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Abstract
This paper presents four theorems that connect continuity postulates in mathemat-

ical economics to solvability axioms in mathematical psychology, and ranks them

under alternative supplementary assumptions. Theorem 1 connects notions of

continuity (full, separate, Wold, weak Wold, Archimedean, mixture) with those of

solvability (restricted, unrestricted) under the completeness and transitivity of a

binary relation. Theorem 2 uses the primitive notion of a separately continuous

function to answer the question when an analogous property on a relation is fully

continuous. Theorem 3 provides a portmanteau theorem on the equivalence between

restricted solvability and various notions of continuity under weak monotonicity.

Finally, Theorem 4 presents a variant of Theorem 3 that follows Theorem 1 in

dispensing with the dimensionality requirement and in providing partial equiva-

lences between solvability and continuity notions. These theorems are motivated for

their potential use in representation theorems.
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The primary empirical meaning of continuity with respect to a connected

product topology is precisely the solvability condition that it implies. It is

more natural to state this empirical meaning explicitly, than to reinforce it into

a stronger condition, of which the further empirical implications for finite data

sets are not clearly identified. (Köbberling and Wakker 2003, p.410)

A number of results hold for much weakened versions of solvability, but many

of the most important ones assume it and are not valid without it. For a time

we believed that weakening the solvability assumption was largely a technical

matter and that the results would differ little from the unrestrictedly solvable

case. We now know this to be false, and in some of our future research we

hope to gain a much deeper understanding of the possibilities that arise with

weaker forms of solvability. (Luce and Narens 1983, p.47)

1 Introduction

This paper is motivated by two themes. First, by integrating the various fragmentary

usages of the solvability and continuity axioms across the two disciplines of

mathematical psychology and mathematical economics, respectively, we aspire to

create a unitary discourse of properties that have taken different forms across the

two disciplines. We weave these fragments into a coherent set of results and aspire

to bring together two communities which should not have moved away to begin

with. Second, the analysis presented in this paper contribute to Luce-Narens’

conceived research agenda of a systematic investigation of the possibilities with

weaker forms of solvability (for eg., restricted solvability) in 1983. While much

work has been done on forms of solvability and its implications for additive utility

representation,1 we believe that a deeper investigation of the form and content of the
solvability axioms has been unexplored and its intimate connections with the

continuity postulates in mathematical economics most certainly remain uninvesti-

gated to the extent that they ought. The leitmotif of this paper, therefore, is to go

back to the most raw, primitive and undefined, meanings of the terms solvability and

continuity, and establish analytical and substantive connections between them and

their subsequent conceptual proliferations.2

The axiom of solvability has been a cornerstone assumption of the measurement

theory literature since it was first introduced in the seminal work of Luce and Tukey

(1964). The idea of the existence of solutions to equations for ‘‘fundamental

quantities‘‘3 dates back at least to Helmholtz (1887), but it was not until Hölder

1 See Gonzales (1997, 2000, 2003) for details.
2 We refer the reader to Köbberling and Wakker (2003) for a comprehensive introduction to the axioms

of continuity and solvability across the topological and the algebraic registers.
3 See Krantz, Luce, Suppes, and Tversky (1971, Chapter 1) for details as to what the subject regards as

‘‘fundamental quantities’’.
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(1901) who formally introduced the axiomatic approach to measurement theory.4

With Luce and Tukey’s 1964 axiomatization and its culmination in the 1971 treatise

Foundations of Measurement (Krantz et al. , 1971), the solvability axiom was

concretized in mathematical psychology. The motive was to impose enough

richness on the algebraic structure of the space concerned such that solutions to

certain equations can be found. Solvability was then categorized in two forms, a

restricted and an unrestricted version, with most of the applications in the literature

working with the restricted version. Much of our work in this paper investigates the

restricted solvability axiom while establishing the strength of the unrestricted

solvability axiom.

Just as with the solvability axioms in mathematical psychology, continuity

postulates in mathematical economics are used to enforce enough richness on the

topological structure being investigated. However, in the absence of a coherent and

unified formulation between the two conceptions, different versions of both the

notions are invoked in different settings.5 The literature is replete with the usage of

the adjective continuous, applied to a function as well as to a binary relation. In

keeping with the theme of understanding the richness of a structure, we detail the

intricacies of the different conceptions of continuity of a binary relation as

comprehensively investigated in Uyanik and Khan (2022) with a special emphasis

on full, separate, Wold, weak Wold, Archimedean and mixture-continuous
manifestations. This work constitutes an important backdrop for carrying out the

investigation pursued in this paper.

With this framing of the project and its underlying motivation in place, we can

now turn to the results themselves and inquire how they contribute to mathematical

psychology and mathematical economics. Theorems 1, 2, 3 and 4 in Section 4 are

the main results, with Theorems 1 and 4 dispensing with the dimensionality

requirement of the choice space. Theorem 1 presents some well-known and some

new results by connecting continuity with solvability, the latter being of primary

interest for mathematical psychologists working in abstract decision theory. Along

with five examples, it exhaustively documents connections between and across

various notions of continuity and solvability under the maximally parsimonious

assumptions on a binary relation. Theorem 2 takes the primitive notion of a

separately-continuous function and uses it to define separate continuity of a relation

and delineates conditions under which it is fully continuous in a finite-dimensional

setting. Theorem 3 provides, under weak monotonicity, a portmanteau theorem on

the equivalence between the six notions of continuity and restricted solvability of a

binary relation with Theorem 4 providing partial equivalences for the infinite

dimensional setting. It is our hope that the theorems presented will further the aims

of Luce and Narens’ research agenda, as elucidated in the epigraph. Similarly, we

aim to complement Köbberling and Wakker (2003) by providing a ranking of the

4 See Michell and Ernst (1996) for the translated version of Part 1 of Hölder’s text. Also see (Birkhoff

1967, p. 300), (Fuchs 1963, p. 45), (Krantz et al. 1971, p. 54) and the comprehensive text Moscati

(2016); especially Chapters 8 and 15 on Stevens and Suppes respectively therein.
5 In this paper, we do not investigate the behavioral implications of continuity and solvability. See Khan

and Uyanik (2021) for a two-way relationship between connectedness and behavioral assumptions on

preferences.
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continuity and solvability axioms which we hope serves as a go-to reference for

future representation theorems.6

The rest of the paper is organized as follows. Section 2 recapitulates some well-

known solvability axioms and continuity postulate in mathematical psychology and

mathematical economics, respectively. Section 3 exhaustively links the two axioms

and presents our main results. In Sect. 4, we present six applications of our work

spanning, (i) Walrasian equilibrium theory, (ii) consumer theory, (iii) representation

of preferences in economics, and (iv) mathematical psychology. Finally, Sect. 5

concludes with some observations on future research directions. Appendix A

provides the proofs of the results, while Appendix B pins down some observations

that arise in the course of the results.

2 The background: a recapitulation

2.1 The continuity postulate in mathematical economics

In this section, we describe what it means for a binary relation to be Archimedean,

continuous, mixture-continuous, separately continuous, weak Wold-continuous and

Wold-continuous, based on a recapitulation of Uyanik and Khan (2022).

Let X be a set. A (binary) relation % on X is a subset of X � X. The asymmetric
part � of % is defined by x�y if x% y and y 6 % x, and its symmetric part � is

defined by x� y if x% y and y% x: We call x ffl y if x 6 % y and y 6 % x. For any
x 2 X, let A% ðxÞ ¼ fy 2 Xjy% xg denote the upper section of % at x and A†ðxÞ ¼
fy 2 Xjy†xg its lower section at x.

Next, we provide topological properties of % provided that X is endowed with a

topology; for topological concepts that are undefined in this paper, see Willard

(1970). The relation % has closed (open) graph if it is closed (open) in the product

space X � X endowed with the product topology; has closed (open) upper sections if
its upper sections are closed; has closed (open) lower sections if its lower sections

are closed; and has closed (open) sections if it has closed (open) upper and lower

sections. Moreover, % is continuous if it has closed sections and its asymmetric

part � has open sections.

The following two definitions are not standard in the literature and hence, we

provide them separately.

Definition 1 (Restricted Continuity) Let % be a binary relation on X and S � X.
The relation % on X is restrictedly continuous with respect to S if for all

x 2 X, A% ðxÞ \ S and A†ðxÞ \ S are closed in S; and A�ðxÞ \ S and A�ðxÞ \ S

are open in S.

Sometimes, we use the following compact version for the restricted continuity of

a binary relation % given a set S: the restriction of % on S is continuous, or simply

% �S is continuous. The restricted continuity concept is not an ad hoc one: it is not

6 Wakker and Yang (2019, 2021) provide powerful tools for analyzing concavity and convexity of utility

and weighting functions by using the convexity of preferences without hinging on the continuity

assumption.
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difficult to show that for a complete binary relation, it is a generalization of the

mixture continuity concept, defined below as in Herstein and Milnor (1953); see

Uyanik and Khan (2022) for a derivation and discussion, and also Rebenciuc

(2008, Section 3) for different versions of restrictions of binary relations that are

used in mathematics.

Definition 2 (Separate-Continuity) Let I be an arbitrary indexed set, Xi a non-

empty subset of R for all i 2 I, X̂ ¼
Q

i2I Xi endowed with the product topology and

X � X̂ a convex set. A relation % on X is separately continuous if for all i 2 I and
x 2 X, the restriction of the relation on Li;x ¼ fðyi; x	iÞ 2 Xjyi 2 Xig is continuous,

where ðyi; x	iÞ denotes yi 2 Xi; x	i 2 X	i: .

This definition is motivated by the well-known separate continuity of functions

(requiring continuity in each coordinate separately) that goes back to Cauchy’s

classic work; we return to this in the next section.

Now, let X be a convex subset of a linear space and for all k 2 ½0; 1
 and all

x; y 2 X, xky denotes kx þ ð1	 kÞy. A relation % on X is mixture-continuous if

x; y; z 2 X implies that the sets fk 2 ½0; 1
jxky% zg and fk 2 ½0; 1
jxky†zgð Þ are

closed, and % is Archimedean if x; y; z 2 X; x�y implies that there exist k; d 2
ð0; 1Þ such that xkz�y and x�ydz. The above two postulates are defined by using

straight lines, whereby a straight line in X is the intersection of a one dimensional

affine subspace of RI and X. Next, we generalize the notion of straight lines to

unbroken curves following the seminal work of Wold (1943).

Now, let X be a topological space. An arc in X is a continuous injective function

m : ½0; 1
 ! X. A curve in X is the image of an arc m : ½0; 1
 ! X. Since an arc m is

continuous and injective, it is a bijection from [0, 1] to its image m([0, 1]). When X
is Hausdorff, it follows from [0, 1] being compact and m([0, 1]) being Hausdorff

that m is a homeomorphism between [0, 1] and m([0, 1]). Hence, these two spaces

are homeomorphic; see for example Willard (1970). Note that an arc induces a

unique curve but a curve can be induced by distinct arcs: for example, any closed

segment [x, y] of the diagonal in R2 is induced by every arc with m1ðkÞ ¼ m2ðkÞ for
all k 2 ½0; 1
 where m1ð0Þ ¼ x;m1ð1Þ ¼ y.

Next, we define what it means for a relation to be order-dense and present the

concepts of Wold and weak Wold-continuity.

Definition 3 (Order Dense) A relation % on a set X is order dense if x�y implies

that there exists z 2 X such that x�z�y.

This definition of an order-dense relation implies a certain richness of the space

such that an element in the space can always be found that is ‘sandwiched’ (by

order) between two given elements.

Definition 4 (Wold-solvability/Wold-continuity) Let X be a convex subset of a

topological vector space. A binary relation % on X is

(i) Wold-solvable if x�z�y implies that any curve joining x to y meets the

indifference class of z.
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(ii) weak Wold-solvable if x�z�y implies that the straight line joining x to

y meets the indifference class of z.
(iii) Wold-continuous if it is order dense and Wold solvable.

(iv) weakly Wold-continuous if it is order dense and weak Wold-solvable.

Remark 1 Part 4 is Axiom 5 in Wold (1943) and part 4 is Axiom B in Wold and

Jureen, (1953, p. 82). For the latter, note that order denseness follows from their

monotonicity assumption (Axiom A), hence under their monotonicity assumption,

weak Wold-solvablility and weak Wold-continuity are equivalent.

Next, we provide examples of binary relations that demonstrate the above

definitions.

Example 1 (Genocchi and Peano (1884)) Let the binary relation % be defined on

R2 by ðx1; x2Þ% ðy1; y2Þ iff f ðx1; x2Þ� f ðy1; y2Þ where

f ðx1; x2Þ ¼
x1x2

x21 þ x22
ðx1; x2Þ 6¼ ð0; 0Þ;

0 ðx1; x2Þ ¼ ð0; 0Þ:

8
<

:

This is the textbook example of a separately continuous function which is not

continuous; it was originally presented by Genocchi and Peano (1884). The relation

is continuous along any restriction parallel to either of the axes and hence, sepa-

rately continuous. However, it is discontinuous along the 45� line (at (0, 0)) and

therefore, not continuous. Separate continuity of a binary relation is indeed weaker

than continuity. h

Example 2 As in Example 1, define % on Rn as ðx1; x2; :::; xnÞ% ðy1;
y2; :::; ynÞ iff x1 þ x2 þ :::þ xn � y1 þ y2 þ :::þ yn. The relation % is order dense

because between any x and y there exists z such that x�z�y: Moreover, this relation

is Wold-continuous as any continuous arc joining two points in Rn intersects

indifference curve of a point sandwiched between the two as per the binary relation.

h

Example 3 Let X ¼ R2: Define % on X as ðx1; x2Þ% ðy1; y2Þ iff x1 �
y1 or x1 ¼ y1; x2 � y2. The relation % is called lexicographic. It is trivial to see

that % is order-dense. To see that % does not satisfy weak Wold-continuity, note

that ð1
2
; 1Þ% ð1

3
; 0Þ% ð0; 1Þ. For t 2 ½0; 1
, we have, tð1

2
; 1Þ þ ð1	 tÞð0; 1Þ ¼ ð1

2
t; 1Þ.

But for no t 2 ½0; 1
; we have ð1
2

t; 1Þ� ð1
3
; 0Þ. Therefore, it is not weak-Wold

solvable and hence, not weak Wold-continuous. Therefore, it is also not Wold-

continuous. h

Example 4 Let the binary relation % be defined on a bounded subset X 
 R2 as

ðx1; x2Þ% ðy1; y2Þ if and only if f ðx1; x2Þ� f ðy1; y2Þ where
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f ðx1; x2Þ ¼
0:4; if x1 þ x2 � 1; ðx1; x2Þ 6¼ ð1; 0Þ;
0:5; if ðx1; x2Þ ¼ ð1; 0Þ;
0:6; if x1 þ x2 [ 1:

8
><

>:

It can be easily verified that a relation defined this way is neither order-dense nor

weak-Wold solvable (Wold solvable).

Now, we present a theorem due to Uyanik and Khan (2022, Theorem 2) that

establishes equivalence between various notions of continuity of a binary relation on

finite dimensional Euclidean spaces. But first we describe some preliminary

properties of the binary relation. A relation % is strongly monotonic if x[ y
implies x�y and weakly monotonic if for all x; y 2 X, x[ y implies x% y, and % is

convex if it has convex upper sections. For vectors x and y, we use the following

convention: ‘‘x� y‘‘ means xi � yi in every component, ‘‘x[ y’’ means x� y and

x 6¼ y, and ‘‘x � y‘‘ means xi [ yi in every component. We call a subset A of X is

bounded by % if for all x; y 2 A there exists a; b 2 X such that a% x; y and x; y% b.
A polyhedron is a subset of Rn which is an intersection of a finite number of closed

half-spaces.

Theorem (Uyanik-Khan – Finite Dimension) Let % be a complete and transitive
relation on a convex subset X of Rn. If either (i) % is convex and X is either a
polyhedron or open, or (ii) % is weakly monotonic and X is bounded by the usual
relation � , then the following continuity postulates for % are equivalent: graph
continuous, continuous, mixture-continuous, Archimedean, Wold-continuous, and
weakly Wold-continuous.

Under the convexity postulate, the equivalence result fails for infinite dimen-

sional spaces; see the example in Neuefeind and Trockel (1995). However, Khan-

Uyanik (2019) show that some of the equivalences pertaining to scalar continuity

postulates in the Theorem above do not require finite-dimensionality or a

topological structure on the choice set and prove

Theorem (Uyanik-Khan – Infinite Dimension) For every convex, complete and
transitive relation on a convex subset of a vector space, the following continuity
postulates are equivalent: Archimedean, strict Archimedean, mixture-continuous
and weakly Wold-continuous.

We show below that under the monotonicity postulate, the portmanteau

equivalence theorem holds for infinite dimensional spaces and also extends to the

separate continuity and the restricted solvability postulates.

2.2 The solvability axiom in mathematical psychology

In this subsection, we consider two solvability notions as articulated in the

measurement theory literature by Krantz et al. (1971). They categorize solvability

as a structural axiom asserting that ‘‘solutions exist to certain classes of equations or

inequalities;’’ see Luce and Narens (1986) for a review of generalizations of

classical theories of measurement. An axiom is said to be structural if it restricts the
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set of structures satisfying a given axiom system to something less than the set

determined by the representation theorem; i.e., a tighter bound is imposed by

structural axioms on admissible structures. We refer the reader to Suppes (1974) for

a discussion on structural axioms in the context of theories of subjective probability.

Throughout this subsection, we assume I is an arbitrary indexed set, Xi a non-

empty set for all i 2 I, X̂ ¼
Q

i2I Xi and X � X̂.

Definition 5 (Unrestricted Solvability) A relation % on X satisfies unrestricted

solvability with respect to the ith component if for any x 2 X and y	i 2 X	i, there

exists zi 2 Xi such that x�ðzi; y	iÞ: When this holds for all i 2 I, the binary relation

is said to satisfy unrestricted solvability.

The following example illustrates a binary relation that is unrestricted solvable

on Rn.

Example 1(continued) Let X ¼ Rn; n� 2: Define % on X as

ðx1; x2; :::; xnÞ% ðy1; y2; :::; ynÞ if and only if x1 þ x2 þ :::þ xn � y1 þ y2 þ :::þ yn.

Hence, ðx1; x2; :::; xnÞ� ðy1; y2; :::; ynÞ iff x1 þ x2 þ :::þ xn ¼ y1 þ y2 þ :::þ yn: For
any given 2n 	 1 out of the 2n variables, there exists a value for the 2n-th variable

such that the indifference of the binary relation is met. h

Definition 6 (Restricted Solvability) A relation % on X satisfies restricted

solvability with respect to the ith component if for any x 2 X, ai; bi 2 Xi, y	i 2 X	i

with ðai; y	iÞ% x% ðbi; y	iÞ, there exists ci 2 Xi such that x�ðci; y	iÞ: When this

holds for all i 2 I, the binary relation is said to satisfy restricted solvability.

In the following example, restricted solvability fails to hold. The failure to meet

restricted solvability comes from one of the components not being ‘dense’ enough.

Example 5 Let X1 ¼ R and X2 ¼ Q: Define % on R�Q as ðx1; x2Þ%
ðy1; y2Þ iff x1 þ x2 � y1 þ y2. Hence, ð0; 2Þ% ð

ffiffiffi
2

p
; 0Þ% ð0; 0Þ but there is no

x2 2 Q such that ð0; x2Þ� ð
ffiffiffi
2

p
; 0Þ. Therefore, restricted solvability fails for the

second component. However, restricted solvability holds for component 1. h

3 Main results

In this section, we present four theorems, the first and the third substantial, and the

second a mathematical result that links the two by bringing in insights from the

mathematics literature. Theorem 1 documents connections between and across

various notions of continuity (full, separate, Wold, weak-Wold, mixture-continuity

and Archimedean) and solvability (restricted and unrestricted), and Theorem 3

provides a portmanteau equivalence theorem under the weak monotonicity

assumption. Theorem 2 borrows the idea of separate continuity of functions from

the literature on continuity of functions and provides conditions under which

separate continuous relation is fully continuous for finite dimensions. Theorem 4

provides a partial equivalence theorem for infinite dimensional spaces.
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Theorem 1 Let I be an arbitrary indexed set, Xi a non-empty subset of R for all

i 2 I, X̂ ¼
Q

i2I Xi endowed with the product topology and X � X̂ a convex set. Then

the following implications hold for a complete and transitive binary relation %

defined on X.

(a) Continuity ) Wold-continuity ) weak Wold-continuity ) restricted

solvability and Archimedean.

(b) Continuity ) mixture-continuity ) separate continuity, weak Wold-conti-

nuity and Archimedean.

(c) Separate continuity ) restricted solvability.

(d) Unrestricted solvability ) restricted solvability.

Theorem 1 raises as many questions as it answers. In particular there are no further

relationships among these six continuity postulates under the least restrictive

assumptions of completeness and transitivity. We use examples in Appendix 2 to

establish this claim.

Next, we turn to our second result.

Theorem 2 Let % be a complete and transitive preference relation that is weakly
monotone in n 	 1 of its coordinates on a convex, order-bounded set X in Rn. Then,
onintX, % is separately continuous if and only if it is continuous, where intX is the
interior of the set X.

This result provides an alternative proof to the existing results for functions since a

preference relation which is continuous, complete and transitive on subsets of Rn is

representable by a continuous function, a version of this result for functions is

provided by Young (1910) for n ¼ 2 and generalized to any finite n by Kruse and

Deely (1969); see Ciesielski and Miller (2016) for a detailed discussion. However,

note that since it is not known if a separately continuous binary relation is

representable by a separately continuous function, this result does not follow from

the existing results on functions.7 Moreover, the completeness assumption is

redundant in this theorem. Towards this end, we present the proof without the

completeness assumption. In fact, if the choice set X has at least two strictly

comparable points, then the relation is complete; see (Khan and Uyanik (2021),) ,

Giarlotta and Watson (2020) and Khan and Uyanik (2020) for further details. Note

that the interiority assumption is not redundant in the theorem above; Example 6 in

the appendix shows that this theorem is not true without the interiority assumption.

Now, we present an equivalence theorem for finite dimensional spaces.

Theorem 3 Let % be a complete, transitive, order dense and weakly monotonic
binary relation on a convex and order-bounded set X in Rn: Then, on intX, the
following postulates are equivalent for % : continuity, Wold-continuity, weak Wold-
continuity, mixture-continuity, Archimedean, separate continuity, restricted
solvability.

7 We thank an anonymous referee for emphasising this point.
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Figure 1 illustrates the relationship among different continuity postulates. The

black arrows illustrate the relationships presented in Theorem 1, the red and green

arrows illustrate the additional relationships under weak monotonicity for finite

dimensional spaces presented in Theorems 2 and 3, and the green arrows illustrates

additional relationships under weak monotonicity for possibly infinite dimensional

spaces presented in Theorem 4.

Unrestricted solvability is a strong conception of continuity. This is seen in

Figure 1 where there are no incoming arrows from the rest of the continuity

postulates to the unrestricted solvability postulate even under the assumptions of

convexity and weak monotonicity; see Example 1 in Appendix 2 for details. In

terms of strength of these axioms, under the set of assumptions employed in this

paper, restricted solvability is the weakest and continuity is the strongest and

everything else is in between.

We now highlight the importance of the weak monotonicity assumption in

Theorem 3. Uyanik and Khan (2022, Theorem 2) provide an equivalence theorem

for convex or weakly monotone preferences. In their theorem, solvability and

separate continuity postulates are missing. Theorem 3 includes these two continuity

postulates in the picture and shows that for weakly monotonic preferences, an

extended equivalence can be established. However, for convex preferences, without

the monotonicity assumption, restricted solvability does not imply other continuity

assumptions; see Example 2 in Appendix 2.

Theorems 2 and 3 are true for finite dimensional spaces. Next, we present an

example showing that the equivalence relationships need not be true for infinite

dimensional spaces.

Example 6 Let Xi ¼ ð	10; 10Þ, I ¼ Zþ, X ¼
Q

i2I Xi endowed with the product

topology and u : X ! R is defined by uðxÞ ¼ infi2Ifxig. Let % be the preference

relation induced by u; that is, x% y if and only if uðxÞ� uðyÞ.
It is clear that the restriction of u on any line parallel to a coordinate axis is

continuous since for any i and x	i, uðx	i; yiÞ ¼ yi for all yi 2 Xi. Moreover, u is

monotone by construction. Then, it is easy to see that % is monotone and separately

continuous. Finally, % is not continuous. To see this, let x ¼ ð1; 1; . . .Þ, y ¼
ð2; 2; . . .Þ and yn be defined by follows: y0 ¼ ð0; 0; . . .Þ, y1 ¼ ð2; 0; 0; . . .Þ,
y2 ¼ ð2; 2; 0; . . .Þ, .... It is not difficult to show that yn converges y (in the product

topology); see for example Munkres (2000, Exercise 6, p. 118) for characterization

continuous

    weakly monotone

Wold-continuous

separately continuous

unrestricted 
    solvable

restricted solvable

weakly
Wold-continuous

weakly monotone

weakly m
onotone

in (n
-1) coordinates

mixture
continuousArchimedean
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of the convergence of a sequence in a product space. It is clear that x% yn for all n
and y�x. Hence, % is not continuous. Next, we show that % is also mixture

continuous. Towards this end, assume there exists x; y; z 2 X and kn ! k 2 ½0; 1

such that xkny% z for all n but xky � z. Hence, infiðknxi þ ð1	 knÞyiÞ� infizi and

infiðkxi þ ð1	 kÞyiÞ\ infizi. Then, for all k0 in some small neighborhood of k,
infiðk0xi þ ð1	 k0ÞyiÞ\ infizi. This furnishes us a contradiction. h

We end this section with the following partial equivalence result for infinite

dimensional spaces.

Theorem 4 Let % be a complete, transitive, order dense and weakly monotonic
binary relation on a convex set X �

Q
i2I Xi;Xi 
 R; 8i 2 I such that for all x 2 X

there exist e[ 0 such that ðxi 	 eÞi2I ; ðxi þ eÞi2I 2 X (strong order-boundedness).

Then the following postulates are equivalent for % : weak Wold-continuity, mixture-
continuity, Archimedean. Moreover, the following two are equivalent: separate
continuity and restricted solvability.

Remark 2 This theorem provides a partial relationship among different continuity

postulates in infinite dimensional spaces. Note that the preference relation in

Example 5 for an infinite dimensional space is separately continuous and mixture

continuous but not fully continuous, and hence shows that neither separate

continuity, nor mixture-continuity implies full continuity. We refer the reader to

Figure 1 to work out for herself the additional supplemental relationships that need

to be worked out. And we leave the investigation of these additional relationships

for infinite dimensional spaces as an open problem.

Remark 3 The results may be generalized to spaces X where Xi is a convex subset

of a completely ordered topological vector space for all i 2 I. But the interaction

between order and topological vector space structure needs careful attention. A

useful result in this context is one by Fleischer (1961): A linearly ordered set X that
is topologically separable in its order topology and has countably many jumps is
order-isomorphic to a subset of the real numbers. That is, when the components of

the Cartesian product is a linearly ordered separable space and the binary relation is

continuous, then it is isomorphic to an interval in the real line, hence the

generalization of our results to such a setting could potentially be done; see also

Mehta (1986). Another question here is whether weaker concepts such as separate

continuity/solvability are enough to obtain isomorphism of an interval. We leave

these to future investigation.

4 Some selective applications

In this section, we are very much motivated by the stance of Köbberling and

Wakker (2003) on the empirical content imbibed in the continuity and solvability

axioms. This motivates us to re-work the representation theorems since the move

from solvability to continuity is an essential cog of our results; something the

literature hasn’t been familiar with yet. We enlist applications that span

mathematical psychology, consumer theory and general equilibrium.
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4.1 Wold’s (1943) pioneering representation of preferences

Wold (1943) proves the following utility representation theorem.

Proposition 1 (Wold Representation) Every complete, transitive, weakly monotonic
and Wold-continuous preference relation on Rn

þ is representable by a weakly

monotonic and continuous utility function.
Theorem 3 shows that it is possible to replace the continuity assumption of Wold

by any of the continuity assumptions listed in Theorem 3. Wold and Jureen (1953)
replace weak monotonicity by strong monotonicity and Wold-continuity with weak
Wold-continuity. Hence, Theorem 3 applies to this result of Wold-Jureen.

4.2 Aumann’s (1966) existence theorem on Walrasian equilibria

Aumann (1966) proves a theorem on the existence of a Walrasian equilibrium in an

exchange economy with continuum of consumers. Aumann’s exchange economy is

defined by follows.

Definition 7 An exchange economy is a list E ¼ ðT ; fXtgt2T ; f% tgt2T ; eÞ where

(a) T ¼ ½0; 1
 is the set of consumers with the lebesgue measure.

(b) Xt ¼ Rn
þ is the consumption set of consumer t 2 T .

(c) % t is the preference relation of consumer t 2 T on her consumption set Rn
þ.

(d) e : T ! Rn
þ is a measurable function with et denoting the endowment of

consumer t.

An assignment in an economy is a measurable function x : T ! Rn
þ. An

allocation is an assignment x such that
R

x ¼
R

e. A competitive equilibrium is a

price-allocation pair ðp; xÞ 2 R2n
þ such that for all consumer t, x(t) is maximal with

respect to �t in the ‘‘budget set’’ BpðtÞ ¼ fx 2 Xt : p � x5 p � eðtÞg.

Proposition 2 (Aumann’s Existence Theorem) Let E be an economy defined above
such that

(a)
R

e[ 0, and

(b) for each t 2 T , % t is continuous, strongly monotonic and satisfies the
following measurability assumption: if x and y are assignments, then the set
ft : xðtÞ�tyðtÞg is measurable.

Then the economy has a competitive equilibrium.

Under Aumann’s strong monotonicity assumption, Theorem 3 implies that it is

possible to replace the continuity assumption of Aumann by any of the continuity

assumptions listed in Theorem 3.
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4.3 Wakker’s (1989) investigation of additive separability

Next, we provide two applications from Wakker (1989). Both applications replace

continuity by restricted solvability under the most general conditions.

The following lemma presents conditions on the topological space under which a

continuous binary relation implies restricted solvability, see Chapter 3, p.44 of

Wakker (1989).

Lemma (Wakker (1989)) Under the topological assumption of connected separability
such as Rn, a complete, transitive and continuous % implies restricted solvability.

Using Theorem 3, we can now state the lemma as an equivalence proposition.

Proposition 3 Let % be a complete, transitive, order dense and weakly monotonic
binary relation on a convex and order-bounded set X in Rn. Then % is continuous if
and only if it is restricted solvable.

Let A � f1; 2; . . .; ng and let xA and x:A denote the restriction of x 2 Rn
þþ to A

and :A; respectively.8 A is essential on Rn
þþ with respect to a complete and

continuous % if and only if ðx:A; vAÞ�ðx:A;wAÞ for x, v, w in Rn
þþ: A value

function V : Rn
þþ ! R is additive on Rn

þþ if there exist functions fvign
i¼1; vi : R !

R; such that VðxÞ ¼
Pn

i¼1

viðxiÞ: If V is an additive representation for % then the

functions vi are called additive value functions. For a; b; c; d 2 Rþþ; ða; bÞ% �
Aðc; dÞ

if there exist simple acts x, y such that both ðx	A; aÞ% ðy	A; bÞ and

ðx	A; cÞ% ðy	A; dÞ:

Proposition 4 (Wakker (1989)) Let n� 3; and let % be a binary relation on Rn
þþ:

The following two statements are equivalent:

(a) There exists concave nondecreasing nonconstant additive value functions

ðviÞn
i¼1 for % :

(b) The binary relation % is complete, transitive, continuous, weakly monotonic,

every coordinate is essential, and furthermore, for all i 2 f1; . . .; ng, ða	
�; b	 �Þ% �

i ða; bÞ whenever ða	 bÞ�� 0:

Under completeness, transitivity, and weak monotonicity, we can apply

Theorem 3 to replace continuity of % by restricted solvability. In fact, any notion

of continuity specified in Theorem 3 can be applied.

4.4 Chew-Karni’s (1994) axiomatization of Choquet Expected Utility

Chew-Karni’s (1994) paper utilises a stronger version of the restricted solvability

axiom to obtain an axiomatization of subjective expected utility and Choquet

8 If n ¼ 3 and A ¼ f1; 2g, then for x ¼ ðx1; x2; x3Þ 2 R3
þþ; xA ¼ ðx1; x2Þ and x:A ¼ ðx3Þ are the

restriction of x to A and :A; respectively. Furthermore, ðx	A; aÞ; denotes an act where a is placed on all

coordinates in A. See (Page 94, Wakker (1989)) for further details.
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expected utility models. In this subsection, we establish equivalences between their

solvability axiom and the postulates appearing in Theorem 3.

Let X be a finite state space with X � R denoting the set of consequences. An act

f is a function from X to X with F denoting the set of all acts. Given f 2 F;A 
 X;
and c 2 X; let cAf denote the act which yields c on A and f on Ac; the complement of

A. The authors use the following stronger version of the solvability axiom (their

Axiom 6).

Definition 8 (Stronger RS) For all f ; g 2 F; A 
 X; c; c0 2 X; if cAf % g% c0Af ; then
there exists c00 2 X such that g� c00Af :

Proposition 5 Stronger RS implies restricted solvability and Wold continuity
implies Stronger RS. Therefore, under conditions in Theorem 3, weak Wold
continuity is equivalent to stronger RS.

Remark 4 For the the arguments in the first sentence, we do not need X to be a

subset of R.

4.5 Segal-Sobel’s (2002) representation of min, max and sum

Segal and Sobel (2002) provide three characterization theorems for preferences over

Rn that can be represented by functionals of the form, Uðx1; . . .; xnÞ=minfxign
i¼1;

Uðx1; . . .; xnÞ=maxfxign
i¼1; Uðx1; . . .; xnÞ=

Pn

i¼1

uðxiÞ where u : R ! R; U : Rn ! R:

Under the assumption of weak monotonicity and order denseness, we can replace

their continuity assumption by restricted solvability and restate their main theorem.

Moreover, under continuity, our weak monotonicity implies Segal and Sobel

(2002)’s monotonicity assumption. Below we provide their Theorem 3 as an

application but our results apply to their other two theorems too, see Segal and

Sobel (2002) for further details and background definitions.

Proposition 6 (Segal and Sobel (2002)) Let n� 3 and % satisfy completeness ,
order-denseness and transitivity. The following two conditions on % are equivalent.

(a) % satisfy restricted solvability, monotonicity, symmetry, comonotonic

flatness, and partial separability.

(b) % can be represented by one of the following functions.

(a) Uðx1; . . .; xnÞ ¼ minfx1; . . .; xng
(b) Uðx1; . . .; xnÞ ¼ maxfx1; . . .; xng

(c) Uðx1; . . .; xnÞ ¼
Pn

i¼1

uðxiÞ for some strictly increasing u.
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4.6 Köbberling-Wakker’s (2003) algebraic-topological distinction

On the interplay between continuity and solvability in topological and algebraic

structures, Köbberling and Wakker (2003) note,

We prefer the algebraic approach [solvability] to the topological approach

[continuity] not only because its axioms are more general, but also because we

consider these axioms to be more natural.

In our final application, using our Theorem 3, we demonstrate this interplay by

restating the representation theorem of Cumulative Prospect Theory (CPT) using the

solvability assumption, thus lending it empirical content without using the stronger

assumption of continuity. For background definitions and details regarding CPT,

readers may wish to see Köbberling and Wakker (2003) for a comprehensive

discussion.

Proposition 7 Given that X � R is a connected topological space and that Xn is
endowed with the product topology, assume < on Xn be truly mixed. The following
two statements are equivalent.

(a) CPT holds with a continuous utility function.

(b) < satisfies completeness, transitivity, weak monotonicity, solvability, gain-

loss consistency, sign-comonotonic tradeoff consistency.

5 Concluding remark

The theory and applications presented above, while of interest for its own sake, are

not primarily motivated as an ivory-tower inquiry and aren’t merely technical,

simply to burnish the already strong foundations of partial equilibrium consumer

theory and general equilibrium Walrasian theory in mathematical economics on the

one hand and issues related to measurement theory in mathematical psychology, on

the other. The motivations which have led us to this inquiry are best summarized by

the following extended quotation from Easley and Kleinberg (2012).

In recent years there has been a growing public fascination with the complex

‘‘connectedness‘‘ of modern society. This connectedness is found in many

incarnations: in the rapid growth of the Internet and the Web, in the ease with

which global communication now takes place, and in the ability of news and

information as well as epidemics and financial crises to spread around the

world with surprising speed and intensity. These are phenomena that involve

networks, incentives, and the aggregate behavior of groups of people; they are

based on the links that connect us and the ways in which each of our decisions

can have subtle consequences for the outcomes of everyone else. Drawing on

ideas from economics, sociology, computing and information science, and

applied mathematics, it describes the emerging field of study that is growing at

the interface of all these areas, addressing fundamental questions about how

the social, economic, and technological worlds are connected.
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It is the underscoring of this inter-disciplinarity and its urgency, and a

corresponding bridging of the various communities, that constitutes the motivating

engine of this work.

Appendix

In the Appendix, we present the proofs of the results and six technical examples.

Appendix A: Proofs of the Results

Proof of Theorem 1 (a) The implication that Wold-continuity implies weak Wold-

continuity follows from their definitions. Uyanik and Khan (2022, Proposition 3)

prove that continuity implies Wold-continuity for finite dimensional spaces, their

arguments extend to the current setting trivially.

Next, we show that weak Wold-continuity implies restricted solvability. Towards

this end assume % is a weakly Wold-continuous binary relation on a convex set

X �
Q

i2I Xi. Let y ¼ ðai; y	iÞ, z ¼ ðbi; y	iÞ and y% x% z. If y� x� z; or y�x� z, or

y� x�z; then restricted solvability trivially follows. Hence, assume y�x�z. From
weak Wold-continuity there exists a straight line ykz intersecting the indifference

class of x, i.e., ky þ ð1	 kÞz� x, where ky þ ð1	 kÞz ¼ ðkai þ ð1	 kÞbi; y	iÞ.
Therefore, % is restricted solvable.

It remains to show that weak Wold-continuity implies Archimedean property.

Towards this end assume % is Wold-continuity but not Archimedean. Then, there

exists x; y; z 2 X such that x�y but for all k 2 ð0; 1Þ, xkz¤y (the proof of the case

where x¤ykz is analogous). By completeness, y% xkz. Pick k 2 ð0; 1Þ. If y�xkz,
then x�y�xkz and weak Wold-continuity imply there exist d 2 ð0; 1Þ such that

y� xdz. If y� xkz, then set d ¼ k. Then by transitivity, x�xdz. By weak Wold-

continuity, there exists c 2 ð0; 1Þ such that x�xcz�xdz� y. Hence, by transitivity,

xcz�y. This furnishes us a contradiction with the assumption that for all k0 2 ð0; 1Þ,
xk0z¤y.

(b) Continuity implies separate continuity follows from the definitions of the two

continuity postulates. For the proof of the remaining implications except mixture-

continuity implies separate continuity, see Uyanik and Khan (2022, Proposition 3).

It remains to show that mixture-continuity implies separate continuity. Assume

% is separately continuous. Pick an index i, x 2 X and a sequence ðyn
i ; y	iÞ

converging ðyi; y	iÞ 2 X such that ðyn
i ; y	iÞ% x. mixture-continuity implies that the

set A ¼ fk 2 ½0; 1
 j ðyi; y	iÞky% xg is closed. It is clear that 1 2 A and for all

k[ 0, k 2 A. Hence 1 2 A. Therefore, The proof that for all x 2 X and all lines L
parallel to any coordinate axis, A% ðxÞ \ L is closed. The proof that for all x 2 X and

all lines L parallel to any coordinate axis, A†ðxÞ \ L is closed analogously follows.

Since % is complete, % is separately continuous.

(c) Assume % is separately continuous. Let ðai; y	iÞ% x% ðbi; y	iÞ. Separate
continuity implies that the weakly worse-than and weakly better-than sets of x are

closed in the subspace of X determined by the line Li parallel to the i-th coordinate
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axis and passing through y	i, i.e. % x�Li
and†x�Li

are closed in X \ Li. Since X \ Li

is convex, it is connected. Moreover, it follows from the completeness of the

relation that the intersection of these two sets is non-empty, i.e.,

% x�Li
\†x�Li

6¼ £. Hence, there exists ~x 2 X \ Li such that ~x� x. Since

~x 2 X \ Li, there exists ci 2 R such that ~x ¼ ðci; �y	iÞ. Therefore, % is restricted

solvable.

(d) Assume % is unrestricted solvable. And assume its is not restricted solvable.

Then there exists no b such that bq� ap whenever �bq% ap% bq. But this contradicts
unrestricted solvability. h

Proof of Theorem 2 We provide the proof by induction. Note that for n ¼ 1,

separate continuity is equivalent to continuity by definition. Now let n ¼ 2 and

assume without loss of generality that % is weakly monotone in its first coordinate.

We now show that % has closed lower sections. Towards this end, assume there

exist x 2 X and a sequence yk ! y such that yk†x for all k and . Then, either

y�x or y ffl x.
Assume y�x. Separate continuity implies that there exists e[ 0 such that for all z

in the e-neighborhood of y, ðz1; y2Þ�x. Pick ðz1; y2Þ in the e-neighborhood of y such

that z1\y1 	 e=2. Separate continuity then implies that there exists d1 [ 0 such that

for all z0 in the d1-neighborhood of ðz1; y2Þ, ðz1; z02Þ�x. Define d ¼ minfe=2; d1g.
Since yk ! y, there exists k̂ 2 N such that yk̂ is in the d-neighborhood of y. Then,

ðz1; yk̂
2Þ is in the d1-neighborhood of ðz1; y2Þ and z1\yk̂

1. Hence, by weak

monotonicity, yk̂
% ðz1; yk̂

2Þ. It follows from ðz1; yk̂
2Þ�x and transitivity of % that9

yk̂�x. This furnishes us a contradiction.

When y ffl x, replacing � with ffl in the paragraph above yields yk̂
% ðz1; yk̂

2Þ, as
above. Then, yk̂

% ðz1; yk̂
2Þ ffl x. If x% yk̂, then transitivity of % implies that

x% ðz1; yk̂
2Þ, yielding a contradiction. Hence . This furnishes us a

contradiction.

Therefore, % has closed lower sections. The proof of the closed upper sections is

analogous. Moreover, the proof of the open sections have a similar construction.

Finally, completeness of % follows from (2021, Theorem 2).

Now assume the theorem is true for n 	 1 dimensional spaces, n[ 2. We next

show that it is true for n dimensional spaces. Recall that % is weakly monotone in

all coordinates (except possibly one). Pick a coordinate i in which % is weakly

monotone. We now show that % has closed lower sections. Towards this end,

assume there exist x 2 X and a sequence yk ! y such that yk†x for all k and .

Then, either y�x or y ffl x.
Assume y�x. Separate continuity implies that there exists e[ 0 such that for all z

in the e-neighborhood of y, ðzi; y	iÞ�x. Pick ðzi; y	iÞ in the e-neighborhood of y such

that zi\yi 	 e=2. By induction hypothesis, % is continuous on n 	 1 dimensional

spaces. Hence, there exists di [ 0 such that for all z0 in the di-neighborhood of

9 Note � is transitive; see Khan and Uyanik (2021) for details on the relationship between different

transitivity postulates.
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ðzi; y	iÞ, ðzi; z0	iÞ�x. Define d ¼ minfe=2; dig. Since yk ! y, there exists k̂ 2 N such

that yk̂ is in the d-neighborhood of y. Then, ðzi; yk̂
	iÞ is in the di-neighborhood of

ðzi; y	iÞ and zi\yk̂
i . Hence, by weak monotonicity, yk̂

% ðzi; yk̂
	iÞ. It follows from

ðzi; yk̂
	iÞ�x and transitivity of % that yk̂�x. This furnishes us a contradiction.

The remaining part of the proof is analogous to the case n ¼ 2 and uses the

modification of the construction above for general n, hence omitted. h

Proof of Theorem 3 Let % be a complete, transitive, order dense and weakly

monotonic binary relation on a convex and order-bounded set X � Rn. Theorems 1

and 2 prove all the relationships except that restricted solvability implies separate

continuity. Towards this end, assume % is restricted solvable but not separately

continuous.

Assume there exists x 2 X and a line L parallel to a coordinate axis such that

A% ðxÞ \ L is not closed. Then, there exist x 2 X, an index i, and a sequence yk ! y

on the line Li parallel to coordinate i such that yk
% x for all k and y � x. Then it

follows from transitivity and weak monotonicity assumptions that yk
i [ yi for all k.

Pick m 2 N. Since y � x, order denseness implies that there exists x0 2 X such that

y � x0 � x. Then transitivity implies y � x0 � ym, and hence restricted solvability

implies there exists z 2 Li such that z� x0. It follows from weak monotonicity that

yi\zi\ym
i , and from transitivity that for all z0i 2 ðyi; zi
, ðz0i; z	iÞ � x. However,

since yk ! y, there exists z0i 2 ðyi; zi
, such that z0i ¼ yk
i for some k and ðz0i; z	iÞ% x.

This yields a contradiction.

The proof that for all x 2 X and all lines L parallel to any coordinate axis,

A†ðxÞ \ L is closed analogously follows. Since % is complete, % is separately

continuous. h

Proof of Theorem 4 We first show that Archimedean postulate implies mixture-

continuity. Assume there exist x; y; z 2 X such that fk : xky% zg is not closed. Then

there exists kn ! k such that xkny% z but z�xky. By strong order-boundedness

assumption, there exists e[ 0 such that p ¼ ððxkyÞi þ eÞi2I 2 X. By weak

monotonicity, p% pdðxkyÞ for all d 2 ½0; 1
. By Archimedean, there exists b 2
ð0; 1Þ such that z�pbðxkyÞ. Note that there exists � 2 ð0; eÞ such that ðpbðxkyÞÞi 	
ðxkyÞi [ � for all i 2 I. Therefore, there exists N 2 N such that for all n�N,

ðxknyÞi\ðpbðxkyÞÞi for all i 2 I. By weak monotonicity, pbðxkyÞ% xkny for all

n�N. By transitivity, z�xkny for all n�N. This yields a contradiction. Closedness

of the lower sections follows analogously.

By the figure above, we now prove the equivalence of mixture continuity,

Archimedean and weak Wold-continuity. The proof that restricted solvability

implies separate continuity follows from the argument in the proof of Theorem 4

since it does not hinge on the dimension of the underlying space.
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Appendix B: Examples

In this section we show that in Figure 1, the converse relationships among the

continuity postulates are false. All the binary relations presented here satisfy

completeness and transitivity.

The first example shows that continuity, and hence all other continuity postulates,

do not imply unrestricted solvability even under weakly monotone and convex

preferences.

1. Let % be a binary relation defined on R2 as ðx1; x2Þ% ðy1; y2Þ if and only if

f ðx1; x2Þ� f ðy1; y2Þ where f ðx1; x2Þ ¼ x2: To see that % does not satisfy

unrestricted solvability, for all x1 2 R, ð2; 2Þ�ðx1; 1Þ, hence % is not unrestricted

solvable in the second component. It is clear that % is continuous, hence it satisfies

the remaining six continuity postulates, following from Theorem 1. h

The second example shows that unrestricted solvability and restricted solvability

do not imply separate continuity, Archimedean and weak Wold-continuity, and

hence any of the other continuity postulates.

2. Let the binary relation % be defined on a bounded subset X 
 R2 as

ðx1; x2Þ% ðy1; y2Þ if and only if f ðx1; x2Þ� f ðy1; y2Þ where

f ðx1; x2Þ ¼
0; if x1 þ x2\1

0:8; if x1 þ x2 ¼ 1

1; if x1 þ x2 [ 1

8
><

>:

To see why this is not separately continuous and hence not continuous, pick

ðx1; x2Þ ¼ ð1; 0Þ: For the binary relation to be separately continuous, the restriction

of (1, 0) to any line parallel to either x1 or x2 axis should be continuous. Let

x2 ¼ 0:5: Then % ð1;0Þ�x2¼0:5 ¼ ð0:5; b
 where b is some bound on x1: This repre-

sentation is neither Wold nor weak Wold-continuous (does not satisfy order-

denseness). However, this binary relation is both restricted and unrestricted

solvable.

This is not Archimedean. Pick x ¼ ð0:6; 0:4Þ and y ¼ z ¼ ð0:6; 0:5Þ: Then y�x
but y� xdz for any d 2 ð0; 1Þ: h

The third example shows that separate continuity does not imply weak Wold-

continuity, Archimedean and unrestricted solvability, hence does not imply mixture-

continuity, Wold-continuity and continuity postulates. It also shows that restricted

solvability does not imply any of these continuity postulates.

3. Let the binary relation % be defined on R2 as ðx1; x2Þ% ðy1; y2Þ if and only if

f ðx1; x2Þ� f ðy1; y2Þ where

f ðx1; x2Þ ¼
x1x2

x21 þ x22
if ðx1; x2Þ 6¼ ð0; 0Þ;

0 if ðx1; x2Þ ¼ ð0; 0Þ:

8
<

:

In this example, we have, ð1; 1Þ�ð3; 1Þ�ð0; 0Þ: There exists no k 2 ½0; 1
 such that

kð1; 1Þ þ ð1	 kÞð0; 0Þ� ð3; 1Þ: Hence, this is not Weak Wold-continuous. Conse-

quently, this is also not Wold-continuous.
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It is easy to show that this binary relation is not unrestricted solvable. Pick a pair

(1, 1) and let the third element of the to-be-determined pair is 0. Then unrestricted

solvability claims that there exists q such that ð1; 1Þ� ðq; 0Þ: In this case, there

exists no q such that the indifference holds.

Finally this example illustrates that a binary relation that is restricted solvable,

but not Archimedean. The function is continuous on any line parallel to a coordinate

axis, hence the induced binary relation is restricted solvable. However, it is not

continuous on the 45-degree line. In particular it is defined on R2
þ and the function’s

value is 1 on all point on the 45-degree line except 0, and at 0 its value is 0.

Therefore if you pick x ¼ ð0; 0Þ; y ¼ z ¼ ð1; 1Þ, then y�x but for all k 2 ð0; 1Þ,
y� xkz, hence Archimedean property fails. Similarly, it also shows that

Archimedean does not imply mixture-continuity. h

The fourth example illustrates a binary relation that is Archimedean and Wold-

continuous, and hence weakly Wold-continuous and restricted solvable, but not

mixture-continuous, separately continuous and continuous. It is originally presented

in Uyanik and Khan (2022).

4. Let X ¼ Rþ and f ðxÞ ¼ sinð1=xÞ if x[ 0 and f ð0Þ ¼ 1. Then, it is clear that

f ðxÞ 2 ½	1; 1
 for all x 2 X. Define a binary relation % on X as x% y is and only if

f ðxÞ� f ðyÞ. Pick �x such that f ð�xÞ 2 ð0; 1Þ. The set fx0 2 Xj�x% x0g is not closed since

it contains a sequence xn ! 0 but 0��x. Therefore, % is not continuous. Moreover,

since X is one dimensional, % is not mixture-continuous and separately continuous.

See Uyanik and Khan (2022, Proof of Proposition 3) for a proof that % satisfies

Wold-continuity and Archimedean properties. h

The fifth example shows that Archimedean property does not imply restricted

solvability, hence all other continuity postulates in Figure 1.

5. Let % be a binary relation defined on R2
þ as ðx1; x2Þ% ðy1; y2Þ if and only if

f ðx1; x2Þ� f ðy1; y2Þ where

f ðx1; x2Þ ¼

sinð1=x2Þ if x2 [ 0;

x1 if x1 2 ½0; 1
 \Q; x2 ¼ 0;

0 if x1 2 ½0; 1
 \Qc; x2 ¼ 0;

1 if x1 [ 1; x2 ¼ 0:

8
>>><

>>>:

It is not difficult to show that % satisfies the Archimedean property. To see that %

fails to satisfy restricted solvability, note that ð1; 0Þ�ð0; 2Þ�ð0; 0Þ since f ð1; 0Þ ¼
1; f ð0; 0Þ ¼ 0 and f(0, 2) is an irrational number in (0,1) interval (sin() of a non-zero

rational number is irrational). Hence, for all x1 2 Rþ, either ðx1; 0Þ�ð0; 2Þ or

ðx1; 0Þ � ð0; 2Þ. h

The sixth and final example illustrates the importance of the interiority

assumption in our results by showing that Theorems 2 and 3 above are false on a

general choice set; see also Karni and Safra (2015) for the use of the interiority

assumption to show that the Archimedean property is equivalent to mixture-

continuity under cone-monotonicity.

6. Let X ¼ fx 2 ð	1; 1Þ2 : x1 ¼ x2g. Then X is an order bounded and convex set

in R2, it is not open in R2. (Note that X is open in the one dimensional subspace
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containing it.) Let u : X ! R be defined by uðxÞ ¼ 0 for all x� 0 and uðxÞ ¼ 1 if

x1 [ 0. Let % be the preference relation induced by u. Then, A% ð0:5; 0:5Þ ¼ fx 2
X : x1 [ 0g which is not closed in X, hence % is not continuous. It is clear that %

is weakly monotone. Since the restriction of any line parallel to a coordinate axis is

a singleton, % is trivially separately continuous.

Note that in the example above, we can replace X by fx 2 ½	1; 1
2 : x1 ¼ x2g,
hence boundaries can be included. Similarly, we can replace X by a set with non-

empty interior: fx 2 ½0; 1
2 : 2x1 � x2 � 0:5x1g. Let u : X ! R be defined by uð0Þ ¼
0 and uðxÞ ¼ 1 if x 6¼ 0. Let % be the preference relation induced by u. Then % is

weakly monotone, separately continuous and discontinuous.
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