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1. Introduction

Decades of research have shown that genetic variation influences complex behav-

iors and outcomes, including educational attainment, income, and wealth. One strand

of this literature exploits data on twins and adoptees to decompose variance in such

outcomes into genetic and non-genetic components and consistently finds a non-trivial

role for genetic factors (Taubman, 1976; Plug and Vijverberg, 2003; Cesarini et al.,

2009; Cronqvist and Siegel, 2014, 2015; Black et al., 2020; Fagereng, Mogstad, and

Rønning, 2021). More recently, breakthroughs in behavioral genetics have led to the

increasing availability of molecular genetic variables in rich survey data. As a result,

researchers can directly estimate associations between specific genetic variants (often

aggregated into summary measures called polygenic indices or polygenic scores) and

economic outcomes (Rietveld et al., 2013; Okbay et al., 2016; Lee et al., 2018; Hill

et al., 2019). Much of this literature has studied polygenic indices constructed to

predict educational attainment, as these indices have proven remarkably powerful in

predicting a series of important economic outcomes over the life-cycle, including not

only educational attainment, but also income and household wealth.1

Although there are many sources of inequality, genetic factors are distinct because

they are fixed at conception and automatically transmitted across generations. As

long as genetic factors remain a black box (an inscrutable “nature” contrasted with

a controllable “nurture”), it may be tempting to assume that there is little room

to counter resulting inequality with policy. In contrast, demystifying the primitive

abilities and preferences linking genetic differences to complex outcomes like income

or wealth can help to clarify the role of public policy. Indeed, the existing literature

emphasizes the study of how genetic and environmental factors interact to shape com-

plex economic outcomes (gene-by-environment or G×E interactions). Such research

often estimates whether specific reforms or other government actions moderate or

amplify genetic associations and thus offers guidance about how policy can mitigate

genetic inequality. However, nearly without exception, G × E studies approach the

problem atheoretically, without an optimizing model of individual behavior.2 We ar-

1See Beauchamp et al. (2011); Benjamin et al. (2012); Visscher et al. (2017) for reviews.
2A lone exception is offered by Biroli (2015), who estimates an optimizing model of health be-

haviors with heterogeneity in genetic predisposition to obesity. In our current work, we examine a
substantially different set of behaviors, emphasize the possibility of G×E interactions in welfare, and
explore discrepancies between these interactions and the G×E interactions in observable outcomes
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gue that this approach, while it highlights a role for policy, severely limits what can

be learned from G × E findings. In particular, incorporating genetic variation into

economic models is important to understand whether G × E findings generalize to

counterfactual policies and whether these findings also point to G×E interactions in

welfare.

We advance the study of genetic endowments and economic outcomes by de-

veloping and estimating a model of consumption, savings, and portfolio choice to

understand the channels through which genes predicting education affect wealth ac-

cumulation over the life-cycle. Motivated by descriptive empirical patterns in Barth,

Papageorge, and Thom (2020) and Papageorge and Thom (2020), the model allows

genetic variation (measured by a polygenic index for educational attainment) to af-

fect wealth accumulation through multiple channels beyond completed education,

including labor income, utility from work, and financial proficiency. We explicitly

model childhood SES, later-life inheritances, and their correlations with genetic en-

dowments to address confounding with family environments. A realistic representa-

tion of pensions and the Social Security system allows us to simulate the effects of

cost-saving reforms that have been proposed as responses to an aging population.

We estimate model parameters using data on polygenic indices, income, retirement

decisions, wealth, and portfolio choices in the Health and Retirement Study.

The first contribution of this analysis is to quantify several different channels

beyond completed schooling through which genetic endowments previously linked

with education contribute to wealth inequality. The most important channels are

differences in labor income and financial sophistication as measured by stock market

returns. Differences in stock market returns emerge as particularly important. Our

estimates suggest that, on average, a one standard-deviation increase in the polygenic

score for educational attainment is associated with expected log-returns from risky

investments that are 78 basis points (0.78 percentage points) higher per year. This

gradient induces a positive correlation between the polygenic score and stock market

participation, as individuals forgo wealth-building stock market investments not only

due to costs of entry but also due to lower expected returns (Calvet, Campbell, and

emphasized by the existing literature. While Houmark, Ronda, and Rosholm (2020) estimate the
parameters of a production function for childhood skills, they do not estimate the kind of optimizing
model needed to conduct welfare analyses or explore counterfactual behavioral responses.
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Sodini, 2007). These results highlight how the genetic endowments studied here have a

compounding effect over the life-cycle—the same genetic factors that give individuals

an advantage in acquiring educational attainment also increase income, and these

advantages are jointly magnified by higher portfolio returns over the life-cycle.

A second contribution is to use the estimated model to conduct an ex-ante analysis

of G× E interactions. Given that the structural estimates highlight the importance

of portfolio returns in driving the gene-wealth gradient, it is natural to ask whether

this gradient can be affected by the design of public pension systems, since these are

a critical policy tool used to address inequality in wealth and income at older ages.

Thus, we examine the extent to which two counterfactual Social Security reforms

would affect the strength of the polygenic score–wealth gradient in our estimated

model. The first increases the age of retirement by delaying the schedule of available

benefits. The second leaves the schedule in place but reduces the level of benefits.

These policies exemplify two of the main types of reforms that have been considered

to address fiscal challenges of an aging population (Social Security Administration,

2022b). We find that the policies differ in the margins along which they incentivize

individuals to adjust: the shift in the schedule of benefits pushes agents to extend their

working lives, and the reduction in benefits incentivizes them to save more. Strikingly,

while the benefit reduction policy reduces wealth inequality between individuals with

different genetic endowments, it increases welfare inequality since it induces reductions

in consumption among a group of individuals whose consumption is already low.

This finding underscores the importance of not only considering G × E interactions

in observable outcomes but also in terms of the welfare of individuals since these

may differ and generate conflicting policy prescriptions. Naively, one might assume

that the empirical association between genes and wealth is a good proxy for the

relationship between genes and welfare. Under such an interpretation, any policy

that reduces gene-wealth gradients could be seen as reducing inequality in welfare

generated by the genetic lottery. Our analyses demonstrate that this interpretation

can be perilous and that economic theory can be valuable for interpreting the welfare

implications of the expanding G× E literature.

Additional counterfactual exercises reveal the important role that differences in

financial sophistication play in determining the relative welfare consequences of each
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Social Security reform. Even though the median welfare effects of the two coun-

terfactual reforms are similar under our baseline estimates, the welfare costs of the

benefit-reduction plan fall substantially in alternative scenarios where individuals’

financial inefficiencies are smaller. Thus, the benefit-reduction policy may be more

attractive than the shift in the schedule of benefits if the financial proficiency of the

general population can be improved through other policies.

Our analysis connects to four main literatures. First, our paper is related to

the literature that studies genetic associations and G × E interactions using poly-

genic scores, surveyed by Biroli et al. (2022). A series of influential genome-wide

association studies (GWAS) have estimated associations between individual genetic

markers and complex socioeconomic outcomes, allowing for the construction of poly-

genic scores for these traits (Rietveld et al., 2013; Okbay et al., 2016; Lee et al.,

2018; Karlsson Linnér et al., 2019; Hill et al., 2019). Polygenic scores for educational

attainment have received particular attention, with several papers documenting as-

sociations between such scores and completed education, income, wealth, and other

measures of socioeconomic success (Belsky et al., 2016, 2018; Barth, Papageorge,

and Thom, 2020; Papageorge and Thom, 2020). Rustichini et al. (2023) estimate a

model of intergenerational transmission that separates the influence of a polygenic

score for education into channels running through cognitive and non-cognitive skills.

Past studies have also found that relationships between these scores and educational

attainment are moderated by environmental factors including compulsory schooling

laws, school quality, birth order, and family socioeconomic status (Barcellos, Car-

valho, and Turley, 2021; Arold, Hufe, and Stoeckli, 2022; Trejo and Domingue, 2018;

Muslimova et al., 2020; Ronda et al., 2022; Papageorge and Thom, 2020; Belsky et al.,

2016). Other studies examine interactions between environmental factors and poly-

genic scores for other outcomes including alcohol use, smoking, heart disease, and

depressive symptoms (Fletcher and Lu, 2021; Bierut et al., 2023; Baker et al., 2022;

Furuya et al., 2022). We contribute to this literature by incorporating genetic vari-

ation captured by a polygenic score into a structural life-cycle model with multiple

mechanisms linking genes and wealth. This allows us to quantify these channels and

perform ex-ante counterfactuals to assess the likely G×E effects of policies that have

been proposed but not implemented. Importantly, our analysis highlights that the
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G× E interactions in outcomes uncovered by this literature might be different than

G × E interactions in welfare and that economic theory is useful in distinguishing

between these cases.

Our paper also engages the literatures on the heritability of economic outcomes,

and causes of intergenerational persistence in socioeconomic status. A large literature

uses twin and adoption studies to demonstrate that genetic variation has explanatory

power for outcomes like earnings, risk-taking and giving, investment decisions and bi-

ases, and saving decisions (Taubman, 1976; Cesarini et al., 2009, 2010; Cronqvist and

Siegel, 2014, 2015; Black et al., 2020; Fagereng, Mogstad, and Rønning, 2021). Our

analysis is not well suited to answer questions about the overall extent of heritability

for the human capital and wealth outcomes that we discuss. In general, polygenic

scores tend to explain only a fraction of the variance that these other methods at-

tribute to genetic factors (Becker et al., 2021). Rather, our goal is to take advantage

of the fact that polygenic scores are observed in rich longitudinal data sets like the

HRS to more easily analyze the mechanisms through which they operate and how

they interact with environments. Such findings may be particularly important in

the literature that models intergenerational mobility and tries to account for sources

of intergenerational persistence (Gayle, Golan, and Soytas, 2022; Rustichini et al.,

2023; Collado, Ortuño-Ort́ın, and Stuhler, 2023). Such models inevitably have to

make choices about what parameters are heterogeneous and how such heterogene-

ity is transmitted across generations. Our results offer guidance to such modelling

efforts. In particular, they suggest that it may be important to allow genetic endow-

ments related to educational attainment to also affect household income and wealth

dynamics and to properly model how such channels could affect the intergenerational

transmission of human capital.

A third literature uses life-cycle models to study the fiscal and welfare conse-

quences of policies related to retirement. Wealth at retirement varies substantially,

and life-cycle models can provide benchmarks and tests to assess the adequacy of

households’ savings (Hubbard, Skinner, and Zeldes, 1995; Bernheim, Skinner, and

Weinberg, 2001; Scholz, Seshadri, and Khitatrakun, 2006). Heterogeneity across di-

mensions like earning potential, life expectancy, and household structure is a crucial

characteristic of models used to evaluate reforms to the Social Security system (Conesa
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and Krueger, 1999; Fuster, İmrohoroğlu, and İmrohoroğlu, 2007; Hairault, Langot,

and Sopraseuth, 2008; Imrohoroğlu and Kitao, 2012). Indeed, the degree to which

a household benefits or loses from a particular reform depends on its characteristics

(Fuster, İmrohoroğlu, and İmrohoroğlu, 2003; Kaygusuz, 2015; Bagchi, 2019). Our

model has a rich representation of heterogeneity along observable and unobservable

dimensions, with more than five thousand types of ex-ante differentiated agents. We

add to the literature by incorporating a novel measure of genetic endowments and

allowing it to influence financial sophistication, earnings, and the cost of work. Hav-

ing a common driver of these characteristics generates compounding welfare effects

from policy changes: the people who are most reliant on Social Security payments are

those least well-positioned to offset changes using their private savings or extending

their working lives. For each of the alternative policies that we analyze, we examine

the distribution of expected welfare losses across the population and identify those

who are most harmed.

Lastly, our paper relates to the literature on household portfolio choice and the

wealth distribution. Differences in financial sophistication can generate large differ-

ences in wealth across households over time (Lusardi, Michaud, and Mitchell, 2017).

Investigating the sources of such differences and how they affect choices is crucial to

understanding wealth inequality. The workhorse models in the portfolio choice lit-

erature prescribe that every household should allocate a substantial fraction of their

wealth to stocks (Merton, 1969; Samuelson, 1969; Cocco, Gomes, and Maenhout,

2005). Given the generally low rates of stockholding documented in various coun-

tries, later studies have incorporated financial costs to stockholding, heterogeneity

in preferences, and tail-risks as ways to reconcile model predictions with household

decisions (see e.g., Vissing-Jorgensen, 2002; Gomes and Michaelides, 2005; Fagereng,

Gottlieb, and Guiso, 2017; Catherine, 2021). Other studies have documented hetero-

geneity in the returns to wealth and financial sophistication, showing that sophistica-

tion covaries with characteristics like education (Calvet, Campbell, and Sodini, 2007;

Fagereng et al., 2020). We contribute to the literature by presenting evidence that

the polygenic score we study can be related to financial sophistication, which can lead

to compounding effects of genetic endowments over the life-cycle.

The remainder of this paper is organized as follows. Section 2 describes our
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data and presents motivating summary statistics. Section 3 presents our model and

outlines our estimation strategy. Section 4 presents parameter estimates, the fit of

the empirical patterns that we target, and the implications of the estimates. Section

5 uses the model to assess how socioeconomic outcomes, lifetime welfare, and their

relationship with the EA score would change under two cost-saving changes to the

Social Security system. Section 6 concludes.

2. Data

2.1. The Health and Retirement Study and Our Sample

Our empirical analysis uses data from the Health and Retirement Study (hence-

forth HRS). The HRS surveys a representative sample of more than 20,000 Americans

over the age of 50 and their spouses. The longitudinal design of the survey features

biennial waves starting in 1992 and continuing until the present, which provide infor-

mation on respondents’ labor supply, income, wealth, financial decisions, retirement,

mortality, and inheritances. Retrospective survey questions ask about childhood so-

cioeconomic status and parental characteristics.3 The HRS data can also be linked

to Social Security Administration records to provide data on earned income through-

out the life-cycle. Crucially, the HRS contains genetic information on over 18,000

respondents collected from 2006 onward. Genetic data allow us to construct various

measures of genetic endowments from the behavioral-genetics literature for HRS re-

spondents, and to study their associations with other HRS variables. These measures

include polygenic scores, which are summary indices of genetic variants that have

been shown to predict observable outcomes.

This paper uses a polygenic score for educational attainment developed by Lee

et al. (2018) as a measure of genetic endowments that influence various dimensions

of human capital.4 We refer to it as the EA score. This individual-level measure

aggregates genetic variants that have been linked to educational attainment. It is

standardized to have a mean of 0 and a variance of 1. A relatively high EA score

3The HRS also collects information on a host of factors that are omitted from our analysis,
including variables on health and family structure.

4New polygenic scores are developed and updated for different traits as more data becomes
available. In the case of educational attainment, Okbay et al. (2022) construct a polygenic score
based on a larger discovery sample than that of Lee et al. (2018) (3 million vs. 1.1 million individuals)
and which also improves upon its predictive power. We use the polygenic score of Lee et al. (2018)
because it is the latest that has been calculated and made available for HRS respondents.
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indicates that an individual possesses relatively more of the genetic variants that

have been empirically linked out-of-sample (in our case in non-HRS samples) to ed-

ucational attainment. Previous studies have shown that the EA score is predictive

not only of completed education but also of other economic outcomes such as labor

supply, income, and wealth, even after flexibly controlling for educational attainment

(Papageorge and Thom, 2020; Barth, Papageorge, and Thom, 2020). Since earlier

papers have discussed the EA score in depth, we refer the reader to Appendix A for

more details. In that appendix we present an overview of how polygenic scores like

the EA score are constructed, important limitations in their interpretation and use,

and previous research in the social sciences that has used the EA score.

Data availability and issues surrounding the interpretation of polygenic scores

detailed in Appendix A place several restrictions on our sample. We begin with the

sample used in Barth, Papageorge, and Thom (2020), which includes only households

with members of European ancestry. As explained in Martin et al. (2017), a set

of technical issues means that the incorporation of non-European households into

our analysis would be misguided and could generate misleading conclusions about

cross-ethnic group genetic differences. The sample is also limited to households with

non-missing data on key measures of interest for this study, including wealth, stock

market participation, and Social Security Administration earnings records. These

requirements permit a maximum sample size of 2,590 households (5,701 household-

year observations) from the overall HRS sample of over 20,000 households and over

160,000 household-year observations.

We make further sample restrictions aligned to the structural model. In partic-

ular, the model is a unitary household model that abstracts from joint labor supply

decisions and marriage dynamics. We focus on households that i) enter the HRS panel

as married or partnered two-person male-female households; ii) remain intact (except

due to the death of the female head of household); iii) are not observed earning income

from jobs not covered by the Social Security Administration (SSA) data; iv) receive

at least 70 percent of their SSA earnings income from the male partner; and v) have

non-missing genetic data for the male partner, which we take to be the genetic en-

dowment of the household. This set of restrictions generates a main analytic sample

of 870 households with wealth data observed for a total of 2,318 household-year ob-
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servations. We note, however, that to generate income and inheritance moments, we

use slightly different samples. Samples used for the inheritance and income processes

are described in Appendix B.1.

We use a comprehensive measure of household wealth that includes the net value

of financial assets (cash, checking and saving accounts, certificates of deposits, stocks,

bonds, mutual funds, trusts, and others, minus the value of non-housing debt); the

net value of housing and businesses; and the balances of retirement accounts such as

401k and Keogh accounts. This is similar to the measure of wealth used in Barth,

Papageorge, and Thom (2020) with the exception that we exclude the present value of

Social Security payments, defined benefit pensions, and annuity income. We take the

values of these components of wealth from the RAND HRS “Detailed Imputations”

files. Our analysis also uses a binary indicator of whether households own any stocks,

which takes a value of one for direct holdings, mutual fund holdings, and holdings

through retirement accounts.

For our measure of labor income, we use the Respondent Cross-Year Summary

Earnings data set of the HRS, which contains earnings data from the Social Security

Administration’s Master Earnings File (MEF). We use individuals’ total earnings from

the MEF, which include “regular wages and salaries, tips, self-employment income,

and deferred compensation” (see Olsen and Hudson, 2009, for a detailed description

of the components and history of measured earnings in the MEF). The earnings are

derived from tax filings and are available in the Summary Earnings data set at an

annual frequency, starting from the year 1951. Because the earnings data in the

MEF were initially collected with the purpose of calculating Social Security benefits,

earnings are top-coded at their maximum taxable level, which changes every year. As

in Barth, Papageorge, and Thom (2020), we use data from the Current Population

Survey to replace top-coded amounts with average earnings conditional on earning at

least the maximum taxable amount for a given year.

Table 1 presents basic descriptive statistics for the analytic sample. Approximately

30 percent of the sample has a college degree, making the sample more highly educated

than the overall HRS population. Retirement rates increase from approximately 17

percent for ages 50-62 to about 59 percent for ages 63-67. By age 73, 86 percent of the

sample has retired. Table 1 also presents basic descriptive statistics on the log of total
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Table 1: Summary Statistics.

A. Demographics, Income and Wealth B. Childhood Socioeconomic Status (SES)
Variable Mean SD N Variable Mean SD N

Birth Year 1939.5 5.81 870 Mother’s Educ. 10.52 2.97 766
College 0.30 0.46 870 Father’s Educ. 10.20 3.58 766
Retired Family SES

50-62 0.17 0.37 3,350 Well Off 0.07 . 766
63-67 0.59 0.49 1,786 Average 0.67 . 766
68-72 0.78 0.42 1,393 Poor 0.24 . 766
73+ 0.86 0.35 503 Varied 0.01 . 766

Total Prime-Age Income (× $1,000) Father’s Job
Mean 1,984.48 . 870 Manager / Prof. 0.18 . 766
Std. Dev. 802.85 . 870 Sales 0.07 . 766
25th Percentile 1,451.90 . 870 Clerical 0.03 . 766
50th Percentile 1,928.22 . 870 Service 0.04 . 766
75th Percentile 2,456.86 . 870 Manual / Operators 0.64 . 766

Household Wealth (× $1,000) Armed Forces <0.01 . 766
Mean 716.34 . 2,318 Don’t Know 0.03 . 766
Std. Dev. 926.29 . 2,318 Missing <0.01 . 766
10th Percentile 52.12 . 2,318 Child Health
25th Percentile 150.90 . 2,318 Excellent 0.55 . 766
50th Percentile 372.03 . 2,318 Very Good 0.27 . 766
75th Percentile 872.71 . 2,318 Good 0.13 . 766
90th Percentile 2,871.72 . 2,318 Fair 0.03 . 766

Any Stocks 0.68 0.47 2,318 Poor 0.01 . 766

Summary statistics for demographics, income, wealth, and SES variables in our main analytical sample.

prime-age SSA earnings. To construct this variable, we sum male earnings from age

30 to 60. The median of total income over this age range is $1.9 million, which would

constitute an average of approximately $59,000 per year in 2010 dollars. Table 1 also

provides detailed descriptive statistics for wealth for household-year observations in

which the male household member was aged 60-70. The median wealth in the sample

is approximately $372,000.

2.2. Genetic Endowments and Family Environments

A natural concern is that genetic endowments are endogenous to family envi-

ronments. Parents who provide their children with genetic material also provide

them with family environments, including resources that could benefit their educa-

tional attainment, labor market behaviors and outcomes, financial decision-making,

and wealth accumulation. As many such factors are likely to be unobserved and

thus omitted from empirical analyses, estimated coefficients relating the EA score to
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outcomes, including education, are likely to be upwardly biased. A host of studies

have employed different methods to address this concern. For example, Trejo and

Domingue (2018) and Belsky et al. (2018) rely on within-sibling variation in the EA

score. This amounts to adjusting for a family fixed effect, and nearly all relationships

hold despite some differences. Another method is to control for a rich set of variables

that describe childhood environments. Both Ronda et al. (2022) and Arold, Hufe,

and Stoeckli (2022) show that controlling for observed measures of family background

can reduce the bias substantially. Since the HRS does not have the data to perform a

within-family analysis, our approach is to incorporate information on childhood SES

to control for key dimensions of childhood socioeconomic status. In what follows, we

discuss how we summarize this information into a single variable.5

To construct a summary SES measure for the male members of each household in

our sample, we estimate a cross-sectional regression of the following form:

Educi = b0 + b1EAi + b2Xi + ei (1)

Here Xi contains a vector of background variables that includes: mother’s years of

schooling, father’s years of schooling, dummy variables for different subjective assess-

ments of family SES growing up, dummy variables for categories of father’s occupation

growing up, and dummy variables for subjective assessments of health in childhood.

Table 1 presents descriptive statistics on the components of Xi. After estimating the

above equation, we construct an index of childhood SES as: SES Scorei = b̂2Xi. We

normalize this measure so that it has a mean of zero and a unit standard deviation.

While we do not have exogenous variation in the polygenic score EAi in our sample,

the results from Ronda et al. (2022) and Arold, Hufe, and Stoeckli (2022) give us

some reason to believe that once we condition on SES Scorei, the associations we

observe between EAi and human capital outcomes may be close to causal effects.

2.3. Descriptive Associations

Table 2 presents basic regressions that highlight strong empirical relationships

between the EA Score, wealth, and stock market participation, which help to moti-

vate our structural model. Panel A presents regressions of log household wealth on

5In section 3, we specify the structural model and discuss how this variable enters through
unobserved heterogeneity that is correlated with the EA score.
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explanatory variables, including the EA Score for household-year observations where

the male household member is aged 60-70.6 Column (1) includes the EA Score, the

SES Score, and a dummy variable for college education as controls. The coefficients

on all three variables are substantial and statistically significant. The results suggest

that a one standard deviation higher EA Score is associated with 27 percent higher

wealth. Column (2) adds the log of total prime-age income, and Column (3) adds

a dummy variable for holding any stocks in a given household-year. Controlling for

income reduces the coefficient on the EA Score to 0.20, while additionally controlling

for stocks reduces the coefficient to 0.15. However, this coefficient remains significant,

suggesting that in this sample, even controlling for college, childhood SES, life-time

earnings, and stocks, a one standard deviation higher EA score is associated with

approximately 15 percent higher household wealth. Panel B of Table 2 presents

regressions of a dummy variable for holding any stocks on the EA score, college, and

childhood SES. The estimates in Column (4) suggest that a one standard deviation

higher EA score is associated with a 6.8 percentage point increase in the likelihood

of owning stocks. This coefficient is attenuated (0.049 v.s. 0.068) but remains highly

statistically significant after controlling for lifetime earnings in Column (5).

The descriptive associations presented in Table 2 are consistent with earnings and

portfolio choice playing major roles in mediating the relationship between the EA

Score and household wealth. The model we develop and estimate below attempts to

explain these associations as arising from the effects of the EA Score on the earn-

ings process, the fixed costs of stock market participation, returns on stock market

investments, and the disutilty of labor, while accounting for family background and

the inheritance process. We focus on these channels in part because of empirical re-

sults found in Barth, Papageorge, and Thom (2020). However, several other channels

could theoretically link the endowments measured by the EA Score and household

wealth. In Appendix B, we explore five such mechanisms: business ownership, risk

preferences, fertility, marital history, and longevity expectations. Measures of all of

these channels significantly predict household wealth but only modestly attenuate

6To reduce omitted variables bias, it is common practice to control for the first 10 principal
components of the full set of genetic variables, which helps to control for broad patterns in the
genetic data that might arise from ethnic or regional differences and are omitted from the analysis.
Appendix A discusses this practice in more detail.
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Table 2: Summary Statistics: Mechanisms.

Panel A: log Wealth Panel B: Any Stocks

[1] [2] [3] [4] [5]

EA Score 0.276 0.203 0.152 0.068 0.049
(0.054) (0.050) (0.045) (0.015) (0.014)

SES Score 0.294 0.222 0.169 0.069 0.050
(0.054) (0.058) (0.052) (0.016) (0.015)

College 0.527 0.331 0.260 0.119 0.067)
(0.109) (0.105) (0.095) (0.032) (0.030)

log Prime Inc. 0.969 0.699 0.255
(0.195) (0.180) (0.030)

Any Stocks 1.058
(0.093)

N 2259 2259 2259 2259 2259

This table reports results from models predicting log Wealth (Panel A) and a dummy variable for any stocks (Panel
B). All regressions include the following controls: the first 10 principal components of the genetic data, an indicator
for missing SES scores, and interactions between this missing SES indicator and any featured explanatory variables
(the EA Score, College, log Prime Income, or Any Stocks if they are present in the specification).

the EA Score’s associations with wealth and stock ownership. We thus abstract from

these channels in developing our structural model.

3. Model

The model features heterogeneous agents that live from age 21 to a maximum age

of 90. Each year, agents decide how much wealth to consume, how to allocate savings

between a risky and a risk-free asset, and—once old enough—whether to retire or

continue working for another year. Below we describe each component of the agents’

dynamic problem.

3.1. Ex-Ante Heterogeneity

Agents are indexed by subscript i. They enter the model with four dimensions

of observable heterogeneity: birth year (BYi), an indicator for college completion

(Colli), the EA score (EAi), and an indicator equal to one if the agent participates

in a defined benefit pension plan (DBi). We allow these characteristics to influence

agents’ income, utility cost of work, expected returns on the risky asset (stocks), and

the cost of stock market participation.

We also allow unobserved heterogeneity to affect agents’ earnings, stock market
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participation costs, and expected stock returns. We model these three dimensions of

heterogeneity as a vector of individual-specific “fixed effects” ζ⃗i = [ζwi , ζ
F
i , ζ

R
i ]

′. These

parameters account for heterogeneity along dimensions that we do not model directly.

One particularly important source of heterogeneity is childhood socioeconomic status

and rearing environment. If the EA score in part represents genetic endowments that

are conducive to achieving higher levels of income and financial sophistication, then

we would expect the average-, low-, and high-EA individuals to grow up in different

environments. This indirect channel, known as genetic nurture, could lead us to

overestimate the influence of the EA score (Kong et al., 2018; Young et al., 2018;

Ronda et al., 2022). To address this issue, we model unobserved heterogeneity as a

combination of a fully random component (Z⃗i) and a component that is correlated

with the EA score through childhood socioeconomic status (SESi),

[ζwi , ζ
F
i , ζ

R
i ]

′︸ ︷︷ ︸
ζ⃗i

= [zw, zF , zR]
′︸ ︷︷ ︸

z⃗

×SESi + [Zw
i ,ZF

i ,ZR
i ]

′︸ ︷︷ ︸
Z⃗

, Z⃗ ∼ N
(
0⃗,ΣZ

)
(2)

where ΣZ = diag[σ2(Zw), σ2(ZF ), σ2(ZR)], and SESi = ϕEAi+εi, with εi ∼ N (0, σ2
ε).

Here z⃗, ΣZ , ϕ and σ2
ε are parameters to be estimated.

3.2. Utility

A surviving agent i in period t derives utility from consumption and leisure

through the utility function

ui,t(Ct, ℓt) =

[
Cγ

t (1− 0.34× ℓt)
1−γ]1−ω

1− ω
− di,t × ℓt, (3)

where Ct is consumption and ℓt is a binary variable that indicates whether the agent

is working (ℓt = 1) or not (ℓt = 0). This assumes that labor is indivisible and that

it consumes 34% of an agent’s endowment of time (8 of 24 hours per day), which we

normalize to 1. A Cobb-Douglas function aggregates consumption and leisure with a

weight γ ∈ [0, 1] on consumption. The aggregate passes through a constant relative-

risk-aversion function with coefficient of relative risk aversion ω. The term di,t × ℓt is

an additive utility cost of work. We allow this cost to vary with agents’ education,
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EA score, and age:

di,t = d0 + dColl × Colli + dEA × EAi + dAge ×max{Agei,t − 50, 0}. (4)

Our specification of the utility function allows for two different sources of hetero-

geneity in the disutility of work that could drive the empirical relationships between

observable characteristics—the EA score in particular—and retirement patterns. The

Cobb-Douglas aggregator in Equation 3 makes the value of leisure change with agents’

consumption and, therefore, agents with different income levels (that support differ-

ent consumption levels) will value leisure differently. This channel, whose importance

is highlighted by Heckman (1974), is common in recent models of life-cycle labor sup-

ply (see, e.g., Low, Meghir, and Pistaferri, 2010; Blundell et al., 2016). The additive

term in Equation 4 is intended to capture costs of work that are unrelated to the

level consumption. The heterogeneity of this cost is intended to capture potential

differences in the physical intensity of jobs that may co-vary with observable traits.

Studies like Attanasio, Low, and Sánchez-Marcos (2008); Bagchi (2015) have used

specifications with both additive and multiplicative costs of labor similar to ours.

Finally, to accommodate the fact that high-income households have higher saving

rates and are slow to run down their wealth at old ages (Dynan, Skinner, and Zeldes,

2004), we include a “joy of giving” bequest motive (Carroll, 2002) that produces

utility from end-of-life wealth. We use the functional form of De Nardi, French, and

Jones (2010), in which a person who dies with savings Si,t receives utility

φ(Si,t) = θ
(Si,t + κ)1−ω

1− ω
, (5)

where ω is the same coefficient of relative-risk-aversion as above and θ and κ are

parameters that we estimate and which govern the intensity of the motive and the

degree to which bequests are a luxury good.

3.3. Labor Income

We model pre-tax labor income W̃i,t as the log-sum of a deterministic component

that depends on individual characteristics and aggregate trends, the fixed unobserved
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heterogeneity draw Zw
i , and an agent- and time-specific shock ϵwi,t:

ln W̃i,t = f(Agei,t,EAi,Colli, SESi,DBi,Yeart,Unempt) + Zw
i + ϵwi,t, (6)

where Unempt is the aggregate unemployment rate in period t. The wage shock is

independent across time and agents and is normally distributed, ϵwi,t ∼ N (0, σ2(ϵw)).

We present our specification and estimates for pre-tax labor income in Appendix B.1.

We use two types of labor income taxes: a constant-rate tax (as in Chai et al.,

2011), and an additional proportional tax that applies up to a year-dependent maxi-

mum T̄ (Year) and represents Social Security taxes.7 Given tax rates τW and τFICA,

we model this tax scheme with a function τt(·) that computes post-tax income as

τt(W̃ ) = W̃ (1− τW )− τFICA ×min{W̃ , T̄ (Yeart)}.

3.4. Retirement and Social Security

Once agents reach a minimum age, they can decide to retire. This decision is

irreversible and happens after receiving labor income so that it takes effect in the

following year. We impose the restriction that the first year of retirement has to

occur in an age interval [AgeR0 ,Age
R
f ], which we set to [62, 80]. Agents with defined

benefit pension plans start receiving their payments in the first year in which they do

not work. We assume that agents start claiming Social Security benefits the moment

they stop working or at the minimum claiming age (AgeSSmin) if they stop working

before that.8

Consistent with the payout policy in the U.S., social security benefits are a concave

function of agents’ average income over their highest-earning years and increase with

each additional year of work up to a maximum. Our methodology for computing

benefits follows that of the Social Security Administration; we provide a detailed

description in Appendix C. Our main simplification is that we use expected (rather

than realized) earnings when computing SS benefits. That is, in each period t in which

the agent could choose to retire, instead of the agent looking backwards at her realized

earnings (the top 35 years of which determine SS benefits), the agent anticipates

7We use the Social Security Administration’s historical maximum taxable incomes as T̄ (Yeart).
8In our baseline scenario, the minimum claiming age and minimum retirement age are both 62,

and therefore agents will always start claiming Social Security benefits the same year they stop
working. This changes in our counterfactual policy experiments, one of which shifts the minimum
claiming age but leaves open the possibility of agents retiring before that point.
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receiving SS benefits that are determined by her expected top-35 yearly earnings as

of period t, based on the income function described in Equation (6). This allows

us to avoid including the additional state variable of realized cumulative earnings.

Additionally, because the model has no permanent income shocks, transitory shocks

over the life-cycle should largely cancel out, and expected earnings should be a good

representative of realized earnings. We use SSBi(n) to denote the yearly benefits that

person i would receive if she retired at age n.

In addition to social security benefits, retirees who have a defined benefit pension

plan (DBi = 1) receive pension income. We model the annual amount of DB pension

payments (DBfi) as a log-linear function of the time-invariant components of income,

EAi, and Colli, which we estimate from the data. This is similar to our treatment

of social security income: to avoid the introduction of an additional state variable,

we tie DB retirement benefits to the predictable component of earnings rather than

realized earnings. We present the full specification and estimates of the defined benefit

pension income process in Appendix B.1. Both social security benefits and defined

benefit pension flows are taxed at a constant rate τ s.

3.5. Inheritances

Every period, agents receive inheritances (Inheri,t) that follow an agent- and age-

specific stochastic process. With probability P I
i (Agei,t), individuals receive an inher-

itance in period t of amount C.Inheri(Agei,t). With probability (1− P I
i (Agei,t)), the

individual does not receive an inheritance in periods t. Both the probability of receiv-

ing an inheritance P I
i and the value of inheritances conditional on reception C.Inheri

depend on Colli and EAi. We estimate both functions using our HRS sample; their

specification and parameter estimates can be found in Appendix B.1.

3.6. Financial Assets

At the end of each period, agents decide how to allocate their savings between two

financial assets: a risk-free bond with return factor R and a risky asset representing

the stock market with an agent- and time-specific return factor R̃i,t. Short-selling of

either asset is not permitted.

For agent i, the risky return factor follows the process:

ln R̃i,t = lnRSP500
t − µSP500 × g(r0 + rColl × Colli + rEA × EAi + ζRi ), (7)
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where lnRSP500
t and µSP500 are the log-return of the S&P 500 stock market index in

year t and its mean log-return, respectively. The factor g(·) captures agents’ degree
of inefficiency when investing in risky assets. It takes the form of a logistic function:

g(x) = ex

1+ex
, which ranges from 0 to 1. An efficient agent (g ≈ 0) will replicate the

market’s returns. An inefficient agent (g ≈ 1) will have expected log-returns close

to 0. This parsimonious specification is similar to that of Lusardi, Michaud, and

Mitchell (2017). Note that all agents face the same risk on the risky asset return;

only the mean return is agent-specific.

We conceive of heterogeneity in risky asset returns as proxying for sound invest-

ment decisions. Paying higher fees on mutual fund investments or excessive trading

(and resulting taxes), for instance, would degrade the average return earned in the

market. Inopportune market-timing strategies, such as buying during periods of high

price-earnings ratios and selling during periods of low price-earnings ratios, would

also be detrimental to returns. Further, because risk is not agent-specific, lower ex-

pected returns also mean lower Sharpe ratios. From this perspective, a (roughly)

equivalent interpretation of lower expected returns would be higher risk for a given

level of expected return. Greater risk exposure conditional on expected returns would

be consistent with poor diversification. Agents assume stock returns follow a normal

distribution given by lnRSP500
t ∼ N (µSP500, σSP500).

To own the risky asset, agents must pay a per-period monetary participation cost

that represents the administrative and opportunity costs of managing investments

(Vissing-Jorgensen, 2002). The cost Fi depends on ex-ante demographic characteris-

tics:

ln Fi = f0 + fColl × Colli + fEA × EAi + ζFi . (8)

Capital gains are taxed at a constant rate τ c.

3.7. Recursive Representation and Timing Summary

Agents maximize their expected discounted lifetime utility using a discount factor

β and taking into account their probability of survival δt. An agent’s possible choice

variables at a given time are his consumption Ci,t, the fraction of his savings allo-

cated to the risky asset ϕi,t, and his retirement status for next period. His state vector

consists of his beginning-of-period wealth Ai,t and his current retirement status. Re-
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Period t− 1 ends
Period t starts

Period t ends
Period t+ 1 starts

� If working, stochastic
wage W̃t is realized
and taxed.

� If retired, S.S. and
defined benefits are
deposited and taxed.

� Start-of-period
wealth At is set.

� Agent decides
whether to pay the
fixed cost F.

� Agent chooses his
consumption Ct.

� Savings St are
determined.

� If the agent paid the
fixed cost, he chooses
the share of savings
in stocks ϕt. Else
ϕt = 0.

� If not retired and in
the allowed age
range, agent chooses
whether to retire,
Ret.Aget,t+1.

� Risky return R̃i,t+1 is
realized.

� Capital gains are
taxed.

Figure 1: Timing of decisions and shock realizations.

tirement status is captured using the age at which the agent retired, Ret.Agei,t. This

discrete variable takes the value n if the agent retired at age n, and takes the null

value ∅ if the individual has not yet retired. We track the age of retirement because it

influences the level of social security benefits that agents receive. Figure 1 summarizes

the timing of decisions and shocks in our model.

The choices and constraints that an agent faces depend on his age and retirement

status. We illustrate the transitions of the model depicting the problem of an agent

who has not retired yet (Ret.Agei,t+1 = ∅) but who has the option to retire. For a

level of assets Ai,t, his value function is

Vi,t(Ai,t, ∅) = max
Ci,t,ϕi,t,Ret.Agei,t+1

u(Ci,t, 1) + βδtEt

[
Vt+1(Ai,t+1, Ret.Agei,t+1)

]
+ ��δtφ(Si,t)

0 ≤Ci,t, 0 ≤ Si,t, 0 ≤ ϕi,t ≤ 1, Ret.Agei,t+1 ∈ {∅,Agei,t + 1},

Si,t =Ai,t − Ci,t − F× 1 [ϕi,t > 0] ,

Ai,t+1 =
{
(1− τ c)

[
ϕi,tR̃t+1 + (1− ϕi,t)R

]
+ τ c

}
× St + Incomei,t+1(Ret.Agei,t+1),

where Si,t denotes the agent’s savings and ��δt ≡ 1 − δt is the probability of death.

We have aggregated all sources of non-capital income for conciseness. We present

disaggregated representations of all the optimization problems that agents solve at

different points of their lives in Appendix D.
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3.8. Estimation

Our approach to estimating model parameters relies on standard methods, so we

relegate most details to Appendix B and provide a brief overview here. We estimate

the model in two steps. In the first step, we directly estimate the specifications

of wages (Equation 6), inheritances, and defined benefit pension flows on the HRS

sample data. The details and results of the first step are found in Appendix B.1.

In the second step, we use the method of simulated moments (MSM) to esti-

mate the parameters that govern the financial costs to stock market participation

(Equation 8), inefficiencies in risky investments (Equation 7), the disutility of work

(Equation 4), the dispersion of unobserved heterogeneity (Equation 2), the bequest

motive (Equation 5), and the influence of childhood socioeconomic status on the un-

observed heterogeneity draws for costs and returns (Equation 2).9 The full set of

parameters that we estimate internally is

Θ = {f0, fColl, fEA, σ(ZF ), r0, rColl, rEA, σ(Zr), d0, dColl, dEA, dAge, θ, κ, zF , zR}. (9)

The algorithm proceeds as follows. A candidate set of parameters is chosen. Given

these parameters, we solve the model, which delivers policy functions (mappings from

state variables to choices) and transition rules (mappings from current-period state

and choice variables to one-period-ahead state variables). Next, we simulate popula-

tions that match the HRS sample on observables. Given the observable dimensions

along which agents can differ in our model, there are 400 potential types of ex-ante

different agents.10 However, only 190 of these possible combinations are actually ob-

served in the HRS sample. For each person in our sample, we simulate 10 agents with

matching characteristics. We simulate 27 such populations, one for each of the 27

potential combinations of draws of unobservable heterogeneity (ζ⃗i). Thus, our sim-

ulated populations have 5, 130 = 190 × 27 types of ex-ante different agents. Armed

with policy functions and transition rules, we can then simulate sequences of choices

and outcomes, which delivers a data set that can then be compared to the actual

9Since income is observable, we estimate the parameters pertaining to unobserved heterogeneity
of income (zW , σ(ZW )) directly. See Appendix B.1.

10The observable dimensions of heterogeneity are birth year (BYi), college completion (Colli), EA
score (EAi), and whether the agent participates in a defined benefit pension plan (DBi). Appendix
B discusses how we form the possible groups.
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HRS analytic sample. To compare the simulated data set to the HRS data set, we

compare some moments directly (e.g., the simulated and observed retirement wealth

distribution). We also use indirect inference to identify parameters that are not di-

rectly observed. For example, we do not directly observe the disutility of labor. To

identify this parameter, however, we can regress labor supply on observable variables

in both the simulated and the HRS data set and then compare coefficients from these

regressions. The moments that we directly target with our estimation routine are the

mean and percentiles 10, 25, 50, 75, and 90 of the distribution of wealth between ages

60 and 70; the stock-market participation rate; and the coefficients of auxiliary re-

gressions of log-wealth, stock ownership, and retirement on the EA score, education,

our index of socioeconomic status, and other controls.

We repeat this process for many different candidate parameter sets and search for

the parameter vector that minimizes the distance between the simulated and empirical

moments. See Appendix B for a detailed description of the estimation procedure, non-

estimated parameters, technical details, and a discussion of identification. Appendix

E discusses the numerical solution of the model.

4. Results

4.1. Model Fit, Parameter Estimates, and Their Implications

Table 3 presents parameter estimates and their standard errors. To compute

standard errors, we calculate the targeted moments for 50 different bootstrapped

sub-samples of our analytical sample data. Within each subsample, we select the

parameter vector from a pre-specified grid of 20,000 parameter vectors that minimizes

the loss function between the selected vector the vector of targeted moments. This

gives 50 sets of parameter vectors, one for each subsample, each of which minimizes

the loss function within that particular subsample. We compute standard errors as

the standard deviation of each parameter over the 50 resulting parameter vectors.11

Table 4 shows that the estimated model matches most of the empirical patterns

remarkably well. We closely match the distribution of wealth up to the 75th per-

centile but under-predict wealth in the upper tail of the distribution. We also match

relationships between the EA score, college attendance, wealth, and stock ownership

as captured by the auxiliary regressions. The overall stock ownership rate is also close

11The 20,000 parameter vectors are the initial grid that we use in our main estimation routine.
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Table 3: Internally-estimated parameters.

Participation cost Risky asset returns
ln Fi = f0 + fColl × Colli + fEA × EAi + ζFi Inefficiencyi = g(r0 + rColl × Colli + rEA × EAi + ζRi )

f0 fColl fEA r0 rColl rEA
−0.9867 0.0311 0.0066 −0.0366 −1.1055 −0.6610
(0.2092) (0.0369) (0.0143) (0.0608) (0.2568) (0.1326)

Disutility from work
di,t = d0 + dColl × Colli + dEA × EAi + dAge ×max{Agei,t − 50, 0}

d0 dColl dEA dAge

0.3961 −0.0052 −0.0033 −0.0241
(0.0816) (0.0015) (0.0009) (0.0062)

Unobserved heterogeneity Bequest motive

ζ⃗i = z⃗ × SESi + Z⃗i φ(Si,t) = θ(Si,t + κ)1−ω/(1− ω)

lnσ(ZF ) lnσ(Zr) zF zR lnκ ln θ
1.1838 −4.0326 −0.0434 −0.7250 7.0638 6.9423
(0.5698) (1.3845) (0.0475) (0.1451) (0.2474) (0.5353)

This table presents parameter estimates from the method of simulated moments. See the main text for details about
the model and targeted moments. Standard errors are reported in parentheses and calculated using a bootstrap
approximation that is also discussed in the main text.

Table 4: Targeted moments in the HRS and in the estimated model.

Wealth distribution Wealth regression
Thousands of dollars Coefficients from: lnWealthi,t = Xi,tβ + εi,t

P10 P25 P50 P75 P90 Mean EA SES Coll Stocks
Data 52 151 372 873 1819 716 Data 0.15 0.17 0.26 1.06
Model 52 166 427 822 1379 605 Model 0.17 0.18 0.26 1.12

Stock-ownership regression Retirement regression
Coefficients from: Stocksi,t = Xi,tβ + εi,t Coefficients from: Retiredi,t = Xi,tβ + εi,t

EA SES Coll ln E. Inc. EA Coll
Data 0.049 0.050 0.067 0.255 Data −0.0059 −0.0564
Model 0.046 0.052 0.069 0.220 Model −0.0059 −0.0575

Retirement rates Stock ownership rate
Fraction of individuals retired by age bracket Ages 60 to 70

[50, 62] [63, 67] [68, 72] ≥ 73 Rate
Data 0.17 0.59 0.78 0.86 Data 0.68
Model 0.11 0.69 0.91 1.00 Model 0.72

This table reports the moments that we target in estimation, calculated both using our HRS analytical sample and
using simulations from the model with the estimated parameter values. See the main text for variable definitions,
sample descriptions, and complete specifications of the controls included in Xi,t for each regression.
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The disutility of labor is taken at age 50 and monetized (see the main text for details). We find the participation
costs, expected log returns, and disutility from work at age 50 for each of our 5, 130 agent types and weight them
by the number of agents of each type in our simulated population. The figure presents medians at different levels of
the EA score and educational attainment. Labor disutility depends only on agent’s age, EA score, and educational
attainment, so there is no remaining heterogeneity after conditioning on these characteristics. For income, we report
the median of EA score-education combinations at age 45 from our simulations.

Figure 2: Economic fundamentals, the EA score, and education.

to the sample rate. For retirement, while the model fits the auxiliary regression that

relates retirement to the EA score and college attendance, the age-binned retirement

rates show slight discrepancies arising mainly from over-estimating the fraction of

agents that retire between ages 63 and 67.

According to estimates in Table 3, both the EA score and education have negligible

effects on the cost of stock market participation, Fi. This is confirmed by Figure 2,

which plots the median participation costs, expected risky returns, disutility of labor,

and income at age 45 against the EA score for both levels of education. The top-left

panel shows no meaningful variation of the median annual participation cost with

either the EA score or education. We estimate this cost to range between $372 and

$385, which is similar to estimates in recent studies in household finance (see e.g.,

Fagereng, Gottlieb, and Guiso, 2017; Catherine, 2021).
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Risky asset returns, however, appear to be significantly affected by both the EA

score and education. Table 3 and the top-right panel of Figure 2 show that, between

the lowest and highest EA deciles, the median expected log-return on stocks increases

from 1.3% to 5.2% for those without a college degree and from 2.8% to 6% for those

with a college degree. The direction of these estimated relationships is consistent with

past studies (e.g., Calvet, Campbell, and Sodini, 2007; Fagereng et al., 2020), which

find that returns to wealth are heterogeneous and correlated with wealth, income,

and education, each of which covaries with the EA score.12 However, part of the

relationship between the EA score and returns that is depicted in Figure 2 is due

to the relationship between the EA score and SES.13 To evaluate the size of the

estimated association that is not due to SES—the part that operates through rEA in

Equation 7—we calculate expected risky log-returns of our simulated population of

agents assuming their EA scores were one standard deviation (1.0) higher, holding

their other characteristics, including SES, constant. We find that, on average, the

expected risky log returns of our agents would increase by 78 basis points (0.0078).

The estimated degree of heterogeneity in returns is plausible and broadly con-

sistent with the findings of studies that have measured the distribution of risk-

compensated returns in other countries or modeled it as an endogenous investment.

By design, the functional form of the expected log-return of the risky asset (Equation

7) forces it to be between 0 and the benchmark µSP500 for every agent. A similar range

is used in studies such as Lusardi, Michaud, and Mitchell (2017).14 Our estimates

determine the distribution of simulated agents across this predetermined range. Ap-

pendix G presents detailed statistics of the distribution of risk-compensated returns

implied by our estimates. Households in our estimated model receive risk compensa-

tions (measured by the Sharpe ratio) that can range from 36% of that of the market

benchmark in the 25th percentile to 76% in the 75th percentile. These ranges are

plausible when compared with those measured by, e.g., Calvet, Campbell, and Sodini

12As discussed in Section 3, our specification of risky returns implies that agents receive different
compensation for taking financial risk. One way to see this is that they have different Sharpe ratios.
We present the distribution of available Sharpe ratios that our estimates imply in Appendix G.

13Individuals with higher EA scores have a higher expected SES (see Section 3.1). This shifts their
expected draws of unobserved heterogeneity (see Equation 2) and, in turn, their expected returns.

14A minor difference is that the lower limit for expected log-returns in Lusardi, Michaud, and
Mitchell (2017) is set to the log risk-free rate instead of 0.
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(2007) in Sweden and Gaudecker (2015) in the Netherlands. They are also consis-

tent with the implications of the model developed by Lusardi, Michaud, and Mitchell

(2017) in which, at age 50, the average agent earns between 43% and 67% of the

market’s log-return premium, depending on his education.

Similar to previous studies, our income estimates imply a positive and significant

association between the EA score and labor income even after controlling for edu-

cational attainment. The bottom-right panel of Figure 2 depicts the median labor

income of agents with different EA scores and levels of education at age 45, which

is close to their peak for those without a college degree. At this age, the median

earnings for those without a college degree in the 4th and 7th decile of the EA score

are $40,700 and $43,000, respectively. For those with a college degree the median

earnings at this age and the same EA score deciles $47,500 and $48,900 respectively.

Our estimates of the income process are reported in Appendix B.1.

The estimated additive component of disutility from labor varies little with edu-

cation, the EA score, and age. We monetize the disutility to convey its magnitude.

For a utility cost di,t > 0, we find the monetary value mi,t that an agent with no

dynamic considerations and a baseline consumption of $40,000 would be willing to

pay to avoid the cost di,t.
15 Formally, mi,t solves

ui,t(Ct = $40k, ℓt = 1) = ui,t(Ct = $40k − $mi,t, ℓt = 1) + di,t.

The bottom left panel of Figure 2 displays monetized costs of work mi,t at age 50

against the EA score for both education groups. The figure confirms that there is no

meaningful heterogeneity in our estimated disutility of work.

The disutility of work parameter would most clearly affect retirement. If wealth

and expected retirement income are held constant, a greater disutility of work implies

earlier retirement rates. The null results for the disutility of work suggest the model

can fit the observed retirement patterns based on variation in wealth, income, and

expected retirement income, without needing to assign additional power to a distaste

for work. This finding is also supported by the strong fit of the retirement regression

moments.

15Our specification of the utility cost (Equation 4) is age-dependent. We base our calculations on
its values at age 50.
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Figure 3: The choices and economic outcomes of agents with different EA scores.

4.2. Life-Cycle Choices and Outcomes

The estimates suggest no meaningful relationship between the EA polygenic score

and either stock market participation costs or disutility from work but do suggest

sizable associations with labor incomes and risky-asset returns, even at compara-

ble levels of education. This section examines how these differences influence other

choices and outcomes such as consumption, retirement, stock-market participation,

and wealth across the life cycle. Figure 3 presents the simulated age-profiles of these

choices and outcomes for agents in different deciles of the EA polygenic score.

The greater average incomes and more efficient investments of agents with higher

EA scores afford them higher consumption throughout their lives. Differences in

median consumption become noticeable around age 35. By age 40, the difference

between the median consumption of agents in the 4th and 7th deciles of the EA score

reaches $970 per year; this gap grows to $3,495 by age 60 and to $4,427 by age 80.

Despite higher consumption, agents with higher EA scores accumulate more wealth.

Figure 3 shows that an EA score-wealth relationship emerges early in life and widens

as agents age. The median wealth balances of agents in the 4th and 7th decile of

the EA polygenic score are $45,175 and $56,928 at age 40, $297,997 and $410,610

at age 60, and $344,424 and $523,125 at age 80, respectively. The growth in wealth

differences is due to the combination of higher labor earnings and higher returns on
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Figure 4: The EA score-wealth gradient and its sources.

savings, which compound to magnify differences at later ages. As Figure 3 shows,

stock market participation is monotonically increasing in the EA score and peaks at

age 67 for those with EA scores in the 4th and 7th deciles, reaching 69.0% and 75.5%,

respectively.

Despite the lower levels of wealth and similar levels of labor disutility, differences

in the retirement decisions of agents with different EA scores are small. Agents with

higher EA scores retire at later ages on average. Our model matches this fact: 63.5%

of agents in the 4th decile of the EA score retire at the minimum age of 62, and 71.3%

have retired by age 67; for the 7th decile of the EA score, these numbers are 61.6%

and 69.5%, respectively. There are a few possibilities that could explain this finding.

First, lower EA score individuals will receive retirement income that represents a

higher fraction of their lifetime earnings due to the progressivity of the social security

system. Second, the labor earnings lost in retirement are lower for low EA score

agents because they earn less income in the labor market on average. These two

effects seemingly dominate the lower levels of wealth and consumption in retirement

also experienced by low EA score agents.

The foregoing discussion highlights how the estimated effects of the EA score on la-

bor income and financial proficiency compound to generate differences in wealth, stock

market participation, and retirement. Among these outcomes, wealth has received

27



the greatest attention, as a vast literature in economics has worked to understand key

sources of wealth disparities. Barth, Papageorge, and Thom (2020) demonstrate that

there is a robust association between the EA score and wealth at retirement. The

model developed here allows us to disentangle multiple potential channels of wealth

accumulation and to evaluate their importance in driving this relationship. A first

driver of the relationship between the EA score and wealth is education. The EA score

was built with the purpose of predicting educational attainment and therefore agents

with higher EA scores will, on average, have more years of education that translate to

greater earnings and wealth. After controlling for education by grouping individuals

with a college degree and no college degree, the difference in median wealth at age

65 between the 1st and 10th EA score deciles falls from an unconditional value of

$707,423 to $571,332 for those without a college degree and $636,537 for those with

a college degree.

In Figure 4, we further decompose the effects on wealth while continuing to control

for education. To do so, we examine how the relationship between the EA score and

wealth would change under different environments. First, we solve and simulate our

model under an environment in which the income specification has all coefficients

that multiply the EA score to 0, leaving the rest unchanged. The resulting wealth

gradients are labeled “No income effect.” The differences in median wealth between

agents in the highest and lowest EA score deciles fall to $409,547 for those without a

college degree and $416,348 for college graduates. Restoring the income process and

eliminating the direct effect of the EA score on returns by setting rEA = 0 in Equation

7 results in the wealth gradient labeled “No return effect.” The differences in median

wealth now fall to $255,572 for those without a college degree and $289,576 for college

graduates, a significantly greater reduction than the results from removing the direct

income effect. Finally, we remove the direct effects of the EA score on both income

and returns. This reduces the gaps in median wealth between the top and bottom EA

deciles to $96,612 for those without a college degree and $72,090 for college graduates,

just 16.9% and 11.3% of the baseline difference. The small remaining difference is

due to the combination of other direct effects, such as the EA score effect on the

disutility of work and participation costs, as well as indirect effects, including the

correlation of the EA score and childhood socioeconomic status, the influence of the
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EA score on the inheritance process, and covariation between the EA score and other

characteristics such as birth year and defined benefit pension arrangements.

5. Policy Experiments

The previous section demonstrated that genetic endowments are associated with

multiple dimensions of wealth accumulation, including risky asset returns and labor

market earnings. Crucially, the extent to which these differences affect individual

outcomes and welfare may depend on the policy environments individuals face. Al-

ternate policy environments may attenuate or magnify the association between genes

and wealth over the life-cycle. Policies that strengthen or weaken the consequences

of specific advantages (e.g., higher investment efficiency) will affect wealth inequal-

ity and genetic gradients. In this Section, we use our estimated structural model to

examine the consequences of two counterfactual reforms to the Social Security sys-

tem and study how the different policy environments affect behavior, outcomes, and

welfare, in part through their interaction with genes.

While the existing literature on G × E interactions has sought to document the

extent to which gene-outcome associations differ across different environments, these

studies exclusively rely on environments that have existed and for which data are

available. Instead, our estimated model permits analyses of gene-by-outcome asso-

ciations in counterfactual environments that may not exist and possibly never will.

This is critical for assessing the effects on genetic gradients across various policies

options, of which only a small set may be chosen.

Specifically, we analyze two counterfactual changes to the Social Security system,

which is one of the most consequential programs for elderly adults in the United

States. Social Security is a federal program that provides monthly income to retirees

based on retirement age and lifetime earnings. In response to the fiscal challenges

to Social Security spurred by an aging population, the past few decades have seen

many proposals to reform the system. Indeed, multiple proposals have been presented

every year.16 To reduce the cost of the Social Security system, a policy would have to

collect more resources from young workers, reduce the benefits distributed to retirees,

or involve some combination of the two. Such changes can affect welfare on multiple

16The Office of the Chief Actuary of the Social Security Administration maintains a repository of
fiscal analyses of the proposals presented by Congress (Social Security Administration, 2022a).
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dimensions, but, as the primary support tool for low-wealth retirees, changes to the

system may disproportionately harm already vulnerable populations. We study how

potential policy changes could modify G × E interactions; specifically, the extent to

which changes in the social safety net affect the link between the EA score, economic

outcomes, and welfare.

We consider two cost-saving policies, each consistent with common proposals for

preserving the Social Security system. The first policy, which we call the “benefit

shift,” is a five-year forward shift in the Social Security benefit schedule. The mini-

mum benefit-claiming age increases from 62 to 67, and the benefit calculation formulas

move forward by five years. If agent i retiring at age a currently receives yearly ben-

efits equal to SSBi(a), under the benefit shift policy he receives SSBi(a − 5). This

policy mimics many proposals suggesting increases in the age of benefit eligibility to

encourage people to work longer. Net costs decrease because people will either work

for longer (and reduce the number of years in which they claim benefits) or retire

before they become eligible to claim full benefits and receive lower benefits than they

would in the baseline scenario. Importantly, we assume agents are aware of this policy

starting at age 21 (when the model begins), and we do not model uncertainty about

policy regimes.

The second policy, which we call the “benefit reduction,” represents a broad class

of provisions that would alter the way benefits are calculated, lowering the annual

payments to some or all future retirees. We analyze a simple policy of reducing all

benefits by a constant fraction ψ. If agent i retiring at age a receives benefits SSBi(a)

in the baseline scenario, this policy would make their benefits (1 − ψ)SSBi(a). To

make the two policy changes comparable in fiscal terms, we calculate the reduction

rate ψ that would produce the same increase in revenue as the previous policy change,

accounting for endogenous behavioral responses. Details of this calculation are found

in Appendix F. We find that the reduction that makes the two policies fiscally equiv-

alent is ψ = 0.2789. As with the benefit shift policy, agents are fully aware of the

benefit reduction policy when they enter the model.

While the two alternative policies are calibrated to generate the same aggregate

revenue, they differ in the channels along which they incentivize individuals to adjust,

and this generates different behavioral responses. In a model with complete markets
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We simulate identical populations of agents that experience identical sequences of shocks under the status quo and
the two alternative social security changes. We find the relative consumption and wealth changes with respect to the
baseline scenario agent-by-agent and report the medians of those changes at every age. We also find the fraction of
agents who are retired and who are holding stocks at every age and report the differences with respect to the baseline
scenario.

Figure 5: Life-cycle adjustments to Social Security changes.

and without borrowing constraints, the response of an agent to two different social

security policy environments that have the same present discounted value of benefits

associated with each age of retirement would be the same. However, our model

features incomplete markets, uninsurable income shocks, and borrowing constraints.

Furthermore, the benefit-reduction and benefit-shift policies do not have the same

present discounted value of benefits associated with each age of retirement: the shift

has stronger monetary incentives for agents to extend their working lives. These

features combine to generate different optimal changes in behavior in response to

each policy. The different responses are evident in Figure 5, which depicts the effects

of both policies on retirement, stock-ownership, consumption, and wealth, by age.

In response to the benefit-shift policy, agents delay their retirement and reduce

their consumption. Figure 5 shows that, for example, the share of agents retired at age

70 is more than 30 percentage points lower than in the baseline policy environment.

Even though some agents work longer, which implies higher labor income at later ages,

the policy change leads to a small net decline in consumption that reaches roughly one
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percentage point at age 62 for the median agent. The reduced consumption generates

a slight increase in wealth during the years before retirement, followed by a median

decline of nearly four percentage points starting at age 62, which is driven by agents

who retire but do not yet receive benefits. Stock-ownership patterns remain largely

unchanged.

The benefit-reduction policy generates a smaller delay in retirement and a greater

reduction in consumption than the benefit-shift. The difference in retirement rates

with respect to the baseline environment peaks at age 68 with only an 11 percentage-

point reduction. There is instead a greater and earlier reduction in consumption

which increases in magnitude as agents age; by age 70, the median agent reduces

his consumption by 2.5 percentage points. This larger shift in consumption means

that, under the benefit reduction, wealth increases more dramatically than under the

benefit-shift policy. This increase begins at age 30 and peaks at nearly 4% at age 62.

After that, the benefit reduction leads to a rapid decline in wealth so that, by age 80,

the median agent has 4% less wealth than under the baseline.

Our estimated model features rich heterogeneity in the costs and advantages that

different agents have for changing their behavior in response to the two policies. This

heterogeneity can produce differences in the ways that they chose to adapt and in

the welfare losses that they ultimately bear. We examine these differences in the

following subsection.

5.1. Gene-Outcome vs. Gene-Welfare Gradients

This section uses our estimated model to analyze how different social-security pol-

icy reforms would alter the association between the EA score and retirement wealth.

The recent literature on G × E interactions has examined how changes in environ-

mental factors alter the association between genetic endowments and outcomes of

interest. However, rather than being restricted to realized environmental differences,

this exercise highlights how structural models can be used for ex-ante evaluations of

G×E interactions under counterfactual policy environments. The model also delivers

estimates of the welfare impacts of the reforms for individuals with different genetic

endowments. This is an important feature because, as we show, the gene gradient

of a desirable outcome (e.g., retirement wealth) and the gene gradient of welfare can

move in opposite directions.
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We simulate identical populations of agents that experience identical sequences of shocks under the status quo and
the two alternative Social Security changes. We find the relative wealth changes with respect to the baseline scenario
agent-by-agent and report the medians of those changes at every age for different levels of the EA score.

Figure 6: Wealth response to policy changes by EA polygenic score.
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We simulate identical populations of agents that experience identical sequences of shocks under the status quo and
the two alternative Social Security changes. We find the relative wealth changes at age 70 with respect to the baseline
scenario agent-by-agent and report the medians of those changes for different levels of the EA score.

Figure 7: Social Security changes and the EA-wealth gradient.

The responses of lower EA score individuals to the policy changes produce greater

relative adjustments in their retirement wealth than those of their higher EA score

counterparts. Figure 6 shows the percentage changes in wealth that the two policies

generate for individuals in different deciles of the EA score distribution by age. At

age 70, the reductions in retirement wealth caused by the benefit-shift policy are more

than twice as large for individuals in the lowest EA score decile (median of −6.5%)

than for those in the highest EA score decile (median of −2.3%). By this same age,

the increases in retirement wealth caused by the benefit-reduction policy are much

larger for those in the lowest EA score decile (median of +5.7%) than for those in the

highest decile (median below +1%).
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The policy changes affect the empirical relationship between the EA score and re-

tirement wealth through the differential responses of agents with different EA scores.

Figure 7 presents the relative changes in wealth induced by both policies across the

EA score distribution at age 70. The figure demonstrates that the benefit-shift policy

steepens the EA score-wealth gradient because percentage reductions in wealth are

greater for low EA score individuals and that the benefit-reduction policy flattens the

gradient because increases are greater for low EA score individuals. The counterfac-

tual exercise demonstrates changes in policies with identical fiscal consequences can

flatten or steepen the relationship between the EA score and wealth. Gene-outcome

gradients are not immutable “laws of nature” but are functions of policy environments

and endogenous behaviors, and a well-posed economic model can deliver predictions

about how gene-by-outcome associations may change under different policy regimes.

And, perhaps most importantly, the model gives economic content to the sources of

changing gene-by-outcome interactions.

If a person’s genes are viewed a form of luck (Harden, 2021), then the adoption

criteria of various policies may include whether genetic gradients are steepened or

flattened. Under this criterion—and knowing that both policies raise the same aggre-

gate revenue—the benefit-reduction policy may be naively considered more desirable

than the benefit-shift, since the former flattens the genetic gradient in retirement

wealth while the latter steepens it. However, ranking the two policies on the basis of

their implications for the gene-wealth gradient is perilous. All else equal, wealth at a

fixed age (say 70) may be a suitable proxy for overall welfare. However, changes in

wealth at age 70 under different policy regimes may be a poor proxy for changes in

welfare because the underlying economic conditions have also changed.

To analyze the welfare effects of the alternative policies for different individuals,

we calculate the monetary amounts by which agents would need to be compensated

to preserve their welfare after the policy reforms. We calculate these compensating

variations for agents who are informed of the policy changes at age 21. If Vi,21(·)
is the baseline value function of agent i at age 21 and V x

i,21(·) is his value function

under the alternative policy scenario x, the compensating variation from an initial

wealth of W , CVx
i (W ), solves Vi,21(W ) = V x

i,21 (W + CVx
i (W )). That is, CVx

i (W ) is

the monetary transfer that would be required to restore person i’s expected lifetime
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welfare to what it was before the policy change; it will be higher for policies that bring

greater reductions to i’s lifetime welfare. These relationships implicitly define the

compensating variation for a given policy as a function of the agent’s characteristics—

expected income path, preferences, financial proficiency, etc.—and his wealth W . We

calculate the compensating variations for both policies for agents that match the

characteristics of the sample that we use for estimating the model. We set the initial

wealth of every agent to W = $20, 000.
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The compensating variations for both policies are computed at age 21 and from a starting wealth of $20,000. We
find the compensating variation for each of our 5, 130 agent types and weight them by the number of agents of each
type in our simulated population. The figure depicts percentiles of the distribution of these compensating variations
at different levels of the EA score. The solid line corresponds to the median. Inner shaded areas cover observations
between the 25th and 75th percentiles. Outer shaded areas cover observations between the 10th and 90th percentile.

Figure 8: Distribution of compensating variations at different levels of the EA score.

In spite of their different implications for the EA score-wealth gradient, both pol-

icy changes steepen the EA score-welfare gradient, as they generate greater welfare

shortfalls for individuals with lower EA scores. Figure 8 plots the distribution of com-

pensating variations by EA score for each policy. Despite differences in the margins

along which agents modify their behavior in response to each policy, the figure reveals

that the two policies have similar effects on the welfare of agents. The unconditional

distribution of the compensating variations of both policies is similar: the mean and

standard deviation for the benefit shift policy are $3,780 and $1,300 respectively, and

for the benefit reduction policy, they are $3,820 and $1,100. However, there are large

differences in the welfare costs borne by agents with different EA scores. For both

policies, the median compensating variation for agents in the lowest EA score decile

is more than twice as large as that for agents in the highest EA score decile. By gen-
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erating greater welfare losses for agents with lower EA scores, both policies steepen

the EA score-welfare gradient. Therefore, comparing the effects of different policies

based on the relationship between genes and an outcome like wealth may obscure

their effects on inequality of welfare.

This exercise demonstrates that a model of economic behavior can be helpful for

capturing the multiple factors that influence gene-outcome gradients and for ana-

lyzing the welfare implications behind them. Using our estimated model, we have

simulated the effects of counterfactual policy reforms, taking into account behaviors

that determine outcomes of interest, such as wealth and retirement, which change

in response to the policies. We have also used the model to demonstrate that the

effect of an environmental change on the relationship between genetic endowments

and a desirable outcome may poorly reflect its impact on the relationship between

genetic endowments and welfare. Failing to account for these behavioral responses

and the complex relationship between observable outcomes and welfare can lead to

flawed conclusions about the distributional consequences of different policies.

5.2. Investment Efficiency and Welfare Changes

The foregoing analysis demonstrates that in spite of the apparent differences in the

distributional impacts of the two policies, both have similar welfare implications and,

in particular, both steepen the EA score-welfare gradient. However, the behavioral

responses and mechanisms highlighted by our model suggest further interventions

that could moderate the impact of the policies on gene-welfare gradients. In this

section, we analyze how interventions that increase the financial proficiency of our

simulated agents can mitigate the impact of the Social Security reforms.

Our estimated model suggests that there are large differences in the barriers that

agents face for accessing sophisticated financial products and in how effectively they

use these products once they gain access. In an environment where the Social Security

system becomes less generous and households become more reliant on their saving and

investment decisions to support their retirement years, these differences become more

important. A growing literature has evaluated the effectiveness of different types of

interventions aimed at improving the financial knowledge and financial behavior of

different groups of the population, which could potentially reduce these differences

(Kaiser and Menkhoff, 2017; Kaiser et al., 2022).
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We consider a scenario in which a successful intervention has dramatically im-

proved the financial proficiency of our agents, lowering their participation costs and

increasing the efficiency of their stock investments. Determining the nature of such a

policy is well outside the scope of this paper; therefore, rather than choosing a level

of effectiveness for this hypothetical intervention, we consider a range of efficiency

improvements: 40%, 60%, 80%, and 100%. For each level of improvement, we reduce

the stock market participation cost and the risky asset return inefficiency of every

agent by that amount . For instance, under an efficiency improvement of 40%, we

reduce every household’s participation cost by 40% and move every household 40%

closer to the stock market’s benchmark expected log-return than they are under the

baseline estimates.
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The compensating variations for both policies are computed at age 21 and from a starting wealth of $20,000. We find
the compensating variation for each of our 5, 130 agent types and weight them by the number of agents of each type
in our simulated population. For both policies and each level of financial inefficiency reduction, we find the median
compensating variation at different levels of the EA score. Each point of the graph subtracts the median compensating
variation of the benefit reduction policy (at the given inefficiency reduction and EA score) from that of the age-shift
policy.

Figure 9: Reductions of Financial Inefficiencies and Welfare Costs.

Figure 9 shows the difference in median compensating variations between the ben-

efit shift and benefit reduction counterfactuals by EA score for the baseline scenario

(0% financial inefficiency reduction) along with the four hypothetical levels of ineffi-

ciency reduction. As shown previously in Figure 8, under the baseline scenario the

distribution of compensating variations are highly similar, with differences in medians

generally ranging between $175 and -$200. As stock market inefficiency is reduced,

lowering the cost of participation and improving the return on risky assets, the com-
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pensating variation in the benefit shift policy becomes significantly larger than in the

benefit reduction policy. For instance, in the baseline scenario, households around

the center of the EA score distribution (0) were virtually indifferent between each

policy, but under perfect efficiency, they would be willing to pay $600 more to avoid

the benefit shift than they would to avoid the benefit reduction policy.

These results demonstrate that the policies can shift G×E interactions in complex

ways. Not only does the policy environment affect the gradients between observed

economic outcomes and genetic endowments, different policies also lead to differ-

ent distributions of welfare costs for people with different genetic endowments. We

highlight that, absent an explicit model that incorporates genetic endowments and

endogenous behavior, it is difficult to draw such conclusions.

6. Conclusion

Our analysis demonstrates the important role that economic theory and modeling

can play in interpreting the growing literature on gene-by-environment (G×E) inter-
actions. Given that policies affect environments, they can shift G × E interactions,

i.e., how genetic endowments relate to economic outcomes. Our research illustrates

that studying G × E interactions through the lens of an economic model offers two

contributions. First, it facilitates ex-ante G × E analysis, by which we mean that

we can examine how counterfactual policy environments interact with genes to drive

behavior and outcomes. Second, it allows us to examine the welfare consequences of

potential policies for people with different genetic endowments. As we have shown,

a policy that moderates the gene-wealth gradient may appear to be more equitable

and thus more favorable but has similar welfare consequences to a policy that does

not moderate the gene-wealth gradient. Future research of this kind can increase our

understanding of the specific economic primitives (e.g., expectations, preferences, and

constraints) that give rise to genetic gradients in actions and outcomes and thus help

to predict how policy changes are likely to affect economic inequality linked to genetic

differences. This will require richer models of behavior and, likely, the collection of

richer data.
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L. Fuster, A. İmrohoroğlu and S. İmrohoroğlu. 2003. “A Welfare Analysis of Social

Security in a Dynastic Framework*.” International Economic Review 44 (4):1247–

1274.

———. 2007. “Elimination of Social Security in a Dynastic Framework.” The Review

of Economic Studies 74 (1):113–145.

H.-M. V. Gaudecker. 2015. “How Does Household Portfolio Diversification Vary with

Financial Literacy and Financial Advice?” The Journal of Finance 70 (2):489–507.

G.-L. Gayle, L. Golan and M. A. Soytas. 2022. “What is the source of the intergen-

erational correlation in earnings?” Journal of Monetary Economics 129:24–45.

F. Gomes and A. Michaelides. 2005. “Optimal Life-Cycle Asset Allocation: Under-

standing the Empirical Evidence.” The Journal of Finance 60 (2):869–904.

J.-O. Hairault, F. Langot and T. Sopraseuth. 2008. “Quantifying the Laffer Curve on

the Continued Activity Tax in a Dynastic Framework*.” International Economic

41



Review 49 (3):755–797.

K. P. Harden. 2021. The Genetic Lottery: Why DNA Matters for Social Equality.

Princeton University Press, 1st ed.

J. Heckman. 1974. “Life Cycle Consumption and Labor Supply: An Explanation

of the Relationship between Income and Consumption Over the Life Cycle.” The

American Economic Review 64 (1):188–194.

W. D. Hill, N. M. Davies, S. J. Ritchie et al. 2019. “Genome-Wide Analysis Iden-

tifies Molecular Systems and 149 Genetic Loci Associated with Income.” Nature

Communications 10 (1):5741.

M. Houmark, V. Ronda and M. Rosholm. 2020. “The Nurture of Nature and the

Nature of Nurture: How Genes and Investments Interact in the Formation of Skills.”

SSRN Scholarly Paper ID 3708642, Social Science Research Network, Rochester,

NY.

R. G. Hubbard, J. Skinner and S. P. Zeldes. 1995. “Precautionary Saving and Social

Insurance.” Journal of Political Economy 103 (2):360–399.
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ONLINE APPENDIX
A. Genome-Wide Association Studies and EA Score

A.1. Polygenic Scores

In this section, we describe how the EA polygenic score is constructed, what it

measures, and some earlier results on its association with socioeconomic outcomes.

More detailed accounts are found in past studies from economics. We also refer the

reader to Beauchamp et al. (2011), Benjamin et al. (2012), and Visscher et al. (2017)

for excellent reviews, upon which we base much of the information presented here.

The human genome consists of approximately three billion pairs of nucleotide

molecules, called base pairs, spread out over 23 chromosomes. Four molecules, adenine

(A), cytosine (C), guanine (G), and thymine (T), combine to form the two base pair

molecules in human DNA: AT or GC. Humans have two copies of each chromosome,

one from each parent. Therefore, at a particular location in the genome, an individual

may have two copies of AT (AT,AT), one copy of AT and one copy of CG (AT,CG),

or no copies of AT and two copies of CG (CG,CG). Sequences of base pairs are

called genes and govern bodily function through the synthesis of proteins. At over

99% of locations in the human genome, people have the same base pairs. Locations

where there is variation across humans are called single nucleotide polymorphisms

(henceforth SNPs). A “reference allele” is the nucleotide pair that is most common

at a given SNP, and an individual can have zero, one, or two copies of the reference

allele. For example, at a particular SNP, if the most common base pair is AT, a

person’s genotype could be (AT, AT), (AT, GC), (GC, AT), or (GC, GC). That

person would possess two, one, one, or zero copies of the reference allele, respectively.

Genome-wide association studies (GWAS) are empirical exercises that relate SNP-

level data to behaviors and outcomes such as height, body mass, certain diseases, or

socioeconomic outcomes and choices. The process typically consists of regressing the

outcome of interest onto count variables for the number of reference alleles each indi-

vidual has at each SNP. Separate regressions are run for each SNP, while controlling

for the principal components of the full matrix of SNP count data. The coefficients

estimated in GWAS are used to construct polygenic scores, linear indices based on the

estimated regression coefficients associated with each SNP. These scores are essentially

weighted averages of genetic markers, where the weights are the coefficients linking
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the SNPs to outcomes.1 Loosely speaking, a higher polygenic score means an indi-

vidual possesses more of the genetic markers that are correlated with the outcome.

The sample used to conduct a GWAS is often referred to as its discovery sample.

Polygenic scores can be computed outside of their discovery sample by combining the

estimated GWAS coefficients with SNP-level data from a different sample.

The polygenic score that we use in this paper is based on results from Lee et al.

(2018), who conducted a GWAS for educational attainment that featured a discovery

sample of over 1.1 million people. The score constructed by the authors accounts

for 10.6% of the variation in the years of education of HRS respondents of European

ancestry. This is a notable achievement because individuals from the HRS were not

used in the Lee et al. (2018) discovery sample. We refer to this polygenic score as

the EA3 polygenic score, since it is the score based on the third major GWAS for

education attainment, or simply the EA score. While the EA score was constructed

to predict years of education, Lee et al. (2018) show that it also has out-of-sample

predictive power for related outcomes, such as GPA and cognition. More recent

studies demonstrate that the EA score is robustly associated with more complex

socioeconomic outcomes such as labor income and wealth at retirement, even after

flexibly controlling for educational attainment (Barth, Papageorge, and Thom, 2020;

Papageorge and Thom, 2020).

A.2. Limitations

There are various limitations and concerns to using genetic data in social scientific

analysis, which the earlier literature has discussed. Studies that established some of

the basic empirical relationships on which this paper builds and that which guide our

modeling assumptions were careful in addressing these concerns and others. First,

it is wrong to conclude that the social outcomes that we study are purely biolog-

ically determined. Educational attainment, income, and wealth are all influenced

by environmental factors (e.g., childhood economic advantages, parental investments,

macroeconomic trends, life events, and social policies), along with genetic endowments

and the interaction between the two. The EA score summarizes genetic variations

that, on average and given current environments, predict educational attainment and

1The regression procedure often makes adjustments to address issues like population stratification,
multiple hypothesis testing, and correlation between SNPs. See Benjamin et al. (2012) for details.
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other socioeconomic outcomes. Furthermore, despite being able to explain a mod-

erate fraction of the aggregate variation in these outcomes, the EA score remains

a poor individual-level predictor (Harden and Koellinger, 2020). For these reasons,

we refrain from and caution against interpreting an individual’s EA score as their

“ability.”

Second, with gene-outcome gradients, causality is difficult to ascertain. Unad-

justed relationships likely capture factors subsumed into an error term that are related

to genetic endowments, including family environments. We note, however, that many

relationships between genes and outcomes, including the association between the EA

score and education, hold in analyses with family fixed effects, though coefficients are

smaller. Incorporating standard childhood SES variables into the analysis generates

relationships close to those that rely on within-family variation in the EA score. Thus,

many studies, including this one, incorporate such variables (e.g., father’s occupation

and mother’s education). In doing so, we argue that we substantially mitigate the

concern that any coefficient estimates using the EA score reflect solely environmen-

tal factors correlated with genetic endowments, such as household resources during

childhood.

Third, a general limitation of polygenic scores is that they lose predictive power

when applied to ethnic groups different from those represented in the GWAS discovery

sample (see Martin et al., 2017). In the case of the EA score, the discovery sample

used by Lee et al. (2018) was comprised of individuals of European ancestry. This fact

limits our ability to extrapolate the mechanisms that we study to people of different

ethnic groups.2

Fourth, since the EA score is an out-of-sample predictor formed using a series of es-

timated linear models, it could be subject to measurement error and misspecification

relative to a theoretically optimal genetic predictor of educational attainment. This

limitation would affect the empirical moments that we match and, by extension, our

structural estimates. If this process produced classical measurement error—injecting

noise in the reduced form relationships between the polygenic score and our out-

comes of interest—we would expect these issues to attenuate the relationships that

2Related to this issue, it is common practice to address concerns that genetic relationships reflect
population stratification by adjusting for the first 10 principal components of the full matrix of
genetic data.
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we observe and model, making our estimates act as conservative bounds.

A.3. Social Scientific Research Using the EA Score

Research on molecular genetics and social science outcomes often explores gene-

by-environment or G × E interactions. An important goal for this literature is to

understand the extent to which modifiable aspects of the environment can attenuate

or intensify genetic influences on important outcomes (Fletcher and Conley, 2013).

Various papers find evidence that such aspects of the environment can moderate the

relationship between the EA score and completed education. Both Papageorge and

Thom (2020) and Ronda et al. (2022) find that the association between the EA score

and post-secondary education is larger for people growing up in households with

higher socioeconomic status. The EA score is also more strongly associated with

educational attainment among first-born individuals, suggesting a possible interac-

tion between genetic endowments and parental investments (Muslimova et al., 2020).

Moreover, school characteristics and specific educational reforms have been shown

to moderate genetic gradients in educational attainment. For example, Arold, Hufe,

and Stoeckli (2022) and Trejo and Domingue (2018) estimate interactions between

the EA score and school-level characteristics in predicting educational attainment,

while Barcellos, Carvalho, and Turley (2021) find that an increase in the school leav-

ing age in the U.K. reduced the association between the EA score and educational

attainment (though not later life economic outcomes). Schmitz and Conley (2017)

show that Vietnam-era military conscription had an adverse effect on post-service

schooling for veterans with below-average EA scores, but find no effect for those with

above-average EA scores. Interactions also exist between the EA score and outcomes

other than educational attainment. Barth, Papageorge, and Thom (2020) find that

the relationship between the EA score and wealth is significantly reduced among peo-

ple with defined-benefit pension plans. A larger G × E literature studies a broad

range of health outcomes and tests for interactions between environmental factors

and polygenic scores for conditions such as obesity, alcohol consumption, and heart

disease (Barcellos, Carvalho, and Turley, 2018; Biroli, 2015; Fletcher and Lu, 2021;

Baker et al., 2022).

Disciplines other than economics, such as sociology, psychology, and behavioral ge-

netics, have long explored pathways through which traits and outcomes that economists
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would relate to human capital are produced and transmitted between generations.

Studies in these areas recognize the importance of interactions between genetic endow-

ments and environments for intellectual development, educational attainment, and

socioeconomic outcomes (Scarr-Salapatek, 1971; Guo and Stearns, 2002; Turkheimer

et al., 2003; Nisbett et al., 2012; Belsky et al., 2016, 2018). These interactions have

been studied in different settings, at different stages of life and using different meth-

ods and, as shown by Tucker-Drob and Bates (2016), the level of complementarity

between genetic endowments and childhood socioeconomic status in the production

of academic achievement varies between countries, suggesting that the interaction

can change as a function of societal conditions and policies. Therefore, examining

these interactions can enhance our understanding of whether social policies reduce or

entrench existing inequalities (Harden and Koellinger, 2020).

A natural next step in the use of genetic data in the social sciences is to incorporate

the heterogeneity and interactions identified from studying polygenic scores into mod-

els of human capital accumulation, life-cycle decisions, and social policies. As Harden

and Koellinger (2020) put it, social scientists can use polygenic scores as a type of

“tracer dye” to reveal how predispositions, environments, policies, and life events

interact in the production of adulthood outcomes, which is consistent with looking

more carefully at dynamic life-cycle behavior. Moreover, while earlier work shows re-

lationships between genetic endowments and socioeconomic differences, it cannot tell

us how these relationships would change in counterfactual settings, for instance differ-

ent social policies, labor market conditions, tax systems, or incentives to education.

Interactions between genetic data and previous policy changes allow the researcher to

conduct ex-post policy evaluations, e.g., to understand how education policy affected

people with different EA scores (Barcellos, Carvalho, and Turley, 2018). In contrast,

ex-ante policy analysis requires an explicit model to simulate counterfactual policies

or environments (Wolpin, 2013). Genetic data combined with models of economic

behavior permit examination of counterfactual gene-by-environment interactions.

To our knowledge, the only other paper that develops and estimates a structural

model to examine genetic endowments related to education attainment is Houmark,

Ronda, and Rosholm (2020).3 The authors incorporate genetic data into a model of

3Biroli (2015) uses a structural model to examine genetic markers related to obesity.
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Table B1: Non-estimated parameters.

Parameter Symbol Value Parameter Symbol Value

Relative risk aversion ω 1.6 a Yearly discount factor β 0.96
Consumption’s share
of utility

γ 0.39 b Minimum and maxi-
mum retirement years

{AgeR0 ,AgeRf } {62, 80}

Yearly survival proba-
bilities

{δt}Tt=1 SSAc Minimum and “full”
soc. sec. benefit
claiming years

{AgeSSmin,Age
SS
Full} {62, 67}

Mean of real S&P500
log-returns

µSP500 0.0645 d Income tax rate (soc.
sec.)

τFICA 0.06

Std. Dev. of real
S&P500 log-returns

σSP500 0.1649 d Income tax rate τW 0.24

Yearly risk-free return R 1.015 Capital gains tax rate τ c 0.20
S.S. benefits tax rate τ s 0.15

a Lusardi, Michaud, and Mitchell (2017), b Imrohoroğlu and Kitao (2012), c SSA Life Tables for males born in 1940,
d historical calculation based on years 1936-2018 from the accompanying data file to Chapter 26 of Shiller (1990).

skill formation and parental investments. The structure in their model means they

can address questions about counterfactual policies, e.g., they can simulate the rela-

tionship between the EA score and children’s skills in a counterfactual environment

where parental investments are held fixed across the population. In our case, we

develop a model of life-cycle behavior where choices are an explicit result of dynamic

utility maximization under uncertainty. Choices are optimal reactions to endowments

(including genetic endowments) and the environment, and they endogenously adjust

to changes in policies. The model also allows us to measure welfare so that we can

understand how counterfactual policies not only affect optimal choices and outcomes

but also well-being for people with different genetic endowments. As we show, this

is important since policies that reduce inequality on some outcomes for people with

different EA scores can increase inequality in terms of lifetime utility.

B. Estimation details

We split our model’s parameters in three different groups. Table B1 presents the

values of the first set, which we take from historical data, administrative sources, or

past studies. We estimate the rest of the parameters in two steps as described in the

main text. The following subsections expand on the details of both steps.

6



Table B2: Income, Inheritance, and Defined-Benefit Pension Estimates.

[1] [2] [3] [4]
Log Real Earnings P I ln(C.Inher), ln D.B. Pension
Linear, Indiv. F.E. Probit OLS OLS

Const. 8.6266 −6.03 11.70 −14.10
Age 0.1092 0.13 −0.04
Age2/100 −0.1250 −0.10 0.03
Coll −0.3027 0.13 0.53 0.69
EA −0.0405 0.02 0.15
EA Quint. 2 0.11
EA Quint. 3 0.23
EA Quint. 4 0.39
EA Quint. 5 0.20
SES 0.0057
SES.Miss. −0.0051
EA× SES.Miss. −0.0199
Age× Coll 0.0099
Age× EA 0.0022
Age× SES 0.0016
Age× SES.Miss. 0.0085
Year 0.0075
BY 0.01
DB.Ever 0.1342
DB.Always 0.0411
DB.Miss. 0.0864
Unemp −0.0648
Unemp2 0.0033

Princ. Comp. Gen. ✓ ✓ ✓
Num. obs. 31883 49000 1056 1,672
σ(Zw

i ) 0.3740
σ(ϵwi,t) 0.3867
Sigma OLS 0.4947 1.53

We control for the 10 first principal components of genetic data as released in the SSGAC file for the EA polygenic
score (Lee et al., 2018).

B.1. First Step Estimation Details

In the first step, we directly estimate the specifications of wages (Equation 6),

inheritances, and defined benefit pension flows on the HRS sample data.

a) Income: Pre-tax labor income is:

ln W̃i,t = f(Agei,t,EAi,Colli, SESi,DBi,Yeart,Unempt) + Zw
i + ϵwi,t.

We let f(·) be a linear function of its arguments and some of their interactions. We

estimate this equation with fixed-effects regressions using Social Security Administra-
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tion earnings records that have been linked to our HRS sample. The sample for this

regression consists of all person-year observations for individuals in our main wealth

sample with non-missing SSA earnings data. Our dependent variable is the log of real

earnings, taken from the SSA Summary earnings files. We adjust these amounts to

replace top-coded values with estimates of the expected value of top-coded amounts

as in Barth, Papageorge, and Thom (2020). We consider observations of non-retired

individuals between the ages 22-65. We also restrict our sample to person-year ob-

servations with earnings of at least $10,000 in real income (with 2010 as the base

monetary year). The remaining sample consists of 31, 883 person-year observations

from 869 unique individuals.

The first column of Table B2 presents our estimates of the income process. SES.Miss

is an indicator for individuals for whom the childhood socioeconomic status index is

missing. DB.Ever is an indicator for whether the individual was ever observed receiv-

ing a defined benefit pension when retired. DB.Always is an indicator for whether

the individual was always observed receiving a defined benefit pension when retired.

DB.Miss is an indicator for individuals for whom the information about defined ben-

efit pensions is missing.

b) Inheritances: We estimate both the probability of receiving an inheritance, P I ,

and the value of an inheritance conditional on its receipt, C.Inher, as functions of a

person’s age, education, and EA score. Table B2 presents our estimates. The second

column models the probability of receiving an inheritance using a probit model. The

third column presents OLS estimates for a log-linear model of inheritances condi-

tional on receipt. The samples for each of the regressions are the following. First,

using retrospective survey items about the timing of receiving an inheritance, we

construct a panel of 49, 000 household-year observations for the 870 households in

our main wealth sample. Each household-year corresponds to a person-year for the

male household member when he was between the ages of 22 and 80. We use this

sample to estimate the models of the probability of receiving an inheritance, P I . For

the value of inheritances conditional on reception, we use the sub-sample of 1, 056

household-year observations for 575 households corresponding to periods when they

received a non-zero inheritance.

c) Defined Benefit Pension Flows: The fourth column of Table B2 presents our
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estimates for defined-benefit pension-flows. The sample consists of 1,672 households

receiving defined benefit pension income from Barth, Papageorge, and Thom (2020).

B.2. Second Step MSM Estimation Details

We estimate the rest of the parameters internally, targeting moments of interest.

Specifically, define M as the vector of empirical sample moments we target in the

estimation. The MSM methodology begins by generating counterparts to M from

a simulated sample, generated conditional on a candidate set of parameters θ̃. To

generate the synthetic sample, we match the sample data’s joint distributions of

birth years, college completion, EA polygenic scores, and defined benefit pension plan

participation. To do so, we discretize the EA score by its deciles and group individuals

into five-year birth cohorts from 1915 to 1960. This gives us 400 possible combinations

of observable characteristics: ten EA score deciles, times ten birth cohorts, times

two educational attainment levels (a completed college degree or not), times two

possible pension possibilities (participating in a defined benefit plan or not). Only

190 out of the 400 combinations are populated in the sample data. Denote by Nq

the number of observations in each of the q = 1, 2, ..., 190 populated combinations.

We expand the synthetic sample by multiplying Nq by 10 for each q. Note that this

expands the synthetic sample by a factor of 10 but preserves the relative distribution

of characteristics.

We then introduce unobserved heterogeneity. Given a candidate set of parameters

and an agent’s EA score, Equations (2) and SESi = ϕEAi + εi imply:

ζ⃗i|EAi ∼ N (zϕEAi, σ
2
SESzz

′ + ΣZ). (1)

We discretize the distribution in Equation (1) using 27 equiprobable points for ζ⃗i

(three equiprobable values for each of the three sources of unobserved heterogeneity

for a total of 27 possible triplets). We set the socioeconomic status of simulated

agents to E[SESi|EAi, ζ⃗i].
4 Lastly, we simulate 27 agents, one for each possible draw

of unobserved heterogeneity, for each of the Nq × 10 agents that populate the 190

populated bins. That is, each of the 190 non-empty combinations of observable

characteristics in the HRS sample will contain 27 different simulated agents, each with

4With our setup, E[SESi|EAi, ζ⃗i] = ϕEAi + (σ2
SESz

′)(σ2
SESzz

′ +ΣZ)
−1(ζ⃗i − zϕEAi).
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different unobserved-heterogeneity draws, replicated Nq × 10 times. Expanding the

190 groups of observable characteristics with the 27 EA-specific draws of unobserved

heterogeneity leaves us with 5,130 ex-ante types of agents. These types constitute

the full structure of ex-ante heterogeneity.

We then solve the life-cycle problem by backward induction for the 5,130 types,

which delivers policy functions for choice variables conditional on states. Appendix

E presents details on how we solve the model. We then simulate the lives of our

entire population of agents. We generate draws of lifetime labor income following

Equation (6) and mortality draws from the survival rates {δ}90t=21. For stock-market

returns RSP500
t , we take the realized annual return of the S&P 500 index for the

relevant year, which is determined by each agent’s birth-year and age. This produces

a random sample of synthetic life-cycles, and we calculate counterparts of our targeted

moments on the simulated data. Note that this entire procedure is conditional on a

given set of parameters θ̃. Denote by M̂(θ̃) the simulated moments conditional on θ̃.

We define the loss function for a set of parameters Θ̃ given K empirical moments

as: L(θ̃) =
∑K

k=1

(
M̂(θ̃)k−Mk

Mk

)2

. We estimate the model by minimizing the loss func-

tion, θ̂ = argminθ L(θ).
5

B.2.1. Empirical Moments to Match

Our internal estimation routine targets the following empirical moments:

a) Wealth distribution: The mean and the 10th, 25th, 50th, 75th, and 90th per-

centiles of the wealth distribution for people in the age range 60− 70.

b) Wealth regression coefficients: A subset of the coefficients from a regression of

log-wealth on the EA score EAi, our index of childhood socioeconomic status SESi, a

binary indicator of college completion Colli, the log “earned income” lnEarned Incomei

which we define as the sum of labor income earned between the ages of 30 and 60,

a binary indicator of stock ownership Stocksi,t, and age. We only use observations

on people aged 60 to 70 that report strictly positive wealth to estimate the auxiliary

model. We target the coefficients on Colli, EAi, SESi, and Stocksi,t.

5We solve the minimization problem using the Nelder-Mead algorithm with multiple starting
points. We start by evaluating the objective function in 20,000 initial points and then use the
Nelder-Mead algorithm starting at the 25 points with the smallest loss functions. We take the result
with the lowest associated loss as our estimate.
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c) Stock ownership rate: The fraction of individual-year observations in our sample

aged 60 to 70 that report owning any stocks (Stocksi,t = 1).

d) Stock ownership regression: A subset of the coefficients from a regression of

the stock ownership indicator Stocksi,t on the EA score EAi, our index of childhood

socioeconomic status SESi, a binary indicator of college completion Colli, the log of

earned income ln(Earned Incomei), and age. We include only people aged 60 to 70

that report strictly positive wealth and do not include the coefficient on age as a

moment to match.

e) Retirement rates: The fraction of people in each of the following age brackets

who are retired: [50, 62], [63, 67], [68, 72], and ≥ 73.

f) Retirement regression: A subset of the coefficients from a regression of an

indicator for whether an individual is retired Retiredi,t on the EA score EAi, our

index of childhood socioeconomic status SESi, a binary indicator of college completion

Colli, and age. We consider people aged 61 to 75 and only use the coefficients on

Colli and EAi as moments in the estimation.

B.2.2. Identification

In this section we briefly discuss how the variation in the empirical moments

identifies the set of estimated parameters Θ. In general, the elements of Θ are jointly

determined by the entire vector of moments, and a specific parameter is not identified

solely by one specific moment. We do, however, select moments intentionally based

on how their variability informs the model parameters.

First, consider the parameters associated with stock market participation costs

(f0, fColl, fEA, σ(ZF )) and stock returns (r0, rColl, rEA, σ(Zr)). Intuitively, the

joint distribution of income, wealth, and stock market participation identifies the

cost of stock market participation and returns on risky assets. Note first that the

income process is estimated directly, outside the MSM procedure. Then, holding

risky asset returns fixed, the association between stock market participation and

income identifies the distribution of participation costs, since higher average costs

will predict lower participation at lower levels of income, and a larger variance in

unobserved heterogeneity will imply a flatter relationship between income and stock

market participation. Similarly, holding income and participation costs fixed, the

distribution of wealth determines the returns on risky assets, since in the model the
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growth rate of savings is determined entirely from the return on assets.

The coefficient on SES in the wealth regression identifies zR, the part of unobserved

heterogeneity in stock returns that is determined by SES. Note that the coefficient

estimate is not a direct estimate of zR; zR is the unobserved heterogeneity in returns

that are linked to SES, not wealth. However, the parameter zR will affect the associ-

ation between SES and wealth, and therefore the empirical association between SES

and wealth implicitly identifies the association between returns and SES. Similarly,

the coefficient on SES in the stock market participation regression identifies zF , the

parameter that determines the effect of SES on unobserved stock market participation

cost heterogeneity.

In addition to the stock market parameters, the wealth distribution also identifies

the two parameters governing the bequest motive, θ and κ. Without a bequest

motive, households would spend down their wealth aggressively as they aged and the

wealth distribution would be less skewed at the top. Because there are more wealth

distribution moments than are needed to identify the coefficients related to stock

market returns, the additional information contained in the distribution of wealth

identifies the parameters governing households bequest incentives.6

Next, consider coefficients on the disutility of labor (d0, dColl, dEA, dAge). Condi-

tional on income and wealth, the retirement decision is influenced by how (un)enjoyable

is working. The rates of retirement at each of the four age ranges therefore identifies

the distribution of labor utility costs.

Finally, the distributions of stock market participation costs, stock market returns,

and disutility of labor are influenced by covariates, in particular the EA score and

education. The coefficients from regressions of wealth, stock market participation,

and retirement on the EA score and education constitute moments that identify how

these distributions shift with these controls.

B.2.3. Additional Possible Mechanisms

Our empirical model allows for the PGS to affect lifetime wealth accumulation

through multiple channels: the income process, the distribution of returns on invested

6We have experimented with alternative models that omit the bequest motive. The key difference
is that we fail to match upper-tail wealth, but key qualitative results are unchanged, i.e., our
specification of the bequest motive does not drive our main results.
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wealth, the fixed cost of stock market participation, the disutility of labor, and the

inheritance process. We focus on these mechanisms because the empirical results in

Barth, Papageorge, and Thom (2020) highlighted these mechanisms as important in

accounting for the PGS-wealth gradient. Here we consider five other possible channels

through which variation in the PGS could be linked to changes in wealth.

a) Fertility The PGS could affect wealth through an effect on fertility. Ceteris

paribus, we would expect more children to reduce parental wealth in retirement given

the expenses of raising kids. Here we construct a measure of the number of kids,

which is the sum of the maximum numbers of own children, step children, and other

children associated with the male household head from the RAND HRS Family Data

File 2018 (V2) for all years.

b) Marital History Our sample focuses on intact couples in order to avoid dealing

with issues of wealth transfer during divorce. However, it could be the case that the

PGS is associated with past divorces, which could reduce wealth if the end of previous

marriages resulted in a reduction in wealth. We account for this by measuring the

total number of marriages the male household member had as recorded in the RAND

HRS Family Data File 2018 (V2)

c) Mortality Expectations Individuals may save more if they expect to live longer.

The HRS has repeatedly asked individuals to assign probabilities to the event of

surviving to age 75 in the Expectations section of the survey. For each individual, we

record their earliest response to this item, as recorded in the RAND HRS Longitudinal

File 2020.

d) Risk Tolerance The PGS could be associated with wealth if it operates through

risk preferences (or how individuals process trade-offs in risky situations). Since the

2014 wave, the Leave Behind section of the HRS asks respondents to think about

“How willing are you to take risks in financial matters” and respond on a 0 to 10

scale, where 0 indicates “unwilling to take any risks” and 10 indicates “fully prepared

to take risks.” We record the maximum value of this variable as our measure of risk

tolerance. (The results below are nearly identical if we use the minimum value or the

mean value for those individuals with multiple measures).

e) Business Ownership The PGS could also operate through entrepreneurship and

business ownership. To measure this, we create a dummy variable for whether the
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household is ever observed owning a business across the HRS waves 1992-2010.

As described in the previous subsection, we identify the effects of variation in the

PGS on stock market returns and the cost of stock market participation by match-

ing coefficients from descriptive regressions that predict log wealth and a dummy for

any stock holding as a function of the PGS and other key variables in the theory.

In particular, the coefficients on the PGS in predicting each of these key outcomes

provides critical identifying information. In Table B3, we assess whether controlling

for the five additional mechanisms listed above would substantially alter the magni-

tude of the coefficients on the PGS in these regressions. Panel A presents regression

results with log Wealth as the dependent variable, and Panel B presents regression

results with a dummy variable for holding any stocks as the dependent variable. All

regressions contain the full set of explanatory variables and controls included in the

analogous (full) specifications in Table 2. Column (1) of each Panel recreates the

main regression specification whose coefficients we match in our estimator. Column

(2) in each panel repeats the specification in Column (1), but restricts the sample

to the subsample with non-missing values of the five additional mechanism variables

described above. Restricting the sample significantly reduces the sample size to 1574,

largely because of missingness in the measures of risk aversion. The coefficients on

the PGS in each panel are slightly attenuated compared to the Column (1) results.

Columns (3) - (7) present results when the specification in Column (1) is modified to

include controls for the different mechanisms. Each of these columns adds only one

more control beyond the baseline specification. In the case of the wealth regressions,

all of these extra mechanism variables are significantly associated with log wealth, in

theoretically predicted directions. Adding these controls produces estimates of the

coefficient on the PGS that range from 0.130 (controlling for risk aversion) to 0.160

(controlling for longevity expectations). In all cases the coefficient remains highly

statistically significant. In Column (8), we add all of the extra mechanism controls

simultaneously. This produces a coefficient of 0.126 on the PGS, which is again re-

mains statistically significant. Columns (3) - (8) in Panel B of Table B3 perform

the same exercise for our regression with any stockholding as the outcome variable.

Across all specifications, we continue to estimate a statistically significant coefficient

on the EA Score that is comparable to the baseline estimates of 0.047 (using the
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restricted sample in Column 2).

Overall, the results presented here suggest that controls measuring the five addi-

tional channels listed above only slightly moderate our estimate associations between

the EA Score, log wealth, and owning stocks. Of course, our measures here are im-

perfect and measured with error. However, the fact that all of them show up as

individually significant predictors of wealth suggest that they do capture important

signals about these underlying channels. Controlling for all of these simultaneously

attenuates the estimated coefficients on the EA Score moderately (about 14 percent

for log wealth and 13 percent for any stocks). These results suggest that the addi-

tional mechanisms explored here could be relevant but are unlikely to account for

the majority of the PGS - wealth relationship we study. Given the computational

expense of adding additional mechanisms and channels, we have tailored our model

to focus on earnings, stock market returns, labor supply, and the inheritance flows.

C. Computing Social Security Benefits

This section describes the procedure we follow for calculating the Social Security

benefit schedules in our model. We aim to replicate the real methodology used by

the Social Security Administration (Social Security Administration, 2019, Section 2)

with one simplification that eases the computational costs of solving our model.

C.1. The Average Indexed Monthly Earnings AIME

The basis of Social Security benefits is a worker’s average earnings over his 35

highest-earning years. Tracking this object precisely would require us to incorporate

additional state variables to our model. Instead, we make the simplification that

agent i’s benefits are calculated based on the wage trajectory that someone with i’s

characteristics would expect. Formally, following Equation 6, we approximate agent

i’s expected pre-tax wages as:

W̃E
i,t = exp

{
f(Agei,t,EAi,Colli, SESi,DBi,Yeart, ¯Unemp) + Zw

i +
σ2(ϵw)

2

}
,

where ¯Unemp is the average historical unemployment rate. The computational conve-

nience comes from the fact that W̃E
i,t is the same for every agent with the same ex-ante

characteristics as i and therefore tracking it requires no additional state variables.

For some given retirement age A ∈ [AgeR0 ,Age
R
f ], denote with W̃ ∗

i,A the 35 greatest
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Table B3: Descriptive Regressions: Additional Possible Mechanisms.

Panel A: log Wealth [1] [2] [3] [4] [5] [6] [7] [8]
EA Score 0.152*** 0.147*** 0.155*** 0.157*** 0.160*** 0.130*** 0.135*** 0.126***

(0.045) (0.050) (0.045) (0.044) (0.045) (0.050) (0.043) (0.048)
Num. Kids -0.047*** -0.040*

(0.016) (0.023)
Num. Marriages -0.194*** 0.021

(0.070) (0.077)
Prob. Live 75 0.003** 0.003*

(0.001) (0.002)
Risk Tolerance 0.072*** 0.062***

(0.017) (0.017)
Has Business 0.620*** 0.464***

(0.085) (0.085)
N 2259 1574 2259 2255 2209 1598 2259 1574
R2 0.380 0.361 0.386 0.385 0.384 0.377 0.419 0.412

Panel B: Any Stocks [1] [2] [3] [4] [5] [6] [7] [8]
EA Score 0.049*** 0.047*** 0.049*** 0.050*** 0.051*** 0.042** 0.048*** 0.041***

(0.014) (0.017) (0.014) (0.014) (0.014) (0.016) (0.014) (0.016)
Num. Kids -0.004 0.002

(0.005) (0.006)
Num. Marriages -0.036 -0.041

(0.022) (0.030)
Prob. Live 75 0.001*** 0.001

(0.001) (0.001)
Risk Tolerance 0.024*** 0.023***

(0.007) (0.007)
Has Business 0.038 0.025

(0.027) (0.030)
N 2259 1574 2259 2255 2209 1598 2259 1574
R2 0.186 0.160 0.187 0.188 0.191 0.178 0.188 0.184

This table reports results from models predicting log Wealth (Panel A) and a dummy variable for any stocks (Panel
B). All regressions include the following variables: the first 10 principal components of the genetic data, the family
SES score, an indicator for a missing SES score, an indicator for having a college degree, log of Prime Income, an
indicator for holding any stocks (in the wealth specification), and interactions between the indicator for a missing
SES score and the following: the EA Score, College, log Prime Income, or Any Stocks if they are present in the
specification.

elements of the set:
{
min

[
W̃E

i,t, T̄ (Yeart)
]}t(A)−1

t=t(21)
, where t(a) is an auxiliary function

indicating the simulation period at which the agent reaches age a. The set represents

the 35 highest-earning years of i up to age A capped at the time-varying maximum

taxable earnings. For each retirement age, we find the average indexed monthly

earnings as AIMEA
i = 1

12
× 1

35

∑
W∈W̃ ∗

A,i
W .

16



C.2. Primary Insurance Amount and Adjustments

The primary insurance amount (PIA) is the monthly benefit that a person retiring

at the full retirement age of 67 would receive. It is a piece-wise linear function of the

AIME that has decreasing replacement rates for different income brackets. We use

the bracket limits and replacement rates defined by the SSA,

PIA(AIMEA
i ) =

[
AIMEA

i

]895
0

× 0.9 +
[
AIMEA

i

]5397
859

× 0.32 +
[
AIMEA

i

]∞
5397

× 0.15

where [x]ba ≡ max{min{x, b} − a, 0}.

The final step is to adjust the PIA depending on whether a person retires before or

after the full retirement age. Benefits are reduced by 5/9 percentage points per month

of early retirement up to 36 months and by 5/12 percentage points for each additional

month over 36. On the other hand, for agents retiring after the full retirement age,

benefits increase by 16/24 percentage points for each month not receiving benefits

up to age 70, when benefits stop increasing. Formally, for an age of retirement A,

defining H = A− 67, we obtain yearly benefits as:

SSBA
i =

12× PIAA
i ×

(
1−

5
9
min{12|H|,36}+ 5

12
max{12|H|−36,0}

100

)
, If H < 0

12× PIAA
i ×

(
1 +

16
24

min{H,3×12}
100

)
, If H ≥ 0

. (2)

D. Recursive Representation of the Model

This section presents all the dynamic optimization problems that our model’s

agents can face depending on their age and retirement status. We drop the individual

sub-indices i in this section.

a) Between ages 21 and AgeR0 − 2, the agent has not retired and does not have

the option to retire next period:

Vt(At,∅) = max
Ct,ϕt

u(Ct, 1) + βδtEt [Vt+1(At+1, ∅)] + �δtφ(St)

Subject to: 0 ≤ Ct, 0 ≤ St, 0 ≤ ϕt ≤ 1

St = At − Ct − Fi × 1 [ϕt > 0] ,

At+1 =
{
(1− τ c)

[
ϕtR̃t+1 + (1− ϕt)R

]
+ τ c

}
× St + τt(W̃t+1) + Inhert+1.

b) Non-retired agents whose age satisfies Aget ∈ [AgeR0 − 1,AgeRf − 2] decide
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whether to retire or not (with the choice becoming effective next period):

Vt(At,∅) = max
Ct,ϕt,Ret.Aget+1

u(Ct, 1) + βδtEt

[
Vt+1(At+1, Ret.Aget+1)

]
+ �δtφ(St)

Subject to: 0 ≤ Ct, 0 ≤ St, 0 ≤ ϕt ≤ 1, Ret.Aget+1 ∈ {∅,Aget + 1}

St =At − Ct − F× 1 [ϕt > 0] ,

At+1 =
{
(1− τ c)

[
ϕtR̃t+1 + (1− ϕt)R

]
+ τ c

}
× St + Inhert+1+

1[Ret.Aget+1 = ∅]× τt(W̃t+1) + 1[Ret.Aget+1 ̸= ∅]× (1− τ s)×DBf+

1[Ret.Aget+1 ̸= ∅,Aget+1 ≥ AgeSSmin]× (1− τ s)× SSB(Ret.Aget+1).

c) At Aget = AgeRf − 1 an agent who has not retired is forced to retire:

Vt(At, ∅) = max
Ct,ϕt

u(Ct, 1) + βδtEt

[
Vt+1(At+1, Ret.Aget+1)

]
+ �δtφ(St)

Subject to: 0 ≤ Ct, 0 ≤ St, 0 ≤ ϕt ≤ 1, Ret.Aget+1 = AgeRf

St = At − Ct − F× 1 [ϕt > 0] ,

At+1 =
{
(1− τ c)

[
ϕtR̃t+1 + (1− ϕt)R

]
+ τ c

}
× St + (1− τ s)×DBf+

1[Aget+1 ≥ AgeSSmin]× (1− τ s)× SSB(Ret.Aget+1) + Inhert+1.

d) For an agent who has already retired and did so at age n (Ret.Aget = n):

Vt(At,n) = max
Ct,ϕt

u(Ct, 0) + βδtEt [Vt+1(At+1, n)] + �δtφ(St)

Subject to: 0 ≤ Ct, 0 ≤ St, 0 ≤ ϕt ≤ 1

St = At − Ct − F× 1 [ϕt > 0] ,

At+1 =
{
(1− τ c)

[
ϕtR̃t+1 + (1− ϕt)R

]
+ τ c

}
× St + (1− τ s)×DBf+

1[Aget+1 ≥ AgeSSmin]× (1− τ s)× SSB(n) + Inhert+1.

e) In the terminal period, the agent simply allocates his assets between con-

sumption and bequests. He won’t be working, provided that the maximum age of

retirement is lower than the oldest possible age. His problem is:

VT (AT , Ret.AgeT ) = max
CT≥0

u(CT , 0) + φ(AT − CT ). (3)

E. Solution of the Life-Cycle Model

We solve the model using value-function iteration for each of the 5, 130 agent

types. This section describes how we solve each agent’s dynamic problem. We drop

the i sub-indices for compactness.

18



E.1. Grids and Discretizations

Agents have two continuous choices: consumption C and the risky-asset portfolio

share ϕ. We discretize C expressing it as a fraction of the assets available for con-

sumption, starting at 0.005 until 1.000 in increments of 0.005. We discretize the risky

asset portfolio share using 11 points, from 0.0 to 1.0 in increments of 0.1. Finally, we

construct a grid that we use to represent discretizations of various versions of wealth

(e.g., start-of period, savings) and generically refer to it as the wealth grid. The

wealth grid has 51 points spanning [102, 107] USD and is denser at lower values.

We also discretize the two normal random variables over which agents form expec-

tations: the income shock ϵw and the market log-return lnRSP500. We use equiprob-

able grids with 9 points for each.

E.2. Solving the Terminal Period

An agent that reaches the terminal age of 90 faces no portfolio decision, he simply

allocates his wealth between consumption and bequests. Since 90 is also larger than

the maximum age of retirement, we know the agent will be retired. Therefore, the

agent’s value function is given by Equation 3. We solve this problem for every A90 in

our wealth grid with consumption taking the values of our discretized proportional

grid. The solution is the same for every retirement status Ret.Age90. We use the

solutions to construct linear interpolators for V90(·, Ret.Age90) and move on to non-

terminal periods.

E.3. Solving Non-Terminal Periods

Given value function Vt+1(·, ·), we must solve for Vt(·, ·). We start by defining the

function Emaxt+1(·, ·, ·) as:

Emaxt(St, ϕt, Ret.Aget+1) = Et

[
Vt+1(At+1, Ret.Aget+1)

]
where At+1 = Xt+1 + Yt+1

Xt+1 =
{
(1− τ c)

[
ϕtR̃t+1 + (1− ϕt)R

]
+ τ c

}
× St

Yt+1 = 1[Ret.Aget+1 = ∅]× τt(W̃t+1) + 1[Ret.Aget+1 ̸= ∅]× (1− τ s)×DBf+

1[Ret.Aget+1 ̸= ∅,Aget+1 ≥ AgeSSmin]× (1− τ s)× SSB(Ret.Aget+1) + Inhert+1.

(4)
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Emax represents the continuation value from each of the possible states in which

the agent can end period t. In Equation 4, we have separated At+1 into wealth

coming from past savings Xt+1 and current income Yt+1. These two components are

independent from the point of view of period t and we take advantage of this fact.

We define Qt(Xt+1, Ret.Aget+1) ≡ E[Vt+1(Xt+1+Yt+1, Ret.Aget+1)|Xt], where the

expectation is being taken over Inhert+1 and income shock ϵwt+1. For every feasible

value of Ret.Aget+1, we evaluate this function with Xt+1 on our wealth grid and use

the results to construct linear interpolators of Qt+1(·, Ret.Aget+1).

Then, for every feasible Ret.Aget+1 and every ϕt, we evaluate:

Emaxt+1(St, ϕt, Ret.Aget+1) = E[Qt+1(Xt+1, Ret.Aget+1)|St, ϕt]

with St taking all the values in our wealth grid and the expectation being taken

over market returns only. We use the results to construct linear interpolators of

Emaxt+1(·, ϕt, Ret.Aget+1).

We now turn to finding the agent’s optimal choices. It is useful to note at this

point that we can use Equation 4 to re-express the agent’s problem as:

Vt(At, Ret.Aget) = max
Ct,ϕt,Ret.Aget+1

u(Ct, ℓ) + βδtEmaxt+1(St, ϕt, Ret.Aget+1) + ��δφ(St)

Subject to: 0 ≤ Ct, 0 ≤ St, 0 ≤ ϕt ≤ 1, St = At − Ct − F× 1 [ϕt > 0] ,

with the feasible options for Ret.Aget+1 depending on the agent’s age and current

retirement status.

We can see the choice of {Ct, ϕt, Ret.Aget+1} as happening in two steps: the agent

first commits himself to a ϕt and pays the cost F if necessary and then, conditioning

on that choice, picks {Ct, Ret.Aget+1}. The problem and value function of the agent

who takes ϕt and his net-of-fixed-cost wealth Ãt as given is:

Ṽt(Ãt, ϕt, Ret.Aget) = max
Ct,Ret.Aget+1

u(Ct, ℓ) + βδtEmaxt+1(St, ϕt, Ret.Aget+1) + ��δφ(St)

Subject to: 0 ≤ Ct, 0 ≤ St, St = Ãt − Ct.

We solve this problem for all combinations of Ãt in our wealth grid, ϕt on its grid,
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and the feasible Ret.Aget. The values we consider for Ct are our consumption (pro-

portional) grid times Ãt. We use the results to construct linear interpolators for

Ṽt(·, ϕt, Ret.Aget) for every combination of {ϕt, Ret.Aget}.

Finally, we can express the value function as:

Vt(At, Ret.Aget) = max
ϕt

Ṽt+1(Ãt, ϕt, Ret.Aget+1)

Subject to: 0 ≤ Ã, 0 ≤ ϕt ≤ 1, Ãt = At − F× 1 [ϕt > 0] .

For every feasible Ret.Aget+1, we solve this problem at every At in our wealth grid

and use the results to construct linear interpolators for Vt(·, Ret.Aget). With these

interpolators, we move on to period t− 1 and repeat the process.

F. Revenues From Social Security Reforms

F.1. The Steady State Cost of Social Security

Parameterizing our counterfactual policies in a way that makes them comparable

requires us to calculate what would be the per-period per-person cost of a Social

Security system in steady state. To calculate this cost, we start by grouping all the

age-invariant characteristics of our model—EA score, college attendance, childhood

socioeconomic status, birth year, pension arrangement, and unobserved heterogeneity

draws—in a vector that we call H⃗i for person i. Then, we use C(a, H⃗) to denote

the expected net revenue that the government will collect from a person with age-

invariant characteristics H⃗ when he is a-years old through the social security system.

We consider the net revenue to be FICA taxes paid on income if working or the

negative of social security benefits if retired.

We think of a steady state as a point in which: a) the number of agents born each

period and the distribution of their age-invariant characteristics, which we will denote

with Nss and FH⃗ respectively, are both constant over time; and b) all of the model’s

components (shock distributions, earning patterns) have stabilized so that C(a, H⃗) is

not time-varying.

If we denote pa the probability that a person survives to age a; we know that in

any steady state period there will be pa × Nss agents of age a alive. Since in our

model survival probabilities are not related to characteristics H⃗, the distribution of

characteristics across agents of any age at any steady-state time will be FH⃗ . Therefore,

21



Table G4: Implied Sharpe ratios and relative Sharpe ratio losses.

Percentiles

Variable Mean Std. Dev. 25th 50th 75th 90th 95th 99th

Sharpe Ratio 0.207 0.088 0.134 0.211 0.280 0.324 0.341 0.356
RSRL 0.440 0.239 0.238 0.426 0.635 0.792 0.838 0.908

The table reports summary statistics of the Sharpe ratio of the risky asset that is available to our simulated agents.
The relative Sharpe ratio loss (RSRL) measures how far an agent’s risky investments are from the maximum Sharpe
ratio available, which in our case is that of the S&P500.

the total per-period expected net Social Security revenue will be:

90∑
a=21

(
paNss ×

∫
C(a, h)dFH⃗(h)

)
∝

90∑
a=21

pa × EH⃗ [C(a, H⃗)].

We approximate the right hand side of the previous equation using our simulated

sample I:
∑90

a=21
1
|I|

∑
i∈I ci,a, where ci,a is the net Social Security revenue collected

from agent i at age a (zero if the agent is dead). This approximation relies on assuming

that our sample can produce a good approximation of the steady state average social

security revenue at every age.

G. Sharpe Ratios Implied by Our Estimates

Our specification of risky-asset log-returns in Equation 7 and its estimated pa-

rameters in Table 3 generate differences in the expected returns that agents get from

investing in the risky asset, as Figure 2 shows. Since, on the contrary, the volatility

of risky asset log-returns does not vary across individuals, there are differences in the

expected compensation per unit of risk that they get. This section examines those

differences in greater detail.

We use two measures of the risk-adjusted compensation that agents in our model

are receiving in their investments: the Sharpe ratio,
E[R̃i,t]−R√

V(R̃i,t)
and the “relative Sharpe

ratio loss” or RSRL (Calvet, Campbell, and Sodini, 2007), 1− Sharpei

(E[RSP500
t ]−R)/

√
V(RSP500

t )
.

The Sharpe ratio measures how much of a premium in expected returns agents are

getting over the risk-free rate for each unit of return volatility that they take on. The

relative RSRL measures how much lower than a benchmark (the S&P 500 index in

our case) an agent’s Sharpe ratio is in relative terms. Table G4 presents summary
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statistics of the distribution of Sharpe ratios and RSRLs for the full population of

simulated agents. The table shows that agents in our model receive very different

compensations for their financial risk-taking and that most of them are far from

the performance of the benchmark return RSP500
t . The median agent’s available risky

investments deliver a compensation per unit of risk that is 42.6% lower than that of the

benchmark S&P500, and one tenth of agents earn compensations almost 80% lower.

We cannot directly construct observed Sharpe ratios and RSRLs for the HRS sample

since doing so would require more detailed information on their investments. However,

the ranges we calculate using the estimated model are similar to those estimated by

Calvet, Campbell, and Sodini (2007) using Swedish administrative data.7
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