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1 Introduction

The quantitative literature on housing markets in a heterogeneous agents environ-
ment (e.g. Hedlund [2016a,b], Garriga andHedlund [2020]) has increasingly stud-
ied the 2006-2011 housing bust using models that incorporate frictions in house
purchase and sale. This was intended to capture the price or consumption de-
cline during the Great Recession, or to better understand the interaction of such
frictions with other factors behind the housing crash (such as tighter credit or in-
come shocks). This article considers whether selling a house rather than repaying
mortgage debt is constrained efficient in an intermediated directed search, standard
incomplete markets model of the housing market.
The analysis here is normative and ex post: A Social Planner chooses sale on behalf of
owners in order tomaximize a socialwelfare objective subject tomarket incomplete-
ness (due to uninsurable idiosyncratic risk), financial frictions and trading frictions.
Hence, this is a constrained Planner’s problem in the tradition of Stiglitz [1982] and
Geanakoplos and Polemarchakis [1986]. The Planner also takes the other decen-
tralized choices made by agents as given when choosing whether to sell a house,
i.e. the Planner only intervenes along the margin of sale choice. For tractability,
I assume that the Planner’s intervention to affect sale choice is not anticipated by
agents in the economy.
Constrained inefficiency, expressed as thewedge between the efficient choice of sale
and private sale choice, arises due to pecuniary externalities operating through a
price index. The framework featuring directed search and heterogeneity implies
that sellers choosemarket tightness, i.e. the broker-seller ratio, in submarkets differ-
entiated by their characteristics such as income or asset holdings. Each submarket is
characterized by a different list (posted) price. The key assumption that allows pe-
cuniary externalities to operate is that all trades are intermediated by brokers. The
quasi-Walrasian price index that clears the broker-intermediated housing market
affects agents’ choices in each individual submarket and thereby links the different
submarkets together. This is the channel through which pecuniary externalities 1

associated with sale choices operate.
1The pecuniary externality studied here is distributive in nature and arises due to imperfect risk

sharing. See Dávila and Korinek [2018] for a characterization of pecuniary externalities in models
with financial frictions.
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The overall sign of the pecuniary externality depends on whether sellers or buyers
are more constrained as a group. Intuitively, if sellers tend to be more constrained,
then house sales are inefficiently high as individual sellers do not internalize that
the overall losses to other sellers from receiving lower prices outweigh the gains to
buyers from having to pay a lower price.
When the model is enriched to consider defaultable debt, I find that default and
foreclosure introduces an additional inefficiency associated with realized (ex post)
lender foreclosure losses or deadweight costs.
Directed search models are generally constrained efficient with regard to market
tightness choice (the buyer-seller ratio): the choice of market tightness by a Plan-
ner subject to the same search and matching frictions as private agents coincides
with the decentralized tightness choice. Directed search models allow agents to
trade off their returns from trade (posted prices) with the probability of being
matched, which endogenously satisfies theHosios condition for efficiency in search
andmatchingmodels (see e.g. Rogerson et al. [2005], Wright et al. [2017]). Results
on inefficiency in directed search models often hinge on informational frictions,
e.g. private information about match-specific productivity for workers (Faig and
Jerez [2005], Guerrieri [2008]), or product quality for sellers (Guerrieri et al. [2010],
Guerrieri and Shimer [2014]).
I examine whether individual market tightness choices (the ratio of brokers to sell-
ers in this framework) are constrained efficient. I show that pecuniary externali-
ties introduce a wedge between private and constrained efficient market tightness
choice. For example, if sellers are more constrained than buyers, the pecuniary ex-
ternality would lead to a Planner choosing lower market tightness and thereby re-
ducing the probability of a successful sale to keep the price index high and thereby
benefit sellers in the economy. One could alternatively express this inefficiency in
terms of list prices: private sellers set list prices too low relative to the efficient level.
To the best of my knowledge, the constrained inefficiency of tightness choice (or
list prices) due to pecuniary externalities has not been shown before in the directed
search literature. Trade intermediation by brokers is again at the heart of this result.
In addition, modeling intermediation through brokers simplifies the analysis of
matching with two-sided heterogeneity, as discussed below.
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1.1 Related literature

Pecuniary externalities and inefficiency arising therefrom have been discussed ex-
tensively in various environments (see Dávila and Korinek [2018] and the refer-
ences therein). The classification of pecuniary externalities as being distributive or
collateral in nature was made by Dávila and Korinek [2018]. Though the emphasis
in this literature has been on intervention ex ante, there is also a smaller literature
that evaluates the use and implications of ex post intervention owing to the same
source of inefficiency (e.g. Jeanne and Korinek [2020]). Pecuniary externalities in a
standard incomplete markets model were first investigated by Davila et al. [2012].
A related paper (Contractor [2020]) derives the inefficiencies associatedwithmort-
gage default choices in a standard incomplete markets housing model where hous-
ing trades areWalrasian (frictionless). As in this paper, I employ a normative anal-
ysis to study the constrained efficient mortgage termination choice. The key differ-
ence is the treatment of the housing market, which explicitly incorporates search
frictions using the directed search approach here. In addition, I study one-period
mortgage debt contracts for simplicity here, as opposed to the treatment in Contrac-
tor [2020] that models mortgages as long-term debt contracts. Finally, the baseline
results in this paper describe inefficiencies arising due to house sales. It also does
not consider collateral externalities associated with collateral constraints for home
buyers, which are incorporated in Contractor [2020].
Seminal papers introducing the directed search approach in the macro-labor litera-
ture areMoen [1997] andAcemoglu and Shimer [1999], who also discuss efficiency
in relation to the canonical labor search and matching literature discussed in, e.g.
Pissarides [2000]. Wright et al. [2017] is a recent survey that discusses efficiency
and other applications of the directed search framework.
Macroeconomicmodelswith housing are discussed in, e.g., Davis andVanNieuwer-
burgh [2015] andPiazzesi and Schneider [2016]. Abranch of literature using search
models to study liquidity in the housingmarket includesWheaton [1990],Ngai and
Tenreyro [2014], Head et al. [2014]. These models do not either allow for or con-
sider how credit or net worth affects housing. Guren and McQuade [2020] use a
searchmodel to study the feedback between foreclosures and house prices, but also
does not allow for borrowing or saving. Recent quantitative models that use a het-
erogeneous agents directed search model include Hedlund [2016a,b], Garriga and
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Hedlund [2020], Jerez et al. [2020]. These articles discuss sorting of market tight-
ness choices by agents’ financial state variables, which I consider as well. However,
they do not discuss pecuniary externalities or constrained inefficiency, which is the
primary focus of this paper.

1.2 Outline of paper

Section 2 describes the model and the stationary equilibrium. Section 3 examines
how the market tightness choices of potential sellers vary with their risk-free as-
set holdings. Section 4 describes the pecuniary externality based inefficiency as-
sociated with the decision to sell. Section 5 discusses some extensions concerning
frictional house purchases, the default option and the inefficiency associated with
tightness choice. Section 6 concludes. Supplementary material is contained in two
appendices. An outline of the material in the appendices can be found at the be-
ginning of appendix A.

2 Model

The model is an infinite horizon standard incomplete markets model with hous-
ing. Heterogeneity arises ex post due to the saving and borrowing choices of agents
facing uninsurable idiosyncratic risk, in addition to the tenancy/ownership choice.
Trading on the supply side of the housing market is frictional, whereas for simplic-
ity homebuyers are assumed to trade frictionlessly. All trades are intermediated by
brokers.
There are four types of agents in the economy: (i) renters, who choose whether to
own a house by taking out amortgage or remain as tenants; (ii) owners, who decide
whether to sell their house through a directed search mechanism or repay their
mortgage; (iii) risk-neutral financial intermediaries/lenderswho lend to homebuyers;
and (iv) risk-neutral brokers, who purchase houses from owners in a competitive
search process and in turn sell houses frictionlessly to buyers.
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2.1 Environment

Time is discrete, continues forever and is indexed by t = 0, 1, 2, .... There is a con-
tinuum of agents who receive an endowment y drawn independently according to
a Markov process with values in set Y . The probability that an endowment tran-
sitions from current level of y to y′ is given by the transition matrix Π(y′|y). In the
following, I use primes to denote variables tomorrow.
Agents have period utility functions u(c, χh), hence they receive benefits from con-
sumption and housing services if they are owners (the housing preference parame-
ter χ > 1 for owners). For simplicity, it is assumed that rental housing yields hous-
ing services one-for-one with house size, i.e. χ = 1. Utility is separable between
consumption and housing services. All agents discount the future using discount
factor β.

2.2 Housing market

Housing (owner-occupied and rental) is of a single size (h = 1), and agents can
only own one house at a time. There is a fixed total housing stock and no con-
struction sector. The owner-occupied and rental sectors of the housing market are
segmented, so there is no convertibility between owner-occupied and rental hous-
ing space, which would otherwise tie down a relationship between house prices
and rents (see e.g. Kaplan et al. [2019], Greenwald and Guren [2019]). This also
implies that the homeownership rate is fixed in the economy. Rents are fixed and
are assumed to be earned by absentee (un-modeled) landlords. Endogenous rents
would introduce a channel of pecuniary externalities that would arise through
rents, which I do not consider in this paper.
Heterogeneous home sellers trade their houses in a frictional decentralized mar-
ket, following Garriga and Hedlund [2020]. The trading mechanism employs the
directed search approach, wherein sellers post their prices and their trade counter-
parts direct their search accordingly. In commonwithmost directed searchmodels,
sellers face a tradeoff between the price they post and their sale probability.
I follow the directed search housing literature (e.g. Hedlund [2016b], Garriga and
Hedlund [2020]) and assume that all housing trades are intermediated by real es-
tate brokers in order to account for two-sided heterogeneity on the side of buyers
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and sellers. As these papers discuss, in the absence of brokers, matching between
heterogeneous sellers and buyers requires each party to forecast the dynamics of
the entire distribution of income, assets and debt in order to calculate their trading
probability in each submarket. Introducing brokers breaks this down to a one-sided
heterogeneous matching problem, which considerably simplifies the analysis.
Hence, brokers buy houses from sellers in a frictional market, and can trade with
other brokers and with buyers in a frictionless (quasi-Walrasian) market at price
index p that clears the broker-intermediated housing market in equilibrium. In-
troducing frictional trading on the demand side adds complexity without adding
to the basic result of the model regarding pecuniary externalities associated with
house sales, hence I make the Walrasian trading assumption on the demand side.
Section 5.1 describes how the main result would be altered if home purchases were
also frictional.

Search in the housing market

The probability η(θ) that a seller matches with a broker in any given submarket de-
pends on the ratio of brokers to sellers in that submarket (θ), i.e. themarket tightness.
I assume that η′

(θ) > 0, η′′
(θ) < 0 and C2, with η(0) = 0 and limθ→∞ η(θ) = 1. The

corresponding probability that brokers match with a seller in a given submarket
with tightness θ is then α(θ) = η(θ)

θ
. Further, α(θ) is strictly decreasing and C2, with

limθ→∞ α(θ) = 0 and limθ→0 α(θ) = 1. The elasticity ε(θ) ≡ η
′
(θ)θ
η(θ)

is assumed to be
non-increasing.
As in Jerez et al. [2020], I extend the matching functions η and α to domain Θ ≡
R+ ∪ {θ0}, with fictitious submarket θ0 ∈ R− such that η(θ0) = α(θ0) = 0. This
fictitious submarket represents owners who choose not to sell but to repay their
mortgage debt, hence it corresponds to non-participation in the frictional house
sale market.
Brokers face transaction costs κs and receive net revenue (p−p(θ))when theymatch
with a seller. Free entry of brokers into each submarket and the zero-profit condi-
tion require:

κs ≥ α(θ)
(
p− p(θ)

)
(1)

The combination of directed search and free entry of brokers implies that market
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tightness and hence sale probabilities depend only on the price index p and not on
the distributions of owners and renters in the economy. This is referred to in the
literature as block recursivity (see also Menzio and Shi [2010], Menzio et al. [2013],
Wright et al. [2017] for a discussion in other contexts).

2.3 Financial markets

All households can save in a risk-free asset at rate R. Additionally, home buyers
can finance their house purchases by borrowing.
Mortgages are one-period debt contracts, and I assume that owners can also refi-
nance their debt each period. As I assume that mortgages are non-defaultable, the
borrowing limit depends on the worst possible realization of income (denoted by
y). Thus, if a′ represents saving (which is negative if an owner borrows), then the
borrowing constraint faced by owners can be written as:

a
′ ≥ −y (2)

Loan price in the absence of default is then simply R−1.

2.4 Choices and value functions

The choices of different types of agents can be summarized as follows:

• Current owners can continue as owners and make their mortgage payment
(with or without refinancing) or sell their house. Unsuccessful sales lead to
continuation and repayment.

• Renters can buy a house and become an owner, or continue to rent.

In the notation to follow, the short term constraint for tenants and sellers precludes
borrowing, a′(s) ≥ 0, i.e. the domain for saving choice is the set a′ ∈ R+.
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Current owner

As mentioned above, a current owner in each period chooses whether to continue
with ownership by repaying, or sell his house (σ = 1). Upon successful sale, the
agent loses possession of his house immediately and rents in that period. I de-
note the fixed rent by ρ below. If sale is unsuccessful, the owner has to repay the
mortgage and remain an owner. The state variables for an owner in each period
include his endowment y and asset position a. Let the vector of state variables be
so = (y, a). The expectations operator E is defined over y′ given so using transition
probabilities Γ.

2.4.1 Continuation and matched seller value functions

I represent the value of continuing with a mortgage contract by V c(sot ). Then, the
Bellman equation for continuing is:

V c(sot ) = max
{c,a′}

u(c, χh) + βEmax
{
V c(sot+1), V s(sot+1)

}
(3)

subject to
c+

a
′

R
= y + a

and
a

′ ≥ −y

If a potential seller is successfully matched and sells his house, he keeps the proceeds
from selling his house after paying off his loan (if a < 0).The Bellman equation for
a matched seller is:

vs(y, a) = max
{c,a′≥0}

u(c, h) + βEV r(y′, a′) (4)

subject to

c+
a′

R
+ ρ = y + a+ p

(
θ
(
so
))
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2.4.2 Potential seller value function

An owner with state sot who chooses to sell need not be matched successfully, due
to the frictional sale mechanism. His sale probability η(sot ) depends on the market
tightness, θ(sot ) and the list price chosen, p(θ(sot )) ∈ R+.
The potential seller then chooses market tightness θ(sot ) in order to maximize his
expected payoff from choosing sale (σ(sot ) = 1

), which I denote by V s(sot ):

V s(sot ) = max
θ(sot )∈Θ

η
(
θ(sot )

)
vs(sot ) +

(
1− η

(
θ(sot )

))
V c(sot ) (5)

subject to

p
(
θ(sot )

)
= p− κs

α
(
θ(sot )

) ≥ −a− y (6)

The constraint in equation (6) is the zero profit condition for brokers, and is similar
to other directed search models wherein the agent choosing market tightness has
to ensure that his trading counterpart meets a certain reservation utility level 2. In
this model, free entry of brokers into active submarkets (which is the subset of Θ

that contains the solutions to the above problem, i.e. those submarkets that attract
both sellers and brokers) implies that they must be guaranteed zero profits, hence
the list price must satisfy equation (6) in active submarkets. Sellers therefore in-
ternalize the ’participation constraint’ for brokers (the list price that yields brokers
zero profits) when choosing submarket tightness.
Jerez [2014] shows that one could instead consider a problem wherein both sell-
ers and brokers choose submarket tightnesses taking the price function p(θ) as
given, which she refers to as the ’price taking approach’. Houses traded in differ-
ent submarkets θ can be thought of as different commodities, and the price function
p : Θ→ R+ prices houses in different submarkets. In equilibrium, sellers and bro-
kers take p(θ) as given and have rational expectations about the tightness levels in
active submarkets.
Equation (6) implies a tradeoff between list price and trade probability, as α′

(θ) <

0; which is standard in directed search models. Note that one could rewrite the
2This is referred to in the directed search literature as the market utility approach
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problem for a potential seller as the choice of a list price, with the market tightness
being based on expressing equation (6) in terms of θ.
From the borrowing constraint in equation (2), −a − y ≤ 0, hence the price con-
straint is simply that p(θ) = p− κs

α
(
sot

) ≥ 0.

If the constraint binds, θ solves the following equation:

α(θ) =
κs
p

(7)

The owner value function for each state vector is defined as the upper envelope of
the value functions associated with continuation and potential sale defined at the
same state vector:

V o(sot ) = max
{
V c(sot ), V

s(sot )
}

(8)

Renter

The renter can either purchase a home through a mortgage (ω = 1), in which case
he becomes an owner, or choose to remain a renter (ω = 0), which is referred to as
tenancy. The relevant state variables for a renter are his income y and asset level a,
so a renter’s state vector sr = (y, a).
A renter who chooses not to purchase a house remains a tenant, paying rent ρ, and
has the value function:

V t(sr) = max
{c,a′≥0}

u(c, h) + βEV r(y′, a′) (9)

subject to

c+
a′

R
+ ρ = y + a

A renter who chooses to buy a house will do so by purchasing a mortgage. Given
house value p and transaction cost that is proportional to the house price index, κbp,
his initial asset choice would be a′ .

11



It is assumed that a buyer enjoys homeownership utility premium in the period
of purchase, i.e. he gets immediate possession of the house. Therefore, his value
function would be:

V b(sr) = max
{c,a′}

u(c, χh) + βEV o(y′, a′) (10)

subject to the borrowing constraint in equation (2) and the budget constraint,

c+
a′

R
= −p(1 + κb) + a+ y

The renter value function for each state vector is defined as the upper envelope of
the tenant’s and homebuyer’s value functions defined at the same state vector:

V r(sr) = max
{
V t(sr), V b(sr)

} (11)

2.5 Distributions of owners and renters

The distributions of owners (µo) and renters (µr) are defined over the relevant state
space Y × Ā, where Ā = {a : a ≥ a}.
Given the initial distributions of owners and renters (µo0, µr0 respectively), the policy
functions

{
a′(s), θ(s), ω(s), σ(s)

}
and the transition matrix for the Markov endow-

ment process Π, this section describes the evolution of distributions from
{
µo, µr

}
in a given period to new distributions denoted by

{
Tµo, Tµr

}
in the next period,

where T is the updating operator.
The updating process for the distributions is:

• Renter distribution (µr):

Tµr(y′, a′) =
∑
y∈Y

ˆ
a∈Ā

1{a′(y,a)=a′} ∗
(

1− ω(y, a)
)
∗ Π(y, y′) ∗ dµr(y, a)

+
∑
y∈Y

ˆ
a∈Ā

1{a′(y,a)=a′} ∗
(
σ(y, a) ∗ η

(
θ(y, a)

))
∗ Π(y, y′) ∗ dµo(y, a) (12)
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• Owner distribution (µo) :

Tµo(y
′
, a

′
) =

∑
y∈Y

ˆ
a∈Ā

1{a′(y,a)=a′} ∗

(
1−

(
σ(y, a) ∗ η

(
θ(y, a)

)))
∗ Π(y, y′) ∗ dµo(y, a)

+
∑
y∈Y

ˆ
a∈Ā

1{a′(y,a)=a′} ∗ ω(y, a) ∗ Π(y, y
′
) ∗ dµr(y, a) (13)

Here, 1{a′(y,a)=a′} is an indicator for whether the savings policy function for an agent
with state (y, a) yields saving level a′.

2.6 Stationary equilibrium

Stationary equilibrium consists of price index p, distributions of owners and renters
{µo, µr}, value functions

{
V c, V s, vs, V t, V b, V r, V o

}
and associatedpolicy functions{

a′r, a′o, θ, ω, σ
}
that satisfy:

1. Owners and rentersmake their choices as described in section 2.4 given house
price index p and rent ρ

2. Given p(θ), θ ≥ 0 and κs ≥ α(θ)
(
p− p(θ)

)
with complementary slackness

3. Price index equate demand and supply in the broker-intermediated housing
market: ˆ

sr
ω(sr; p) ∗ dµr(sr) =

ˆ
so
σ(so; p) ∗ η(so; p) ∗ dµo(so) (14)

4. The distributions {µj}j=r,o are consistent with individual sale (σ) and pur-
chase choices (ω) and evolve as in section 2.5.

Condition 2 states that, given a list price function p(θ), all active submarkets entail
brokers making zero profits. Implicit in the discussion in section 2.4 is the assump-
tion that all submarkets have a list price function given by equation (6). In other
words, inactive submarkets also have the same price function, that agents internal-
ize when choosing tightness. If agents were to deviate to an inactive submarket,
they would need to internalize that the price function in that submarket would
need to satisfy the zero-profit condition for brokers while choosing the tightness
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level. This corresponds to the restrictions imposed on out-of-equilibrium beliefs in
directed search models (see e.g. Menzio and Shi [2010], Jerez et al. [2020]). Jerez
et al. [2020] employ the price-taking approach and argue that this corresponds to
assuming that inactive submarkets choose the lowest price that supports the equi-
librium allocation in this model.
Condition 3 requires the broker intermediated housing market to clear. The sup-
ply of houses to brokers is from matched sellers, hence the RHS of equation (14)

includes η(θ). As I have assumed that buyers can trade frictionlessly with brokers,
the LHS of equation (14) simply aggregates over all buyers.

3 Equilibrium sorting patterns for tightness choice

In this section, I consider the variation of market tightness with asset level when
the non-negativity constraint on list price does not bind. In order to facilitate this
analysis, it would be convenient to establish differentiability results for the value
functions vs and V c, which is not straightforward. In appendix A, I follow the ap-
proach in Jerez et al. [2020], Clausen and Strub [2020] to establish differentiability
results in the interior of the choice set.
Having established differentiability of the choice specific value functions, the tight-
ness choice solves equation (5), which I rewrite below:

max
θ(sot )∈Θ

η
(
θ(sot )

)
vs(sot ) +

(
1− η

(
θ(sot )

))
V c(sot )

Define the surplus from sale over repayment by S(sot ) ≡ vs(sot )− V c(sot ). The first-
order condition for an interior choice of θ is:

η
′(
θ(sot )

)
S(sot ) + η

(
θ(sot )

)
vsp(s

o
t )p

′
(θ) = 0 (15)

Rewrite the above as:

p
′(
θ(sot )

)
=
−S(sot )

vsp(s
o
t )

η
′(
θ(sot )

)
η
(
θ(sot )

) (16)
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Figure 1: Variation of sale probability with asset holdings. Sellers with more assets
have a favourable outside option in terms of repayment, and therefore charge higher prices
while trading off lower sale probabilities

From equation (6), p′
(θ) = κs

α2(θ)
∗ α′

(θ)

Substituting this into the above expression, and using the definition of the elasticity
of the matching function:

ε(θ) ≡ η
′
(θ)θ

η(θ)

the F.O.C for tightness becomes:

S(sot )

vsp(s
o
t )

=

(
1− ε

(
θ(sot )

))
ε
(
θ(sot )

) (
p− p

(
θ(sot )

)) (17)

Given p(θ), the RHS of equation (17) is increasing in θ. Hence, the variation of θ
with asset levels depends on how the LHS varies with a. If vs(y, a) is concave in
asset levels for given y, then the denominator is decreasing in a. Appendix A.3
provides conditions under which vs(y, .) is concave in a.
If the numerator is non-increasing in a for given y, as is the case numerically, then
the overall sign of the relationship between θ and a will depend on which term on
the LHS of equation (17) dominates. Numerically, it turns out that the numerator
of the LHS dominates, hence tightness decreases with asset level. In other words,
lower debt (higher a) lowers market tightness and raises the list price. Hence, sell-
ers with more assets have a favourable outside option in terms of repayment, and
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therefore charge higher prices while trading off lower sale probabilities. This can
be seen in Figure 1 3.
One can also show that, under some assumptions, owners choose to sell when their
assets are below a certain threshold, and repay otherwise.

Proposition 1: If V c, V s and vs are continuous in a and S(y, .) is non-increasing in
a for all y, then ∃â(y) for all y such that σ(y, a) = 1 when a < â(y), and σ(y, a) = 0

otherwise.
Proof: See appendix B.2.

4 Decentralized and efficient sale choice

I now consider the difference betweendecentralized and socially efficient sale choice,
i.e. the wedge between private and Planner sale choice.

4.1 Decentralized sale choice

Consider an owner with state so = (y, a) who chooses whether to sell σ(y, a) = 1 or
not. From equation (8), sale is chosen if:

V s(y, a) > V c(y, a)

Using the definition of V s(y, a) in equation (5), if sale probability is positive, this
condition becomes equivalent to:

vs(y, a) > V c(y, a)

In this environment with frictional matching for sellers, owners choose to sell if
their expected surplus from sale over ownership (repayment) is positive. As dis-
cussed above, this surplus is generally decreasing in asset holdings, hence if sale is

3The figure is plotted using the parameter values from Contractor [2020], with the following
exceptions: {χ = 1.5, β = 0.95, κ = 0.1}. The matching function, η(θ) = (1 + θ−γ)

−1
γ , is from Jerez

et al. [2020], with γ = 0.65.
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chosen for a given income level, it is usually when an owner is either indebted or
has low positive asset holdings.

4.2 Social Planner’s sale choice and the pecuniary externality

The Social Planner chooses sale on behalf of an owner with state (y, a) in order to
maximize a utilitarian social welfare function (SWF). The utilitarian SWF is akin
to Davila et al. [2012], and can be motivated by the feature of standard incom-
plete markets models that agents are ex ante identical, prior to the realisation of
idiosyncratic endowment shocks that generate heterogeneity through saving and
asset holdings. Note that brokers and financial intermediaries are not included in
this specification as they make zero profits (ex ante and realized).
The masses of owners and renters in the economy are denoted by dµo(y, a) and
dµr(y, a), and are determined as part of the equilibrium. Extending the recursive
definition of Davila et al. [2012] to the setting here, define the Planner’s problem
as:

Ω
(
µo, µr

)
= max

σ

∑
y∈Y

ˆ
a∈Ā

u(c, h) ∗ dµr(y, a) +
∑
y∈Y

ˆ
a∈Ā

u(c, h) ∗ dµo(y, a)

+ βEΩ
(
µ

′o, µ
′r
)

(18)

The Planner makes sale choice in order to maximize the SWF, taking as given the
other decentralized choices of ownership and saving/borrowing. The Planner in-
ternalizes the house price determination mechanism when choosing whether to
sell or not. I assume that the Planner’s intervention is not anticipated by agents.
The Planner is also constrained by the market incompleteness, which arises here
through the borrowing constraint faced by owners and the presence of uninsur-
able idiosyncratic risk by all agents in the economy. Hence, I focus on constrained
efficiency.
It is easier to compare the Planner’s sale choice to the decentralized sale choice
using an alternative expression for the SWF objective (in appendix B.1) based on
the definitions of choice-specific value functions. It is straightforward to show the
equivalence of these two representations.
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Proposition 2: The Planner chooses sale (σ(y, a) = 1) for an ownerwith state (y, a)

if the following condition holds:

vs(y, a)− V c(y, a) + Pecuniary externality > 0 (19)

Proof: See appendix B.3.
The pecuniary externality (PE) term here is:

PE =
∑
y∈Y

ˆ
a∈Ā

(
σ(y, a) ∗ η

(
θ(y, a)

)
∗ uc(c, h) ∗ ∆p(θ)

∆p
∗ dµo(y, a) ∗ ∆p

∆S

)

−
∑
y∈Y

ˆ
a∈Ā

(
ω(y, a) ∗ uc(c, χh) ∗ (1 + κb) ∗ dµr(y, a) ∗ ∆p

∆S

)
(20)

Pecuniary externality associated with sale choice:

In this model, the pecuniary externality is distributive in nature. It comprises dif-
ferences in marginal utilities of consumption between agents (matched sellers and
buyers). These enter into the expression as matched sales increase the supply of
houses, driving the price index down and thereby affecting other matched sellers
and buyers in the economy. The price impact of a successful sale in equation (20)

is represented by ∆p
∆S
≤ 0.

The first term in equation (20) is the impact of a marginal sale on matched sellers,
hence the product σ(y, a)∗η

(
θ(y, a)

). Further, matched sellers who are constrained
by their debt position, from equation (2), are not affected bymovements in the price
index, i.e. ∆p(θ)

∆p
= 0. Otherwise, ∆p(θ)

∆p
= 1, from equation (6).

Distributive externalities in this environment arise when changes in net worth due
to asset price changes affect buyers andmatched sellers of the asset differently. With
complete markets, changes in net worth would not matter as agents could perfectly
hedge risk and equalize their marginal rates of substitution (cf. Dávila andKorinek
[2018]), and the market clearing condition would imply that asset price changes
would have zero aggregate impact. However, whenever agents face incomplete fi-
nancial markets, they generally cannot equate their marginal rates of substitution
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across dates or states. This implies that, along with transaction costs incurred, dis-
tributive externalities do not wash out in the aggregate.
Themarket incompleteness here is due to the presence of uninsurable idiosyncratic
risk and the inability to dissave. A Planner would then intervene to change asset
prices, by suitably changing sale intensity, so as to benefit the agents in the econ-
omy who have higher marginal utility of consumption (the agents who are more
constrained). For example, if sellers are more constrained than buyers, the Planner
would choose to reduce sale intensity to raise prices and therefore benefit sellers as
opposed to buyers. This can be understood from equation (20): the first term on
the RHS is the pecuniary externality faced by sellers and is clearly higher, ceteris
paribus, if the marginal utility of consumption is large (as would be the case for
constrained sellers). If buyers tend to have lowermarginal utilities of consumption,
then the first term dominates and the overall PE term has a negative sign because
∆p
∆S
≤ 0. This implies, from equation (19) that the Planner would be less likely to

choose to sell a house.

Broker intermediation and pecuniary externalities

Generally, pecuniary externalities have been analysed in environments where the
asset market is Walrasian, i.e. where asset buyers and sellers can trade friction-
lessly at a price that clears the market in equilibrium. The current framework dif-
fers in that sellers do not match directly with buyers; instead, sales are intermedi-
ated by brokers. Although the broker intermediation assumption is made in order
to tractably incorporate two-sided heterogeneity (by yielding block recursivity) it
also provides ameans to link different submarkets together through the price index
that clears the overall broker-intermediated market. Matched sellers increase the
stock of houses that are traded to brokers, hence with downward sloping demand
by buyers, the additional supply triggers a decline in the price index. Therefore, the
introduction of brokers provides a quasi-Walrasianmarket clearing price that affects
the net worth of agents in active submarkets.

19



Distributive externalities and policy

Distributive externalities generally arise in environments with market incomplete-
ness, asset trading and agent heterogeneity. As Dávila and Korinek [2018] discuss,
there are various, mainly theoretical, articles that rely on distributive pecuniary ex-
ternalities to motivate policy intervention (e.g. Lorenzoni [2008], He and Kondor
[2016], Itskhoki and Moll [2019]). As distributive externalities rely on differences
in agents’ net worth, which are affected by asset prices, the rationale for policy in-
terventions based on correcting these externalities is to transfer resources from less
constrained to more constrained agents.

4.3 Corrective policy

Having established the presence of an inefficiencywedge associatedwith sale choice,
I now consider policy that could implement the efficient sale choice. The policy-
maker could induce agents to make the efficient sale choice through the use of
many different instruments. For example, sale can be penalized through the use
of a tax on cash in hand, whereas repayment could be incentivized through the use
of subsidies to net worth (or reductions in debt). Here, I describe the use of such
subsidies to implement efficient sale choice. These debt reductions are only offered
to owners who inefficiently choose to sell their house.
Owners who choose sale inefficiently can be made to choose repayment through a
suitable subsidy policy. In particular, a potential seller with state (y, a) and contin-
uation value V c(y, a) receives a subsidy ã(y, a) so as to implement the efficient sale
choice:

V c(y, ã) = V s(y, a)

As the value function is continuous and nondecreasing in a and the asset set is
compact, one can use the intermediate value theorem to obtain a solution ã(y, a).
As negative asset holdings correspond to debt, the subsidy policy can also be in-
terpreted as a loan balance reduction for indebted owners who choose to sell inef-
ficiently.
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The subsidy (debt reduction) fraction is contingent on the agent state. It is greater
for owners with low income and/or assets, as they require more inducement to
choose efficient repayment over sale.

5 Extensions

The model presented above is the simplest environment in which to analyse di-
rected search trading mechanisms that yield pecuniary externalities and inefficien-
cies associated with sale choice. I now discuss some possible extensions to the
model and the differences in results that they generate.

5.1 Frictional home purchases

It is a simplematter to extend themodel above to frictional home purchases, so that
both sides of themarket operate in a directed search environment intermediated by
brokers (as in Garriga and Hedlund [2020]).
The problem for prospective buyers becomes analogous to that for sellers, described
in section 2.4. Thus, a buyer with state srt chooses market tightness θ(srt ) in order to
maximize his expected payoff from choosing ownership (ω(srt ) = 1):

Ṽ b(srt ) = max
θ(srt )∈Θ

ηb
(
θ(srt )

)
V b(srt ) +

(
1− ηb

(
θ(srt )

))
V t(srt ) (21)

subject to

p
(
θ(srt )

)
(1 + κb) = p+

κs

αb
(
θ(srt )

) (22)

and
p(1 + κb) ≤ y + a

Thus, a prospective buyer chooses submarket tightness taking as constraints the
zero profit requirement (participation constraint) for brokers, and the feasibility
requirement for posted prices.
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The broker-intermediated market clearing condition, which determines the equi-
librium price index, becomes:

ˆ
sr
ω(sr; p) ∗ ηb(sr; p)dµr(sr) =

ˆ
so
σ(so; p) ∗ η(so; p) ∗ dµo(so) (23)

Finally, the expression for the pecuniary externality associated with sale choice is
readily modified to:

PE =
∑
y∈Y

ˆ
a∈Ā

(
σ(y, a) ∗ η

(
θ(y, a)

)
∗ uc(c, h) ∗ ∆p(θ)

∆p
∗ dµo(y, a) ∗ ∆p

∆S

)

−
∑
y∈Y

ˆ
a∈Ā

(
ω(y, a) ∗ ηb

(
θ(y, a)

)
∗ uc(c, χh) ∗ (1 + κb) ∗ dµr(y, a) ∗ ∆p

∆S

)
(24)

5.2 Defaultable debt

I now consider how introducing defaultable debt alters the results.
To simplify the exposition, I revert to the assumption in the baseline model above
that buyers can transact frictionlesslywith brokers (taking the price index as given).
Default leads to lenders possessing the house. Lenders are also assumed to transact
frictionlessly with brokers at the given price index 4. However, I assume that there
is a deadweight loss associated with lender ownership, so lenders receive only a
fraction ζ < 1 of the sale price.
This requires a modification of the problem above, as lenders now account for de-
fault risk while pricing a loan. If an owner with state (y, a) chooses borrowing level
a

′ , the loan pricing function Q(y, a
′
) is:

Q(y, a
′
) =

 R−1Ey′ |y

[
σ(y

′
, a
′
)
(

1− η
(
θ(y

′
, a
′
)
)

min{ ζp
′

a′
, 1}
)

+

(
1− σ(y

′
, a
′
)
(

1− η
(
θ(y

′
, a
′
)
)))] if a

′
< 0

R−1 if a
′ ≥ 0


This amends the value functions of buyers and owners who repay as follows:

4This can be relaxed, as in Garriga and Hedlund [2020], but complicates the analysis consider-
ably.
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V c(y, a) = max
a′≥−ιp

u(y + a−Q(y, a
′
)a

′
, χh) + βEV o(y

′
, a

′
)

V b(y, a) = max
a
′≥−ιp

u
(
y + a−Q(y, a

′
)a

′ − p
(
θ(y, a)

)
(1 + κb), χh

)
+ βEV o(y

′
, a

′
)

The maximum possible debt is then ιp, where the credit constraint arises from in-
formational and/or institutional frictions that are not modeled explicitly.
I assume that default occurs when potential sellers fail to be matched 5. This mod-
ifies the value functions associated with potential sale to:

V s(sot ) = max
θ(sot )∈Θ

η
(
θ(sot )

)
vs(sot ) +

(
1− η

(
θ(sot )

))
V d(sot )

subject to equation (6).
Further, default is assumed to lead to permanent tenancy, and the value function
associated with default is given by:

V d(y, a) = max
a′

u(y + a− a
′

R
, h) + βEV d(y

′
, a

′
)

In order to derive envelope conditions in this environment, one requires a slightly
different approach to that detailed in appendix A.2. I describe the changes neces-
sary in appendix A.4.
Interestingly, the surplus from successful sale now generally increases in a, given
an income level. Following the argument in section 3, one can show that tightness
choice is now increasing in asset holding. In other words, lower debt (higher a)
now raises market tightness and lowers the list price. In this version of the model,
sellers with more assets have a less favourable outside option in terms of default,
and therefore charge lower prices while trading off higher sale probabilities.

5Alternatively, one could assume that unsuccessful sales lead to a choice between default or
repayment.
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The Social Welfare Function and sale externalities

Now, I also assume that the Planner takes loan prices as given when choosing
whether to sell or not. I assume that the Planner’s intervention is unanticipated:
agents do not account for a possible intervention that would reduce default risk in
the future.
The Planner’s problem is augmented to incorporate lender payoffs, given by:

∑
y∈Y

ˆ
a∈Ā

σ(y, a) ∗
(

1− η
(
θ(y, a)

))
∗ 1(ζp+a<0) ∗

(
ζp+ a

)
∗ dµo(y, a) (25)

Hence, the Planner’s problem becomes:

Ω
(
µo, µr

)
= max
{σ}

∑
y∈Y

ˆ
a∈Ā

u(c, h) ∗ dµr(y, a) +
∑
y∈Y

ˆ
a∈Ā

u(c, h) ∗ dµo(y, a)

+
∑
y∈Y

ˆ
a∈Ā

σ(y, a) ∗
(

1− η
(
θ(y, a)

))
∗ 1(ζp+a<0) ∗

(
ζp+ a

)
∗ dµo(y, a)

+ βEΩ
(
µ

′o, µ
′r
)

(26)

In the above, 1(ζp+a<0) is an indicator function that takes the value 1 if the lender
recovery amount from sale is lower than the debt outstanding.
One can derive a version of equation (20) that now also accounts for ex post losses
incurred by lenders on their loans, in amanner similar to that described in appendix
B.3.

Proposition 3: The Planner chooses sale (σ(y, a) = 1) for an owner if the following
condition holds:

V s(y, a)− V c(y, a) + PE + Foreclosure deadweight cost > 0 (27)

Proof: See appendix B.3.
Then, the distributive PE term becomes:
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PE =
∑
y∈Y

ˆ
a∈Ā

(
σ(y, a) ∗ η

(
θ(y, a)

)
∗ uc(c, h) ∗ ∆p(θ)

∆p
∗ dµo(y, a) ∗ ∆p

∆S

)

+
(∑
y∈Y

ˆ
a∈Ā

σ(y, a) ∗
(

1− η
(
θ(y, a)

))
∗ 1(ζp+a<0) ∗ ζ ∗ dµo(y, a) ∗ ∆p

∆S

)

−
∑
y∈Y

ˆ
a∈Ā

(
ω(y, a) ∗ uc(c, χh) ∗ (1 + κb) ∗ dµr(y, a) ∗ ∆p

∆S

)
(28)

The additional term represents the marginal effect of a change in prices follow-
ing sale on lender liquidity. As lenders are risk-neutral and assumed to be uncon-
strained, the marginal value of their net worth is unity. This term, when prices
decline following a sale, introduces another factor that favors fewer sales.
There is an additional inefficiency associated with lender loss in the event of an un-
successful sale, which would lead to lenders recovering min{ζp+ a, 0} from selling
the house to brokers (this captures the deadweight costs of a foreclosure sale). This
term is:

Foreclosure deadweight cost =
(

1− η
(
θ(y, a)

))
∗min{ζp+ a, 0} (29)

As I discuss elsewhere (Contractor [2020]), renegotiation following an unsuccess-
ful match would generally mitigate the foreclosure deadweight cost. In that sense
then, this inefficiency associated with realized foreclosure losses can be interpreted
as arising from frictions that impede renegotiation.
I do not consider collateral pecuniary externalities here, as the differentiability re-
sults apply to interior optima. However, one could potentially approximate the La-
grangemultipliers on the collateral constraint by considering points corresponding
to interior optima that are close to the bound. Collateral externalities would also
favour fewer sales.

Amplification mechanism with frictional trades

The model in section 2 does not feature an amplification mechanism. Indeed, a
decline in the price index induces potential sellers to lower their list price, which

25



actually favors more repayment by making sale less attractive.
With defaultable debt, there is a feedback loop between debt overhang, foreclo-
sure and low prices. Debt overhang prevents some potential sellers from lowering
their list price as they are constrained to make their required mortgage payment.
This would lead to foreclosure for highly indebted owners, and a lower price index
through an increase in supply. A lower price index requires list prices to be lowered
further in active submarkets, which leads to more indebted sellers being foreclosed
upon and so on (see Garriga and Hedlund [2020] for a further discussion).

5.3 Inefficient tightness choice

The presence of pecuniary externalities also affects the efficiency of the submarket
tightness choice. As section 2 discusses, the choice of market tightness by sellers
can also be interpreted as a choice of list prices.
In order to demonstrate this, I work with the baseline model of section 2 and set up
a constrained optimization problem similar to the one described in section 4. The
Planner takes all other saving/borrowing, sale and ownership choices as given. He
also internalizes the equilibrium house price determinationmechanism. As before,
I assume that the Planner’s intervention is not anticipated by agents.
The Planner chooses a tightness function so as to maximize the utilitarian SWF,
subject to the broker zero-profit and consumption non-negativity constraints for
potential sellers, given in equation (6).

Proposition 4: ThePlanner’s interior F.O.C for constrained efficient tightness choice
is given by:

{(
vs(y, a)− V c(y, a)

)
+
η
(
θ(y, a)

)
η′(θ(y, a)

)vsp(y, a)p
′
(θ)

}
+ PEθ = 0 (30)

Proof: See appendix B.5.
The pecuniary externality (PEθ) associated with tightness choice is:
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PEθ =

{
−
∑
y′∈Y

ˆ
a′∈Ā

ω(y
′
, a

′
)
(
uc(c, χh)

)
∗ dµr(y′

, a
′
)

+
∑
y′∈Y

ˆ
a′∈Ā

(
σ(y

′
, a

′
) ∗ η

(
θ(y

′
, a

′
)
)
∗ uc(c, h)

)
∗
dp
(
θ(y

′
, a

′
)
)

dp
∗ dµo(y′

, a
′
)

}

∗ dp
dS

(31)

This is virtually identical to the expression in equation (20), which is unsurprising
as the channel through which the inefficiency arises is the price index. However,
a marginal change in θ(y, a) changes sale probability by η′(

θ(y, a)
), and changes

supply by σ(y, a) ∗ η′(
θ(y, a)

)
∗ dµo(y, a). This is captured in the expression above

by the term dp
dS
.

IfPEθ < 0, then the Plannerwould reduce tightness and sale probability (as η′
> 0)

relative to the decentralized tightness choice. This is because higher market tight-
ness increases the probability of a successful sale, and more sales would lower the
equilibrium price index p and thereby adversely affect other agents in the economy.
The condition that PEθ < 0 would tend to hold when sellers are more constrained
than buyers. The reasoning is analogous to the case in section 4.2: if sellers aremore
constrained on average than buyers, they tend to have greater marginal utilities of
consumption than buyers and hence the overall term in braces in equation (32) is
positive. Since dp

dS
< 0, so is PEθ.

One could alternatively interpret the result on market tightness in terms of list
prices. As list prices are inversely related to market tightness, one could also state
that, if sellers tend to be more constrained as a group than buyers, then private list
prices are lower than the efficient list price benchmark.
Hence, in this model with directed search and choice of submarket tightness, pecu-
niary externalities due to incompletemarkets and frictions lead to inefficient private
submarket tightness choices. On this basis, one may conjecture that a similar ineffi-
ciency would arise in other directed search models that feature market incomplete-
ness (such as a collateral constraint that may bind, or imperfect risk sharing) and,
importantly, link various submarkets together through an intermediation mech-
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anism such as the brokers considered here. Although brokers allow a tractable
analysis of two-sided heterogeneous matching problems, a directed search model
without brokers that features a collateral constraint would still require a specifi-
cation of the (aggregate) price that enters into that constraint. If the aggregate
price is affected by individual tightness (or alternatively, list price) choices, then
one would expect a pecuniary externality that would similarly lead to inefficient
tightness choices.

6 Conclusion

This paper uses a simple incomplete markets housing model with sale/repayment
choice and intermediated frictional trades in order to study the constrained ineffi-
ciency of house sale decisions. The specific assumptions of broker intermediation
and quasi-Walrasian market clearing in the broker-intermediated market link vari-
ous submarkets together, thereby introducing a pecuniary externality channel. This
particular model feature, which also facilitates analysis of a two-sided heteroge-
neous agent matching problem, allows one to extend inefficiency results obtained
in frictionless housing models to an environment with matching frictions in the
housing market.
In addition, I show that the choice of market tightness is also constrained inefficient
in this setup, owing to the pecuniary externalities associated with tightness choice
and sale probability. This pecuniary externality based inefficiency result has not,
to my knowledge, been discussed previously in the directed search literature.
Extending this finding to specific environments with financial frictions and fric-
tional trading, such as OTC markets, would be an interesting next step. Extending
the model to allow default choice and collateral constraints would bring the model
closer to the quantitative literature, e.g. Garriga and Hedlund [2020]. Quantifying
the magnitude of the inefficiencies operational in this environment is the subject of
future research.
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Appendices
Appendix A establishes differentiability results for the choice-specific value func-
tions, and Appendix B contains proofs of the propositions and results in the paper.

A Appendix: differentiability and concavity of value
functions

In this appendix, I establish differentiability of the agents’ value functions. In doing
so, one cannot directly apply the results of Clausen and Strub [2020] to nonconcave
problems, for the reasons described in Menzio et al. [2013], Jerez et al. [2020]. In
particular, in order to show the differentiability of V s, which from equation (5) is
a convex combination of vs and V c, one needs to show the differentiability of these
two value functions. Hence, it does not fall within the structure of the problems
analysed by Clausen and Strub [2012, 2020]. I use a related approach based on
subdifferentials, which I now describe.

A.1 Fréchet sub- and superdifferentials

This appendix establishes differentiability of choice specific value functions along
interior optima. In order to do so, I use the concepts of Fréchet sub- and superdiffer-
entials, which I refer to alternatively as F sub-and superdifferentials. Below, I define
and state some properties of Fréchet sub- and superdifferentials, that I shall employ
in the proofs later. The exposition below is based heavily on Jerez et al. [2020] and
Clausen and Strub [2012, 2020]. An alternative definition of Fréchet differentials
based on limits superior and inferior can be found in Clausen and Strub [2012].
The two definitions are related in appendix F of Clausen and Strub [2016].
For a continuous function f : Ω ⊂ Rn → R, whereΩ is an open set, the vector p ∈ Rn

belongs to the F-superdifferential of f at x0 ∈ Ω, D+f(x0), if and only if there exists
a continuous function φ : Ω → R which is differentiable at x0 with Dφ(x0) = p,
f(x0) = φ(x0) and f − φ has a local maximum at x0.
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Similarly, p ∈ Rn belongs to the F-subdifferential of f at x0 ∈ Ω, D−f(x0), if and
only if there exists a continuous function φ : Ω → R which is differentiable at x0

with Dφ(x0) = p, f(x0) = φ(x0) and f − φ has a local minimum at x0. D+f(x0)

and D−f(x0) are closed convex subsets of R . If f is differentiable at x0, then both
D+f(x0) and D−f(x0) are nonempty and D+f(x0) = D−f(x0) = Df(x0).
Conversely, if for a function f , both D+f(x0) and D−f(x0) are nonempty, then f
is differentiable at x0 and D+f(x0) = D−f(x0) = Df(x0), where Df denotes the
derivative of f . Finally, whenever x0 is a local maximum of f in Ω, 0 ∈ D+f(x0).
The following properties of F-sub and superdifferentials will be useful below. Let
f and g be functions from R→ R.

1. If f and g are Fréchet sub (super) differentiable, then so is f + g (cf. Clausen
and Strub [2012], Lemma 2(i)).

2. If h(x) = max{f(x), g(x)} is differentiable at x̄ and f(x̄) = h(x̄), then f is
differentiable at x̄ (cf. Clausen and Strub [2020], Lemma 2(iii)).

3. If f and g are subdifferentiable, and f + g is superdifferentiable, then f, g and
f + g are differentiable (cf. Clausen and Strub [2012], Lemma 2(iii)).

One can generalize (3) above to the case of finite sums in order to obtain envelope
results for stochastic dynamic programming problems, where one takes a convex
combination of value functions using the Markov probabilities, as discussed after
the statement of Theorem 3 of Clausen and Strub [2012]. In addition, I shall some-
times use the results of Lemma 2 of Clausen and Strub [2020] on ’Reverse Calculus’.
Finally, I state the following theorem that shall be used to establish the differentia-
bility of value functions. Let f(x) = maxy∈Γ(x) F (x, y), where F : X × Y → R is
continuous, X, Y ⊂ Rn, and where Γ is a nonempty, compact valued and continu-
ous correspondence from X to Y .

Theorem 1: Let x0 be an interior point ofX and y0 ∈ Γ(x0) satisfying: (i) f(x0) =

F (x0, y0), (ii) there is a ball B(x0, ε) in X with center x0 and radius ε > 0 such that
∀x ∈ B(x0, ε), y0 ∈ Γ(x). ThenD−x F (x0, y0) ⊆ D−f(x0) andD+f(x0) ⊆ D+

x F (x0, y0),
where D±x F (x0, y0) denotes the F-super/subdifferential of the function F (x, y0).
Proof : See Jerez et al. [2020].
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A.2 Differentiability of the value functions

As in Jerez et al. [2020], I establish differentiability of value functions by showing
that the F sub- and superdifferentials are nonempty along the optimal policies. I
assume that there exist interior selections of saving/borrowing policies ∀y, denoted
by gat , gan, gac , gas denote the relevant saving/borrowing choices for tenants, new buy-
ers, owners who continue and owners who sell respectively. I also assume that an
interior selection of the tightness choice exists, denoted by gθs . The set of all feasi-
ble asset positions is Ā, with minimum asset holding value denoted by a, which is
negative.
Lemmas 1 and 2 establish F-subdifferentiability of the value functions, while Lemma
3 and the subsequent discussion establishes F-superdifferentiability of the value
functions.

Lemma 1: Let a0 > a. Then, ∀y (i) uc(y + a0 − ρ − gat (y,a0)

R
, h) ∈ D−a V t(y, a0); (ii)

uc(y + a0 − gac (y,a0)
R

, χh) ∈ D−a V c(y, a0); (iii) uc(y + a0 − gan(y,a0)
R

, χh) ∈ D−a V b(y, a0);
(iv) uc(y + a0 − ρ− gas (y,a0)

R
, h) ∈ D−a vs(y, a0)

Proof. I only prove (i), as the proofs of the other cases are almost identical, mu-
tatis mutandis. As a0 is interior, condition (i) of Theorem 1 is satisfied. Given that
gat (y, a0) is interior and the feasible correspondence is closed, there is an open in-
terval centered at a0 such that gat (y, a) ∈

(
0, R(y + a)

) for all a in this open interval.
Hence, condition (ii) of Theorem 1 is satisfied.
Construct the function:

F
(
y, a, gat (y, a0)

)
= u

(
y + a− gat (y, a0)

R
, h
)

+ βEV r
(
y

′
, gat (y, a0)

)
Clearly, this function is differentiable w.r.t a as the second term does not depend on
a. The derivative w.r.t a is uc(y + a0 − gat (y,a0)

R
, h). Hence, by Theorem 1, uc(y + a0 −

gat (y,a0)

R
, h) ∈ D−a V t(y, a0).

In the case of a seller choosing market tightness, I denote the optimal choice of θ
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given (y, a) by gθs(y, a). As the domain of choice for θ,

D(a) = {θ ∈ R+ : p(θ) ≥ −a− y}

is not compact, I follow Jerez et al. [2020] and transform the seller’s choice of tight-
ness into a choice of sale probability, η. One can then express the list price in terms
of η:

p̂(η) = p− κs
α̂(η)

; η ∈ (0, 1)

and the domain is modified to:

D̂(a) = {η ∈ [0, 1] : p̂(η) + a+ y ≥ 0}

The sections of D̂ are nonempty and compact for p̂(η) + a + y > 0. One can then
rewrite the seller’s problem as:

V̂ s(y, a) = max
η
ηvs(y, a) + (1− η)V c(y, a)

and the optimal choice of η for owner with state (y, a) is gηs (y, a).

Lemma 2: Let a0 > a and suppose ∃ã(y) given y such that σ(y, a) = 1 if a < ã(y),
and σ(y, a) = 0 otherwise. Then, (i) if a0 < ã(y), then

(
1− η

(
θ(y, a0)

))
uc(y + a0 −

gac (y,a0)
R

, χh) + η
(
θ(y, a0)

)
uc(y + a0 − ρ − gas (y,a0)

R
, h) ∈ D−a V o(y, a0); (ii) if a0 ≥ ã(y),

then uc(y + a0 − gac (y,a0)
R

, χh) ∈ D−a V o(y, a0).

Proof. For case (ii), V o(y, a0) = V c(y, a0) and the result follows from Lemma 1 ,
part (ii). For case (i), as gθs is interior, the optimal gηs is also interior. Construct the
function:

F
(
y, a, gηs (a0)

)
= gηs (a0)vs(y, a) +

(
1− gηs (a0)

)
V c(y, a)

which iswell-defined in an open interval around a0. Now, consider ps ∈ D−a vs(y, a0)

and pc ∈ D−a V
c(y, a0), which exist by Lemma 1 and are equal to uc(y + a0 − ρ −

gas (y,a0)
R

, h) and uc(y + a0 − gac (y,a0)
R

, χh) respectively. Further, a convex combination
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of these subdifferentials belongs in D−a F
(
y, a0, g

η
s (a0)

), i.e.
η
(
gθs(y, a0)

)
ps +

(
η
(
gθs(y, a0)

))
pc ∈ D−a F

(
y, a0, g

θ
s(a0)

)
From Theorem 1, D−a F

(
y, a0, g

η
s (a0)

)
⊆ D−a V

o(y, a0) = D−a V
s(y, a0).

One can similarly show that the subdifferential of V b is nonempty.
I now establish nonemptiness of the superdifferentials of value functions.

Lemma 3: Let a0 > a. Then, ∀y, uc(y + a0 − gac (y,a0)
R

, χh) ∈ βRED+
a V

o
(
y

′
, gac (y, a0)

)
Proof. Consider the following function of a′ :

F (y, a0, a
′
) = u(y + a0 −

a
′

R
,χh) + βEy′V

o(y
′
, a

′
)

As gac (y, a0) is an interior optimum for the V c(y, a0), 0 ∈ D+

a′
F
(
y, a1, g

a
c (y, a0)

). As u
isC1,D+

a′
F = −uc

R
+βD+

a′
EV o. Thus, uc(y+a0−gac (y,a0)

R
, χh) ∈ βRD+

a′
EV o

(
y

′
, gac (y, a0)

).

Proposition A1: Let a0 > a. Then, ∀y′
, V o(y

′
, a

′
) is differentiable w.r.t a at a′

=

gac (y, a0). Further, V s(y
′
, a

′
) and V c(y

′
, a

′
) are also differentiable w.r.t a at a′

=

gac (y, a0).

Proof. As V o(y, a0) = max{V c(y, a0), V s(y, a0)}, it is subdifferentiable if a0 > a, from
Lemma 1. Since gac (y, a0) is interior, it exceeds a.
Using Lemma 3 and applying property (3) of F sub-differentials in appendix A.1
extended to convex combinations using Markov probabilities of V o(., a

′
), V o(., a

′
)

is differentiable in a′ at gac (y, a0).
Applying property (2) in appendix A.1, V c

(
y

′
, gac (y, a0)

) and V s
(
y

′
, gac (y, a0)

) are
also differentiable w.r.t a at gac (y, a0), depending on whether σ(y′

, gac (y, a0)
)

= 1 or
not.
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Similarly, one can establish the differentiability of V r(y
′
, .) w.r.t a at gat (y, a0), and

hence, by applyingproperty (2) in appendixA.1 again, V t
(
y

′
gat (y, a0)

) andV b
(
y

′
gat (y, a0)

)
are also differentiablew.r.t a at gat (y, a0)

), depending onwhether ω(y′
, gat (y, a0)

)
= 1

or not.
Further, if a > a, Lemma 1 derived the F-subdifferentials of V t and V b, and as
V r(y, a) = max{V t(y, a), V b(y, a)}, it is also subdifferentiable. By the same argu-
ment as in Lemma 3, one can show thatuc(y+a0−ρ−gas (y,a0),h)

R
∈ βRED+

a′
V r
(
y

′
, gas (y, a0)

).
Hence, an application of property (3) of F-subdifferentials to convex combinations
of V r(., a

′
) in appendix A.1 implies that V r(y

′
, .) is differentiable w.r.t a at gas (y, a0).

A.3 Concavity of the value functions

Concavity of the value function vs is proved in intervals of the image of gas (y, a)

corresponding to sale such that seller consumption is nondecreasing in the range
of assets that lead to sale. Denote optimal consumption of a seller by the policy
function gcs(y, a).

Proposition A2: ∀y, Ey′ |yV r is concave in a in the intervals I of the image of gas iff
gcs is nondecreasing in (gas )

−1(I).

Proof. From the argument above, V r is differentiable w.r.t a in I for all y. Fix a
value for y. If a′ ∈ I , then ∃a > a such that gas (y, a) = a

′ and Ey′ |yV r
a

(
y

′
, gas (y, a)

)
=

uc(gcs(y,a),h)
βR

. Let (a
′
1, a

′
2) ∈ I s.t. a′

1 > a
′
2, and suppose ∃ai such that a′

i = gas (ai) for
i = 1, 2.

By the Mean value Theorem,

Ey′ |yV
r(y

′
, a

′

1)− Ey′ |yV r(y
′
, a

′

2) = Ey′ |yV
r
a (y′, b

′
)(a

′

1 − a
′

2) =
uc(g

c
s(y, b), h)

βR
(a

′

1 − a
′

2)

where a′
2 < b

′
< a

′
1 and b

′
= gas (y, b).

Given y,W (y, a, a
′
) = u(y, a, h; a

′
)+βEV r(y

′
, a

′
) satisfies increasing first differences

in (a, a
′
) as u(y, a, h; a

′
) satisfies increasing first differences in (a, a

′
), hence by The-

orem 10.6 of Sundaram [1996], gas (y, .) is nondecreasing in a. Thus, a2 < b < a1.
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As gcs(y, .) is nondecreasing in a by assumption, we also have gcs(y, a2) < gcs(y, b) <

gcs(y, a1). As u(., h) is concave, uc(gcs(y, b), h) ≤ uc(g
c
s(y, a2), h) = RβEy′ |yV

r
a (y

′
, a

′
2).

Hence,
Ey′ |yV

r(y
′
, a

′

1)− Ey′ |yV r(y
′
, a

′

2) ≤ Ey′ |yV
r
a (y

′
, a

′

2)(a
′

1 − a
′

2)

and so Ey′ |yV r(y
′
, .) is concave in I . The proof of the converse follows the reverse

direction.

PropositionA3: Let I be an interval of Ā such that gas (y, I) is an interval, ∀y. Then,
vs is concave in I iff gcs(y, .) is nondecreasing in I .

Proof. Let a1, a2 ∈ I , and let λ1, λ2 ∈ [0, 1] such that λ1 + λ2 = 1. Fix a level of y. As
gas (y, I) is convex, λ1a1 + λ2a2 ∈ I , and λ1g

a
s (y, a1) + λ2g

a
s (y, a2) ∈ gas (y, I).

Further, (λ1a1 + λ2a2, λ1g
a
s (y, a1) + λ2g

a
s (y, a2)

) belongs to the graph of the feasible
correspondence for a seller, as it is convex. Finally, V r(y, .) is concave in gas (y, I)

from Proposition A2.
Then,

vs(y, λ1a1+λ2a2) ≤ u
(
λ1a1+λ2a2, λ1g

a
s (y, a1)+λ2g

a
s (y, a2), h

)
+βEV r

(
y

′
, λ1g

a
s (y, a1)+λ2g

a
s (y, a2)

)

≤ λ1u(a1, g
a
s (y, a1), h)+λ2u(a2, g

a
s (y, a2), h)+βEV r

(
y

′
, λ1g

a
s (y, a1)

)
+βEV r

(
y

′
, λ2g

a
s (y, a2)

)

= λ1v
s(y, a1) + λ2v

s(y, a2)

The second inequality follows from the concavity ofu and the concavity ofEV r(y
′
, .)

in the image of gas (y, a). Hence, vs(y, .) is concave in I .
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A.4 Differentiability when debt is defaultable

As discussed in section 5.2, allowing for defaultable debt introduces a loan pricing
function Q(y, a

′
) that is not necessarily differentiable. This complicates our differ-

entiability results above, as the proof of nonemptiness of F-superdifferentials for
owner value function V o in Lemma 3 requires Q to be differentiable at the interior
optimum. Hence, one requires a slightly different approach.
In the following, I show thatQ(y, .) is differentiable using the techniques of Clausen
and Strub [2020], particularly those utilized in Theorem 3 of that paper.

A.4.1 Subdifferentials and differentiable lower support functions

One can relate the differentiable lower support function L discussed in Clausen
and Strub [2020] to the function φ described in the definition of F-subdifferentials
in appendix A.1.
L is a differentiable lower support function for a function f at point c̄ if (i) f(c) ≥
L(c)∀c, (ii) f(c̄) = L(c̄), and (iii) L is differentiable at c̄.
If L is continuous, then clearly f(c) − L(c) ≥ f(c̄) − L(c̄) = 0, so f − L has a local
minimum at c̄. Then, φ is a lower support function for f at c̄, and DL(c̄) ∈ D−f(c̄)

A.4.2 Differentiability of Q w.r.t a′ at an interior optimum

Lemma 1 of Clausen and Strub [2020] shows that if a function f has lower and
upper support functions that are differentiable at point c̄, then f is differentiable at
c̄.
In order to show that Q(., a

′
) is differentiable w.r.t a′ , I sketch out how to construct

suitable lower and upper support functions below. The exposition is based on sec-
tion 3.2 of Clausen and Strub [2020].
Let a′ be the asset holding choice for an owner with state (y, a) who repays. Define
function Φ(a

′
; y, a) as follows:

Φ(a
′
; y, a) = u(y + a−Q(y, a

′
)a

′
, χh) + βEV o(y

′
, a

′
)
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Lower support function

First, I construct a lower support function for Φ(a
′
; y, a). For simplicity, I assume

that y ∈ [y, ȳ]withMarkov transition functionG(y, .). Assume that there is a thresh-
old function defined for each asset level, y(a) such that sale is chosenwhen y < y(a),
and repayment is chosen when y ≥ y(a). One can then write:

V o(y
′
, a

′
) =

ˆ y(a
′
)

y

V s(y
′
, a

′
)dG(y, y

′
) +

ˆ ȳ

y(a′ )

V c(y
′
, a

′
)dG(y, y

′
)

and

Q(y, a
′
) = R−1 ∗

{
1 +

ˆ y(a
′
)

y

η
(
θ(y

′
, a

′
)
)(

min{χp
′

a′ , 1} − 1
)
dG(y, y

′
)

}

In order to obtain a lower support function for Φ(.; y, a) at ā′ , one requires a dif-
ferentiable upper support function for y(.), and lower support functions for θ(y′

, .)

and V o(y
′
, .) at ā′ .

For the upper support function, consider an owner choosing to save or borrowwith
state (y

′
, ā′) who incorrectly perceives the state to be (y(ā′), ā′), i.e. he expects his

income to be at the threshold level, and chooses asset holding ā′′ accordingly. His
value function is:

L(y
′
, a

′
; ā′) = u(y

′
+ a

′ −Q(y
′
, ā′′ , χh) + βEV o(y

′′
, ā′′)

Similarly, one can construct a value function for an owner who decides to sell who
also perceives the state to be (y(ā′), ā′). Let us denote this by S̃(y(ā′), ā′).
His cutoff between sale and repayment is then defined implicitly by:

L
(
ȳ
(
a

′
; ā′), a′

; ā′
)

= S̃
(
ȳ
(
a

′
; ā′), a′

; ā′
)

This provides a cutoff ȳ(., .) for y(.) that involves selling too often. Since L and S̃
are differentiable w.r.t a′ , so is ȳ(a′

; ā′).
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In order to obtain lower support functions for V o and Q, consider an owner who
perceives the state to be (y

′
, ā′) instead of (y

′
, a

′
). He chooses asset holding ā′′ and

tightness θ accordingly.
Define the following functions:

MS(y
′
, a

′
; ā′) = η

(
θ(y

′
, ā′)

)
M s(y

′
, ā′) +

(
1− η

(
θ(y

′
, ā′)

))
M c(y

′
, ā′)

where

M s(y
′
, a

′
; ā′) = u

(
y + a

′ −Q(y, ā′′)ā′′ + p
(
θ(y

′
, ā′)

)
, h

)
+ βEV r(y

′′
, ā′′)

M c(y
′
, a

′
; ā′) = u

(
y + a

′ −Q(y, ā′′)ā′′ , χh

)
+ βEV o(y

′′
, ā′′)

Also, define:

M o(y
′
, a

′
; ā′) =

ˆ ȳ
(
a
′
;ā′
)

y

MS(y
′
, a

′
; ā′)dG(y, y

′
) +

ˆ ȳ

ȳ
(
a′ ;ā′
)M c(y

′
, a

′
; ā′)dG(y, y

′
)

and

Q(y, a
′
; ā′) = R−1 ∗

{
1 +

ˆ ȳ
(
a
′
;ā′
)

y

η
(
θ(y

′
, ā′)

)(
min{χp

′

ā′ , 1} − 1
)
dG(y, y

′
)

}

Then,Q(y, .; ā′) is a differentiable lower support function at ā′ , and so isM o(y
′
, .; ā′)

for all y′ and ā′ .
Hence, the function of a′ :

Φ(a
′
; y, a) = u(y + a−Q(y, a

′
; ā′)a

′
, χh) + βEM o(y

′
, a

′
; ā′)

is a lower support function for Φ(.; y, a) at ā′ .
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Note the similarity of the constructionsM s,M c andQ to the function F in the proof
of Lemma 1 in appendix A.2.

Upper support function

Define function U for an arbitrary y as follows:

U
(
a

′
; y, a

)
= u(y + a−Q(y, a

′
)a

′
, χh) + βEV o

(
y

′
, a

′)
The upper support function at ā′ is then the constant function U(ā′ ; y, a).
If ā′(., .) is the optimal policy and ā′(y, a) = ā′ , then Φ(.; y, a) has differentiable up-
per and lower support functions at ā′ , so by Lemma 1 of Clausen and Strub [2020],
it is differentiable at ā′ .
Now, repeatedly apply Lemma 2 of Clausen and Strub [2020] as follows. Using the
summation property of their Lemma 2 (i), u(y+ a−Q(y, a

′
)a

′
, χh) is differentiable

at ā′ . Next, apply part (iv) of their Lemma 2 to a′ → u(y+a−Q(y, a
′
)a

′
, χh), which

establishes that a′ → Q(a
′
)a

′ is differentiable at ā′ . Finally, apply part (ii) of their
Lemma 2 to establish that Q(y, .) is differentiable at ā′ .
Having thus shown the differentiability ofQ(y, .) at the interior optimum for a given
y, we can then modify the proof of Lemma 3 in order to establish differentiability
of value functions at interior optima.
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B Alternative SWF and proofs of propositions

B.1 Alternative SWF

The transition operator for distribution µj is given by µ′j = T
(
µj, µ−j, Qj(sj, s

′j)
)

, where Q(., ., ) is the transition matrix from state sj to s′j for an individual agent
and T (., ., .) is the updating operator. Below, I do not use the superscript j to differ-
entiate between the state vector and state space Sj for owners and renters, to avoid
further cumbersome notation. I abuse notation in order to be concise by aggregat-
ing over the sum space using the summation symbol. The consumption, saving
and loan choices are policy functions, as the use of the respective value functions
indicates.
Aggregate welfare is:

W =
∑
y∈Y

ˆ
Ā

(
u(c, h) +

∑
s′∈S′

β
[
ω(y, a) ∗ V o(y′, a′) ∗Qo(s, s′)

+
(
1− ω(y, a)

)
∗ V r(y′, a′) ∗Qr(s, s′)

])
∗ dµr(y, a)

+

(∑
y∈Y

ˆ
Ā

u(c, χh) +
∑
s′∈S′

β
[
σ(y, a) ∗ η

(
θ(y, a)

)
∗ V r(y′, a′) ∗Qr(s, s′)+

(
1− σ(y, a) ∗

(
1− η

(
θ(y, a)

)))
∗ V o(y′, a′) ∗Qo(s, s′)

])
∗ dµo(y, a) (32)

B.2 Proposition 1: proof

Proposition 1: If V c, V s and vs are continuous in a, S(y, a) is non-increasing in a,
then ∃â(y) such that σ(y, a) = 1 when a < â(y), and σ(y, a) = 0 otherwise.

Proof. V s(y, a) = max{vs(y, a), V c(y, a)}, and at ā, V s(y, ā) = vs(y, ā). As V s, vs and
V c are differentiable in a, one can apply the envelope theorem to obtain:
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V s
a (y, a)− V c

a (y, a) = η
(
θ(y, a)

)(
vsa(y, a)− V c

a (y, a)
)

The RHS of the above equation is negative, as η is positive and S(y, a) is decreasing
in a given y under the assumption made. Thus, V s(y, a) − V c(y, a) is decreasing
in a. If V s(y, a) − V c(y, a) < 0, then â(y) = a, and if V s(y, amax) − V c(y, amax) > 0,
then â(y) = amax. Otherwise, as the value functions are continuous in a, by the
intermediate value theorem, there ∃â(y) such that V o(y, a) = V s(y, a) for all a <
â(y), and V o(y, a) = V c(y, a) otherwise.

B.3 Sale choice

Proposition 2: The Planner chooses sale (σ(y, a) = 1) for an owner if the following
condition holds:

vs(y, a)− V c(y, a) + PE > 0 (33)

where:

PE =
∑
y∈Y

ˆ
a∈Ā

(
σ(y, a) ∗ η

(
θ(y, a)

)
∗ uc(c, h) ∗ ∆p(θ)

∆p
∗ dµo(y, a) ∗ ∆p

∆S

)
−
∑
y∈Y

ˆ
a∈Ā

(
ω(y, a) ∗ uc(c, χh) ∗ (1 + κb) ∗ dµr(y, a) ∗ ∆p

∆S

)
Proof. The approach here is to use a perturbation argument in the spirit of Davila
et al. [2012]. Throughout the proof, I use the expression for the SWF in equation
(32).
Let the Planner’s sale choice be σ(y, a). Consider a perturbation where the positive
mass dµo(y, a) of owners with state (y, a) for whom the unique optimal choice is to
sell are now switched to continuation status, i.e. they switch from σ(y, a) = 1 to
σ(y, a) = 0. This reduces housing supply by an amount ∆S = η

(
θ(y, a)

)
∗ dµo(y, a),

and I denote the resulting price change by ∆p ≥ 0. Finally, let the change in felicity
of an agent due to a price change be denoted by ∆pu(c, h; p).
The resulting change in social welfare from the perturbation, denoted by ∆W , is:
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∆W =
(
V c(y, a)− V s(y, a)

)
∗ dµo(y, a)

+
∑
y′∈Y

ˆ
a′∈Ā

ω(y
′
, a

′
)
(

∆pu(c, χh; p)
)
∗ dµr(y′

, a
′
)

+
∑
y′∈Y

ˆ
a′∈Ā

(
σ(y

′
, a

′
) ∗ η

(
θ(y

′
, a

′
)
)
∗∆pu(c, h; p)

)
∗ dµo(y′

, a
′
)

Using the first order approximation u′
(c)∆c ≈ ∆u, consider for example the change

in utility of sellers due to the price change. Seller consumption is c = y + a +

p(θ) − a
′

R
− ρ, so ∆c = ∆p(θ)

∆p
∗ ∆p. Hence, ∆pu(c, h; p) = uc(c, h; p) ∗ ∆p(θ)

∆p
∗ ∆p =

−uc(c, h; p) ∗ ∆p(θ)
∆p
∗ ∆p

∆S
∗ η
(
θ(y, a)

)
∗ dµo(y, a). Similarly, for buyers, the change in

utility is ∆pu(c, χh; p) = uc(c, χh; p) ∗ (1 + κb) ∗ ∆p
∆S
∗ η
(
θ(y, a)

)
∗ dµo(y, a).

Thus, the above expression becomes:

∆W ≈
(
V c(y, a)− V s(y, a)

)
∗ dµo(y, a)

+

{ ∑
y′∈Y

ˆ
a′∈Ā

ω(y
′
, a

′
) ∗
(
uc(c, χh; p) ∗ (1 + κb)

)
∗ dµr(y′

, a
′
)

}
∗ ∆p

∆S
∗ η
(
θ(y, a)

)
∗ dµo(y, a)

−

{ ∑
y′∈Y

ˆ
a′∈Ā

(
σ(y

′
, a

′
) ∗ η

(
θ(y

′
, a

′
)
)
∗ uc(c, h; p)

)
∗ dµo(y′

, a
′
)

}

∗∆p

∆S
∗ η
(
θ(y, a)

)
∗ dµo(y, a)

Rewriting the expression above, one obtains:

∆W ≈

[(
V c(y, a)− V s(y, a)

)

+

{ ∑
y′∈Y

ˆ
a′∈Ā

ω(y
′
, a

′
) ∗
(
uc(c, χh; p) ∗ (1 + κb)

)
∗ dµr(y′

, a
′
)

}
∗ ∆p

∆S
∗ η
(
θ(y, a)

)

−

{ ∑
y′∈Y

ˆ
a′∈Ā

(
σ(y

′
, a

′
) ∗ η

(
θ(y

′
, a

′
)
)
∗ uc(c, h; p)

)
∗ dµo(y′

, a
′
)

}
∗ ∆p

∆S
∗ η
(
θ(y, a)

)]

∗dµo(y, a)
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As the Planner’s optimal choice assigns all agents with state (y, a) to sell, the per-
turbation should not increase welfare. Further, if there were no change in welfare,
then sale and repayment would both be optimal to the Planner for agents with state
(y, a). Aswe have assumed that sale is the unique optimal choice for the Planner for
agents with state (y, a), the perturbation must yield strictly lower welfare. Hence,
∆W < 0, and since dµo(y, a) > 0, the expression in square brackets must be nega-
tive. Thus, the Planner chooses sale if the following condition holds:

∆W ≈

[(
V s(y, a)− V c(y, a)

)

−

{ ∑
y′∈Y

ˆ
a′∈Ā

ω(y
′
, a

′
) ∗
(
uc(c, χh; p) ∗ (1 + κb)

)
∗ dµr(y′

, a
′
)

}
∗ ∆p

∆S
∗ η
(
θ(y, a)

)

+

{ ∑
y′∈Y

ˆ
a′∈Ā

(
σ(y

′
, a

′
) ∗ η

(
θ(y

′
, a

′
)
)
∗ uc(c, h; p)

)
∗ dµo(y′

, a
′
)

}
∗ ∆p

∆S
∗ η
(
θ(y, a)

)]

> 0

Expanding the expression forV s(y, a)using equation (5) and factoring out η(θ(y, a)
)

that is assumed to be positive, the Planner chooses sale if the following condition
holds:

∆W ≈

[(
vs(y, a)− V c(y, a)

)

−

{ ∑
y′∈Y

ˆ
a′∈Ā

ω(y
′
, a

′
) ∗
(
uc(c, χh; p) ∗ (1 + κb)

)
∗ dµr(y′

, a
′
)

}
∗ ∆p

∆S

+

{ ∑
y′∈Y

ˆ
a′∈Ā

(
σ(y

′
, a

′
) ∗ η

(
θ(y

′
, a

′
)
)
∗ uc(c, h; p)

)
∗ dµo(y′

, a
′
)

}
∗ ∆p

∆S

]

> 0
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B.4 Sale choice with the default option

Proposition 3: The Planner chooses sale (σ(y, a) = 1) for an owner if the following
condition holds:

vs(y, a)− V c(y, a) + PE + Non-pecuniary externality > 0 (34)

Proof. The approach here is to use a perturbation argument in the spirit of Davila
et al. [2012]. Throughout the proof, I use the expression for the SWF in equation
(32) augmented to include lender payoffs ex post:

∑
y∈Y

ˆ
a∈Ā

σ(y, a) ∗
(

1− η
(
θ(y, a)

))
∗ 1(ζp+a<0) ∗

(
ζp+ a

)
∗ dµo(y, a)

Let the Planner’s sale choice be σ(y, a). Consider a perturbation where the positive
mass dµo(y, a) of owners with state (y, a) for whom the unique optimal choice is
to sell are now switched to continuation status, i.e. they switch from σ(y, a) = 1

to σ(y, a) = 0. This reduces housing supply by an amount ∆S = dµo(y, a), and I
denote the resulting price change by ∆p ≥ 0. Finally, let the change in felicity of an
agent due to a price change be denoted by ∆pu(c, h; p).
The resulting change in social welfare from the perturbation, denoted by ∆W , is:

∆W =

(
V c(y, a)− V s(y, a) +

(
1− η

(
θ(y, a)

))
∗ 1(ζp+a<0) ∗

(
ζp+ a

))
∗ dµo(y, a)

+
∑
y′∈Y

ˆ
a′∈Ā

ω(y
′
, a

′
)
(

∆pu(c, χh; p)
)
∗ dµr(y′

, a
′
)

+
∑
y′∈Y

ˆ
a′∈Ā

(
σ(y

′
, a

′
) ∗ η

(
θ(y

′
, a

′
)
)
∗∆pu(c, h; p)

)
∗ dµo(y′

, a
′
)

+
∑
y′∈Y

ˆ
a′∈Ā

σ(y
′
, a

′
) ∗
(

1− η
(
θ(y

′
, a

′
)
))
∗ 1(ζp+a′<0) ∗

(
ζ∆p

)
∗ dµo(y′

, a
′
)

Using the first order approximation u′
(c)∆c ≈ ∆u, consider for example the change

in utility of sellers due to the price change. Seller consumption is c = y + a +
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p(θ) − a
′

R
− ρ, so ∆c = ∆p(θ)

∆p
∗ ∆p. Hence, ∆pu(c, h; p) = uc(c, h; p) ∗ ∆p(θ)

∆p
∗ ∆p =

−uc(c, h; p) ∗ ∆p(θ)
∆p
∗ ∆p

∆S
∗ dµo(y, a). Similarly, for buyers, the change in utility is

∆pu(c, χh; p) = uc(c, χh; p) ∗ (1 + κb) ∗ ∆p
∆S
∗ dµo(y, a).

Thus, the above expression becomes:

∆W ≈

(
V c(y, a)− V s(y, a) +

(
1− η

(
θ(y, a)

))
∗ 1(ζp+a<0) ∗

(
ζp+ a

))
∗ dµo(y, a)

+

{ ∑
y′∈Y

ˆ
a′∈Ā

ω(y
′
, a

′
) ∗
(
uc(c, χh; p) ∗ (1 + κb)

)
∗ dµr(y′

, a
′
)

}
∗ ∆p

∆S
∗ dµo(y, a)

−

{ ∑
y′∈Y

ˆ
a′∈Ā

(
σ(y

′
, a

′
) ∗ η

(
θ(y

′
, a

′
)
)
∗ uc(c, h; p)

)
∗ dµo(y′

, a
′
)

}

∗∆p

∆S
∗ dµo(y, a)

−

{ ∑
y
′∈Y

ˆ
a′∈Ā

σ(y
′
, a

′
) ∗
(

1− η
(
θ(y

′
, a

′
)
))
∗ 1(ζp+a′<0) ∗ ζ ∗ dµ

o(y
′
, a

′
)

}

∗∆p

∆S
∗ dµo(y, a)

Rewriting the expression above, one obtains:

∆W ≈

[(
V c(y, a)− V s(y, a) +

(
1− η

(
θ(y, a)

))
∗ 1(ζp+a<0) ∗

(
ζp+ a

))

+

{ ∑
y
′∈Y

ˆ
a′∈Ā

ω(y
′
, a

′
) ∗
(
uc(c, χh; p) ∗ (1 + κb)

)
∗ dµr(y′

, a
′
)

}
∗ ∆p

∆S

−

{ ∑
y′∈Y

ˆ
a′∈Ā

(
σ(y

′
, a

′
) ∗ η

(
θ(y

′
, a

′
)
)
∗ uc(c, h; p)

)
∗ dµo(y′

, a
′
)

}
∗ ∆p

∆S

−

{ ∑
y′∈Y

ˆ
a′∈Ā

σ(y
′
, a

′
) ∗
(

1− η
(
θ(y

′
, a

′
)
))
∗ 1(ζp+a′<0) ∗ ζ ∗ dµ

o(y
′
, a

′
)

}
∗ ∆p

∆S

]

∗dµo(y, a)

As the Planner’s optimal choice assigns all agents with state (y, a) to sell, the per-
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turbation should not increase welfare. Further, if there were no change in welfare,
then sale and repayment would both be optimal to the Planner for agents with state
(y, a). Aswe have assumed that sale is the unique optimal choice for the Planner for
agents with state (y, a), the perturbation must yield strictly lower welfare. Hence,
∆W < 0, and since dµo(y, a) > 0, the expression in square brackets must be nega-
tive. Thus, the Planner chooses sale if the following condition holds:

∆W ≈

[(
V s(y, a)− V c(y, a) +

(
1− η

(
θ(y, a)

))
∗ 1(ζp+a<0) ∗

(
ζp+ a

))

−

{ ∑
y′∈Y

ˆ
a′∈Ā

ω(y
′
, a

′
) ∗
(
uc(c, χh; p) ∗ (1 + κb)

)
∗ dµr(y′

, a
′
)

}
∗ ∆p

∆S

+

{ ∑
y′∈Y

ˆ
a′∈Ā

(
σ(y

′
, a

′
) ∗ η

(
θ(y

′
, a

′
)
)
∗ uc(c, h; p)

)
∗ dµo(y′

, a
′
)

}
∗ ∆p

∆S

+

{ ∑
y′∈Y

ˆ
a′∈Ā

σ(y
′
, a

′
) ∗
(

1− η
(
θ(y

′
, a

′
)
))
∗ 1(ζp+a′<0) ∗ ζ ∗ dµ

o(y
′
, a

′
)

}
∗ ∆p

∆S

]

> 0

B.5 Tightness choice

Proposition 4: ThePlanner’s interior F.O.C for constrained efficient tightness choice
is given by:

η
′(
θ(y, a)

)(
vs(y, a)− V c(y, a)

)
+ η
(
θ(y, a)

)
vsp(y, a)p

′
(θ) + PEθ = 0
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where:

PEθ =

{
−
∑
y′∈Y

ˆ
a′∈Ā

ω(y
′
, a

′
)
(
uc(c, χh)

)
∗ dµr(y′

, a
′
)

+
∑
y′∈Y

ˆ
a′∈Ā

(
σ(y

′
, a

′
) ∗ η

(
θ(y

′
, a

′
)
)
∗ uc(c, h)

)
∗
dp
(
θ(y

′
, a

′
)
)

dp
∗ dµo(y′

, a
′
)

}

∗ dp
dS

(35)

Proof. I use a perturbation argument similar to the proof of Propositions 2 and 3.
Throughout the proof, I use the expression for the SWF in equation (32).
Let the Planner’s tightness choice be θ(y, a). Consider a perturbation where the
Planner increases tightness choice to θ(y, a) + ε, where ε > 0. This increases sale
probability by η′(

θ(y, a)
)
∗dθ(y, a), which in turn increases housing supply by dS =

η
′(
θ(y, a)

)
∗ dθ(y, a) ∗ dµo(y, a). I denote the resulting price change by dp ≤ 0.

The change in welfare from this perturbation, denoted by dW , is:

dW =

{
η

′(
θ(y, a)

)(
vs(y, a)−V c(y, a)

)
+η
(
θ(y, a)

)
vsp(y, a)p

′
(θ)

}
∗dθ(y, a)∗dµo(y, a)

+
∑
y′∈Y

ˆ
a′∈Ā

ω(y
′
, a

′
) ∗
(
dθu(c, χh)

)
∗ dµr(y′

, a
′
)

+
∑
y′∈Y

ˆ
a′∈Ā

(
σ(y

′
, a

′
) ∗ η

(
θ(y

′
, a

′
)
)
∗ dθu(c, h)

)
∗ dµo(y′

, a
′
)

Using u′
(c)dc = du, consider for example the change in utility of sellers due to the

price change. Seller consumption is c = y + a + p(θ) − a
′

R
− ρ, so dc = dp(θ)

dp
∗ dp.

Hence, du(c, h; p) = uc(c, h; p)∗ dp(θ)
dp
∗dp = u

′
(c, h; p)∗ dp(θ)

dp
∗ dp
dS
∗η′(

θ(y, a)
)
∗dµo(y, a).

Similarly, for buyers, the change in utility from a price change is du(c, χh; p) =

uc(c, χh; p) ∗ (1 + κb) ∗ dp
dS
∗ η′(

θ(y, a)
)
∗ dµo(y, a).

Thus, the above expression becomes:
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dW =

{
η

′(
θ(y, a)

)(
vs(y, a)−V c(y, a)

)
+η
(
θ(y, a)

)
vsp(y, a)p

′
(θ)

}
∗dθ(y, a)∗dµo(y, a){∑

y′∈Y

ˆ
a′∈Ā
−ω(y

′
, a

′
) ∗
(
uc(c, χh)

)
∗ dµr(y′

, a
′
)

+
∑
y′∈Y

ˆ
a′∈Ā

(
σ(y

′
, a

′
) ∗ η

(
θ(y

′
, a

′
)
)
∗ uc(c, h)

)
∗
dp
(
θ(y

′
, a

′
)
)

dp
∗ dµo(y′

, a
′
)

}

∗ dθ(y, a) ∗ dµo(y, a) ∗ dp
dS
∗ η′(

θ(y, a)
)

As θ(y, a) is the unique optimal tightness choice for the Planner, the perturbation
should not affect welfare. If dW < 0, then lowering tightness could raise welfare.
On the other hand, if dW > 0, then raising tightness could increase welfare. Hence,
it must be the case that dW = 0. If the constraint θ ≥ 0 is binding with Lagrange
multiplier λ(y, a), this condition becomes dW = −λ(y, a).
Hence, the Planner’s first order condition for tightness choice is:

{
η

′(
θ(y, a)

)(
vs(y, a)− V c(y, a)

)
+ η
(
θ(y, a)

)
vsp(y, a)p

′
(θ)

}
∗ dθ(y, a) ∗ dµo(y, a){∑

y′∈Y

ˆ
a′∈Ā
−ω(y

′
, a

′
) ∗
(
uc(c, χh)

)
∗ dµr(y′

, a
′
)

+
∑
y′∈Y

ˆ
a′∈Ā

(
σ(y

′
, a

′
) ∗ η

(
θ(y

′
, a

′
)
)
∗ uc(c, h)

)
∗
dp
(
θ(y

′
, a

′
)
)

dp
∗ dµo(y′

, a
′
)

}

∗ dθ(y, a) ∗ dµo(y, a) ∗ dp
dS
∗ η′(

θ(y, a)
)
≤ 0

With positive density dµo(y, a), positive tightness choice θ(y, a), this can be written
as:
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{(
vs(y, a)− V c(y, a)

)
+
η
(
θ(y, a)

)
η′(θ(y, a)

)vsp(y, a)p
′
(θ)

}
{∑

y′∈Y

ˆ
a′∈Ā
−ω(y

′
, a

′
) ∗
(
uc(c, χh)

)
∗ dµr(y′

, a
′
)

+
∑
y′∈Y

ˆ
a′∈Ā

(
σ(y

′
, a

′
) ∗ η

(
θ(y

′
, a

′
)
)
∗ uc(c, h)

)
∗
dp
(
θ(y

′
, a

′
)
)

dp
∗ dµo(y′

, a
′
)

}

∗ dp
dS
≤ 0

which is the condition in equations (30)− (32).
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