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a b s t r a c t

In an influential recent paper, Mailath–Samuelson formalize learning and reasoning through ‘‘model-
based inference’’ and Bayesian updating. In this announcement, we substitute DeGroot’s heuristic for
Bayesian updating by (i) furnishing a plausible interaction matrix that agents use to weigh each other’s
beliefs, and by (ii) using this matrix to derive properties of the process for the DeGroot updating of
beliefs by agents and oracles. The alternative argumentation that we provide facilitates bridging the
literature on networks and that on model-based learning and inference; and it identifies productive
and ongoing directions for further investigation.

© 2021 Elsevier B.V. All rights reserved.
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‘
o

A crowd, Le Bon argued, was more than just the sum of its
members ... a kind of independent organism [with] an identity
and a will of its own, [acting] in ways that no one within
the crowd intended. [It] can never accomplish acts demanding
a high degree of intelligence, [and is] always intellectually
inferior to the isolated individual. Gustave Le Bon had things
exactly backward.

[Surowiecki (2005)]1

. Introduction

ow does a crowd become a mob and a protest become a riot?
ow does a rumor get translated into purposeful mass action?

✩ The authors express their gratitude to Nizar Allouch, Patrick Beissner,
Liuchun Deng and Metin Uyanik for correspondence and collaboration and to
an anonymous referee for his/her careful reading of the manuscript. The first
author would also like to acknowledge stimulating conversations with Professors
Battaglini, Casella and Chen.

∗ Corresponding author.
E-mail addresses: aghosh23@jh.edu (A. Ghosh), akhan@jh.edu (M.A. Khan).

1 See his Introduction and also the Afterword. In the latter, he writes, ‘‘Even
fter I’d written an entire book about collective wisdom, there was still a part
f me that instinctively questioned whether it would really work. This story is, I
hink, a testament to how uncanny-and counterintuitive-the wisdom of crowds
eally is.’’ The phrase ‘‘wisdom of crowds’’ is used as a section heading in Mailath
nd Samuelson (2020), and in the title of Golub and Jackson (2010).
 q

ttps://doi.org/10.1016/j.econlet.2021.109839
165-1765/© 2021 Elsevier B.V. All rights reserved.
How does a crowd form in the first place? Is it solely a matter of
information aggregation? These questions have been addressed in
both sociology and anthropology in the classic and time-honored
works of Mackay and Le Bon, and more recently by literary
criticism pertaining to the English literature of the Romantic and
Victorian periods in the 19th century.2 However, one can argue
that they are also fundamental to cooperative game theory and
to the economics of information: they lie at the heart of the Nash
program of providing non-cooperative foundations to cooperative
solutions. However, as vernaculars go, the word crowd has been
used in economics more as a verb than as a noun,3 and an excep-
tion to this is only in the recent work of Mailath and Samuelson
(2020) (hereafter MS) that can be read as taking the aphorism
‘‘two is a company and three is a crowd’’ as its point of departure.

In their stimulating contribution, MS write:

[P]eople work with models that are deliberately incomplete,
including the most salient variables and excluding others
Different people work with different models. Civil engineers
building bridges and electrical engineers designing quantum
computers persist with models that are incomplete.

2 See Plotz (2000) and Menschel (2002) and their references to Mackay, Le
on and others.
3 A quick search on Google Ngram shows the peak usage of the term

crowding-out’ to be in 1984. We also invite the reader to search for ‘crowding-
ut’ on JSTOR and browse the papers also with ‘crowding-in’, both being
ualified by adjectives such as, ‘dysfunctional’ and ‘financial’

https://doi.org/10.1016/j.econlet.2021.109839
http://www.elsevier.com/locate/ecolet
http://www.elsevier.com/locate/ecolet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.econlet.2021.109839&domain=pdf
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ith this difference in individual perspectives as their underlying
ubtext, the authors ask how this difference is mediated by an ex-
hange of information and beliefs when the agents are,‘‘hampered
y different incomplete views of the world’’?

People routinely interact, exchanging information and beliefs.
These exchanges seldom lead to complete agreement, but
people do learn from each other. How do they do this when
hampered by different incomplete views of the world? We
address this question by developing and analyzing a model of
‘‘model-based inference’’.

n this exploratory announcement, we complement the MS con-
eption by asking how it would be transformed by a non-Bayesian
erspective, by the substitution of DeGroot updating for the
ayesian one.4 The results are of substantive interest: not only
re the MS results overturned but intuitions such as of ‘‘oracu-
ar beliefs" take alternative formulations with theorems in one
ecoming trivialities in the other.
Our argumentation revolves around the construction of a plau-

ible weighting matrix that captures model-based reasoning and
nteraction. We are also motivated by some recent empirical
vidence in Giacomini et al. (2020) suggesting non-Bayesian up-
ating by inattentive agents in crisis years.5 For specificity, note
hat Berger (1981) presents a necessary and sufficient condition
nder which a consensus on a common subjective probability
istribution for an unknown parameter by a group of k indi-
iduals will be reached by using DeGroot’s method.6 In more
ecent work, (Romeijn and Roy, 2018), study DeGroot updating
s ‘‘iterated linear pooling: upon learning what others believe
ach agent forms her new belief by taking a linear combination
f the opinions of herself and of others, weighted by how much
he trusts or respects them. By iterating this process sufficiently
ften the agents will converge to a fixed point in the space of
pinions’’.7
The paper is structured as follows. Section 2 provides the

onceptual preliminaries. Section 3 constructs the weighting ma-
rix, and Section 4 presents the results: after cataloging the ba-
ic properties of the matrix in with Propositions 1 and 2 ad-
resses model-based beliefs, updated under DeGroot’s heuristic,
nd Proposition 3 provides a condition for the ‘‘wisdom of the
rowd" to hold. Section 5 replicates an MS-example adapted to
ur framework. Section 6 concludes by indicating directions for
urther and ongoing research.

. Conceptual preliminaries

In keeping with the MS-notation, let X ⊂ R denote the finite
et of consequences, N ⊂ N to be finite and Ω = XN , the states
f the world. Nature draws a state ω from Ω according to a prior
on Ω . An event F ⊂ Ω is represented by χF ,

F (ω) =

{
1 ω ∈ F
0 ω /∈ F . (1)

Next, consider a group of K = {1, 2, . . . , k} agents (finite)
here each agent i ∈ K is characterized by a model Mi ⊆ N ,

4 In addition to DeGroot (1974), Berger (1981) and Molavi et al. (2018).
5 Already also noted by Mailath and Samuelson (2020, p. 1772).
6 For the record, he also corrects the original paper, and emphasizes it easy
erifiability.
7 Romeijn and Roy (2018) compare the two updating methods, and write

‘In Bayesian models of agreement, upon learning what the others believe,
and] under the assumption of a common starting point and under the further
ssumption that agents know the type of information, but not the information
ontent, iteratively announcing the posteriors will lead the agents to agree;"
n addition to Aumann, see their reference to Geanakoplos and Polemarchakis
1982).
 P

2

information set Ii ⊆ Mi and a corresponding theory f i which are
used to form beliefs about the occurrence of event F . That is, each
agent i is characterized by a triplet of objects, (Mi, Ii, f i) where

f i : XMi × XN−Mi → [0, 1]. (2)

For agent i, his model Mi partitions the full state space XN into
equivalence classes, of the form {ωMi

}×XN−Mi . Therefore, for nota-
tional convenience, we shall only mention the model(information)
space and its realization in the argument of agent’s theory. Next,
we state a key assumption in MS that establishes the consis-
tency between agent i’s theory, f i and the event F indicator fun-
ction, χF .

Assumption (MS). The probability agent i′s theory forms of the
event F conditional8 on the variables in Mi is given by,

f i(ωMi
) =

∑
ω∈Ω

χF (ω)ρ(ω|{ωMi
} × XN−Mi ). (3)

Each agent i then generates their interim belief of an event F by
updating their theory f i with respect to their information set I i,
i.e. the interim belief is a mapping from X Ii × XN−Ii to [0, 1] and
is calculated as,

βi(ωIi
) =

∑
ω∈Ω

f i(ωMi
)ρ(ω|{ωIi

} × XN−Ii ), (4)

where ρ(ω|{ωIi
} × XN−Ii ) is the prior ρ on Ω but now conditional

on ωIi
(for which ρ({ωIi

} × XN−Ii ) > 0).9 The interim beliefs for
k agents is represented by a k × 1 vector, β(ω) where β(ω) =

(β1(ωI1
), . . . , βk(ωIk

))T . That is, for each ω ∈ Ω , we have a subjec-
tive probability distribution βi(ωIi

) of the event F for each agent
i ∈ K based on their theory, model and information available.

Once interim beliefs about the event F are formed, agents si-
multaneously and truthfully announce them.10 However, instead
of updating their interim beliefs in a Bayesian manner as in MS,
we make our agents update them by suitably weighting all the
announcements àla DeGroot’s heuristic. More formally, for i, j ∈ K
let tij denote the weight that i assigns to the announcement of j.
Further, tij ⩾ 0 for every value of i and j, and

∑k
j=1 tij = 1 for each

i ∈ K . Upon hearing the announcements of interim beliefs of all
the other agents, agent i revises its own distribution in the first
round from βi(ωIi

) to

βi1(ω) =

k∑
j=1

tijβj(ωIj
), (5)

where βi1(·) denotes the belief of the ith agent at round 1. There-
fore, using (6), for each ω ∈ Ω ,

β1(ω) = Tβ(ω), (6)

where β1(ω) = (β11(ω), . . . , βk1(ω))T is the first-round update of
the K agents, β(ω) = (β1(ωI1

), . . . , βk(ωIk
))T is the k-dimensional

vector of interim beliefs and T = (tij)k×k is a matrix of weights.
Further, iterating on (6), the nth round of updating is,

βn(ω) = Tβn−1(ω) = Tnβ(ω). (7)

8 This is defined for every ωMi
for which ρ({ωMi

} × XN−Mi ) is positive where
ρ(ω|{ωMi

} × XN−Mi ) is the prior ρ on Ω conditional on ωMi
.

9 The process to form interim beliefs is Bayesian. We interpret it this way.
hile the agent is sophisticated in deciphering his information and model, he

s not sophisticated enough (naive) to process the announcements of the other
gents in a Bayesian way.
10 This popular information exchange protocol is due to Geanakoplos and

olemarchakis (1982).
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Next, we adapt the definition of the different types of oracles
as introduced in MS.

Definition (Oracles). An agent with a state space Ω with a prior
distribution ρ, is said to be an oracle if the number of variables
in his model equals N, that is, an agent’s theory for an event F is
the indicator function, χF . Further, an oracle is said to be a/an

(i) omniscient oracle if he knows the realization of the state;
(ii) universal oracle if he has access to the information sets of

all the k-agents, i.e. the information set for the universal
oracle, Iu, equals

⋃k
i=1 Ii;

(iii) agent-i oracle if he has access to the information set of
the ith agent and the entire sequence of announcements,
where his oracular belief at the nth round is given by,
βn
a (ω) =

∑k
j=1 t

a
ijβjn(ω), taij = (tai1, . . . , t

a
ik) is the vector of

weights attached to the announcements of the k-agents;
(iv) public oracle if he has access to the entire sequence of an-

nouncements but no access to any information set, where
his belief at the nth round is given by βn

p (ω) =
∑k

j=1 t
p
j βjn

(ω), tpj = (tp1 , . . . , t
p
k ) is the vector of weights attached to

the announcements of the k-agents.11

In (ii), we denote the universal oracular’s belief by βu(ωIu
) ≡∑

ω∈Ω χF ρ(ω|{ωIu
} × XN−Iu ).

3. A plausible weighting matrix

In this section, we construct a plausible weighting matrix TA
needed for DeGroot’s averaging method, based on the interaction
environment of MS. TA is reasonable in the sense that instead
of placing weights arbitrarily on each others’ announcements,
agents derive them from each others’ models and their respective
information structures.

A group of k agents represented by a symmetric k-by-k matrix
A with entries in {0, 1}. The entries in matrix A are defined as,

A = (aij)k×k =

{
aij = 1, Mi ∩ Mj ̸= ∅

aij = 0, Mi ∩ Mj = ∅.
(8)

An entry aij in the matrix A takes value 0 or 1 depending on
whether agents i and j share any component of their model in
common. If aij = 0, then agent i and j have nothing to learn from
each other’s announcements and hence weights allotted to each
other’s announcements will be zero. If aij = 1, then agent i and
j may have variables to learn from each other’s announcements
and weights accorded to each other’s announcements may be
positive.12 But we first furnish an assumption that is crucial for
this construction.

Assumption 1. MS offer two interpretations for its modeling
framework. Their first interpretation is that of ‘‘unknown sense’’,
that is, agent i need know nothing about j’s model. The other
interpretation is of ‘‘known nonsense’’ in which each agent knows
the models of other agents. We rely on the second interpretation
here. Further, we assume that the agents know the variables

11 In MS, the corresponding beliefs of a universal oracle, an agent-i oracle
nd public oracle are given by E[χF |I1, . . . ,Ik],E[χF |Ii,Bn] and E[χF |Bn],

respectively where Bn is the sigma algebra induced by the nth round of
announcements. The limiting beliefs, therefore, for agent-i oracle and public
oracle are given by E[χF |Ii,B∞] and E[χF |B∞], respectively. We will shortly
efine the limit beliefs in this context. The oracular beliefs in parts (iii) and (iv)
re defined for n > 1. For n = 1, it is simply the interim beliefs weighted by

the vectors defined.
12 If agent i is fully informed about his model, then according to our
construction even if agents i and j have a common model, i assigns zero weight
o j′s announcements since he is fully informed.
3

contained in the information sets of the other agents but certainly
they do not know the realization of those variables.

We construct TA using the following three steps.13

(i) Step 1: Individual i generates a feasible model space, M f
i

where M f
i = Mi ∩ (

⋃k
i=1 Ii). M

f
i is the set containing those

variables in i′s model about which i can learn from the k
information sets available. If Mi = N , then N f

= N ∩

(
⋃k

i=1 Ii) = (
⋃k

i=1 Ii) since
⋃k

i=1 Ii ⊆ N .14

(ii) Step 2: Agent i places a weight tii =
|Ii|

|M f
i |

on his own an-

nouncement where |·| is the cardinality of the set. That is,
agent i checks how many variables it has in its information
set and normalizes this by the cardinality of the feasible
model space.15

(iii) Step 3: Next, agent i allots the remaining weight
(
1 −

|Ii|

|M f
i |

)
to the rest of the k − 1 agents using the following

method. For each agent j ∈ K \ {i}, i calculates the number
of variables common between his feasible model space
adjusted for his information set and j’s information set. This
is normalized by summing the cardinality of such common
variables across all j’s. We repeat this process for all k
agents.

e formalize the above construction in Definition 1 with the
ormalization of belief convergence in Definition 2 using the
reliminaries presented in Section 2.

efinition 1. Given a matrix A, the entries of the weighting
matrix TA depend on (I,M) and they are calculated as

TA(I,M) = (tij)k×k =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
|Ii|

|M f
i |

, j = i(
1 −

|Ii|

|M f
i |

)
|(M f

i − Ii) ∩ Ij|∑
j∈K |(M f

i − Ii) ∩ Ij|
j ̸= i,

(9)

where I and M denote the collection of k information sets and
k models, respectively. For the rest of our analysis, to keep the
notation consistent with Section 2 we refer to TA(I,M) as T, unless
specified.16

Definition 2. For each ω ∈ Ω , the beliefs of the k agents is
said to converge to each other if the weighting matrix T con-
verges, i.e., limn→∞ βn(ω) = limn→∞ Tnβ(ω) = T∗β(ω), where
imt→∞ Tn

= T∗ and T∗ is the matrix of limiting weights with
ach of its rows given by (t∗1 , t

∗

2 . . . t∗k ).

In keeping with this definition, limit beliefs are said to con-
erge (agree) if for each ω, the common subjective distribution
f each of the k members of the group, β∗(ω) equals the product
f the limiting weights and the interim beliefs, i.e., β∗(ω) =
k
i=1 t

∗

i βi(ωIi
).

13 It is assumed that M f
i ̸= ∅ since the setup demands that there is some

earning (information needed for models) through interaction between the
gents.
14 Therefore, we can conveniently derive the weighting vectors for different
racles.
15 This setup can be easily extended to the case where variables in the models
re weighted unequally, say due to payoff considerations.
16 Later in the analysis, we evaluate T matrix for specific instances of I and
ctivate dependence on it accordingly. However we drop A throughout.
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We end this section by two remarks. Remark 1 specifies a
weighting matrix that we would need for one of our main results.
Remark 2 describes the weighting vectors for agent-i oracle and
the public oracle.

Remark 1. If Ii = ∅, then by (9) weight put on i′s belief by all
the agents is zero. Therefore, the ith column of such a matrix is a
column of zeros. We denote such an instance of weighting matrix
with T(Ii = ∅, I−i,M) by T′.

Remark 2. From (9), the weighting vectors, taij and tpj , of the agent
oracles and the public oracles respectively are as follows:

taii =
|Ii|
|N f |

,

taij =

(
1 −

|Ii|
|N f |

)
|(N f

− Ii) ∩ Ij|∑
j∈K |(N f − Ii) ∩ Ij|

for j ∈ K \ i, and

tpj =
|N f

∩ Ij|∑
j∈K |N f ∩ Ij|

for j ∈ K .

4. Main results

In this section, we present three propositions, using the con-
ceptual setup and notation developed above, that sharply con-
trast the MS-results by the substitution DeGroot’s heuristic for of
Bayesian updating. Proposition 1 presents the properties of our
weighting matrix, Proposition 2 provides properties of model-
based beliefs, and Proposition 3 provides a condition for the
‘‘wisdom of the crowd" result in MS to hold in our alternative
setup.

Proposition 1. The matrix T has the following properties.

(a) If agents i and j have disjoint models, then the weights as-
signed to each other’s announcements is zero i.e. if aij = 0,
then tij = tji = 0 for i, j ∈ K.

(b) The elements of T have values between 0 and 1, i.e., 0 ⩽ tij ⩽ 1
for i, j ∈ K .

(c) T is a row-stochastic matrix, i.e.,
∑k

j=1 tij = 1 for all i ∈ K.
(d) If the information sets of all the agents contain the informa-

tion needed for their feasible model space, i.e., |Ii| = |M f
i | for

all i then T is an identity matrix.

Proof of Proposition 1. (a). If aij = 0 then (M f
i − Ii) ∩ Ij = ∅

since Ij ⊆ Mj and Mi ∩ Mj = ∅, (b), (c) and (d) follow from the
construction in (9). ■

With the properties of T established, we turn to the properties
of the beliefs under DeGroot’s heuristic.

Proposition 2. Model-based beliefs under DeGroot’s heuristic have
the following properties.

(a) If T is an irreducible matrix, then T converges to T∗(updating
process terminates) for all ω ∈ Ω if and only if T is aperi-
odic.17

(b) If T converges to T∗ for all ω ∈ Ω , limiting beliefs of
all the agents converge and equal β∗(ω). Moreover, agent’s
limit belief equals public oracular belief and agent-i oracular
belief, that is, β∗(ω) =

∑k
j=1 t

p
j β

∗(ω) =
∑k

j=1 t
a
ijβ

∗(ω).
Furthermore, if T′ converges to T′

∗ and t∗i βi(ωIi
) =

∑
j∈K/{i}

(t∗j −

t
′
∗

j )βj(ωIj
), then agent i′s private information is pooled in the

limit.

17 Irreducibility and aperiodicity are standard terms in Markov chain theory;
ee Chapters 4 and 5 in Meyn and Tweedie (2012).
4

Proof of Proposition 2. (a) See Kemeny and Snell (1976), Golub
and Jackson (2010). (b) The convergence and therefore, agree-
ment/equalization of the limiting beliefs of the agents follows
from the definitions under the convergence of T. Moreover, be-
cause of the convergence of the limiting beliefs of all the agents,
the limit beliefs of the agent-i oracular and public oracular are
equal. The last part in (b) simply follows from the rearrangement
of the terms. ■

Remark 3. Part (a) of Proposition 2 presents conditions under
which limit beliefs converge. In MS, under Bayesian updating,
finite models always result in the termination of the updating
process, even though the limiting beliefs may not converge. How-
ever, this is not the case with DeGroot’s method. For example, for

a two agent setup with the weighting matrix T =

(
0 1
1 0

)
, the

updating process neither terminates nor do the limiting beliefs
converge.

Remark 4. Part (b) presents three properties that further reveal
the chasm between the two methods; under DeGroot’s heuristic,
(i) the limiting beliefs of the agents are always equal, (ii) an
agent’s limiting belief trivially equals agent-oracular and public-
oracular belief,18 and, (iii) the condition needed for the pooling
of information in the limit is altered. The interested reader may
want to compare these properties with Proposition 1 in MS.

Finally, we provide a version of the wisdom of crowd result as
in MS, modified for the DeGroot’s heuristic.

Proposition 3. Suppose β∗(ω) equals universal oracle’s belief,
i.e., for all ω ∈ Ω, β∗(ω) = βu(ωIu

) then, for all ω ∈ Ω , the public
and universal oracular beliefs coincide.19

Remark 5. Under DeGroot’s method, we require equality between
the limiting belief and the universal oracular belief for the wis-
dom of the crowd to hold. In keeping with the thrust in Remark 4,
we invite the reader to compare Equation (11) in MS with our
simple condition established in Proposition 3.

5. An illustration

In this section, we demonstrate our construction using Example
2 of MS in Table 1 given below. For each ω ∈ Ω , we repli-
cate Mailath–Samuelson’s Figure 2 with DeGroot’s heuristic for
weights given by T. Columns (7) and (8) show round-one beliefs
for the agents after averaging the interim beliefs according to
weights in T. Column (9) calculates the limit belief using T∗.

Example 1. Given N = M1 = {1, 2, 3, 4}, I1 = {2, 3},M2 =

{3, 4}, I2 = {4}, we can calculate the weights of T using the
construction outlined in Section 3. Hence M f

1 = M1 ∩ (
⋃2

i=1 Ii) =

{2, 3, 4}, |M f
1| = 3, |I1| = 2 and therefore t11 =

2
3

and t12 =
1
3
.

imilarly, we have t21 = t22 =
1
2
. The weighting matrix T =

2/3 1/3
1/2 1/2

)
has all positive entries and by Kemeny and Snell

(1976, Theorem 4.1.4, p.7), is convergent to T∗
=

(
3/5 2/5
3/5 2/5

)
.

18 It is also trivially true that under DeGroot’s method, even if an agent’s belief
equals 0 or 1 under any round of updating, i.e. they agree with the omniscient
oracle for some state ω, they may be subsequently revised because of weighting
with other non-degenerate beliefs. See (iii) in Proposition 1 of MS.
19 In fact, under the convergence of T, all the belief types, agent or oracular
are equal trivially if the hypothesis holds in Proposition 3.
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Table 1
Beliefs with DeGroot’s heuristic for weights t11 = 2/3, t12 = 1/3, t21 = 0.5, t22 = 0.5.
State Prior 2’s theory Interim Round one Limit beliefs

(ω1, ω2, ω3, ω4) ρ f (ω) f 2(ωM2
) β1(ωI1 ) β2(ωI2 ) β1(ωI1 , b

2
0) β2(ωI2 , b

1
0) β∗(ω)

(0,0,0,0) 9/64 0 3/8 1/16 14/32 3/16 1/4 17/80
(0,0,0,1) 3/64 0 5/8 1/16 29/32 11/32 31/64 2/5
(0,0,1,0) 3/64 0 5/8 13/16 14/32 11/16 5/8 53/80
(0,1,0,0) 3/64 0 3/8 13/16 14/32 11/16 5/8 53/80
(1,0,0,0) 3/64 0 3/8 1/16 14/32 3/16 1/4 17/80
(0,0,1,1) 9/64 1 1 13/16 29/32 27/32 55/64 17/20
(0,1,0,1) 1/64 1 5/8 13/16 29/32 27/32 55/64 17/20
(1,0,0,1) 1/64 1 5/8 1/16 29/32 11/32 31/64 2/5
(0,1,1,0) 1/64 1 5/8 1 14/32 13/16 23/32 31/40
(1,0,1,0) 1/64 1 5/8 13/16 14/32 11/16 5/8 53/80
(1,1,0,0) 9/64 1 3/8 13/16 14/32 11/16 5/8 53/80
(1,1,1,0) 3/64 1 5/8 1 14/32 13/16 23/32 31/40
(1,1,0,1) 3/64 1 5/8 13/16 29/32 27/32 55/64 17/20
(1,0,1,1) 3/64 1 1 13/16 29/32 27/32 55/64 17/20
(0,1,1,1) 3/64 1 1 1 29/32 31/32 61/64 77/80
(1,1,1,1) 9/64 1 1 1 29/32 31/32 61/64 77/80
6. Open directions for further work

The MS-conceptualization of ‘‘model-based inference’’ under
Bayesian updating relies heavily on the measure-theoretic reg-
ister, and by switching away from Bayesian updating, we give
up powerful tools of measure theory. If one has to pick one
fundamental theorem that MS’s results crucially hinge upon, it
would be Egorov’s theorem on the uniform convergence of a
pointwise convergent sequence of measurable functions. With
DeGroot’s method, however, a plausible conceptualization of the
MS environment in the form of weights allows the importation of
the technical apparatus of Markov chain theory for the iterations
of beliefs and inferences.20

With this observation in hand, we can list at least three on-
oing research directions to complement the results reported in
his exploratory announcement: (i) consensus times, (ii) hetero-
eneous updaters, (iii) chaotic dynamics. With regard to (i), Golub
nd Jackson (2012) have pioneered important results on speeds of
onvergence in networks with DeGroot’s updating, and we would
ake their analyses to place a bound on the number of rounds
iterations) needed for the beliefs to reach within a specified
istance of their limiting beliefs. As to (ii), it is surely of interest
ow learning takes place between agents with different updating
ethods, an environment with model based reasoners, populated
y both Bayesian and DeGroot updaters.21 Finally, with respect to
iii), it is also of interest to explore the properties of the interac-
ion matrix and the requirements that it imposes, for example, on
nstances where limit beliefs agree at even iterations and disagree
t odd iterations: all this is a segway for us to apply the rich
iterature on dynamical systems to the setup introduced here.

20 This application is already available in network economics in the work
f Matthew Jackson and his followers; see Jackson (2010), Golub and Jackson
2010) and the references therein.
21 See Bradley (2018) and Romeijn and Roy (2018) for conditions under
hich DeGroot’s heuristic can be rationalized from a Bayesian perspective. Also,
ee Chandrasekhar et al. (2020) for an empirical application where a society is
omposed of a mixture of naive (DeGroot) and sophisticated (Bayesian) agents.
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