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Modo paulatim modo saltatim.1 Alexander Gerschenkron (1962)

The definition of a “thing” is effected by means of continuity and of correlations which

have a certain differential independence of other “things.” Bertrand Russell (1915)2

1 Introduction

In a remarkable paper, Gerschenkron (1962) writes, “The mathematician’s continuity has the

indubitable advantage of being an unambiguous concept, even though it can be defined in a

variety of more or less stringent fashions.” And after furnishing a formal definition lifted from

a then standard text in mathematics, and another from one in mathematical economics,3 he

continues as follows:

This definition can be rendered even more simply by describing a continuous function as one

that is “dense everywhere” in the sense of not having, strictly speaking, any contiguous

points. For between any two points of such a function an infinite number of additional

points can be placed. Stated still more simply, a continuous function is one that can be

drawn in its entirety without lifting pencil from paper and which accordingly shows neither

“gaps” nor “jumps.”

Everything is so neat and tidy that in his masterful essays, Koopmans (1957), does not even see

the need to define the concept,4 and as such, is at one with Gerschenkron. And so armed with

some clear validation and authority, the latter writes:

Thus the historian who has gone out to scrutinize the mathematical concept of continuity

travels far into strange lands and still is likely to return from his journey empty-handed.

Continuity in this sense, or senses, does not appear to be a tool historians can profitably

put to work; even when it appears in the empirical guise as gradualness of change it eludes

1This is the epigraph of Gerschenkron (1962) and is difficult to translate by virtue of saltatim being associated
with a dance metaphor, and paulatim a metaphor associated with gradualness. We are grateful to Richard Bett
for his rendering, “little by little, jump by jump.”

2Address Delivered to the Philosophical Society of Manchester, in February, 1915 and reprinted as Chapter
VII of Mysticism and Logic and Other Essays from the Monist, July, 1915. Russell explains: “That is to say,
given a particular in one perspective, there will usually in a neighbouring perspective be a very similar particular,
differing from the given particular, to the first order of small quantities, according to a law involving only the
difference of position of the two perspectives in perspective space, and not any of the other ”things” in the
universe. It is this continuity and differential independence in the law of change as we pass from one perspective
to another that defines the class of particulars which is to be called “one thing.”

3See his Footnote reference to Hyslop’s text, and also to R. G. D Allen’s tome on Mathematical Economics.
4See Footnote 4 in Uyanik and Khan (2022) and the text it footnotes. The authors state “After a footnote

reference to a continuous function, an adjective he does not define but freely uses, and then to a continuously
representable preference ordering that he does define, he masks the continuity postulate under the assumption of
local non-satiation, referring to the latter as “a rather weak continuity property of preferences”.
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the crucial problem of mensuration and is so thickly covered with the metaphysical paint

of inevitability as to be destitute of all usefulness.

Fortunately, all this did not discourage the historian from launching his classic in which five

formulations of continuity are investigated for philosophers and scientists, especially in the hu-

manities.5

This paper conducts an inquiry parallel to that of Gerschenkron, and its results take as

their point of departure the claim that the concept of continuity has many meanings even when

projected to the mathematical register. In a series of recent papers, the authors go back to the

foundational fact established by Genocchi and Peano (1884) that “separate continuity does not

imply continuity,” and rely on it to provide a deconstruction and an integration of the concept

as it is used in economic theory.6 The essential thrust of this work consisted of two related

analytical moves:

• a translation of separate and linear continuity of functions to new continuity concepts for

correspondences and binary relations, and obtaining new results on continuity of corre-

spondences and binary relations, and

• a consolidation, through this translation, of a variety of unrelated continuity assumptions

on binary relations dispersed in the economic literature.

We give salience to convexity, and investigate in particular how notions of “separate” convexity

provide not only a consolidation but also answer several questions left open in the pioneering

papers. From an analytical point of view, the marginal contribution of this paper then lies not

so much in pushing the internal investigation of the topological (continuity) register still further,

but in supplementing it with the sister-registers of linearity and order. Thus it looks towards

Hardy, Littelwood, and Pólya (1952(1934)), Young (1910) and their followers for the impact on

continuity of the convexity and monotonicity postulates. Again, as in the previous inquiries, we

take this classical forking on functions and translate it to correspondence and relations. Once

5This is not the place to engage Gerschenkron (1962) but it is worthwhile to note his five concepts of, historical
change, they are “(a) constancy of direction; (b) periodicity of events; (c) endogenous change; (d) length of causal
regress; (e) stability of the rate of change.”

6The authors note with some satisfaction the complementarity of Gerschenkron’s engagement with Leibniz
with the concluding discussion in Uyanik and Khan (2022). To be sure, the fact that joint continuity is stronger
than separate continuity was, even then in the time of Cauchy in the early part of the 18th century, a standard
material in textbooks on multivariate calculus, and its investigation constituted a rich development to which many
mathematicians, including Heine, Baire and Lebesgue. It culminated in the benchmark theorem of Rosenthal
(1955); see, for example, Ciesielski and Miller (2016) and the references therein. How this work is then followed
up and consolidated, specifically in the context of both mathematical psychology and mathematical economics,
see Ghosh, Khan, and Uyanik (2022).
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redirected in this way, we are led naturally to separate as opposed to joint (universal or global)

convexity of sets and binary relations.7

Moving on to mainstream mathematical economics, we single out Schmeidler (1969), Shafer

(1974) and Bergstrom, Parks, and Rader (1976), among papers that include Mas-Colell (1974),

Gale and Mas-Colell (1975) and Shafer and Sonnenschein (1975), to consider the relationship

between section and graph continuity assumptions for binary relations in mathematical eco-

nomics. Under completeness and transitivity, the two concepts are equivalent. Schmeidler

(1969) drops completeness but keeps transitivity and establishes the equivalence under mono-

tonicity. Shafer (1974) shows that under a strong convexity assumption, the section and

graph continuity postulates are equivalent for a complete but non-transitive preference relation.

Bergstrom, Parks, and Rader (1976) provide generalizations of these results and a comprehen-

sive treatment on the relationship between section and graph continuity postulates. In a recent

paper, Gerasimou (2015) works with a transitive and reflexive preference relation and estab-

lishes the equivalence between section and graph continuity under the additivity assumption,8

and the authors’ own work studies the relationship among different continuity assumptions in

mathematical economics and decision theory under monotonicity or convexity of preferences.9

This paper consists of three theorems that cover binary relations and correspondences. Un-

der separate convexity, Theorems 1 and 2 provide a characterization of the open graph property

for correspondences and restore the equivalence between several notions of continuity of a cor-

respondence. Considering a binary relation as a graph of the correspondence, the two theorems,

along with their corollaries, substantially generalize the results of Schmeidler (1969, 5.1), Shafer

(1974, main Lemma) and Bergstrom, Parks, and Rader (1976, Theorem 3) on the continuity of a

binary relation by weakening considerably their continuity and convexity/monotonicity assump-

tions, and by allowing a more general domain on which the binary relation is defined. Moreover,

by weakening the convexity assumption, these results complement the following quotation from

Bergstrom, Parks, and Rader (1976):

The assumption P (x) ≡ {y ∈ Rn : y ≻ x} is convex demands more convexity than is

needed for many purposes in general equilibrium analysis.

7The implications of separate convexity for distance functions in optimization problems is studied in
Bauschke and Borwein (2001).

8Even though additivity is not a standard assumption in mathematical economics, it and its related forms, have
been used in decision theory; see Gerasimou (2010, 2013) for its use in the context of continuity of preferences.
In a parallel inquiry, Dubra, Maccheroni, and Ok (2004, Proposition 1) show that under the independence as-
sumption, (graph) mixture continuity is equivalent to graph continuity for an incomplete preference relation, and
Gilboa, Maccheroni, Marinacci, and Schmeidler (2010) show that under the independence assumption, reflexive
and transitive weak preference relation has closed graph if and only if it is mixture continuous.

9See for example, Uyanik and Khan (2022), Ghosh, Khan, and Uyanik (2022), Ghosh, Khan, and Uyanik
(2023), and their references. See also Karni (2007), Dubra (2011) and Galaabaatar, Khan, and Uyanik (2019)
on the relationship among scalar continuity assumptions in decision theory.
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Furthermore, we answer in the negative the author’s question “whether [Shafer’s result] can be

generalized to infinite dimensional spaces or to an arbitrary convex subset of Rn.”10 In Theorem

3, under separate convexity, we provide a relationship among various continuity assumptions in

mathematical economics and mathematical psychology for complete and transitive binary rela-

tions that is illustrated in Figures 3 and 4.11 We also offer a host of examples to demonstrate the

usefulness of our results. Theorems 1–3 establish useful relationships between graph continuity

and other continuity postulates for non-ordered preferences, and by weakening the convexity

and monotonicity assumptions in earlier work, also generalize it.

The paper is structured as follows. Section 2 presents the two main theorems on the

continuity of correspondences. Section 3 presents a portmanteau theorem on the continuity of

binary relations. Section 4 discusses some extensions of these results and their applications to

consumer and producer theory. Section 5 provides the required proofs.

2 On Continuity of Correspondences

In this section we present our two main theorems on the characterization of open graph property

that consolidate and generalize the existing results presented in Schmeidler (1969), Shafer (1974)

and Bergstrom, Parks, and Rader (1976).

A correspondence from a topological space X into a set Y ⊆ Rn is a mapping F : X ↠ Y

that assigns every x ∈ X to a subset of Y . Define the graph of F as grF = {(x, y) ∈ X ×
Y | y ∈ F (x)}. For every x ∈ X, F (x) denotes upper section of F at x, and for every y ∈ Y ,

F−1(y) = {x ∈ X | y ∈ F (x)} denotes the lower section of F at y. F has open sections if it has

both open upper and lower sections. A correspondence F has separately open upper sections if

for every x ∈ X and every straight line12 L in Y that is parallel to a coordinate axis, L ∩ F (x)

is open in L and linearly open upper sections if for every x ∈ X and every straight line L in Y ,

L ∩ F (x) is open in L. It follows from their definitions that there is a strict nested relationship

between the following continuity postulates on a correspondence F :

open graph =⇒ open sections =⇒ linearly open sections =⇒ separately open sections. (1)

10We note in Section 4 how our results can be generalized to an infinite dimensional setting. Note that Yamazaki
(1983) also partially answers this open problem question by providing a generalization to infinite dimensional
settings. He also claims in his Corollary 3 that Shafer’s result holds also for arbitrary convex sets in Rn. Example
6 provides a counter-example to Yamazaki’s result.

11A detailed elaboration of this figure revolves around how our results generalize antecedent results by (inessen-
tially) weakening continuity and (essentially) weakening the convexity assumption. For elaboration on the notions
of hiddenness and essentiality, deriving from Kim and Richter (1986), see Uyanik and Khan (2022). In this con-
nection, the reader might also note the question of inconsistency of axioms as in Assa and Zimper (2018).

12A straight line in Y ⊆ Rn is the intersection of a one-dimensional affine subspace of Rn and Y . A subset X
of a (real) vector space is called affine if for all x, y ∈ X and λ ∈ R, λx+ (1− λ)y ∈ X.
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A set A ⊆ Y is separately convex if for every straight line L in Y that is parallel to a coordinate

axis i = 1, . . . , n, A ∩ L is convex.

Here we present our first result on graph continuity of correspondence defined on a set

that satisfies the following property.

(A) For a convex set Y ⊆ Rn, either Y is open or Y =
∏n

i=1 Yi, Yi ⊆ R for all i = 1, . . . , n.

The following provides a partial converse relationship among the continuity postulates listed in

Equation 1.

Theorem 1. Let X be a topological space, Y ⊆ Rn satisfy property A, and F : X ↠ Y has

separately convex upper sections. Then, F has open graph if and only if it has open lower sections

and separately open upper sections.

Notice that the separate convexity assumption in Theorem 1 is weaker than assuming that

F has convex values. Note that if we define a correspondence F : Y ↠ X from Y into X

and define separately open lower sections analogous to separately open upper sections, then

we obtain the following result that is symmetric to Theorem 1: if the lower sections of F are

separately convex, then F has open graph if and only if it has open upper sections and separately

open lower sections. These two results imply the following converse relationship among the

continuity postulates listed in Equation 1.

Corollary 1. Let X ⊆ Rn satisfy property A, and F : X ↠ X has separately convex upper

sections and separately convex lower sections. Then F has an open graph if and only if it has

separately open lower sections and separately open upper sections.

Examples 1 and 2 are illustrations of the failure of the hypothesis in Theorem 1. While in

Example 1, property A fails, in Example 2, the separate convexity assumption fails.

Example 1. Let X = {x ∈ [0, 1]2| x2 ⩾ x1}, A = {x ∈ [0, 1]2| x2 > x1} ∪ {(1, 1)} ⊂ X and

F : X ↠ X be a correspondence defined as F (X) = A for all x ∈ X. Note that X is a bounded

polytope, but is closed and hence fails property A. Further, F has open lower sections and

separately open upper sections since for any straight line L in X that is parallel to a coordinate

axis, L ∩ A is open in L. However, the graph of F is not open since every neighborhood of

((1, 1), (1, 1)) contains a point outside of the graph of F .

Example 2. LetX = R2, A = R2\{x ∈ R2|x1 = x2, x ̸= 0} and F : X ↠ X be a correspondence

defined as F (X) = A for all x ∈ X. Clearly, X satisfies property A. Notice that F is not

separately convex. The intersection of A and any line parallel to a coordinate axis is either the

real line or a union of two open intervals. Therefore, F has separately open upper sections.

However, it does not have an open graph since every open ball containing the origin in R4

contains a point in the complement of the graph of F .
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Figure 1: Utility functions in Equations (2) and (3).

The next example gives two instances of non-convex preferences from

Halevy, Persitz, and Zrill (2017) that are separately convex.

Example 3. Consider the following two preference relations that are defined on R2
+ and are

represented by the following utility functions:

u1(x, y) =

x3y if x ⩾ y

xy3 if x ⩽ y
(2)

and

u2(x, y) =
√
max{x, y}+ 1

4

√
min {x, y}. (3)

In Figure 1, we illustrate the indifference curves corresponding to the two utility functions above.

Notice that while the preferences are not convex, they are separately convex.

Our next result is on the continuity of correspondences defined on subspaces that satisfy

the following property.

(B) For a convex set Y ⊆ Rn, either Y is open or a polyhedron, where a polyhedron is the

intersection of a finite number of half-spaces.

Theorem 2. Let X be a topological space, Y a convex subset of Rn satisfies property B and

F : X ↠ Y a correspondence such that F (x) is convex for all x ∈ X. Then, F has an open

graph if and only if F has open lower sections and linearly open upper sections.
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Analogous to Theorem 1, if we define a correspondence F : Y ↠ X from Y into X, then we

obtain the following result that is symmetric to Theorem 2: if the lower sections of F are convex,

then F has open graph if and only if it has open upper sections and linearly open lower sections.

These two results imply the following converse relationship among the first three continuity

postulates listed in Equation 1.

Corollary 2. Let X ⊆ Rn satisfy property B, and F : X ↠ X has convex upper sections and

convex lower sections. Then F has open graph if and only if it has linearly open sections.

Note that unlike Theorem 1, open graph property in Theorem 2 is not equivalent to open lower

sections and separately open upper sections. For instance, X is a bounded polytope in Example

1 and hence satisfies property B but the correspondence F fails to have linearly open upper

sections, hence does not have an open graph. Also notice that property B is weaker than

property A, however the convexity and continuity assumptions in Theorem 2 are stronger than

those in Theorem 1. Hence, the assumptions in these two theorems are non-nested.

Example 2 above illustrates a correspondence that is separately convex and has separately

open upper sections but fails to have linearly open upper sections as well as an open graph.

The following example illustrates that if the separate convexity assumption fails, then a cor-

respondence may have both separately open and linearly open upper sections but fails graph

continuity.

Example 4. LetX = R2, A = R2\{x ∈ R2|x2 = x2
1, x ̸= 0} and F : X ↠ X be a correspondence

defined as F (X) = A for all x ∈ X. Clearly, X satisfies properties A and B but F is neither

separately convex nor has convex upper sections. For any straight line L, L∩A excludes at most

two points of L. Hence, F has both separately open and linearly open upper sections. However,

A is not open since every open ball containing 0 contains a point in the complement of A, hence

F fails to have open upper sections and an open graph.

The following example illustrates that the convexity assumption in Theorem 2 is essential even

for a correspondence defined on an interval in R.

Example 5. Let X = [0, 1] and F : X ↠ X such that F (0) = (0, 1] and F (x) = {y ∈ X | y >

x, and y ̸= (1 − x)} for all x > 0. It is easy to see that F has open sections but (0, 1) has no

open neighborhood contained in the graph of F , hence F does not have an open graph. It is

clear that F (x) and F−1(y) are not convex for all x ∈ (0, 0.5) and for all y ∈ (0.5, 1).

The next result provides additional relationships among the continuity postulates.

Proposition 1. Let X be a topological space, Y, Z two convex subsets of Rn that satisfy property

A, B, respectively, and F : X ↠ Y,G : X ↠ Z be two correspondences.
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(a) if F has separately convex upper sections, then the following are equivalent: F has (i) open

upper sections, (ii) linearly open upper sections, (iii) separately open upper sections.

(b) if G has convex upper sections, then G has open upper sections if and only if it has linearly

open upper sections.

Note that the additional relationships among the lower continuity postulates are obtained by

suitably adjusting the domains and the ranges of the correspondences and replacing “upper” in

Proposition 1 by “lower.”

As in Theorem 1, considering a binary relation as the graph of a correspondence, Theorem

2 provides necessary and sufficient conditions for a binary relation on a convex subspace of

Rn to be continuous. It provides a characterization of the continuity of a binary relation, or

a correspondence, by using a topological property similar to the linear continuity postulate.

As noted in Equation 1, open upper (lower) sections property is stronger than linearly open

upper (lower) sections property that is stronger than separately open upper (lower) sections

property. Therefore, Theorems 1 and 2 generalize the following result of Shafer (1974, Lemma,

pg. 914) and Bergstrom, Parks, and Rader (1976, Theorem 3) on continuity of a binary relation

by considerably weakening their continuity and convexity assumptions, and allowing a more

general domain on which the binary relation is defined. Define a binary relation P on X, where

P ⊆ X × X. Note that for any binary relation P on X, there exists a unique correspondence

F : X ↠ X such that P = grF . The upper and lower sections of a binary relation P at x ∈ X

is defined as P (x) = F (x) and P−1(x) = F−1(x), respectively.

Corollary 3. Let X = Rn
+ and P : X ↠ X be a correspondence such that P (x) is convex for

all x ∈ X (or P−1(x) is convex for all x ∈ X). Then, P has an open graph if and only if P has

open sections.

Moreover, along with Theorems 1 and 2, Corollary 1 generalize the following result of Schmeidler

(1969) by dropping the transitivity assumption, substantially weakening the continuity and

monotonicity assumptions,13 and allowing a more general domain on which the binary relation

is defined.

Corollary 4. Let X = Rn
+ and P : X ↠ X be a transitive, irreflexive and strongly monotone

binary relation on X. Then P has an open graph if and only if P has open sections.

Note that Gerasimou (2015) provides a result on the relationship between sections and

graph continuity of a reflexive and transitive binary relation under the additivity assumption.

13It is easy to observe that if a strict binary relation is strongly monotone, then it has separately convex upper
and lower sections, but the converse relationship does not hold as for example the relation need not be complete.
A similar relationship holds for weak monotonicity whose proof is provided in Section 5.
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The results in this paper focus on separate convexity and do not impose additivity. It is easy to

show that additivity and separate convexity assumptions are non-nested for preferences defined

in this paper and in Gerasimou (2015). Therefore, our results and the results presented in

Gerasimou (2015) are non-nested.

Bergstrom, Parks, and Rader (1976, Theorem 1) provides a generalization of Schmeidler’s

result for a transitive and order-dense binary relation on general topological spaces. Their result

and our results above are non-nested; while we impose weaker continuity assumptions and do

not assume transitivity or order-denseness, they do not impose any convexity assumption and

allow for a more general domain. Further, they note that the generalization of Theorem 2 to

arbitrary convex sets in Rn is an open problem. In Example 6, we answer this open problem

in the negative and also provide a counterexample to Corollary 3 of Yamazaki (1983) on the

open problem.14 The example further demonstrates that the results in this section cannot be

generalized to a setting where Y is an arbitrary convex set in Rn.

x1

y2

y1

(1,0,0) (1,1,0)

(0,0,0)

(0,0,1)

(1,0,0)

(0,1,0)

gr(f

gr(F)

)

Figure 2: A convex binary relation with open sections whose graph is not open

Example 6. Let X = {x ∈ R2
+|x2

1+x2
2 ⩽ 1}. Clearly, X is convex. Consider a homeomorphism

f : [0, 1] → {x ∈ R2
+|x2

1 + x2
2 = 1} as illustrated in Figure 2 where f(0) = (0, 1) and f(1) =

(1, 0). Define a correspondence F : X ↠ X as follows: F (1, x2) = X for all (1, x2) ∈ X and

14Yamazaki (1983, Proposition 2) identifies the following property for a subspace of a topological vector space:
a subspace X of a topological vector space is locally finite if for each z ∈ X there exists a finite collection of points
{x1, . . . , xk} in X such that the convex hull of {x1, . . . , xk} is a neighborhood of z. Yamazaki’s Proposition 2
provides a generalization of Shafer’s result to spaces satisfying this property. (He also works with a weakening
of convex domains by restricting the preferences to the restricted domain). The local finiteness property has
its roots in the proof of Shafer’s (1974) result and plays a crucial role. However, Yamazaki’s application of his
Proposition 2 to solve the open problem mentioned above has a mistake.

9



F (x1, x2) = X\{f(x1)} for all x ∈ X with x1 ̸= 1. Note that F is constant in the second

variable. Moreover, F (x) is convex for all x ∈ X since it excludes at most one point that cannot

be written as a weighted average of two points in F (x). Also, F (x) is open in X for all x ∈ X

since its complement is closed (either an empty set or a singleton). Furthermore,

F−1(y) =

X if y /∈ f([0, 1))

X\({a} × {z2 ∈ R+ | (a, z2) ∈ X}) if y = f(a) for some a ∈ [0, 1).

Note that for each y ∈ {x ∈ R2
+|x2

1 + x2
2 = 1}, y ̸= (1, 0), there exists a unique such a ∈ [0, 1)

such that y = f(a). Hence, F has open lower sections. However, F does not have an open graph

since every neighborhood of ((1, 0), (0, 1)) ∈ grF contains a point in the complement of grF . In

this example, setting P = grF implies that P ⊆ X ×X is a binary relation on the convex set

X with open sections and convex values. However, P is not open in X ×X. □

The results we present here either focus on correspondences with open graph, or on open

binary relations.15 Example 7 illustrates that a binary relation need not be closed even if

it has closed sections and convex upper sections. There are results in the literature that show

equivalence between having closed sections and being closed for a binary relation; see for example,

Ward (1954) and Shafer (1974) under completeness or transitivity assumptions.

Example 7. Let X = [0, 1] and P ⊆ X×X such that P (x) = {x} for all x < 1 and P (1) = {0}.
It is clear that P has closed sections (both upper and lower). Also, P (x) is convex-valued since

it’s a singleton for all x ∈ X. However, P is not closed in X ×X since (1, 1) ∈ P c has no open

neighborhood contained in P c.

3 On Continuity of Ordered Preferences

In the previous section, we provide relationships among different continuity assumptions under

separate convexity assumption for a binary relation that need not be complete or transitive. In

this section, we bring out the additional relationships when the binary relation is ordered, that

is, complete and transitive.

Let X ⊆ Rn be a convex set. A subset ≿ of X × X denotes a binary relation on X. We

denote an element (x, y) ∈ ≿ as x ≿ y. The asymmetric part ≻ of ≿ is defined as x ≻ y if x ≿ y

and y ̸≿ x, and its symmetric part ∼ is defined as x ∼ y if x ≿ y and y ≿ x. The inverse of ≿

15In a related setting, Zhou (1995, Proposition 2) replaces open lower sections assumption in Shafer’s result
with lower semicontinuity of a correspondence whose values are in Y = Rn to provide a characterization of the
open graph property; see also Impicciatore and Ruscitti (2012) for a recent treatment. By using the arguments
in this paper, it is possible to show that the open and convex upper sections in Zhou’s result can be replaced
with separately open and separately continuous upper sections.
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is defined as x ≾ y if y ≿ x. Its asymmetric part ≺ is defined analogously and its symmetric

part is ∼. For any x ∈ X, let A≿(x) = {y ∈ X|y ≿ x} denote the upper section of ≿ at x, and

A≾(x) = {y ∈ X|y ≾ x} its lower section at x. For any x, y ∈ X and λ ∈ [0, 1], let xλy denote

λx + (1 − λ)y. We provide in Table 1 the descriptive adjectives pertaining to a relation in a

tabular form for the reader’s convenience.16

reflexive x ≽ x, ∀x ∈ X

non-trivial ∃x, y ∈ X such that x ≻ y

complete x ≽ y or y ≽ x, ∀x, y ∈ X

transitive x ≽ y ≽ z ⇒ x ≽ z, ∀x, y, z ∈ X

monotone x > y =⇒ x ≿ y ∀ x, y ∈ X or x > y =⇒ x ≾ y ∀ x, y ∈ X

order dense x ≻ y =⇒ ∃z ∈ X such that x ≻ z ≻ y ∀ x, y ∈ X

Table 1: Properties of binary relations

The continuity assumption on a binary relation is one of the standard assumptions in

decision theory and mathematical psychology. The following definition lists the many forms it

takes in the literature.

Definition 1. A binary relation ≿ defined on a convex set X ⊆ Rn is

(a) graph continuous if ≿ is a closed subset of X ×X.

(b) upper continuous if ≿ has closed upper sections, lower continuous if ≿ has closed lower

sections, and continuous if ≿ has closed upper and lower sections.

(c) linearly upper (lower) continuous if the restriction of the upper (lower) sections of ≿ to

any straight line L in X is closed in L, and linearly continuous if ≿ is linearly upper and

linearly lower continuous.

(d) separately upper (lower) continuous if the restriction of the upper (lower) sections of ≿ to

any straight line L in X that is parallel to a coordinate axis is closed in L, and separately

continuous if ≿ is separately upper and separately lower continuous.

(e) upper (lower) mixture continuous if for any x, y, z ∈ X, {λ ∈ [0, 1]|xλy ≿ z} is closed

({λ ∈ [0, 1]|xλy ≾ z} is closed) in the unit interval [0, 1], and mixture continuous if ≿ is

upper mixture and lower mixture continuous.

(f) upper (lower) Archimedean if for any x, y, z ∈ X, x ≻ y implies that there exists λ ∈
(0, 1) (δ ∈ (0, 1)) such that xλz ≻ y (x ≻ yδz), and Archimedean if it is upper and lower

Archimedean.

16For vectors x and y, “x ⩾ y” means xi ⩾ yi in every component; “x > y” means x ⩾ y and x ̸= y; and
“x ≫ y” means xi > yi in every component.
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(g) Wold-continuous if it is order-dense and x ≻ z ≻ y implies that any curve17 joining x to y

meets the indifference class of z.

(h) weakly Wold-continuous if it is order-dense and x ≻ z ≻ y implies that the straight line

joining x to y meets the indifference class of z.

(i) restricted solvable if for all i ∈ {1, . . . , n}, all x, y ∈ X and all (ai, y−i), (bi, y−i) ∈ X with

(ai, y−i) ≿ x ≿ (bi, y−i), there exists c ∈ X with (ci, y−i) ∈ X such that x ∼ (ci, y−i).

Moreover, ≿ possesses the

(j) intermediate value property (IVP) if for all x, y, z ∈ X with x ≿ y ≿ z, there exists

λ ∈ [0, 1] such that xλz ∼ y.

(k) strong IVP if for all x, y, z ∈ X with x ≿ y ≿ z and all curves Cxy connecting x and z,

there exists c ∈ Cxy such that c ∼ y.

In his pioneering work, Wold (1943–44) developed consumer theory and provided a result on

numerical representation of binary relations by a continuous function,18 based on the Wold

continuity assumption. In subsequent work, Wold and Jureen (1953) uses a weaker version of

Wold continuity, the weak-Wold assumption. This weaker continuity assumption is first used

in decision theory independently by Nash (1950) and Marschak (1950) who provide a com-

plete axiomatization of the expected utility theory initiated by von Neumann and Morgenstern

(1947).19 These Wold-continuity postulates are analogous to restricted solvability and the two

IVP postulates. The linear and separate continuity postulates are motivated by their classical

counterparts for functions in mathematics. Note that linear continuity is equivalent to mixture

continuity. The remaining continuity postulates are standard in mathematical economics and

decision theory.

Theorem 3. Let ≿ be a complete and transitive binary relation on a non-empty and convex set

X ⊆ Rn with property A.

(a) If the upper (lower) sections of ≿ are separately convex, then the following are equivalent

for ≿: upper (lower) continuity, upper (lower) mixture continuity, upper (lower) linear

continuity, upper (lower) separate continuity, lower (upper) Archimedean.

17A curve on X is the image of a continuous injective function m : [0, 1] → X.
18Wold’s representation theorem and the well-known representation theorem of Eilenberg (1941) are inde-

pendent discoveries, and the proofs are different; see Banerjee and Mitra (2018), Uyanik and Khan (2022) and
Ghosh, Khan, and Uyanik (2023) for details.

19von Neumann and Morgenstern (1947) use a version of the Archimedean assumption in their theory. There
are many versions of the axiomatics of the expected utility theory. Nash and Marschak use weak Wold-continuity
while Herstein and Milnor (1953) use mixture continuity; see Bleichrodt, Li, Moscati, and Wakker (2016) for a
history of axiomatics of the expected utility theory.
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(b) If ≿ is order dense and its sections are separately convex, then the following are equivalent

for ≿: graph continuity, continuity, linear continuity, mixture continuity, Archimedean,

strong IVP, IVP, Wold-continuity, weak Wold-continuity, restricted solvability, and sepa-

rate continuity.

The results in the previous section provide equivalence relationship among separate continu-

ity, linear continuity, continuity, and graph continuity of a preference relation that need not

be complete or transitive. Theorem 3(a) adds Archimedean and mixture continuity into this

relationship when the upper or the lower sections of the relation are separately convex. Part (b)

of the theorem shows that if the separate convexity assumption holds for both upper and lower

sections, then further equivalence relationships hold among the defined continuity postulates.

Note that the convexity assumption in part (b) of the theorem is equivalent to the following

monotonicity property: ≿ is separately monotone if xi > yi implies (xi, z−i) ≿ (yi, z−i) for

all i = 1, . . . , n and all (xi, z−i), (yi, z−i) ∈ X, or xi > yi implies (xi, z−i) ≿ (yi, z−i) for all

i = 1, . . . , n and all (xi, z−i), (yi, z−i) ∈ X. Moreover, it is not difficult to show that a transitive

binary relation ≿ is separately monotone if and only if it is monotone. We provide proof

of these claims in the next section. Ghosh, Khan, and Uyanik (2022) provide an equivalence

relation among different continuity postulates under monotonicity and convexity. Theorem 3(b)

provides a generalization by allowing a more general domain and an alternative proof of their

result and connects it to separate convexity.

Figures 3 and 4 provide pictorial representations of the results we report in Theorem 3.

The reader should note in particular how the notion of separate convexity allows the execution

and the completion of several equivalences.

convex or monotone

restricted solvability

convex or monotone       m
onotone in (n-1)-coordinates

upper 
mixture continuity

upper 
Archimedean

    convex or
   monotone  

Wold-continuity  strong IVP

    convex or
   monotone  

    graph 
continuity

weak 
Wold-continuity

  IVP

           order dense

lower 
Archimedean

upper continuity
upper 

separate continuity

upper 
linear continuity

           order dense

           separately convex
              upper sections

           separately convex
              upper sections

lower 
mixture continuity

upper 
Archimedean

lower continuity
lower

separate continuity

lower 
linear continuity

           separately convex
              lower sections

           separately convex
              low

er sections

(a) (b)

Figure 3: Relationship among continuity postulates in Theorem 3(a).

Example 8. This example illustrates that separate convexity is not enough to obtain equivalence

between Archimedeanity and mixture continuity and between separate continuity and continuity
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continuityseparate continuityrestricted solvability

mixture continuity

Archimedean

           separately convex & 
                    order dense

linear continuity

Wold-continuity  strong IVP     graph continuity

weak Wold-continuity  IVP
           order dense

           order dense

           separately convex 

           order dense

           separately convex

Figure 4: Relationship among continuity postulates in Theorem 3(b).

as well as restricted solvability and continuity. It is motivated by the classic counterexample of

Genocchi and Peano (1884).20 Let X = R2 and f : X → R defined as follows:

f(x1, x2) =
2x1x2

x2
1 + x2

2

+ min{x1, x2} if x ∈ R2
+\{0, 0}, and f(x) = 0 otherwise.

Let ≿ be the binary relation on X induced by f , that is x ≿ y if and only if f(x) ⩾ f(y). In

this case, it is easy to show that ≿ is separately convex and satisfies Archimedean property,

separate continuity and restricted solvability. However, ≿ fails mixture continuity along the 45◦

line, hence also fails continuity.

4 Discussion and Remarks

In this section, we list three observations about our results. First, the results here (Theorems 1

and 2) can be generalized to a topological vector space setting by using an argument analogous

to those in the proofs. Let X0 be an arbitrary non-empty topological space and {Xi}ni=1 be a

finite collection of non-empty, convex finite sets in a topological vector space.21 Let A ⊆
∏n

i=0Xi

be a set such that for all i = 1, . . . , n and all x ∈ A, Ai(x) is convex. Then, A is open if and

only if Ai(x) is open for all i = 0, 1, . . . , n and all x ∈ A. Note that A can be considered as

the graph of correspondence from X0 into X =
∏n

i=1Xi, or as a binary relation on X when

X0 = X. Moreover, generalizations of the results (Theorem 3) concerning the relationship

20There is a rich and deep literature on the relationship among different continuity assumptions on functions;
see for example, Ciesielski and Miller (2016) and Uyanik and Khan (2022) for a detailed discussion.

21See Footnote 14 for the definition of a locally finite set.

14



between different continuity postulates for functions can also be obtained.

Second, a major thrust of our paper has been to explore the notion of separateness within

the choice theory register. Extending this analysis to producer theory appears to be a promising

avenue for future work. In this context, Herberg (1973) develops a notion of point-wise convexity,

similar to the idea of separate convexity in this paper.22 To the best of our knowledge, there

is no work that has explored this issue further. Moreover, a weaker convexity assumption on

production sets may give us a sufficient background to work with marginal rates.

Finally, non-convexity in preferences continues to be an important avenue for exploration.23

Recent work by Halevy, Persitz, and Zrill (2017) suggests useful implications of non-convexity

for techniques in revealed preferences. We hope that by bringing separate convexity to the

picture, we can stimulate applications in this area.

5 Proofs of the Results

Proof of Theorem 1. Let X be a topological space, Y ⊆ Rn be a convex set with property A,

F : X ↠ Y be a correspondence with separately convex upper sections and I = {1, . . . , n}. For
notational simplicity, define A ⊆ X × Y as A = grF . For all (x, y) ∈ A, let A0(x, y) = {x′ ∈
X| (x′, y) ∈ A}, and for any J ⊆ I, let AJ(x, y) = {y′ ∈ Y | y′−J = y−J and (x, y′) ∈ A} and

A(yJ) = {(x′, y′) ∈ A | y′J = yJ}. The forward direction is clear. For the backward direction, let

Z = X × Y , and assume F has open lower sections and separately open upper sections, that is

A0(z) is open and AI(z) is separately open for all z ∈ A.

Next, we show that for all J ⊊ I and all (x, y) ∈ A, if A(y−J) is open in Z(y−J), then

A(y−(J∪{i})) is open in Z(y−(J∪{i})) for each i /∈ J . Towards this end, pick J ⊊ I, (x̄, ȳ) ∈ A and

assume A(ȳ−J) is open in Z(ȳ−J). Pick z = (x, yJ∪{i}, ȳ−(J∪{i})) ∈ A and a straight line Lyi in

Y that contains (yJ∪{i}, ȳ−(J∪{i})) and is parallel to the i-th coordinate axis in Y . Since AI(z)

is separately open in Y , there exist ai, bi ∈ R, ai ⩽ bi, such that U = [ai, bi] × {yJ , ȳ−(J∪{i})} is

contained in Lyi ∩ AI(z) and is a neighborhood24 of (yi, yJ , ȳ−(J∪{i})) in the subspace Lyi .

Since (x, ỹi, yJ , ȳ−(J∪{i})) ∈ A for all ỹi ∈ [ai, bi], the sets A(ai, ȳ−(J∪{i})) and A(bi, ȳ−(J∪{i}))

are open in Z(ai, ȳ−(J∪{i})) and Z(bi, ȳ−(J∪{i})) respectively, and contain (x, yJ), there exist

neighborhoods Ua(x, yJ) ⊆ A(ai, ȳ−(J∪{i})) and U b(x, yJ) ⊆ A(bi, ȳ−(J∪{i})) of (x, yJ). Let

U(x, yJ) = Ua(x, yJ)∩U b(x, yJ). Then, U(x, yJ) is a neighborhood of (x, yJ) and for all (x′, y′J) ∈
U(x, yJ), (x

′, y′J) ∈ Ua(x, yJ) ⊆ A(ai, ȳ−(J∪{i})) and (x′, y′J) ∈ U b(x, yJ) ⊆ A(bi, ȳ−(J∪{i})).

22See for example Figures 1–4 and Lemma 1 of Herberg (1973). As another simple example, the preference
relation induced by the utility function max{x1, x2} is separately convex but not convex, in fact, its lower sections
are convex. Note that the production set induced by the function above is convex.

23Trockel (1984) writes on the role of non-convexity in the context of market demand and large economies.
24A set is a neighborhood of a point in a topological space if it contains the point in its topological interior.
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Hence for all (x′, y′J) ∈ U(x, yJ), ai, bi ∈ A(x′, y′J , ȳ−(J∪{i})). Then, it follows from the con-

vexity assumption that for all (x′, y′J) ∈ U(x, yJ), [ai, bi] ⊆ A(x′, y′J , ȳ−(J∪{i})). Note that

[ai, bi] × U(x, yJ) × {ȳ−(J∪{i})} ⊆ A and it is a neighborhood of z in the subspace Z(ȳ−(J∪{i})).

Therefore, A(ȳ−(J∪{i})) is open in Z(ȳ−(J∪{i}))

Note that A0(z) is open in X for all z ∈ A. By setting J = ∅, it follows from the argument

above that for all (x, y) ∈ X, A(y−1) is open in Z(y−1). Iteratively adding one index i = 2, . . . , n

into J and applying the argument above imply that A is open in Z.

Let X be a subset of Rn. The closure of X is denoted by clX and its interior by intX.

Since any lower dimensional subset of Rn has an empty interior, it is more convenient to work

with the concept of relative interior. Recall that a subset X of a (real) vector space is affine if

for all x, y ∈ X and λ ∈ R, λx+ (1− λ)y ∈ X. It is clear that A is affine if and only if A− {a}
is a subspace of X for all a ∈ A. The affine hull of X, affX, is the smallest affine set containing

X. The relative interior of a subset X of Rn is defined as

riX = {x ∈ affX | ∃Nε, an ε neighborhood of x, such that Nε ∩ affX ⊆ X}.

That is, the relative interior of X is the interior of X with respect to the smallest affine subspace

containing X. The following result is due to Rockafellar (1970, p. 45).

Lemma 1. Let X be a non-empty and convex subset of Rn. Then riX is non-empty, and for all

x ∈ riX, y ∈ clX and all λ ∈ [0, 1), yλx ∈ riX.

Proof of Theorem 2. The forward direction is obvious. For the backward direction, assume

F : X ↠ Y has convex and linearly open upper sections and open lower sections. First, we

show that F has open upper sections, that is F (x) is open for all x ∈ X. Assume towards a

contradiction that there exists x0 ∈ X such that F (x0) is not open (in Y ), hence there exists

y ∈ F (x0) such that y is not an interior point of F (x0). Note that F (x0) is convex and has

infinitely many elements. Let Hy denote the set of all supporting hyperplanes of F (x0) at y

in the affine space generated by F (x0), and for all h ∈ Hy, let Hh denote the closed half-space

determined by h that contains F (x0).

Assume there exists h ∈ Hy such that Hc
h ∩ F (x0) ̸= ∅. Since Hc

h ∩ F (x0) is non-empty

and convex, pick w in the relative interior of Hc
h ∩ F (x0), which is nonempty by Lemma 1. Let

Lyw be the straight line in Y that contains y and w. It follows from Lemma 1 that yδw /∈ F (x0)

for all δ ∈ [0, 1). Then, every open neighborhood of y in the subspace Lyw contains an element

yδw /∈ F (x0). Since y ∈ F (x0) this yields a contradiction with linear openness of F (x0).

Next, assume for all h ∈ Hy, the set Hc
h ∩ F (x0) = ∅. This case happens only if Y is a

polyhedron and y lies in one of the hyperplanes determining the relative boundary of Y defined
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in property B. Let H′
y be the set of all such hyperplanes. If there exists h ∈ H′

y and y′ ∈ h such

that for all δ ∈ [0, 1), yδy′ /∈ F (x0), then this yields a contradiction with the linear openness of

F (x0). Otherwise, if for all h ∈ H′
y and all y′ ∈ h, there exists δ ∈ [0, 1) such that yδy′ ∈ F (x0),

then there exist finitely many points in these finitely many hyperplanes such that the convex

hull of these points constitute a (closed) neighborhood of y. Hence y is an interior point of

F (x0) which yields a contradiction with the assumption that y is not an interior point of F (x0).

Therefore, F (x) is open for all x ∈ X.

It remains to show that grF is open. Towards this end, pick z0 = (x0, y0) ∈ grF . Since F

has open upper sections and Y satisfies property B, there exist finitely many points p1, . . . , pm

in F (x0) such that V = co{p1, . . . , pm} is a neighborhood of y0 in Y .

For each k = 1, . . . ,m, we have pk ∈ F (x0), hence x0 ∈ F−1(pk). For each k = 1, . . . ,m,

since F−1(pk) is open, there exists a neighborhood Uk of x0 in X such that Uk ⊆ F−1(pk).

Then, the set U =
⋂m

k=1 U
k is a neighborhood of x0 and U ⊆ Uk ⊆ F−1(pk) for all k. Hence,

for all x ∈ U and all k = 1, . . . ,m, pk ∈ F (x). For all x ∈ U , since F (x) is convex, V =

co{p1, . . . , pm} ⊆ F (x). Then, for all x ∈ U and all y ∈ V , x ∈ F−1(y) and y ∈ F (x). Therefore,

U × V is a neighborhood of z0, hence z0 is an interior point of grF .

Since a subset of the product space X×Y can be defined as the graph of a correspondence from

X into Y , Theorems 1 and 2 provide characterizations of open sets when the sections of the

set satisfy a suitable convexity assumption; see for example Halkin (1966), Uyanik and Khan

(2023) and their references for characterizations of open sets in Rn, and also see Fan (1966) for

applications of sets with convex sections.

Proof of Proposition 1. Part (b) directly follows from the argument in the proof of Theorem 2

above as the first step of the proof shows that under convex upper sections, linearly open upper

sections is equivalent to open upper sections. To prove part (a), assume F has separately convex

and separately open upper sections. Pick x ∈ X. We need to show that F (x) is open. If Y

is a product set, then define a correspondence H : Yi ↠ Y−i for some i = 1, . . . , n such that

grH = F (x). Then, by Theorem 1, H has an open graph in the subspace Y , hence F (x) is

open in Y . If Y is an open set in Rn, then define a correspondence G : R ↠ Rn−1 such that

grG = F (x). Analogously, by Theorem 1, G has an open graph in Rn. Since Y is open, therefore

F (x) is open in Y .25

Proof of Theorem 3. The one-directional strict inclusion relationship among the continuity pos-

tulates does not require a convexity assumption and is provided in the antecedent literature; see

Ghosh, Khan, and Uyanik (2022, Proposition 9) for details and references.

25Note that the convexity of the upper sections restricted to lines parallel to coordinate axis i is not needed in
part (a). For clarity of the exposition, we do not relax this assumption in the statement of the proposition.
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In part (a), the statement that under the suitable separate convexity assumption, sep-

arate upper (lower) continuity implies upper (lower) continuity follows from Proposition 1(a).

Therefore, showing upper (lower) Archimedean implies lower (upper) separate continuity under

the suitable separate convexity assumption completes the proof of part (a). Towards this end,

assume ≿ has separately convex upper sections, satisfies lower Archimedean property but fails

to have separately closed upper sections. Hence, there exists x ∈ X and a line L parallel to a

coordinate axis such that A≿(x) ∩ L is not closed. Then, there exist x ∈ X, an index i, and a

sequence (yki , ȳ−i) → (yi, ȳ−i) on the line Li parallel to coordinate i such that (yki , ȳ−i) ≿ x for

all k and x ≻ (yi, ȳ−i). By separate convexity, A≿(x) ∩ Li is convex. Therefore, if y
k
i ⩽ yi ⩽ ymi

for some k,m, then (yi, ȳ−i) ≿ x. Therefore, either yni > yi for all n or yni < yi for all n.

Assume wlog that yni > yi for all n. Then, separate convexity of ≿ implies that (y′i, ȳ−i) ≿ x

for all y′i ∈ (yi, y
1
i ]. It follows from the Archimedean property and x ≻ (yi, ȳ−i) that there exists

δ ∈ (0, 1) such that x ≻ (yi, ȳ−i)δ(y
1
i , ȳ−i) = (yiδy

1
i , ȳ−i). Since yiδy

1
i ∈ (yi, y

1
i ], this furnishes

us a contradiction. Therefore, ≿ is separately upper continuous. The proof is analogous to the

statement that when ≿ has separately convex lower sections, upper Archimedean implies lower

separate continuity.

For part (b), given the relationships above, it remains to show the relationship between

restricted solvability and separate continuity. In particular, we show that if ≿ has separately

convex lower sections, then restricted solvability implies that ≿ has separately open lower sec-

tions. Towards this end assume ≿ has separately convex lower sections,26 is restricted solvable

but does not have separately open upper sections. That is, there exists x ∈ X and a line L

parallel to a coordinate axis such that A≺(x) ∩ L is not open, hence A≿(x) ∩ L is not closed.

Then, there exist x ∈ X, an index i, and a sequence yk → y on the line Li parallel to coordinate

i such that yk ≿ x for all k and y ≺ x.

Since y ≺ x, order denseness implies that there exists x′ ∈ X such that y ≺ x′ ≺ x.

By restricted solvability, there exists z ∈ Li such that z ∼ x′. By transitivity and Sen (1969,

Theorem I), y ≺ z ≺ x ≾ yk for all k. By convexity assumption and Debreu (1959, p.59), for all

z′i ∈ (yi, zi], (z
′
i, z−i) ≾ z, and by transitivity and Sen (1969, Theorem I), (z′i, z−i) ≺ x. However,

since yk → y, there exists z′i ∈ (yi, zi], such that z′i = yki for some k and (z′i, z−i) ≿ x. This yields

a contradiction. Therefore, ≿ has closed upper sections. The proof for closed lower sections of

≿ under separately convex upper sections is analogous.

Next, we prove the equivalence between separate convexity and separate monotonicity

stated in Section 3.

26This convexity assumption is equivalent to ≻ having separately convex lower sections; see Debreu (1959,
p.59) for details and further equivalences.
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Claim 1. A complete and transitive binary relation ≿ is separately monotone if and only if it is

monotone if and only if it has separately convex sections.

Proof of Claim 1. We first show that separate monotonicity implies monotonicity. Assume ≿ is

separately monotone (and increasing in each coordinate). Pick x >= y, i.e., (xi >= yi for all i).

Then, by separate monotonicity, (x1, y−1) ≿ y. Since (x1, x2, y{−1,−2}) >= (x1, y−1), by separate

monotonicity and transitivity, (x1, x2, y{−1,−2}) ≿ y. By iterating this argument, we obtain

x ≿ y, hence ≿ is monotone (increasing). The proof of the case where ≿ is decreasing in each

coordinate is analogous. The converse relationship is obvious.

To see that separate monotonicity implies separately convex sections, let ≿ be separately

monotone (increasing), (xi, z−i) ≿ a, (yi, z−i) ≿ a and xi > yi. By monotonicity, (xi, z−i) ≿

(yi, z−i), hence for all wi ∈ (yi, xi), (wi, z−i) ≿ (yi, z−i). By transitivity, for all wi ∈ (yi, xi),

(wi, z−i) ≿ a. Hence, ≿ has separately convex upper sections. Now let (xi, z−i) ≾ a, (yi, z−i) ≾ a

and xi > yi. By monotonicity, (xi, z−i) ≿ (yi, z−i), hence for all wi ∈ (yi, xi), (xi, z−i) ≿ (wi, z−i).

By transitivity, for all wi ∈ (yi, xi), a ≿ (wi, z−i). Hence, ≿ has separately convex lower sections.

To see that separately convex sections imply separate monotonicity, assume ≿ has sep-

arately convex sections, pick i, z ∈ X, and (ai, z−i), (bi, z−i) ∈ X. Assume wlog that ai > bi

and (ai, z−i) ≿ (bi, z−i). By convexity, for all wi ∈ (bi, ai), (ai, z−i) ≿ (wi, z−i) ≿ (bi, z−i).

Pick xi > ai. Let (xi, z−i) ≺ (ai, z−i). Assume wlog that (xi, z−i) ≿ (bi, z−i). Then ≿ hav-

ing convex lower sections imply that for all wi ∈ (bi, xi), (xi, z−i) ≿ (wi, z−i). By transitivity

and ai ∈ (bi, xi), (ai, z−i) ≻ (ai, z−i), which yields a contradiction. Hence, for all xi > ai,

(xi, z−i) ≿ (ai, z−i). Analogously, for all xi < ai, (ai, z−i) ≿ (xi, z−i). Therefore, ≿ is separately

monotone.
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