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1 Introduction

Decisions are choices among feasible courses of action the consequences of which have been

discovered over time. In the case of decision making under uncertainty, decision makers’

beliefs about the likely occurrence of the consequences are formed by inductive inference.

It is often the case that decision makers encounter a consequence of whose existence they

were unaware (i.e., a consequence that, before it was obtianed for the first time, was

unknown unknown). Repeated discovery of unanticipated, novel, consequences, however,

alerts decision makers to the possibility that there may exist additional, unanticipated,

consequences whose nature they are unable to conceive of. In other words, decision makers

may be aware of their unawareness, and this awareness of unawareness may affect their

choice behavior. Invoking the Bayesian approach, Karni and Vierø(2017) proposed a model

of decision making under uncertainty that incorporates the decision makers’ awareness of

unawareness.

In this paper I explore a different, non-Bayesian, approach to modeling decision making

under uncertainty, based on inductive inference, that incorporates the notion of awareness

of unawareness. The model assigns objective probabilities and utilities to unanticipated,

inconceivable, consequences. To motivate this exploration, I consider two instances re-

quiring making decision under uncertainty, in which decision makers have access to data

that may be used to calibrate the likelihoods of the known possible consequences of their

actions, and quantify the probability of encountering unanticipated consequences.

Example 1 - A decision maker who must choose whether or not to vaccinate against

a disease and, if the decision is to vaccinate, which of several available vaccines to take.

Clinical trials in which different vaccines are tested and, once approved and implemented,

the cumulative evidence regarding their effectiveness and potential side effects provide the

data on which the decision makers may base decisions. Because the testing and using

new vaccines is a process of exploring uncharted terrain, the potential of discovering novel,

previously unsuspected, health consequences is ubiquitous. In deciding whether to vacci-

nate, or which vaccine to choose, decision makers use the accumulated evidence to form

beliefs about the likelihoods of occurrence of known outcomes and the potential existence

of unforeseeable health effects.
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Example 2- For decades statins have been used to reduce cholesterol levels. Their side

effects, are well known, leaving little chance to discovering new, unanticipated, side effects,

both in the short and the long run.1 Clinical trials have shown that a new medication

is more effective in lowering the cholesterol levels and has fewer undesirable side effects.

However, the lack of experience with the new medication implies that there is greater

chance of discovering unanticipated side effects in the long run. A decision maker who

must choose between the familiar statins and the less familiar new medication may take

into account the likelihoods of the known effects as well as the potential of unforeseeable

health consequences.

These examples illustrate the need for theories of decision making under uncertainty,

founded on inductive inference, that accommodate the potential existence of unanticipated

consequences. With few recent exceptions, all the theories of decision making under uncer-

tainty maintain that the set of the ultimate outcomes, or payoffs, are known. To the extent

that there is learning, it is expressed as the updating of subjective probabilities on a fixed

state space. The exceptions include recent models of decision making under uncertainty

in which the decision makers are not assumed to be aware of all the possible consequences

that may result from their choice of actions, and may also be aware of their unawareness.

Invoking the Bayesian approach, Karni and Vierø (2013), addressed this by expanding

the state space and axiomatized a process, dubbed ‘reverse Bayesianism’, according to

which the decision maker’s updates her beliefs following a procedure that maintain the

spirit of Bayes’ rule. This approach was further explored and elaborated in Karni and

Vierø (2015, 2017), Dominiak and Tserenjigmid (2018), Karni, Vierø, Valenzuela-Stookey

(2021), Chakravarty, Kelsey, and Teitelbaum (2021), Vierø (2021)2.

A non-Bayesian, approach to modeling the process of exploration and discovery in

an environment in which unsuspected events may occur has been pursued in probability

theory. The problem is what to do when such events obtain. In other words,

“How can we predict the occurrence of something we neither know, nor

1The known side effects include headache, dizziness, feeling unusually tired or physically weak, digestive

system problems, such as constipation, diarrhoea, or indigestion, muscle pain, sleep problems, low blood

platelet count.
2The study unawareness is also taken up in epistemologic game theory by Heifetz, Meier, and Schipper,

(2006), (2008), (2013) and Grant and Quiggin (2013). For experimental test of reverse Bayesianism see

Becker, Melkonyan, Proto, Sofianos, and Trautman, (2020).
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even suspect, exists? Subjective probability and Bayesian inference, despite

their many impressive successes, would seem at a loss to handle such a problem

given their structure and content.” [Zabell (1992) p. 206].

A particular instance of this difficulty is the so-called sampling of species problem.3 The

process may best be described as follows:

“Imagine that we are in a new terrain, and observe the different species

present. Based on our past experience, we may anticipate seeing certain old

friends - black crows, for example - but stumbling across a giant panda may

be a complete surprise. And, yet, all such information will be grist to our

mill: if the region is found rich in the variety of species present, the chance of

seeing a particular species again may be judged small, while if there are only

a few present, the chances of another sighting will be judged quite high. The

unanticipated has its uses.” [Zabell (1992) p. 206]

De Morgan (1838) proposed an updating process for dealing with precisely this issue.

According to De Morgan, if following a sequence, Z1, Z2, ..., ZN of N trials (i.e., observa-

tions) t categories, or outcomes, labeled c1, ..., ct, have been observed, then the probability

of seeing the outcome on trial N + 1 fall into the j − th category is:

Pr{Z(N+1) = cj} =
nj + 1

N + t+ 1
, (1)

where nj denotes the number of times each of the t outcomes occurred in N trials. Notice

that Σt
j=1 Pr{Z(N+1) = cj} < 1 (i.e., the probability of observing, in the N + 1 trial an

outcome seen before is smaller than 1). This formula implicitly assigns a category not yet

observed, denoted ĉ, a probability of occurring equal to

Pr{Z(N+1) = ĉ} =
1

N + t+ 1
. (2)

The stochastic process depicted by De Morgan’s proposal is generated by the following

urn model.4 Consider an urn containing t balls of different colors and a black ball called

the mutator. Draw a ball at random. If a colored ball is drawn, then it is replaced and

3Zabell (1992) provides an insightful discussion and numerous references.
4See Zabell (1992).
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another ball of the same color is added. If the mutator is drawn, then it is replaced and

another ball of new color is added.

Let nj be the number of times a ball of color cj is drawn in N trials and let n =

(n1, ..., nt) be the frequency distribution of the known colors. What is the probability

distribution of the next draw from the same urn? The answer to this question is given

by the De Morgan formulas (1) and (2).5 Ewens (1972) generalized De Morgan’s formula

allowing the mutator assume weight different from one.

The sole concern of the De Morgan process described above is epistemic - the exploration

of the same ‘new terrain’ through repeated observations using the same procedure (e.g.,

sampling from the same urn). In particular, it is not concerned with the possibility of

exploration using alternative procedures (e.g., sampling from different urns) Furthermore,

the observations, species or colors, having no intrinsic welfare implications, are purely

informative.

In this paper, I explore the application of the Ewens’ process to situations in which

decision makers facing choice under uncertainty are aware of the possibility that there

exist unanticipated outcomes. This objective requires the modification and extension of

stochastic process described above. Specifically, we have to consider repeated observations

of outcomes generated by the choice of alternative courses of action, (e.g., sampling from

different urns) while taking into account that information acquired under one course of

action informs the decision maker about the possibility of the occurrence and prevalence

of outcomes under other courses of action. In particular, discovering an outcome never

seen before informs the decision maker of its existence, thereby making him aware of the

possible occurrence of this outcome under all courses of action. The correlations among the

samples from distinct urns necessitate the loss of the property of partition exchangeability

that characterizes the prediction rule of De Morgan (1838) and its generalization due to

Ewens (1972). Furthermore, in addition to exploration, depicted by the sampling of species

problem, the choice of alternative courses of action involves exploitation – the outcomes

have material (i.e., welfare) consequences – and may involve distinct direct or indirect

costs.

The next section describes the extension of the Ewens’ (1972) generalization of the De

5At a deeper level, the De Morgan formula is generated by the representation of random partitions

exchangeability. A more detailed exposition of this idea is beyond the scope of this paper. The interested

reader will find an excellent review and references in Zabell (1992).
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Morgan proposal. Section 3 introduces a decision making model. Section 4 includes a

discussion of the exploration-exploration tradeoff implied be the model, its relation to the

multi-armed bandit models, and a brief review of the related literature.

2 Generalized Sampling Process

2.1 Similarity

The extended sampling process is best described by the following multi-urn model that

allows the mutator to assume different weights (e.g., different numbers of mutators in the

different urns) and the random draws from distinct urns to be stochastically dependent.

Let U := {U1, ..., Um} be a finite set of urns. Let Ni be the number of draws from Ui,

i = 1, ...,m, containing balls of ti different colors, and some black balls. Denote by θi the

weight of the mutator (i.e., black balls) in urn Ui.

Consider the following process. Select an urn from U and draw a ball at random from

the selected urn. If a colored ball is drawn, then it is replaced and another ball of the

same color is added. If a black ball is drawn, it is replaced and another ball of new color

is added.

Define Ci = {ci1, ..., citi}, i = 1, ...,m, the set of colors, or categories, observed in Ni

draws from Ui. Let C = ∪m
i=1Ci be the set of colors known to exist after N = Σm

i=1Ni draws

form all the urns. Let nick be the number of balls of color ck ∈ C observed in Ni draws

from Ui. Denote by nic(C) =
(
nic1 , ..., nic|C|

)
the frequency of draws of the known colors

after a sequence Zi1, Zi2, ..., ZiNi of draws from Ui. Note that nick = 0 if ck ∈ C\Ci. In

other words, ck ∈ C\Ci is known to exist but has not been observed in Ui.

Given N1, ..., Nm and C, let pick := nick/ (Ni + θi) , k ∈ {1, ..., | C |}, and piθi :=

θi/ (Ni + θi). By definition, pick = 0 if ck ∈ C\Ci. Let pi := (pic1 , ..., pic|C| , piθi), i =

1, ...,m. For every pair of probability vectors pi,pj , i, j ∈ {1, ...,m} denote by ⟨pi,pj⟩
their inner product, and let

κ (i, j) :=
⟨pi,pj⟩

∥ pi ∥∥ pj ∥
. (3)

Then, κ (i, j) = cos τ(i, j) is a measure of the angle between the two probability vectors pi

and pj . I interpret κ (i, j) to be a measure of similarity between the underlying stochastic

processes that depict the draws from Ni and Nj .

6



Because the probability vectors are in Rn
+, the similarity measure takes values in the unit

interval. Obviously, κ (i, i) = 1, for all i = 1, ...,m, (i.e., each urn is perfectly similar to

itself) and κ (i, j) = 0 if and only if pi and pj are orthogonal. Note, however, that under

the assumption that all the urns contain mutators, no two probability vectors pi and

pj are orthogonal. Hence, κ (i, j) > 0, and limNi→∞ κ (i, j) = 0, for all i, j = 1, ...,m.

The larger values of κ (i, j) , the more similar are the content of the urns Ui and Uj . It is

worth underscoring that, before the sampling starts, all the urns are perfectly similar (i.e.,

κ (i, i) = 1, for all i, j = 1, ...,m), in the sense that nothing is known about their content.

The similarity measure is monotonic decreasing in the difference between the size of the

samples of the urns. To grasp this, consider two urns, say Ui and Uj , and suppose that the

corresponding number of draws are Ni and Nj , where Nj > Ni. Suppose further that, given

Ni and Nj , the conditional probabilities, p̂i := pi/ (1− piθi) and p̂j := pj/
(
1− pjθj

)
are

the same. However, the larger is the difference in the sample sized (i.e., the larger is

the difference between the weights of evidence), the larger is the difference pjθj − piθi .

Consequently, the smaller is the similarity coefficient κ (i, j) . In general, two urns are more

similar when high-probability categories in one urn are high-probability categories in the

other urn and low-probability categories in one urn are low-probability categories in the

other urn.

Given pi, i = 1, ...m, the probability of observing c ∈ C conditional on a draw from Ui

is:

Pr{Zi(Ni+1) = c | p1, ...,pm} =
m∑
j=1

pjcκ (i, j)
Nj

N
. (4)

The probability of encountering a color not seen before, (i.e., the probability of drawing

θi) is

Pr{Zi(Ni+1) = θi | p1, ...,pm} =
∑
c∈C

(1−
m∑
j=1

pjcκ (i, j)
Nj

N
). (5)

In the analysis that follows, I assume the decision maker predicts the outcomes of

his actions using these formulas. If c ∈ C\Ci then it is known to exist, and is assigned

probability on the basis of the similarity of Ui and the urns in which c was observed,

even though it didn’t show up in the sampling from Ui. The decision maker is unaware of

outcomes that are not in C.6

6De Morgan’s and Ewen’s prediction rules are charaterized by partition exchangeability. The prediction
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2.2 State-space formulation

A cornerstone of Bayesian theories of decision making under uncertainty is a primitive, im-

mutable, state space, whose elements represent complete resolutions of uncertainty. Specif-

ically, the presumption is that there is a true state, that is ”a description of the world so

complete that, if true and known, the consequences of every action would be known.”

(Arrow [1965]).

The decision model of this paper does not invoke the notion of states as a primitive

concept. It is possible, however, to derive, within the framework of the model of this paper,

a concept of evolving state space. To grasp this, let A := {a1, ..., am} denote a (finite) set

of courses of actions, and denote by C the set of known consequences, after N choices

of actions from A. The state space describing the uncertainty before the N + 1 choice of

action consists of all the mappings from the set of actions to the set of known and unknown

outcomes (i.e., S = {s : A → C}).7 Clearly, this definition of states represents the resolution

of the uncertainty the decision maker faces before choosing the next action. Moreover, given

N1, ..., Nm, p =(p1, ...,pm) and C, the probability of the state s = (s (a1) , ..., s (am)) is:

Pr{s} = Pr{Z1(N+1) = s (a1) | p} × ...× Pr{Zm(N+1) = s (am) | p}.

Obviously, the state space in this model is neither primitive nor immutable. In fact,

once a new consequence is discovered, the domain of definition of states expands and new

states are generated. More concretely, let ĉ denote the newly observed outcome and let

C ′ = C ∪ {ĉ} and C′ = C ′ ∪ {θ}, then the new state space is: S′ = {s′ : A → C′}. The
probabilities of the states are:

Pr{s′} = Pr{Z1(N+2) = {s′ (a1) | p̂} × ...× Pr{Zm(N+2) = s′ (am) | p̂},

rules (4) and (5) do not satisfy partition exchangeability. To be exact, as long as the sampling is from a

single urn, partition exchangeability may be assumed to hold and the prediction rules apply to continuation

of draws from the same urn. However, once sampling from another urn is undertaken, cross inferences

implies that partition exchangeability no longer applies to either of the urns. This is analogous to the

predictive rule of heads and tails in repeated flipping of the same coin, that may be characterized by

exchangeablity, whereas the predictive rule corresponding to flipping distinct, correlated, coins do not

satisfy exchangeability.
7This notion of states was describe in Schmeidler and Wakker (1987) and Karni and Schmeidler (1991)

and was invoked in Karni and Vierø(2013, 2017).
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where p̂ =(p̂1, ..., p̂m) and p̂i = (p̂i1, ..., p̂i|C′|, p̂iθi), i = 1, ...,m , are the updated probabil-

ities vector following the discovery of the new outcome.

If the action ai that was chosen at the N +1 stage results in a known outcome, ck ∈ C,

then the state space does not change but the probabilities of the states do. In particular,

let p′ = (p′
1, ...,p

′
m) , where p′

i, i = 1, ...,m , are given by (15) then

Pr{s} = Pr{Z1(N+1) = s (a1) | p′} × ...× Pr{Zm(N+1) = s (am) | p′}.

3 The Decision Model

Unlike the Bayesian decision models, in which the state probabilities are subjective, accord-

ing to the approach of this paper, the probability distributions on the evolving state spaces,

induced by the relative frequencies of the outcomes, are objective. Define C =C ∪ {θ} as

the set of outcomes, where θ signifies the existence of outcomes not in C. In other words, θ

symbolizes unanticipated outcomes whose nature is, by definition, unknown. Hence, acts

correspond to lotteries over the evolving sets of consequences {C,C′, ...}. Thus, the decision
model depicts choice under risk rather than choice under uncertainty.

The set of acts is finite. Consequently, at any given time (i.e., after any set N1, ..., Nm

of actions), the cumulative data consisting of action-outcome pairs, give rise to a finite

set of lotteries. Since no restrictions are imposed on the data,in principle, therefore, the

decision maker must consider encountering, and evaluating, any lottery in the space ∆ (C)

of distributions over C.

3.1 The choice set and the structure of the preference relations

Let A := {a1, ..., am} be a set whose elements are alternatives courses of action, or actions,

for short. The reader may find it convenient to think of ai ∈ A as corresponding to Ui ∈ U .
Let ∆ (C) denote the set of probability distributions on C.

The product set C = A × ∆(C) is said to be the choice set. A binary relation ≽ on

C, is a preference relation. Let ≻ and ∼ denote the asymmetric and symmetric parts

of ≽, respectively. I assumed that the decision maker is able to rank all pairs, (a, p) ∈
C = A × ∆(C). In particular, the decision maker is able to rank such pairs in which
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the probabilities in ∆ (C) are obtained from the formulas (4) and (5). For every given

C = A×∆(C), the structure of the preference relation is depicted axiomatically as follows.

(A.1) Weak Order - ≽ is complete and transitive.

(A.2) Conditional Archimedean - For each a ∈ A and (a, p) , (a, q) , (a, r) ∈ C such

that (a, p) ≻ (a, q) ≻ (a, r) there are α, β ∈ (0, 1) such that (a, αp+ (1− α) r) ≻ (a, q) ≻
(a, βp+ (1− β) r) .

(A.3) Conditional Independence - For each a ∈ A and all (a, p) , (a, q) , (a, r) ∈ C
and α ∈ (0, 1], (a, p) ≽ (a, q) if and only if (a, αp+ (1− α) r) ≽ (a, αq + (1− α) r) .

The next axiom asserts that the decision maker’s risk preferences are action-independent.

(A.4) Action-Independent Risk Preferences - For all a, a′ ∈ A and p, q ∈ ∆(C) ,

(a, p) ≽ (a, q) if and only if (a′, p) ≽ (a′, q) .

The next axiom asserts that the valuations of the actions in A and the distributions

in ∆ (C) are additively separable. To state the axiom I introduce the following additional

notations and definitions. Let C̄, C ⊂ C be the subsets of maximal and minimal outcomes

in C. Formally, for all c̄ ∈ C̄ and c ∈ C, (a, δc̄) ≻ (a, p) ≻
(
a, δc

)
for all (a, p) ∈ A ×

∆(C) \{δc | c ∈ C̄ ∪ C}.8 If C̄ or C contain more that one element, choose arbitrarily any

one of the maximal and minimal elements.

A pair of actions a, a′ ∈ A is said to be directly linked if neither
(
a, δc

)
≽ (a′, δc̄) nor(

a′, δc
)
≽ (a, δc̄) . They are indirectly linked if there exist a sequence of actions a1, ..., ak ∈ A

such that a1 = a, ak = a′ and for i = 1, ..., k − 1, ai and ai+1 are directly linked. For a

and a′ that are directly linked there is α′ ∈ (0, 1) such that(a′, δc̄) ∼
(
a, α′δc̄ + (1− α′) δc

)
or α ∈ (0, 1) such that (a, δc̄) ∼

(
a′, αδc̄ + (1− α) δc

)
. Suppose that a and a′ are indi-

rectly linked and let
(
a, δc

)
≻ (a′, δc̄) . Then there are αi ∈ (0, 1) such that

(
ai, δc̄

)
∼(

ai+1, αiδc̄ +
(
1− αi

)
δc
)
, i = 1, ..., k − 1.

For each α ∈ [0, 1] , let pα := αδc̄ + (1− α) δc. Then, for all a, a
′ ∈ A that are directly

linked there exist α, β ∈ [0, 1] such that (a, pα) ∼ (a′, pβ) . That such α, β ∈ [0, 1] exist

follows from the fact that, since a and a′ are directly linked, either (a′, δc̄) ≻
(
a, δc

)
or

(a, δc̄) ≻
(
a′, δc

)
. Consider the former case (the argument of the latter case is the same).

There is an interval I ⊂ [0, 1] such that (a, δc̄) ≻ (a′, pβ) ≻
(
a, δc

)
, for all β ∈ I. Then,

for every given given β ∈ I, by conditional Archimedean, there is α ∈ [0, 1] such that

(a, pα) ∼ (a′, pβ) .

8That c̄ and c are independent of a is an implications of (A.4).
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The difference α − β is a measure of the implicit cost difference between choosing a

and a′. The next axiom asserts that this cost difference is independent of the distributions

that, together with these actions, constitute the elements of the choice set.

(A.5) Separability - For any a, a′ ∈ A, that are directly linked, and α, β, α′, β′ ∈ [0, 1],

(a, pα) ∼ (a′, pβ) and (a, pα′) ∼
(
a′, pβ′

)
if and only if α− β = α′ − β′.

The last axiom asserts that, conditional on the actions, not all the elements of ∆ (C)

and equally preferred.

(A.6) Non-triviality - For each a ∈ A, (a, δc̄) ≻
(
a, δc

)
.

3.2 Representations

Theorem: Let ≽ be a preference relation on C and suppose that all the alternatives in A

are directly or indirectly linked then ≽ satisfies (A.1) - (A.6) if and only if there exist a

real-valued functions u on C and ζ on A such that, for all (a, p) , (a′, p′) ∈ C,

(a, p) ≽
(
a′, p′

)
⇔ Σc∈Cu (c) p (c) + ζ (a) ≥ Σc∈Cu (c) p

′ (c) + ζ
(
a′
)
. (6)

Moreover, the function u (·) + ζ (·) is unique up to positive linear transformation.

Proof. (a) (Sufficiency) Suppose that ≽ satisfies (A.1)-(A.4). By the expected utility

theorem, ≽ satisfies (A.1)-(A.3) if and only if there exist real-valued functions u (·, a) ,
a ∈ A, such that, for all (a, p) , (a, p′) ∈ C,

(a, p) ≽
(
a, p′

)
⇔ Σc∈Cu (c, a) p (c) ≥ Σc∈Cu (c, a) p

′ (c) .

Moreover, for each a ∈ A, the function u (·, a) is unique up to positive linear transformation.

Axiom (A.4) implies that, for all a, a′ ∈ A, u (·, a) and u (·, a′) are positive linear

transformations of one another. Fix â ∈ A and let u (·, â) := u (·) , then for all a ∈ A,

u (·, a) = u (·)λ (a) + ζ (a) , where, for all a ∈ A, λ (a) > 0, and λ (â) = 1, ζ (â) = 0. Thus,

for all (a, p) , (a′, p′) ∈ C,

(a, p) ≽
(
a′, p′

)
⇔ Σc∈Cu (c)λ (a) p (c) + ζ (a) ≥ Σc∈Cu (c)λ

(
a′
)
p′ (c) + ζ

(
a′
)
. (7)

Let c̄, c ∈ C be maximal elements of C (i.e., (a, δc̄) ≽ (a, p) ≽
(
a, δc

)
, for all (a, p) ∈ C).

For each α ∈ (0, 1) define pα = αδc̄ + (1− α) δc. Suppose that a and a′ are directly linked

and let α, β, α′, β′ ∈ [0, 1] be such that (a, pα) ∼ (a′, pβ) and (a, pα′) ∼
(
a′, pβ′

)
. Then, by

(7),

[αu (c̄) + (1− α)u (c)]λ (a) + ζ (a) = [βu (c̄) + (1− β)u (c)]λ
(
a′
)
+ ζ

(
a′
)

(8)
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and [
α′u (c̄) +

(
1− α′)u (c)]λ (a) + ζ (a) =

[
β′u (c̄) +

(
1− β′)u (c)]λ (

a′
)
+ ζ

(
a′
)
. (9)

But (8) is equivalent to

[u (c̄)− u (c)]
[
αλ (a)− βλ

(
a′
)]

= u (c)
[
λ
(
a′
)
− λ (a)

]
+ ζ

(
a′
)
− ζ (a) , (10)

and (9) is equivalent to

[u (c̄)− u (c)]
[
α′λ (a)− β′λ

(
a′
)]

= u (c)
[
λ
(
a′
)
− λ (a)

]
+ ζ

(
a′
)
− ζ (a) . (11)

Subtracting (9) from (8) we obtain

[u (c̄)− u (c)]
[(
α− α′)λ (a)−

(
β − β′)λ (

a′
)]

= 0. (12)

Since a and a′ are directly linked, by (A.5), α− β = α′ − β′. Hence, α−α′ = β− β′. Thus,

by (12), (
α− α′) [u (c̄)− u (c)]

[
λ (a)− λ

(
a′
)]

= 0. (13)

But (α− α′) ̸= 0 and, by (A.6), u (c̄) − u (c) > 0, implying that λ (a) = λ (a′) , for all

a, a′ ∈ A. In particular, λ (a) = λ (â) = 1, for all a ∈ A. Hence, by (7),

(a, p) ≽
(
a′, p′

)
⇔ Σc∈Cu (c) p (c) + ζ (a) ≥ Σc∈Cu (c) p

′ (c) + ζ
(
a′
)
. (14)

which is the representation (6).

If a and a′ are indirectly linked then ζ (a) − ζ (a′) = Σk−1
i=1

(
ζ
(
ai
)
− ζ

(
ai+1

))
, where(

a1, ..., ak
)
is a sequence that links a = a1 and a′ = ak. Thus, (6) holds with ζ (a) =

ζ (a′) + Σk−1
i=1

(
ζ
(
ai
)
− ζ

(
ai+1

))
.

(Necessity) The proof that (6) implies that ≽ satisfies (A.1)-(A.6) is obvious and is,

therefore, omitted.

The uniqueness of u (·) + ζ (·) follows from the uniqueness of u (·, a) . ■

The function ζ captures the (utility) cost of the actions and, if the preference relation

satisfies (A.1)-(A.6), it is additively separable from the expected utility of the outcomes.

Implicit in the representation is the expression u (θ) p (θ) . One should think of θ as rep-

resenting unanticipated outcomes, or outcomes ‘not in C ′. Accordingly, u (θ) captures the

decision maker’s valuation of discovering outcomes of whose existence he is unaware.
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4 Discussion

4.1 Dynamic choice behavior

The potential of discovering new consequences raises novel conceptual issues regarding the

modeling of choice dynamics. Specifically, the discovery of unanticipated consequences

expands the support of the distributions and, thereby, changes the nature of the risks

associated with future actions. Furthermore, unawareness of the consequences that may

obtain makes it impossible to design plans of choosing future actions contingent on the

realizations of such consequences. Put differently, whereas the probability of encountering

an unforeseeable consequences is known, the nature of such consequences, once they become

concrete, is inconceivable a priori. This make it impossible to plan a course of action which

depends on these consequences, yet, they affect the evaluation of future actions.

To overcome this difficulty, I invoke the fact that, given the structure of the preference

relation, once new consequences are discovered, the preference relation extended to the

expanded set of known consequences implies that the newly discovered consequences are

assigned utilities. And while the consequences themselves may be inconceivable, the utilities

assigned to them are conceivable. The choices of future actions are contingent on the

utilities rather than the consequences themselves.

To grasp the choice dynamics implied by the model, consider a decision problem that

requires the choice of actions over two consecutive periods. Suppose that at time τ = N,

the action ai has been taken Ni times, i = 1, ...m, the set of observed outcomes is Cτ and

the corresponding vector of frequency distribution is p = (p1, ...,pm) . A choice of ai ∈ A

induces a conditional probability distribution pτ (· | ai) ∈ ∆(Cτ ) , given by

pτ (c | ai) = Pr{Zi(Ni+1) = c | p},

for all c ∈ Cτ , and

pτ (θi | ai) = Pr{Zi(Ni+1) = θi | p},

where Pr{Zi(Ni+1) = c | p} and Pr{Zi(Ni+1) = θi | p} are given by (4) and (5), respectively.

Consider a choice of ai, and supposed that the consequence that obtains is Zi(Ni+1) = ck.

(a) If ck ∈ Cτ then Cτ+1 = Cτ and Cτ+1 = Cτ . The decision maker updates the

frequency distribution ni (Cτ ) to n′
i (Cτ+1) =

(
ni1, ..., nik + 1, ..., ni|C|

)
and, for all j ̸= i,

nj (Cτ ) = n′
j (Cτ+1). The corresponding probability vector, pτ (ai, ck) = (p′

1, ..,p
′
k, ...,p

′
m),

13



is given by:

p′
i = (p′ic1 , ..., p

′
ic|C|

, p′iθi) =
(
ni1, ..., nik + 1, ..., nic|C| , piθi

)
/ (Ni + 1 + θi) , (15)

and p′
j = pj , j ̸= i.

Define

κ′ (i, j) =
⟨p′

i,p
′
j⟩

∥ p′
i ∥∥ p′

j ∥
, i, j ∈ {1, ...,m}.

Letting N ′
i = Ni + 1 and, for j ̸= i, N ′

j = Nj . Then, for all c ∈ Cτ+1 and j = 1, ...,m,

Pr{Zi(N ′
i+1) = c | pτ, (ai, ck)} =

m∑
j=1,j ̸=i

p′jcκ
′ (i, j)

N ′
j

N + 1
+ p′ic, (16)

and

Pr{Zj(N ′
j+1) = c | pτ , (ai, ck)} =

m∑
r=1,r /∈{i,j}

p′rcκ
′ (j, r)

Nr

N + 1
+p′icκ

′ (j, i)
Ni + 1

N + 1
+p′jc. (17)

Given that ai was chosen in time τ resulting in the outcome ck ∈ Cτ+1, a choice of aj

at time τ + 1 induces a conditional probability distribution pτ+1 (· | aj) ∈ ∆(Cτ+1) , given

by

pτ+1 (c | aj) = Pr{Zj(N ′
j+1) = c | pτ , (ai, ck)},

for all c ∈ Cτ+1.

Given the choice of aτ in the first period, in the second period the decision maker

chooses an action contingent on the consequence c′. Formally,

a∗
(
aτ , c

′) ∈ argmax
A

[
Σc∈Cτ+1u (c)pτ+1

(
c | a, (aτ , c′)

)
+ ζ (a)

]
.

(b) If Zi(Ni+1) = θi, then the set of known consequences is augmented by the addition

of a newly discovered outcome, ĉ /∈ Cτ . Formally, Cτ+1 = Cτ ∪ {ĉ} and Cτ ⊂ Cτ+1 =

Cτ+1∪{θ}. Because ĉ is unforeseeable, it is impossible to decide ahead of time on a plan of

actions contingent on its realizations. However, a decision maker whose preference relation

on the augmented choice set Cτ+⊮ = A×Cτ+1, is depicted by (A.1)-(A.6), anticipates being

able to assign utility value to the unforeseen consequences, whatever it may happened to

be. Put differently, the decision maker anticipates assigning a real number, u(ĉ) to every

ĉ that may obtain. The crucial point is, the decision maker cares about the value of the

14



utility rather than the particular consequence that yields it. Consequently, the decision

maker foresees choosing, in the second period, the action a∗ (aτ , u) given by

a∗ (aτ , u) ∈ argmax
A

[Σc∈Cτu (c)pτ+1 (c | a, aτ ) + up(u | a, aτ ) + ζ (a)] ,

where u is the utility of the unforeseeable consequence when it takes a concrete shape.

Viewed form the first period (i.e., before the new consequence are discovered) the

probability p(u | a, aτ ) may be decomposed as follows:

p(u | a, aτ ) = Pr(θ | aτ )× Pr(θ = u | a, aτ )

where Pr(θ | aτ ) = Σc ∈ Cτp(c | aτ ) and the utility risk, Pr(θ = · | a, aτ ) (i.e., the

probability that the unforeseen consequence yield a particular utility value) is subjectively

assessed by the decision maker. In particular, if the decision maker is guided by his pervious

experience he may assign to each utility value the probability that that value obtained in

the past. Formally,

Pr(θ = u | a, aτ ) = Σc∈{c′∈Cτ |u(c′)=u}p(c | a, aτ ).

Define

V (a∗(aτ , u)) = Σc∈Cτu (c)pτ+1 (c | a∗ (aτ , u) , aτ ) + up(u | a, aτ ) + ζ (a∗ (aτ , u)) ,

Then the first-period decision problem is: Choose aτ ∈ A so as to maximize

Σc′∈Cτ

[
u
(
c′
)
+ λ[Σc∈Cτ [u (c) + ζ

(
a∗

(
aτ , c

′))]pτ+1

(
c | a∗

(
aτ , c

′))p(c′ | aτ )+
Pr(θ | aτ )

∫ ∞

−∞
(V (a∗(aτ , u)) + ζ (a∗(aτ , u)du) Pr(θ = u | a, aτ ) + ζ (aτ ) ,

where λ ∈ [0, 1] denotes the discount rate.

The choice of the first-period action yields payoffs, in the form of outcomes, and infor-

mation regarding the probabilistic payoffs of actions, including potential discovery of unan-

ticipated outcomes. This dual role implies that the first period choice involves exploitation-

exploration trade-off. In other word, it may be that (a,pτ (· | aτ )) ≽ (a′,pτ (· | a′τ )) and

yet, a′τ is chosen in the first period if it is more informative about the distribution of

outcomes in the second period.
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4.2 Multi-armed bandit

A strand of literature displaying some of the ingredients of the model of this paper deals

with multi-armed bandit problems. In its most familiar form it is a sequential decision prob-

lem that requires the decision maker (e.g., gambler) choose a sequence (finite or infinite) of

arms, of distinct slot machines, to pull so as to maximize the expected present value of his

reward. The distributions of the payoffs of the different arms are unknown. Each choice

of arm pays off immediately and, at the same time, informs the player about the distribu-

tion of the payoffs associated with the arm. The most common variation of the multi-arm

bandit problems assumes that the random returns of the distinct arms are stochastically

independent. Other variations include correlated random payoffs across arms. In either

case, since the possible payoffs are supposed to be known, the learning takes the form of

updating the distributions by the application of Bayes’ rule.9

The main differences between the multi-arm bandit models and the model of this paper

are: (a) Whereas in the multi-armed bandit problem it is assumed that the set of possi-

ble payoffs is known and fixed, the focal issue of this paper is the process of discovery of

unanticipated outcomes, or payoffs, and (b) A consequence of (a) is that unlike the explo-

ration in the multi-armed bandit game, which consists of updating the distributions of the

arms by the application of Bayes’ rule, the exploration in the model of this paper includes

both the discovery of new, unanticipated, outcomes and the updating of the probability

distributions of the known outcomes. This former aspect renders Bayes’ rule inapplicable.

Instead, learning is accomplished by the application of Ewens’ (1972) generalization of De

Morgan’s rule.

4.3 Related literature

Schipper (2022) derives the predictive probabilities of the De Morgan rule, Ewens sampling

rule, as subjective probabilities. In particular, Schipper considers the process of repeated

sampling from a population, using the same sampling procedure, and studies the question of

what must be true about the pattern of a decision maker’s betting on outcomes (including

the discovery of novelty) for it to display beliefs that agree with these rules. Whereas

the main concern of this paper is the modeling of the behavior of decision makers whose

beliefs are represented by Ewens’ (1972) sampling rule, the main thrust of Schipper’s

9Bergemann and Välimäki (2008) provide a breif review of this literature.
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work, the characterization the subjective beliefs that agree with the objective predictions

of the exchangeable random partition models and display ‘reverse Bayesianism’ á la Karni

and Vierø (2013, 2017). In particular, Schipper shows that models exhibiting ‘reverse

Bayesianism’ include, among others, the De Morgan model and some variations of it,

including Ewens’ sampling rule.

The exploitation-exploration aspect of the dynamic application of the model is a feature

shared by Karni (2022). Unlike the present paper, in which the predictions of probabili-

ties of the action-contingent outcomes is arrived at by induction, the probabilities of the

outcomes in Karni (2022) are predicted by theoretical models. Moreover, whereas in this

paper actions may discover unanticipated outcomes, in Karni (2022) the set of outcomes

is known and fixed, so the exploration aspect is captured by the updating of the decision

maker’s probabilistic belief in the validity of the theories using Bayes’ rule.

Unlike the Bayesian approach to unawareness modeled in Karni and Vierø (2013, 2017),

in which the probability assigned to newly discovered events in the state space and the

residual probability assigned to unanticipated outcomes, are subjective and derived from

the preference relation. The probability assigned to unanticipated outcomes in the model

of this paper is objective and follows algorithmic process. Moreover, the approach of Karni

and Vierø allows the probability of unanticipated outcomes to increase with the discovery

of new consequences. This possibility is not allowed by the model of this paper. The

probability of unforeseen consequences must decay as the number of observations increases.

Invoking the state-space formulation of increasing awareness introduced by Karni and

Vierø (2013, 2017), Grant et al. (2022) propose a model of learning in which decision

makers become aware of new states (i.e., resolutions of uncertainty) through the discovery

of unknown actions and consequences. Whereas the observations in this work are action-

outcome pairs, the sampling process in the model of Grant et al. yields observations of

states restricted by the known acts and consequences at each point in time. Moreover,

unlike this paper, in which the underlying stochastic process generating the observations

is not assumed to have a specific structure, Grant et al. (2022) assume that the data

is generated by a Dirichlet process, which govern the evolution of the decision maker’s

beliefs.10 Finally, the main thrust of their work is the characterization of the learning

process as opposed to that of the decision making process.

10A focal issue in their work is the ambiguity surounding the base measure of the Dirichlet process
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Eichberger and Gouerdjikova (2024) propose a model of decision making under un-

certainty whose primitives are cases, (i.e., triplet of action taken, outcome obtained and

characteristics, describing background data that determines the outcome corresponding to

each and every action). The set of cases is the data available at the point at which a deci-

sion maker must choose the next action. The data permits the construction of the relative

frequencies of the already known outcomes and characteristics. The set of characteristics in

the data may not be complete. It is completed by including a “place holder” signifying not

yet-observed characteristic. They axiomatize a representation of preferences that includes

a subjective weight assigned to this “place holder”, which they interpret as measure of the

awareness of unawareness of possible characteristics. In the model of this paper, the set of

observed act-outcome pairs is the data and the states are resolutions of the uncertainty, has

the flavor of characteristics set in Eichberger and Gouerdjikova (2024). Despite the similar

interpretation, however, there is a fundamental distinction between the state-space and the

set of characteristics. First, the state space is a derived concept whereas the characteris-

tics are taken to be directly-observed primitive in Eichberger and Gouerdjikova’s model.

Second, the evolution of the state space is endogenous, following naturally the process of

taking actions and discovering new, unanticipated, outcomes, whereas the discovery of new

characteristics is exogenous and independent of the actions taken. Third, in the present

model the probability of discovering an outcome, not yet seen, (i.e., the measure of un-

awareness) is monotonic decreasing as a function of the number of actions taken (i.e., that

sample size), whereas in the model of Eichberger and Gouerdjikova a discovery of not yet-

seen characteristic increases their measure of the unawareness. Forth, unlike the extended

set of characteristics whose completion entails a “place holder,” the specification of state

space does not require such device. The unawareness in this model is about the possible

outcomes in which the mutator plays the role of “place holder.” Fifth, in the model of

this paper the probability distributions on the evolving state space are objectively derived

from the data, while the distribution on the set of extended characteristics incorporates

a subjective “degrees of unawareness”, which is an ingredient of the representation of the

preference relations.
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