption risk may vary over time for
reasons unrelated to habit. Such variations are likely to show up in ĉay or D/P.
A change in risk tolerance will alter the level of expected returns required by
investors. Holding constant the time path of future cash flows, this change
in expected returns will change stock valuations relative to dividends and to
the long-run cointegrating relation among stock market wealth, consumption,
and labor income, as discussed by Campbell and Shiller (1988) and Lettau and
Ludvigson (2001). I denote the dividend price ratio at the end of the month t
as (D/P)t, where the numerator is the sum of dividends paid in the previous
12 months.

III. Details

In this section I discuss three issues. First, I report Monte Carlo evidence
on the properties of the estimation procedure described in the previous sec-
tion. Second, I consider how to choose the horizon over which consumption
growth should be measured. The natural lumpiness of consumption expendi-
tures, combined with the method used to measure such expenditures, implies
that the “contemporaneous” relation between stock returns and consumption
growth may appear as a relation between time-t stock returns and time-
(t + τ ) consumption growth. Third, I describe how I estimate the relation be-
tween expected stock returns and conditional covariances when both stock
returns and consumption growth are measured over horizons longer than a
month. This section is unavoidably tedious. For those readers who are unin-
terested in the details, the next two paragraphs summarize the results of this
section.

The Monte Carlo evidence indicates that standard GMM statistical tests for
the presence of time variation in the conditional covariance (the first-stage
regression) are well behaved. Statistical GMM tests of the null hypothesis that
the conditional covariance has no predictive power for returns (the second-stage
regression) are reasonably well behaved (e.g., true critical values for relevant
t-statistics are within 10–15% of asymptotic critical values) as long as there is
a modest amount of true variation in the conditional covariance. Alternative
estimation procedures, such as limited information maximum likelihood, do not
have better finite-sample properties.

To address the slow adjustment of consumption, I use two measures of the
covariance between stock returns and consumption growth. The first, which
ignores slow adjustment, is the covariance between month t’s stock return and
consumption growth from month t − 1 to month t. The other is the covariance
between month t’s stock return and consumption growth from month t − 1 to
month t + 3. I conclude that given the hypotheses of interest in this paper,
there is no obvious reason to prefer one of these measures. Finally, I use sums
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of monthly ex post covariance estimates as ex post estimates of covariances
over horizons longer than a month.

A. Monte Carlo Evidence

I use Monte Carlo simulations to investigate the properties of the economet-
ric methodology. There are two reasons why the usual GMM asymptotics may
be inappropriate here. First, the instruments used to construct conditional co-
variances are weak. Second, there is an errors-in-variables problem created by
the fact that we do not observe true residuals.

The properties of the instrumental variables regression (20) depend on the
information in the instruments. Staiger and Stock (1997) suggest the instru-
ments should be treated as weak if the F-statistic in the first-stage regression is
small; say, less than 10. Kleibergen (2002) develops an instrumental variables
statistical test that is robust to the presence of weak instruments. He uses
limited information maximum likelihood (LIML) to estimate the second-stage
regression and tests hypotheses using his K-statistic. The advantage of LIML
and Kleibergen’s test is that they are robust to weak instruments.

The econometric setting in this paper is more complicated than that studied in
Kleibergen because here there are “zero-stage” regressions used to construct the
residuals to stock returns and consumption growth. Unfortunately, the analysis
of more general GMM estimation in the presence of weak instruments is in its
infancy.6 Stock, Wright, and Yogo (2002) suggest implementing GMM using the
continuous-updating estimator of Hansen, Heaton, and Yaron (1996).

The errors-in-variables problem can be seen by expanding the product of
fitted residuals into true residuals and errors in conditional expectations

Cov∗(rt , �ct) = [εrt + (Et−1rt − â′
rYr,t−1)][εct + (Et−1�ct − â′

cYc,t−1)]. (26)

Take the expectation of both sides with respect to the instrument vector Zt−1

E
(
Cov∗(rt , �ct)

∣∣ Zt−1
)

= E(εrtεct | Zt−1) + E[(Et−1rt − â′
rYr,t−1)(Et−1�ct − â′

cYc,t−1) | Zt−1]. (27)

If both the OLS forecasts of returns and the OLS forecasts of consumption
growth differ from investors’ forecasts, then the second term on the right-hand
side of (27) contaminates the proxy for the conditional expectation of εrtεct. This
errors-in-variables problem is basically the same as that identified by Pagan
and Ullah (1988) in their discussion of regressions of stock returns on estimates
of conditional variances. This problem has no effect under the null hypothesis
that the price of consumption risk is zero. However, if this price differs from
zero, the errors-in-variables problem results in inconsistent estimates of the
parameters in (20).7

6 Stock and Wright (2000) discuss asymptotic distribution theory for GMM estimators in this
case.

7 One way to circumvent this problem is to explicitly treat the conditional covariance as a latent
variable, following the idea of Brandt and Kang (2004).
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To implement the Monte Carlo simulations, I model the evolution of the rel-
evant variables with a vector autoregression (VAR). The variables in the VAR
are (demeaned) monthly excess stock returns, log consumption growth, the de-
trended consumption–wealth ratio, and the ratio of stock market wealth to
consumption growth. (The ratio ME/C cannot be recovered from the combina-
tion of stock returns and consumption growth because of flows in and out of the
stock market.) I do not impose any cointegrating relations among the variables.
Shocks are drawn from a multivariate normal distribution. Because I construct
residuals to consumption growth with a third-order autoregression (AR(3)), I
also include two lags of consumption growth in the VAR. Stack these variables
in a vector xt where the first two variables are stock returns and consumption
growth and the final two variables are lags 2 and 3 of consumption growth.
Then the VAR is

xt = Axt−1 + µt , Et−1(µt) = 0, Et−1(µtµ
′
t) =

(
�t 0(2×2)

0(2×4) 0(2×2)

)
. (28)

I set the first four rows of the parameter matrix A to the parameters from
OLS estimation of the VAR over the sample period examined in this paper.
(Exceptions to this are noted below.) The remaining two rows are determined
by the companion form. I use two versions of �t. One is a constant �, set equal to
the sample variance–covariance matrix of the residuals from OLS estimation
of the VAR. The other version is identical except for the covariance between
innovations in stock returns and consumption growth. I assume the conditional
covariance varies over time because the conditional correlation changes over
time. The setup is

�12t = √
�(11)�(22) ρt , (29)

where

ρt = ρ̄ + α(ME/C)t−1. (30)

I set α to 0.35. This choice generates variability in the conditional covariance
similar to that observed in the sample. The mean ρ̄ is set to the corresponding
sample correlation. The conditional correlation ρt must be bounded in order to
ensure the invertibility of �t. If the above equation results in a correlation less
than −0.36 or greater than 0.56, ρt is set to the relevant bound.

I produce three sets of Monte Carlo simulations that differ in the dynamics
of returns and/or covariances. All of them satisfy the null hypothesis that the
conditional covariance has no true forecast power for stock returns:

1. Neither conditional expectations of stock returns nor conditional covari-
ances vary over time. For this hypothesis, I replace the first row of the A
matrix with zeros.

2. Conditional expectations of stock returns are constant and conditional
covariances vary over time. Here the first row of A is also zero, and covari-
ances are produced with (29) and (30).
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3. Conditional expectations of stock returns vary over time, and conditional
covariances are constant. Here the first row of A is given by the OLS
sample estimates.

A single simulation proceeds as follows. A panel of 515 monthly observations
is generated with the specified process. (This is the length of the actual data
sample.) Given this simulated data, I estimate the zero-stage regressions and
use the results to construct ex post estimates of the covariance between stock
returns and consumption growth. I then estimate the first-stage and second-
stage regressions (18) and (20). In the latter regression, I set the parameter b2
to 0.

I estimate the second-stage regression with both asymptotically efficient
GMM (jointly with the zero-stage regressions) and LIML, following Kleiber-
gen’s methodology. The weighting matrix for GMM estimation is calculated
using residuals from the OLS estimation of both the zero-stage and second-
stage regressions. Experiments with the continuous-updating GMM estimator
of Hansen et al. (1996) revealed that in this setting it has worse properties than
LIML. Thus I do not discuss the results for this alternative estimator.

Table I summarizes the results of the first-stage regressions and GMM esti-
mation of the second-stage regressions. The results for the first-stage regression
are straightforward. The test of the hypothesis that the conditional covariance
is predictable has reasonable size properties under the null of no predictabil-
ity. The relevant results are in rows 1 and 3 of the table. Differences between

Table I
Finite-Sample Properties of the Estimation Procedure

This table summarizes the empirical distribution of asymptotic p-values and test statistics calcu-
lated from 1,000 Monte Carlo simulations. A vector autoregression is used to simulate 515 monthly
observations of excess stock returns, consumption growth, the ratio of stock market wealth to total
consumption ME/C, and the consumption–wealth ratio ĉay. Given a simulated dataset, innovations to
stock returns and consumption growth are constructed with OLS (zero-stage regressions). The prod-
uct of these innovations is an ex post covariance estimate. In the first-stage regression, the ex post
covariance estimate is regressed on a set of instruments. In the second-stage regression, excess stock
returns are regressed on the ex post covariance estimate using the same set of instruments. The
second-stage regression is estimated using asymptotically efficient GMM (incorporating the zero-
stage regressions).

First Stage Regression Second Stage Regression

Freq. that χ2-Stat Empirical Critical
> Asymp. p-Value Values for the t-Statistic

Mean Mean Median
Null F-Stat 10% 5% t-Stat t-Stat 0.025 0.05 0.95 0.975

Constant mean return, 1.00 0.127 0.058 0.00 −0.03 −1.87 −1.61 1.62 1.75
constant covariance

Constant mean return, 2.65 0.754 0.672 −0.33 −0.37 −2.16 −1.91 1.35 1.64
stochastic covariance

Stochastic mean return, 1.00 0.117 0.059 0.03 0.12 −2.45 −2.26 2.33 2.55
constant covariance
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the empirical and asymptotic values are not large. For example, if neither re-
turns nor conditional covariances are forecastable, the null is rejected in less
than 6% of the simulations when the 5% critical value is used. The power
of the first-stage regression under the alternative hypothesis (29) is reasonably
high for the chosen value of α. The relevant results are in the second row. The
null hypothesis is rejected about 70% of the time at the 5% significance level.
The typical F-statistic is about 2.6, which is close to the empirical F-statistics
reported in Section IV.

The results for the second-stage regression depend on the specification of the
null. First examine the case of unpredictable stock returns and predictable co-
variances. These results are in the second row of the table. I report summary
information about t-statistics of the estimates of b1 in (20) rather than informa-
tion about the estimates themselves because the distribution of the t-statistics
is more robust to variations in the process for generating conditional covari-
ances.8 When covariances are predictable and returns are not, the t-statistics
are negatively biased. The explanation for the bias is consistent with the logic
of Stambaugh (1999). If the value of ME/C at month t is higher than its sample
mean, then stock returns prior to t are likely higher than their sample mean,
and stock returns after t are thus likely lower than their sample mean. This in-
duces a spurious negative relation between ME/C at month t and future stock
returns. Since the conditional covariance is positively associated with ME/C,
there is also a spurious negative relation between the conditional covariance
and future stock returns. Therefore, to reject at the 5% level the null of no pre-
dictability in returns in favor of the hypothesis that the conditional covariance
predicts returns, the t-statistic on b1 must be less than −2.16 or greater than
1.64.

The magnitude of this bias is, of course, lower when the true relation be-
tween ME/C and the conditional covariance is weaker. At the extreme of no
relation (the first row in the table), the bias disappears and the standard criti-
cal values for the second stage regression are excessively conservative for both
positive and negative parameter estimates. These results lead to a somewhat
counterintuitive conclusion: when we are more confident about the presence of
predictability in the conditional covariance, we must use more stringent critical
values in the second-stage regression.

Given the existing research documenting predictability in stock returns, per-
haps the most relevant case is when returns are predictable and conditional
covariances are constant. To reject this null, we should rely on the first-stage
regression. The third row of the table reports that the true critical values for
the second-stage regression are much larger (in absolute value) than standard
critical values. The problem in this case is that because we are using the same
variables that predict returns to predict the conditional covariance, any spuri-
ous predictive power for the conditional covariance will necessarily show up as
predictive power for expected returns as well.

8 This conclusion is based on experimentation with alternative processes for the conditional
covariance.
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The table does not report the results of LIML estimation because the Monte
Carlo results indicate that LIML offers no advantages to GMM. The finite-
sample properties of the K-statistic are substantially different from the corre-
sponding asymptotic properties. The statistic is a measure of the distance of
the parameter estimate from zero and has an asymptotic χ2 distribution. Like
the GMM estimate, the LIML estimate is biased. Under the null of constant
mean returns and stochastic covariances, the empirical 5% critical value for the
K-statistic is 5.25 conditional on a negative LIML estimate. Conditional on a
positive LIML estimate, this critical value is only 3.15. (The asymptotic critical
value is 3.84 and does not depend on the sign of the estimate.) Viewing the
same issue from a slightly different perspective, 9.2% of the negative estimates
of b1 have χ2 values that exceeded the asymptotic 5% critical value.

There are three messages to take from these simulations. First, if the first-
stage regression does not provide strong statistical evidence of time-varying
conditional covariances, then we do not know what critical values to use in the
second-stage regression. Second, if we can confidently reject the null of constant
conditional covariances, the magnitude of this variation does not need to be
large in order to produce reasonable results from the second-stage regression.
An F-statistic of about 2.5, although weak in the Staiger/Stock sense, appears
sufficient. Third, there is no standard estimation procedure that dominates
GMM.

B. The Horizon Used to Measure Consumption Growth

A well-known empirical result is that a period-t stock return shock is posi-
tively correlated with measured aggregate consumption growth in both period
t and future periods. Grossman, Melino, and Shiller (1987) show that a positive
correlation between period-t returns and period-(t + 1) aggregate consumption
growth is created by the time averaging that is built into measured consump-
tion.9 Lynch (1996) and Gabaix and Laibson (2001) note that transactions costs
that delay adjustments to consumption can produce nonzero correlations over
longer intervals. Thus the purely contemporaneous covariance between returns
and consumption growth underestimates the true covariance. For example, a
power utility model written in terms of measured aggregate consumption in-
stead of the instantaneous consumption of a consumer that faces no transaction
costs implies (see Gabaix and Laibson (2001))

Et−1rt + 1
2

Vart−1(rt) = γ Covt−1 (rt , ct+K ∗ − ct−1) , (31)

where K∗ is sufficiently large. This intuition suggests that we should replace
the OLS forecasting regression for consumption growth (16) with a multiperiod
counterpart

ct+k − ct−1 = acYc,t−1 + ec,t−1,t−1,t+k . (32)

9 The research on the effects of time averaging began with Working (1960).
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The form of regression (20) is unchanged except for the replacement of
the single-period fitted residual êc,t−1,t−1,t with the multiperiod residual
êc,t−1,t−1,t+k . Denote the corresponding ex post covariance by

Cov∗(rt , ct+k − ct−1) ≡ êr,t−1,t−1,t êc,t−1,t−1,t+k . (33)

Then the instrumental variables regression is

rt + 1
2

Var∗(rt) = b0 + [b1 + b2 pt−1]Cov∗(rt , ct+k − ct−1) + wt . (34)

We can set k = 0 in (32) and (34) to recover the regressions (16) and (20).
Notwithstanding the logic underlying (31), for the purposes of this paper it

is not clear that an empirical implementation that uses k > 0 is superior to an
implementation that uses k = 0. Gabaix and Laibson emphasize the effect of
k on the ratio of mean excess returns to the unconditional covariance between
stock returns and consumption growth. In (34) these unconditional moments
are effectively picked up by b0, which is not of direct interest. Under the null
hypothesis that the price of consumption risk is zero, the choice of k has no
effect. Under an alternative hypothesis the critical issue is how the choice of k
affects the power of the statistical test.

To understand the effect of k on the power of the test, first note that the
left-hand side of (32) is the sum of k single-period changes in log consumption.
Therefore, we can write the multiperiod residual as the sum of k single-period
residuals. These are the residuals from forecasts made at t − 1 of �ct, �ct+1,
and so on. Similarly, we can write the product of the fitted residuals to stock
returns and multiperiod consumption growth as the sum of k products of fitted
residuals to stock returns and single-period consumption growth:

Cov∗(rt , ct+k − ct−1) =
k∑

j=0

êr,t−1,t−1,t êc,t−1,t−1+ j ,t+ j . (35)

Each of the ex post covariance estimates on the right-hand side of (35) is the
sum of its conditional expectation and a residual:

êr,t−1,t−1,t êc,t−1,t−1+ j ,t+ j = Cov(rt , �ct+ j | Zt−1) + nt−1,t−1+ j , j . (36)

The first subscript on the noise term refers to the date of the instrument vectors
used to construct the fitted residuals. The second and third are the beginning
and ending dates used to define the change in log consumption. We can think
of these ex post covariances as the sum of a signal (the conditional covariance)
and noise (nt−1,t−1+j, j). Increasing k, or in other words, adding additional ex
post covariance estimates to (35), increases both the total signal and the total
noise. From the perspective of hypothesis testing, the net effect depends on the
change in the total signal to total noise.

An example makes this clear. Assume the true model is power utility plus
transaction costs, so that expected excess returns are proportional to the con-
ditional covariance between returns and consumption growth over K∗ periods.
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Also assume that investors and econometricians are working with the same
information set, so we can ignore any errors-in-variables problem. Denote the
conditional covariance between returns and long-horizon consumption growth
as Bt−1:

Cov(rt , ct+K ∗ − ct−1 | Zt−1) ≡ Bt−1. (37)

Then excess returns are the sum of a term proportional to Bt−1 plus a residual

rt + 1
2

Var(rt | Zt−1) = γ Bt−1 + εr,t . (38)

To simplify the analysis, assume that for k ≤ K∗, the conditional covariance
between returns and the j-period-ahead consumption growth is proportional to
Bt−1:

Covt−1(rt , �ct+ j ) = ρ j Bt−1, ρ j ≥ 0,
K ∗∑
j=0

ρ j = 1. (39)

In other words, these conditional covariances all move together.
We can combine this equation with (38) to show that for arbitrary k,

rt + 1
2

ê2
r,t−1,t−1,t = γ

k∑
j=0

ρ j

Cov∗(rt , ct+k − ct−1)

+

εr,t − γ

k∑
j=0

ρ j

k∑
j=0

nt−1,t−1+ j ,t+ j + 1
2

(
ê2

r,t−1,t−1,t − Var(rt | Zt−1)
)
 . (40)

The term in square brackets is unforecastable with the instruments Zt−1.
Now consider the instrumental variables regression (34) with b2 = 0. The de-

pendent variable in the regression is the left-hand side of (40). The explanatory
variable is the ex post covariance on the right-hand side of (40). Therefore, the
estimate of b1 should approach the coefficient in front of the ex post covariance.
More precisely, for a given k, the instrumental variable estimate of b1, denoted
b̂1{k}, satisfies

plim b̂1{k} = γ

k∑
j=0

ρ j

. (41)

For k < K∗, this plim exceeds the true coefficient of relative risk aversion, a re-
sult consistent with the intuition of Gabaix and Laibson. Therefore, an increase
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in k tends to push the parameter estimate toward the true value of γ . However,
the asymptotic t-statistic of b̂1{k} does not necessarily increase with k. If we
ignore the dependence of êr,t−1,t−1,t êc,t−1,t−1,t+k on first-stage parameter esti-
mates, it is straightforward to show that the asymptotic t-statistic is inversely
proportional to the standard deviation of the term in square brackets in (40).
Therefore, from the perspective of the power of the test that b1 = 0, adding
an additional lead of consumption growth has two offsetting effects. The first
is that an additional noise term is added to the sum

∑k
j=0 nt−1,t−1+ j ,t+ j . The

second is that
∑k

j=1 ρ j increases, which dampens the effect of the sum of noise
terms.

It is hard to say more about the effects of k without assuming something
about the joint distribution of the error terms εrt, nt−1,t−1+j,t+j and ê2

r,t−1,t−1,t −
Var(rt | Zt−1)). If they are jointly uncorrelated, the effect of k depends on the
ratio √√√√ k∑

j=0

Var(nt−1,t−1+ j ,t+ j )

k∑
j=0

ρ j

. (42)

A higher value of k results in a less powerful test if it increases this ratio. The
extreme case is if excess stock returns rt and future consumption growth �ct+j
are uncorrelated. Then their product is pure noise, so including the jth lead of
consumption results in lower power.

In summary, the choice of k has no effect under the null and has an ambiguous
effect on power under alternative hypotheses. The best choice of k likely depends
on the precise alternative hypothesis of interest. I adopt an ad hoc procedure
for choosing k based on the unconditional sample covariances between fitted
residuals to stock returns and leads of consumption growth.

Table II reports the unconditional covariance between innovations in stock
returns and consumption growth, where the innovations are residuals from
the first-stage regressions (15) and (16). The sample period is February 1960
through December 2001. The relation between stock returns and consumption
growth is the strongest for contemporaneous consumption growth. The covari-
ances drop off to zero beyond j = 3. I therefore, focus on two different measures
of ‘contemporaneous’ consumption growth. They are the growth in consumption
from t − 1 to t (k = 0) and from t − 1 to t + 3 (k = 3), respectively.

C. The Stock Return Horizon

Most of the data used in this paper are available at a monthly frequency,
which leads me to focus on the predictability of monthly returns. For compa-
rability with other research, I also predict returns over longer horizons using
conditional covariances appropriate for those horizons.
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Table II
The Relation between Aggregate Stock Returns and Real

Consumption Growth
The table reports sample covariances and correlations between the innovation in month t’s log ex-
cess aggregate stock return and innovations in contemporaneous and future log changes in real per
capita consumption on nondurables and services. Innovations are residuals from OLS regressions
on a set of instruments realized prior to the beginning of month t. The sample is 503 observations
from February 1960 through December 2001.

Residuals
Consumption
Measure Covariance (×10−4) Correlation

�ct 0.308 0.182
�ct+1 0.116 0.066
�ct+2 0.116 0.067
�ct+3 0.130 0.074
�ct+4 0.026 0.015
�ct+5 −0.001 −0.001

Consider the n-month excess log stock return from month t − (n − 1) to month
t,

∑n−1
i=0 rt−i. An ex post estimate of the covariance of this return with contem-

poraneous consumption growth is

Cov∗
(

n−1∑
i=0

rt−i, ct+k − ct−n

)
≡

n−1∑
i=0

êr,t−i−1,t−i−1,t−i êc,t−i−1,t−i−1,t−i+k . (43)

If k is positive in (43), then consumption growth is measured over a longer
horizon than returns, as discussed in the previous subsection.

This measure is not simply the product of the residuals of the n-month stock
return and the (n + k)-month log change in consumption. This latter product is
also an ex post covariance estimate, but it does not take advantage of higher fre-
quency data. An example will help clarify the difference between the measure
in (43) and the product of multi-month residuals. Consider the case of quar-
terly stock returns, or n = 3. Then (43) is an ex post estimate of the quarterly
covariance between returns and consumption growth that is constructed with
monthly data.10 For example, if k = 0, this estimate is the sum of the monthly
ex post contemporaneous covariance estimates for each month in the quarter.
The alternative ex post quarterly covariance estimate (êr,t−3,t−3,t)(êc,t−3,t−3,t) is
effectively the sum of nine monthly ex post covariance estimates; the residual
for each month’s stock return multiplied by the residual for each month’s con-
sumption growth. Since the noncontemporaneous covariances should be zero
with k = 0, including them in the covariance estimate simply adds noise.

10 Quarterly consumption growth here is defined as the log change from month t to month t + 3.
Because of time averaging this differs from the log change in average consumption during quarter
τ to quarter τ + 1.
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Multi-month estimates of the ex post variance of stock returns are defined
analogously to the covariance estimate:

Var∗
(

n−1∑
i=0

rt−i

)
≡

n−1∑
i=0

ê2
r,t−i−1,t−i−1,t−i. (44)

The excess stock return from t − n + 1 to t (adjusted for Jensen’s inequality) is
regressed on (43) using the instrument vector Zt−n:

n−1∑
i=0

rt−i + 1
2

Var∗
(

n−1∑
i=0

rt−i

)

= b0 + [b1 + b2 pt−n]Cov∗
(

n−1∑
i=0

rt−i, ct+k − ct−n

)
+ wt . (45)

If n = 1 in (45), we recover the single-period instrumental regression (20), or
with a longer horizon for measuring consumption growth, (34).

In this paper I report results for n = 1 (monthly returns) and n = 3 (quarterly
returns). In order to avoid overlapping observations with n = 3, I estimate (45)
on every third monthly observation. I choose the last month of each quarter.
Since GMM estimation requires that this equation be estimated jointly with the
zero-stage regressions, which are defined at a monthly frequency, I adopt the fol-
lowing procedure. The zero-stage regressions used to construct monthly residu-
als are estimated using just the last month of each quarter. Since construction of
quarterly ex post variances and covariances requires residuals for each month
in the quarter, the parameter estimates from these zero-stage regressions are
then used to construct fitted residuals for all months in the sample.

Regressions of stock returns on higher frequency estimates of second mo-
ments have a long history in finance, although applications have focused on
estimates of stock return volatility. In spirit, the combination of (43) and (45)
is similar to the procedure adopted by Whitelaw (1994). He uses the sum of
squared daily aggregate stock returns to construct ex post estimates of longer
horizon aggregate stock return volatility. He then uses an instrumental vari-
ables setup to regress longer horizon returns on these volatility estimates.

IV. The Predictability of the Conditional Covariance

In this section I summarize the evidence from first-stage regressions in which
ex post covariance estimates are projected on a set of instruments. Figure 3 dis-
plays the time series of the ex post estimates. For Panel A, consumption growth
is measured by the change in log consumption from t − 1 to t. For Panel B, it
is measured by the change from t − 1 to t + 3. The slow adjustment of con-
sumption means that the latter measure produces ex post estimates that are
both larger and more volatile than those produced with the former measure.
The figure also shows that the outliers are more extreme when consumption
growth is measured over the longer horizon. In particular, the observation for
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Figure 3. Ex post estimates of the covariance between aggregate stock returns and
consumption growth. The innovations to month-t’s aggregate excess stock return and per capita
real consumption growth are constructed with OLS forecasting regressions. Consumption growth
is measured with either the change from month t − 1 to month t (Panel A) or from month t − 1
to month t + 3 (Panel B). The product of these innovations is an ex post estimate of the month t
conditional covariance. The sample period is February 1960 through December 2001.

March 1980 is more than 8 standard deviations away from 0. This observation
was driven by a particular event: the credit controls announced by the Carter
administration in March. The stock market fell 12% in the month, while aggre-
gate consumption fell dramatically through May before leveling off in June.11

The credit controls probably distorted investors’ first-order conditions. Conve-
niently, this single observation generally has little effect on any of the results
reported below. When there is an exception to this rule I note it.

Results from the first-stage regressions are displayed in Table III. In Panel A
of the table, the horizon over which the covariance is measured is noted in
the first column. Consumption growth is measured as indicated in the second
column. The first four rows of Panel A report results for the entire set of in-
struments itemized in (24). There is overwhelming statistical evidence against
the null hypothesis of constant conditional covariances. For each horizon and
consumption measure, the null hypothesis is rejected at less than the 1% level.
The F-statistics are similar in size to those used in the Monte Carlo simulation
of Section III.A. The fitted values for the monthly regressions are displayed
in Figure 4. In relative terms, there is substantial variation in the conditional

11 The controls were weakened in late May and completely removed at the beginning of July.
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Table III
Predicting Ex Post Covariances between Stock Returns and

Consumption Growth
The month t ex post covariance is the product of the innovations in month t’s aggregate stock
return and contemporaneous consumption growth (defined by “measure of change in monthly con-
sumption”). Quarterly ex post covariances are sums of three monthly ex post covariances. Ex post
covariances are regressed on instruments realized prior to month t. They are the ratio of stock
market wealth to consumption ME/C, the consumption–wealth ratio ĉay, two lags of quarterly ex-
cess stock returns, and four lags of quarterly ex post covariances. “Ex covariance lags” refers to the
first four instruments and “only covariance lags” refers to the final four instruments. In Panel A
the p-values correspond to tests of the hypothesis that the coefficients are all zero. The covariance
lags are not included in the regressions reported in Panel B. In this panel, p-values are in square
brackets. Regressions that do not include lagged ex post covariances are adjusted for 12 months of
moving average residuals. The monthly sample is 503 observations from February 1960 through
December 2001. The quarterly sample is 167 observations from 1960Q2 through 2001Q4.

Panel A. Multivariate Regression Results

Measure of Change
Horizon in Monthly Consumption Instruments F-Statistic χ2-Statistic p-Value

Monthly ct − ct−1 All 2.89 22.66 0.004
Monthly ct+3 − ct−1 All 2.06 20.28 0.009
Quarterly ct − ct−1 All 3.33 29.62 0.000
Quarterly ct+3 − ct−1 All 2.89 25.26 0.001
Monthly ct − ct−1 Only covariance lags 3.18 11.24 0.024
Monthly ct+3 − ct−1 Only covariance lags 2.57 12.48 0.014
Quarterly ct − ct−1 Only covariance lags 4.19 19.01 0.001
Quarterly ct+3 − ct−1 Only covariance lags 4.79 13.89 0.008
Monthly ct − ct−1 Ex covariance lags 2.29 18.82 0.001
Monthly ct+3 − ct−1 Ex covariance lags 1.73 8.89 0.064
Quarterly ct − ct−1 Ex covariance lags 2.49 18.14 0.001
Quarterly ct+3 − ct−1 Ex covariance lags 1.66 11.16 0.025

Panel B. Detailed Results for ct−ct−1 at the Monthly Horizon

Coefficient (×104) on:

Quarterly Stock Quarterly Stock
ME/C ĉay Return (1st Lag) Return (2nd Lag) F-Statistic χ2

0.267 – −0.900 −1.996 2.60 10.37
(2.30) (−0.96) (−1.91) [0.016]
– −11.259 −0.672 −2.008 2.81 17.24

(−3.12) (−0.73) (−1.93) [0.001]

covariance. As a fraction of the mean conditional covariance, the interquartile
range of the fitted values is about 0.3–1.6.

The table’s remaining results examine the predictive power of subsets of these
instruments. The second four rows of Panel A report results of regressions of
ex post covariances on four quarterly lags of ex post covariances.12 We see that

12 Recall that the explanatory variables are calculated from the product of demeaned returns
and consumption growth rather than from the product of OLS regression residuals. This difference
has little effect on the results.
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Figure 4. Fitted conditional covariances between aggregate stock returns and con-
sumption growth. The monthly ex post covariance estimates displayed in Figure 3 are regressed
on instruments realized prior to month t. The fitted values are displayed in this figure. The sample
period is February 1960 through December 2001.

ex post covariances are autocorrelated. For all specifications the null hypothe-
sis of no predictability of the conditional covariance is rejected at the 3% level.
However, the signs of these autocorrelations are not typical of second moments
in financial market data. The autocorrelations are negative for the first few lags
and are positive thereafter. (These coefficients are not reported in any table.)
These autocorrelations are responsible for the high-frequency fluctuations in
conditional covariances that are evident in Figure 4. This pattern is not inher-
ited from the autocorrelation properties of the volatility of either stock returns
or consumption growth. The nonmonotonicity of these autocorrelations raises
a number of questions, but addressing them takes us too far afield of the main
purpose of this paper.

The final four rows of Panel A examine the joint explanatory power of the
stock market wealth–consumption ratio, the consumption–wealth ratio, and the
lags of stock returns. Because of the serial correlation in ex post covariances dis-
cussed in the preceding paragraph, the test statistics are adjusted for 12 months
(four quarters) of moving average residuals using the technique of Newey and
West (1987). The pattern of results supports the conclusion that these instru-
ments have predictive power for the conditional covariance. In three of the four
regressions, the hypothesis that the coefficients are jointly zero is rejected at
the 3% level. The regression that does not exhibit strong statistical significance
is somewhat sensitive to the inclusion of the March 1980 observation. When it
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is excluded, the regression’s F-statistic rises from 1.73 to 2.07 and the p-value
of the χ2-statistic falls from 0.064 to 0.056.

One potential criticism of the predictive power of ME/C and ĉay is that in-
vestors do not observe them in real time. To address this criticism, I replace
the month-t values of ME/C and ĉay in the instrument vector Zt with their
one-quarter-earlier values. I do not report the results in detail, because they
are easily summarized. Lagging these instruments by a quarter typically in-
creases their predictive power for the conditional covariance. For example, the
F-statistics of the final four regressions in Panel A increase to 2.55, 2.72, 3.42,
and 3.46, respectively.

To conserve space I do not report individual regression coefficients for any of
the regressions in Panel A. However, one characteristic of these coefficients de-
serves mention. Because ME/C and ĉay are so highly (negatively) correlated, the
individual t-statistics associated with these variables are generally too small
to reject the hypothesis that any individual coefficient differs from zero. Thus
in Panel B I take a closer look at the relative predictive power of ME/C and ĉay.
Again to conserve space, I focus on monthly covariances defined using ct − ct−1.
The first regression includes ME/C and the two lagged stock returns. The second
regression replaces ME/C with ĉay. Asymptotic t-statistics are in parentheses
and the p-value of a χ2(3) test that the coefficients are jointly zero is in brackets.
Standard errors are adjusted for 12 lags of moving-average residuals.

We see in Panel B that, as implied by the composition effect, higher val-
ues of ME/C correspond to higher conditional covariances. Higher lagged stock
returns correspond to lower conditional covariances, consistent with their in-
verse relation to stock return volatility. Higher values of ĉay correspond to lower
conditional covariances. The test statistics indicate that ĉay is relatively more
important than ME/C in capturing variation in the conditional covariance. This
is probably because ĉay not only picks up much of the composition effect, but
also has independent forecasting power for stock return volatility. We will see
in Section VI that ME/C is unrelated to stock return volatility.

The model of Santos and Veronesi (2003) implies that the ratio of labor income
to consumption is inversely related to the conditional covariance. To test their
model, I replace ME/C with their ratio and repeat the regression in Panel B.
The results, which are not detailed in any table, do not support the model.
The estimated coefficient for the ratio is actually positive, although it is sta-
tistically almost identical to zero. The t-statistic is 0.20. The F-statistic of the
regression (which includes the two lags of quarterly stock returns) is only 1.51.
Given the logic of Santos and Veronesi, this result is surprising because labor
income/consumption should move in lockstep with (the inverse of) ME/C. How-
ever, over the sample period examined in this paper, their correlation is only
−0.68. The wedge between these two ratios suggests that other assets are also
important to consumption, breaking the tight link between labor income’s con-
tribution and the stock market’s contribution. Hence when Santos and Veronesi
regress stock returns on the lagged labor income/consumption ratio, their re-
sults are uninformative about the effect on expected stock returns of variations
in the conditional covariance.
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The main conclusions from these results are that the conditional covariance is
strongly predictable and positively associated with stock market wealth. Given
this evidence, why does earlier research find only weak variability in the condi-
tional covariance? The likely reason is that the instruments used in this earlier
work do not pick up the composition effect. For example, Li (2001) uses lagged
stock returns, D/P, and term structure variables. Although there are probably
many potential instruments other than ME/C and ĉay that are reasonable prox-
ies for time variation in the composition of wealth, researchers did not happen
to choose them.

V. Predicting Stock Returns with the Conditional Covariance

This section reports results from estimation of (20) and two related regres-
sions: equation (31), which is the version that accounts for slow adjustment in
consumption, and equation (45), which examines longer horizon covariances.
In interpreting the results, it is helpful to recall that mean excess stock re-
turns are very high relative to the unconditional covariance between shocks
to stock returns and shocks to consumption growth. Over the sample period
examined in this paper, the mean excess stock return (adjusted for Jensen’s
inequality) is 0.49% per month. As reported in Table II, the contemporaneous
monthly covariance is about 3.1 × 10−5, or 6.7 × 10−5 if three additional leads
of consumption growth are included. The implied coefficients of relative risk
aversion are 160 and 75, respectively. Consumption-based asset-pricing mod-
els with representative agents have difficulty explaining why investors are so
sensitive to consumption risk. Qualitatively, the same pattern is exhibited in
the parameter estimates reported below: small changes in conditional covari-
ances correspond to large changes in expected excess returns.

A. The Linear Case

I begin by considering the linear instrumental variables regression of excess
stock returns on ex post covariances. The results are displayed in Table IV. The
main message of these results is that there is a strong inverse relation between
conditional covariances and expected excess returns. Consider, for example, the
first row in the table. It reports results at the monthly horizon using the entire
set of instruments. When consumption growth is measured from month t − 1
to month t, the point estimate is −134. The t-statistic of −2.32 allows us to
reject the null hypothesis of no predictability at the 5% level. (This rejection
is based on the finite-sample distribution of the statistic under the relevant
null, from the Monte Carlo results in Table I.) When consumption growth is
measured from t − 1 to t, the estimated coefficient on the conditional covariance
is −84 with a t-statistic of −2.47. The point estimate is closer to zero because
conditional covariances are larger and more volatile when consumption growth
is measured over the longer period. The estimates (regardless of the measure of
consumption growth) imply an interquartile range of expected excess returns
from about 3% per year to about 11% per year.
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Table IV
Regressions of Stock Returns on the Conditional Covariance

Excess stock returns measured over the given horizon are regressed, using instrumental variables,
on ex post estimates of the contemporaneous covariance. The table reports the parameter estimates
and asymptotic t-statistics. The “contemporaneous” change in month t’s consumption growth is
measured by either ct − ct−1 or ct+3 − ct−1. The instruments used in the regression are the ratio of
stock market wealth to consumption ME/C, the consumption–wealth ratio ĉay, two lags of quarterly
excess stock returns, and four lags of quarterly ex post covariances. “Ex covariance lags” refers to the
first four instruments and “only covariance lags” refers to the final four instruments. Estimation is
with GMM. The monthly sample is 503 observations from February 1960 through December 2001.
The quarterly sample is 167 observations from 1960Q2 through 2001Q4.

Measure of Change
in Monthly Consumption

Horizon Instruments ct − ct−1 ct+3 − ct−1

Monthly All −134.48 −84.07
(−2.32) (−2.47)

Quarterly All −168.07 −94.92
(−3.19) (−3.73)

Monthly Ex covariance lags −237.14 −144.05
(−2.29) (−2.55)

Quarterly Ex covariance lags −180.95 −133.91
(−1.98) (−2.63)

Monthly Only covariance lags −27.52 −31.01
(−0.34) (−0.71)

Quarterly Only covariance lags −101.58 −52.93
(−1.37) (−1.66)

One way to interpret the economic significance of this predictability is to com-
pute the ratio of expected excess returns to the conditional covariance. When
consumption growth is measured from t − 1 to t, the point estimates imply that
the interquartile range of this ratio—intuitively, the sensitivity of expected re-
turns to consumption risk—is from 52 to 1600. When consumption growth is
measured from t − 1 to t + 3, the corresponding interquartile range is from 28 to
360. Of course, time variation in conditional relative risk aversion is not news.
Since the numerator of the ratio varies through time, the standard assumption
of a constant denominator is sufficient to conclude that relative risk aversion
varies. However, the magnitude of variability documented here is dramatically
wider than is implied by the assumption of constant conditional covariances.

The rest of the table fleshes out the nature of the inverse relation. There are
two other points to take from these additional results. First, the strength of the
relation is largely unaffected by the horizon—monthly or quarterly—over which
returns and covariances are measured. Second, only part of the conditional
covariance is related to expected returns. Recall from Table III that the stock
price variables (ME/C, ĉay, and the two lags of quarterly stock returns) and the
lagged ex post covariances have independent predictive power for conditional
covariances. The results in this table tell us that only the first set of instruments
produce a statistically strong relation between expected returns and conditional
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covariances. When only the lagged covariances are used as instruments in the
regression of stock returns on ex post covariances, the estimated coefficients
are uniformly statistically insignificant. In fact, in results not detailed here,
I find the statistical strength relies on the inclusion of ĉay in the instrument
set. Without ĉay there is not enough business cycle variation in the conditional
covariance to pick up the business cycle variation in expected returns. (But
if only ĉay is used in the instrument set, there is no statistically significant
predictability either; ĉay alone does not generate sufficient variability in the
conditional covariance.)

These results are not particularly surprising given the evidence from the
last section that conditional covariances are procyclical. The more interesting
application of the time variation in conditional covariances is to test models in
which investors exhibit time-varying sensitivity to consumption risk.

B. The Nonlinear Case

An inverse relation between conditional covariances and expected excess
stock returns is not necessarily inconsistent with consumption-based asset pric-
ing. If the price of consumption risk tends to be low when conditional covari-
ances are high and vice versa, we may observe an inverse unconditional relation
between conditional covariances and expected excess returns. We cannot im-
mediately rule out this possibility because intuition suggests that the price
of consumption risk is countercyclical, and thus inversely related to observed
conditional covariances.

If we have an observable proxy for time variation in the price of consumption
risk, then we can test whether time variation in the price of risk explains the
empirical results documented above. The most obvious test is to use instrumen-
tal variables to regress excess stock returns on both the ex post covariance and
the proxy for the price of risk. Then we could interpret the coefficient on the
ex post covariance as the relation between expected returns and conditional
covariances, holding constant the price of risk.

But we have a more powerful test at our disposal. For a fixed price of risk,
the relation between the conditional covariance and expected excess returns
should not only be positive, but it should be larger when the price of risk is high
than when it is low. Thus there should be a nonlinear relation between expected
returns and conditional covariances that is picked up by the price of risk. This
is the logic behind my use of the more general functional form b1 + b2pt−1 for
the sensitivity of expected returns to the conditional covariance, where pt is a
proxy for the price of risk. If, say, pt is positively related to the price of risk,
then b2 should be positive.

To fix ideas, assume the true relation between expected excess returns and
the conditional covariance is

Et−1rt + 1
2

Vart−1(rt) = f (pt−1)Covt−1 (rt , �ct) , (46)
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where f (·) is some monotonic function of the proxy for the price of risk. In the
empirical test I use b1 + b2pt−1 in place of f (pt−1), allowing us to interpret it as
a linear approximation to f (pt−1) and in particular to interpret b2 as an average
value of f ′(pt−1). Under the null that f (·) is a constant (i.e., pt−1 is unrelated to
the price of risk), then b2 = 0. We can test this hypothesis formally. An informal
test is to check that the fitted values of b1 + b2pt−1 are positive.

The first proxy for the price of risk I examine is Wachter’s measure of sur-
plus consumption. High surplus should correspond to a low price of risk, so
we expect b2 to be less than 0. In order for the negative relation between ex-
pected returns and conditional covariances to be explained by variations in
surplus consumption, surplus and conditional covariances must be positively
correlated. For the data examined in this paper, the sample correlations be-
tween surplus consumption and the fitted conditional covariances (based on all
the instruments) are around 0.2. The second proxy is the consumption–wealth
ratio ĉay. A high consumption–wealth ratio suggests a high price of risk (low
valuations of wealth). The sample correlations between ĉay and the fitted con-
ditional covariances are about −0.3 and −0.4 at the monthly and quarterly
horizons, respectively. The third proxy I examine is the dividend–price ratio.
Its relation to the conditional covariance is weaker. The sample correlations
between D/P and the fitted conditional covariances are about −0.2 and −0.1 at
the monthly and quarterly horizons, respectively.

I now turn to estimates of (20) and its generalizations (31) and (45). To sim-
plify interpretation of the parameter estimates, I transform the proxies for the
price of risk to have a mean of 0 and a standard deviation of 100.13 The results
are displayed in Table V. The results offer only minimal support for the view
that any of the proxies is associated with the price of consumption risk. The
strongest conclusion supported by the results is that all but one of the point
estimates of b2 have the correct sign: negative for surplus consumption and
positive for ĉay and D/P. However, only one of the 12 point estimates has an
asymptotic t-statistic that exceeds 2 in absolute value.

Moreover, because the estimated coefficients are so close to zero in an eco-
nomic sense, the fitted values of b1 + b2pt are typically negative. Consider, for
example, the evidence in the table that provides the strongest support for a
role for surplus consumption: monthly covariances and consumption growth
measured from t − 1 to t + 3. The interquartile range of the fitted values of
b1 + b2ŝt−1 is −4 to −88. Thus even when we fix surplus consumption to a rel-
atively low value (and thus presumably fix the price of consumption risk to be
relatively high), there is an inverse relation between expected excess returns
and conditional covariances. The strongest evidence in the table for a time-
varying sensitivity of expected returns to the conditional covariance is with
ĉay. Again using monthly covariances and consumption growth measured from
t − 1 to t + 3, the interquartile range of the fitted values of b1 + b2ĉayt−1 is 1 to

13 In addition, because surplus consumption and D/P are not elements of Zt, I add the relevant
variable to the set of instruments used to estimate the regression. They both have little explanatory
power for the conditional covariance.
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Table V
Nonlinear Regressions of Stock Returns on the Conditional

Covariance
Excess stock returns measured over the given horizon are regressed, using instrumental variables,
on ex post estimates of the contemporaneous covariance. The coefficient, denoted bt, is allowed to
depend on the “price of risk variable”: bt = b1 + b2pt−1, where pt is the specified variable. This
variable is transformed to have a mean of 0 and standard deviation of 100. The table reports the
parameter estimates and t-statistics. The “contemporaneous” change in month t’s consumption
growth is measured by either ct − ct−1 or ct+3 − ct−1. The instruments used in the regression are
the ratio of stock market wealth to consumption ME/C, the consumption–wealth ratio ĉay, two lags
of quarterly excess stock returns, and four lags of quarterly ex post covariances. Estimation is with
GMM. The monthly sample is 503 observations from February 1960 through December 2001. The
quarterly sample is 167 observations from 1960Q2 through 2001Q4.

Measure of Change
in Monthly Consumption

ct − ct−1 ct+3 − ct−1

Horizon Price of Risk Variable b1 b2 b1 b2

Monthly Surplus consumption −132.11 −0.01 −55.91 −0.54
(−1.98) (−0.02) (−1.48) (−1.72)

Quarterly Surplus consumption −152.24 −0.50 −77.73 −0.38
(−2.82) (−0.95) (−2.54) (−1.16)

Monthly ĉay −110.80 0.48 −48.01 0.71
(−1.65) (0.82) (−1.17) (2.26)

Quarterly ĉay −161.67 0.04 −67.05 0.38
(−2.84) (0.06) (−2.25) (1.03)

Monthly D/P −123.58 0.25 −84.18 0.04
(−2.18) (0.68) (−2.37) (0.18)

Quarterly D/P −168.43 −0.24 −102.59 0.02
(−3.20) (−0.63) (−3.46) (0.09)

−91. As with surplus consumption, the relation between expected returns and
conditional covariances is generally negative even when holding constant the
proxy for the price of consumption risk.

The main conclusions to take from this section are easy to summarize. First,
there is a strong inverse relation between conditional covariances and expected
excess stock returns. Second, there is little evidence that the sensitivity of
this relation varies with standard proxies for the price of consumption risk.
The latter conclusion is the one that is more troubling from the perspective
of consumption-based asset-pricing models. If investors are particularly risk
averse in bad economic times, then why are expected stock returns not more
sensitive to fluctuations in conditional covariances at such times?

VI. GARCH Estimates of the Conditional Correlation

In this section I focus on the conditional correlation between stock returns
and consumption growth. Although conditional covariances play a central role
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in asset pricing, conditional correlations are more intuitive. In addition, the
composition effect implies that the conditional correlation depends on the ratio
of stock market wealth to consumption.14 The tool that I use to study conditional
correlations is a multivariate GARCH model.

A multivariate GARCH framework is a natural choice for modeling persistent
covariance dynamics. The conditional covariances produced by the instrumen-
tal variables methodology, displayed in Figure 4, exhibit negative autocorrela-
tion over short horizons. This feature of the data creates specification problems
for a GARCH model, which is why I use the IV approach throughout most of this
paper. However, conditional variances of both stock returns and consumption
growth both exhibit highly persistent dynamics that fit nicely into a GARCH
setting. Therefore, from the perspective of modeling conditional correlations,
the GARCH framework is a reasonable compromise.

To jointly model conditional variances of stock returns and consumption
growth as well as their conditional correlation, I use the Dynamic Conditional
Correlation (DCC) model of Engle (2002). Expected stock returns are assumed
to depend on the conditional covariance, while consumption growth follows an
AR(3).

rt = ar0 + ar1 Ht(12) + ε1t , (47)

�ct = ac0 +
3∑

i=1

aci�ct−i + ε2t , (48)

εt ≡ (ε1tε2t)′, (49)

εtε
′
t ∼ N (0, Ht). (50)

The conditional variance–covariance matrix Ht is

Ht = Dt Rt Dt , (51)

where Dt is a diagonal matrix with
√

hit on the diagonal and Rt is the conditional
correlation matrix. The conditional correlation matrix is written as

Rt = Q∗
t
−1 Qt Q∗

t
−1, (52)

where Q∗
t is a diagonal matrix with the square root of the diagonal elements

of Qt on the diagonal. Standardized shocks to stock returns and consumption
growth are denoted by

zt = D−1
t εt . (53)

14 We could also look at conditional betas. However, betas are more relevant for cross-sectional
comparisons than for time-series comparisons. If, say, the consumption beta of the stock market
increases from t to t + 1, the implications for expected excess returns are ambiguous: The beta could
have risen because the conditional variance of consumption growth declined, while the conditional
covariance held constant.
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The conditional variances of stock returns and consumption growth are modeled
as univariate GARCH(1,1) processes that can also depend on predetermined
variables. The predetermined variables are the same variables used earlier:
the ratio of stock market wealth to consumption, ĉay, and two lags of quarterly
excess stock returns, that is,

hit = vit + αi
(
ε2

it−1 − vit−1
) + βi(hit−1 − vit−1), (54)

vit = ω0i + ω1i ĉayt−1 + ω2i(ME/C)t−1 + ω3iRET q
t−1 + ω4iRET q

t−4, i = 1, 2.

(55)

The conditional correlation is modeled similarly

Qt =
(

1 qt

qt 1

)
+ α3

[
zt−1z ′

t−1 −
(

1 qt−1

qt−1 1

)]
+ β3

[
Qt−1 −

(
1 qt−1

qt−1 1

)]
,

(56)

qt = ω03 + ω13ĉayt−1 + ω23(ME/C)t−1 + ω33RET q
t−1 + ω43RET q

t−4. (57)

I use this functional form so that the effect on Ht of the predetermined variables
does not feed back through the GARCH terms. To simplify the interpretation
of the coefficients on ME/C, ĉay, and the lagged quarterly returns, I normalize
these variables to have mean 0 and variance 1. I estimate this model with
maximum likelihood over the sample July 1959 through December 2001. The
initial H1 is

H1 =
(

v11 q1
√

v11v21

q1
√

v11v21 v21,

)
, (58)

where the values of the predetermined variables as of month-end June 1959
are used to construct v11, v21, and q1.

The parameter estimates are displayed in Table VI. The fitted values of the
conditional standard deviations and correlation are displayed in Figure 5. I
discuss the results for stock returns, consumption growth, and their correlation
in turn.

Expected excess stock returns are negatively associated with the conditional
covariance. The estimated coefficient on the conditional covariance, from Panel
A of the table, is −377. This estimate is about twice as large as the corresponding
estimate in Table IV. We see in Panel B that the conditional variance of stock
returns is negatively associated with ĉay and past stock returns, consistent
with the previous literature. The more interesting result here is that unlike
ĉay, ME/C has no predictive power for stock return volatility.

A glance at Panel B of Figure 5 reveals that consumption growth volatility has
declined steadily over the sample period. This negative drift is consistent with
the evidence of Romer (1999) that a variety of macroeconomic measures were
substantially more volatile in the first half of the postwar period than in the
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Table VI
A GARCH-in-Mean Model of Stock Returns and Consumption Growth
The joint evolution of monthly log excess aggregate stock returns rt and consumption growth �ct
is

rt = ar0 + ar1
√

h1th2tρt + e1t , �ct = ac0 +
3∑

i=1

aci�ct−i + e2t .

The conditional variance of εit is

hit = vit + αi

(
ε2

it−1 − vit−1

)
+ βi(hit−1 − vit−1),

vit = ω0i + ω1i ĉayt−1 + ω2i(ME/C)t−1 + ω3iRETq
t−1 + ω4iRETq

t−4, i = 1, 2.

The conditional correlation ρt has the same functional form. Predetermined variables in the vari-
ance equations are standardized to have zero means and unit variances. Estimation is with max-
imum likelihood. The coefficients on the predetermined variables for the variance equations are
scaled up by 104. t-statistics are in parentheses. The sample period is July 1959 through December
2001.

Panel A. Conditional Mean Parameters

ar0 ar1 ac0 ac1 ac2 ac3

0.015 −377.66 0.002 −0.278 0.017 0.180
(2.83) (−2.33) (9.00) (−6.22) (0.32) (3.90)

Panel B. Conditional Variance Parameters

Equation α β Constant ĉayt−1 (ME/C)t−1 RETq
t−1 RET q

t−4

Stock returns 0.022 0.868 19.211 −5.743 −1.131 −3.261 −3.261
(0.67) (4.77) (13.39) (−4.80) (−0.83) (−2.55) (−3.28)

Consumption growth 0.009 0.994 0.240 – – – –
(1.68) (152.19) (5.45)

Correlation – – 0.184 −0.085 0.058 0.006 −0.014
(3.81) (−1.76) (1.85) (0.24) (−0.53)

second. I exclude the predetermined variables from the variance of consump-
tion growth. I exclude lagged returns and ĉay because they have no significant
explanatory power. The ratio ME/C has modest explanatory power, but this
explanatory power is driven by the joint drift in consumption-growth volatil-
ity and ME/C. If a linear time trend is included in the variance equation, the
significance of ME/C disappears. A similar result holds if the aggregate divi-
dend/price ratio is included in the variance equation. As noted by Bansal and
Yaron (2004), consumption growth volatility and the dividend/price ratio are
positively associated. Both variables drift down in the postwar period. If the
dividend/price ratio and a linear time trend are included in the variance equa-
tion, the coefficient on the dividend/price ratio is statistically insignificant.15

15 In fact, if the linear time trend is included, the GARCH terms are also statistically
insignificant.
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Figure 5. GARCH estimates of the conditional variance–covariance matrix of monthly
stock returns and consumption growth. Fitted values from a dynamic conditional correlation
representation of a two-dimensional GARCH(1,1) model are displayed. The sample period is July
1959 through December 2001.

Based on this evidence, I am unwilling to draw any conclusions about the ex-
planation for the drift in consumption-growth volatility. Therefore, I exclude
ME/C (as well as a linear time trend and the dividend/price ratio) from this
equation to avoid forcing an implicit interpretation on this drift.

The equation for the conditional correlation does not include GARCH effects.
When the GARCH parameters are restricted to be nonnegative, their maxi-
mum likelihood estimates are on the boundary of the parameter space. The
problem is basically the one illustrated in Figure 4. Conditional on the prede-
termined variables, conditional correlations are not positively autocorrelated.
Adding additional ARCH terms (while restricting them to be nonnegative) does
not help. However, when α is allowed to be negative, the model has too much
flexibility. When the GARCH parameters are unrestricted, the estimate of α is
negative. One of the fitted conditional correlations is negative 1, producing a
log-likelihood of infinity.
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The parameter estimates for the conditional correlation equation tell us that
the conditional correlation is positively related to ME/C, as implied by the com-
position effect. It is also negatively related to ĉay. Because the variables are so
strongly correlated, the test statistics do not allow us to distinguish between the
roles of ME/C and ĉay in predicting the conditional correlation. When all vari-
ables except for ME/C are dropped from the conditional correlation equation,
the coefficient on ME/C is 0.096 with a t-statistic of 2.99.

Lettau, Ludvigson, and Wachter (2004) use a regime-switching model to ar-
gue that the high stock valuations in the late 1990s can be explained by the
decline in the volatility of consumption growth. Once investors realize they
are in a low-volatility regime, their required risk premium on stocks falls. The
conditional covariance between stock returns and consumption growth is low
because in their model dividend growth is perfectly correlated with consump-
tion growth. Although this story has a nice intuitive flavor, the evidence here
casts some doubt on it. During the past 40 years, the conditional correlation
between stock returns and consumption growth varied widely around its sam-
ple mean of 0.18. It reached a low of roughly 0 in late 1990 and a high of 0.65
in early 2000. Combining these dynamics with those of the conditional vari-
ances reveals that the conditional covariance peaks in both mid 1973 and in
early 2000. (Similar evidence is displayed in Figure 4.) Hence, although the
volatility of consumption growth is low in the late 1990s, the amount of con-
sumption risk in stocks is nevertheless at an historical high because of the high
conditional correlation and the high volatility of stock returns.

VII. Conclusions

The conditional covariance between aggregate excess stock returns and ag-
gregate consumption growth is procyclical, a pattern that is consistent with the
composition effect. Regardless of the source of this time variation, we can use
it to test consumption-based asset-pricing models. The conditional covariance
is inversely related to the expected excess return to the market. This relation
holds even when we allow the price of consumption risk to vary with measures
such as surplus consumption. It will be quite difficult to shoehorn these results
into a model with representative agents who care about consumption. Models
with heterogeneous agents may fare better, but this is more of a hope than an
expectation. As long as the marginal stockholder holds a nontrivial amount of
her wealth in a form other than stocks, the composition effect will still imply
that the amount of her consumption risk in stocks is procyclical.
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