
Probability models are mathematical representations used to 
study and understand uncertain phenomena. 
 
Random Experiment 
A random experiment is a process that leads to at least two 
possible outcomes with uncertainty as to which will occur.   
The possible outcomes are the basic outcomes of the 
experiment. 
The sample space is the set of all basic outcomes 
 
 
 
 



Examples:  
Toss a coin twice.  Sample space: {HH, HT, TH, TT}. 
Roll a dice.  Sample space: {1,2,3,4,5,6} 
 
An event is a subset of the sample space. It is a list of basic 
outcomes. 
 
Examples: 
“At least one head”: {HH, HT, TH} 
“No more than one head”: {TT, HT, TH} 
When rolling dice, get an even number: {2,4,6} 



 



Let A and B be events in the sample space S.  
 
● A B  means that both A and B occur 
● A B  means that either A or B occurs 
 
Example: Rolling a die.  
● Event A: outcome is even ({2,4,6}).  
● Event B: outcome is greater than 3 ({4,5,6}). 
 

{4,6}A B   
{2,4,5,6}A B   



If A and B are two events in the sample space such that A B  
is the empty set (i.e. they share no common outcome), then 
they are said to be mutually exclusive. 
 
Given k events 1 2, ,... kE E E  in the sample space S, if 

1 2 ... kE E E S    then these k events are collectively 
exhaustive. 
 
 
The set of elements belonging to S but not to A is the 
complement of A. It is denoted by A . 
 
 



The probability of an event is the relative frequency of that 
outcome as the experiment is repeated an arbitrarily large 
number of times 
 

( ) /AP A n n  
 
 
This interpretation relies on the possibility of repeating an 
experiment a large number of times. 
 
In the case of a nonrepeatable event, probability is a 
subjective assessment of the likelihood of that event 
occurring 



Axioms of probability (“probability postulates”) 
Suppose that 
A is an event 

iO  is a basic outcome in the random experiment 
 
 
Then 
● 0 ( ) 1P A   
● ( ) ( )A iP A P O   
● ( ) 1P S   
 



These axioms deliver the following consequences: 
 
I. If there are n equally likely outcomes in the sample space, 
then each of them has probability 1/n. 
(Q: Why? A: Because otherwise they would not sum up to 
1). 
 
II If there are n equally likely basic outcomes in the sample 
space and event A consists of nA of these outcomes, then 
P(A) =nA/n 
 (Q. Why? A. Previous consequence and postulate two.) 



Coin toss example.  Assume that a fair coin is tossed  twice.  
Here is the probability of each event 
 
Event A P(A) 
{HH} ¼ 
{HT} ¼ 
{TH} ¼ 
{TT} ¼ 
S 1 
{HH,HT,TH} ¾ 
{HH,HT} ½ 
 



What are the probabilities of the following two events? 
● To get at least one six when tossing a dice six times 
● To get at least two sixes when tossing a dice 12 times 
 
Sample space for tossing a dice six times 
{1,1,1,1,1,1} 
{1,1,1,1,1,2} 
and so on 
Contains 66  elements 
Of these 65  have no six 
All are equally likely 
So the probability of no six is 0.335 
The probability of at least one six is 0.665 



Sample space for tossing a dice 12 times 
Contains 126  elements 
Of these 125  have no six 

1112*5  have one six 
All are equally likely 
So the probability of 0 or 1 six is 12 11 12(5 12*5 ) / 6 =0.381 
The probability of at least 2 sixes is 0.619 
 
 



Rules of Probability 
 
1. Addition Rule: ( ) ( ) ( ) ( )P A B P A P B P A B      
Bonferroni Bound: ( ) ( ) ( ) 1P A B P A P B     
2. Complement Rule ( ) ( ) 1P A P A   
3. If A B  then ( ) ( )P A P B  
    Equivalently, if A B  then ( ) ( )P A P B  
4. If 1 2{ , ,..}B B  is set of mutually exclusive and collectively 
exhaustive events then ( ) ( )i iP A P A B    
  ( ) ( ) ( )P A P A C P A C     
5. If 1 2{ , ,..}A A  is a set of events, then ( ) ( )i i i iP A P A   
 
 



Addition Rule: ( ) ( ) ( ) ( )P A B P A P B P A B      
Intuition 



Addition Rule Example. A restaurant found that 75% of its 
customers use mustard, 80% use ketchup and 65% use both. 
 
What is the probability that a customer will use at least one 
of these? 
 
Let A be the event “Customers use mustard”  
Let B be the event “Customers use ketchup”.  
Then 
P(A) = 0.75, P(B) = 0.80 and ( ) 0.65P A B   

( ) ( ) ( ) ( ) 0.75 0.8 0.65 0.9P A B P A P B P A B         
 



Complement Rule: ( ) ( ) 1P A P A   
 
Proof: A and A are mutually exclusive and collectively 
exhaustive 

( ) ( ) ( ) ( )P A A P A P A P A A      
( ) ( ) ( )P A A P A P A       

( ) 1P A A    
So ( ) ( ) 1P A P A   



Terminology 
 
Probability of two (or more) events occurring is a joint 
probability 

( )P A B  is a joint probability 
 
Probability of one event occurring is a marginal probability 

( )P A  is a marginal probability. 
 



Let 1,... hA A  be a set of events that are mutually exclusive and 
collectively exhaustive. 
 
Let 1,... kB B  be another such set of events 
 
A way to represent the relation between these events: 
 1B  2B .. kB

1A  1 1A B 1 2A B  1 kA B
2A  2 1A B 2 2A B  2 kA B

     
hA  1hA B 2hA B  h kA B

 
We can assign probabilities to these cells.



Example: A study with 150 heart attack patients was 
performed on four alternative treatments: A, B, C and D.  
 Treatment Group 
 A B C D Total
Died 18 13 22 24 77 
Survived 22 25 16 10 73 
Total 40 38 38 34 150 
 



Probability of randomly chosen patient being in each cell 
 Treatment Group 
 A B C D Total
Died 0.120 0.087 0.147 0.160 0.513
Survived 0.147 0.167 0.107 0.067 0.487
Total 0.267 0.253 0.253 0.227 1.000
Elements in red are joint probabilities 
Elements in blue are marginal probabilities 
 
Q. How do we go from joint probabilities to marginals?   
A. Add them up. 
 

( ) ( )i j i jP A P A B  



Permutations 
 
Five letters A, B, C, D, E 
 
Pick 2 different elements and arrange in order 
AB  BA  CA  DA  EA 
AC  BC  CB  DB  EB 
AD  BD  CD  DC  EC 
AE  BE  CE  DE  ED 
 
Twenty ways of doing this 



In general, if I have n objects and I want to pick k out of 
them and arrange them in order, then the number of ways of 
doing so is 

! ( 1)...( 1)
( )!

n
k

nP n n n k
n k

    


 
5

2 5*4 20P    
 
If I don’t care about the order, the number of ways is 

!
( )! !

n
k

nC
n k k




 

 
This allows us to do probability calculations 



Example: What is the probability the no two individuals in a 
group of k people have birthdays on the same date? 
 
Assume births are equally distributed throughout the year 
Q. What is sample space? 
A. Since there are 365 possibilities of birthday for each of the 
k people there are 365k

 possibilities.  Each is equally likely. 
 
Q. In how many of these do no birthdays coincide? 
A. 365

kP  

 
Therefore the desired probability is 365 / 365k

kP  



Here are the numbers 
k   P 
5   0.973 
10   0.883 
15   0.747 
20   0.580 
22   0.524 
23   0.493 
25   0.431 
30   0.294 
40   0.109 
50   0.030 
60   0.006



Conditional Probability 
 
Suppose A and B are two events. Typically we will be 
interested in the probability of event A once we know that B 
has occurred. For this we define conditional probabilities. 
Conditional Probability 
Let A and B be two events. Then the conditional 
probability of A given B is 

( )( | )
( )

P A BP A B
P B


  



Example. The probability that it rains and I have an umbrella 
is 0.4.  The probability that it rains is 0.8.  Therefore  
 

( ) 0.4( | ) 0.5
( ) 0.8

P Rains UmbrellaP Umbrella Rains
P Rains


    

 



Example: A study with 150 heart attack patients was 
performed on four alternative treatments: A, B, C and D. 
 Treatment Group 
 A B C D Total
Died 18 13 22 24 77 
Survived 22 25 16 10 73 
Total 40 38 38 34 150 
 
If we were to randomly sample patients in this study, 
What is the probability that a patient dies when 
he or she receives treatment D? 
P(“D”) = 34/150 
P(“Dies and D”) = 24/150 
P(“Dies”|“D”) = [24/150]/[34/150] = 0.706 



If A and B are mutually exclusive then ( | ) 0P A B    
 
If A B  then ( | ) 1P A B   
 
If B A  then ( | ) 1P A B   
 
When you condition on B, it is as though B becomes the new 
sample space. 



Two events A and B are statistically independent if 
( ) ( ) ( )P A B P A P B   

 
If A and B are independent then 

( ) ( ) ( )( | ) ( )
( ) ( )

P A B P A P BP A B P A
P B P B


    

 
Similarly ( | ) ( )P B A P B  
 
Intuition: the occurrence of B carries no information about A 
and vice-versa. 



Example: Toss a fair coin twice.  Are the events  
A: “get a head on the first toss” and  
B: “get a head on the second toss”  
statistically independent? 
 

( ) 0.5P A   
( ) 0.5P B   
( ) 0.25P A B   

 
( ) ( )* ( )P A B P A P B   so A and B are indeed statistically 

independent. 



Bayes rule 
( )( | )

( )
P A BP A B

P B


  

( )( | )
( )

P B AP B A
P A


  

( ) ( | ) ( ) ( | ) ( )P A B P A B P B P B A P A     
( | ) ( )( | )

( )
P B A P AP A B

P B
     Bayes Rule 



Often in applying Bayes rule, we aren’t given ( )P B .  But 
 

( ) ( ) ( ) ( | ) ( ) ( | ) ( )P B P B A P B A P B A P A P B A P A     
So we can compute the denominator in Bayes rule 
 
Or if 1 2, ,... hA A A  is a mutually exclusive and collectively 
exhaustive set of events 

1 2( ) ( ) ( )... ( )hP B P B A P B A P B A       
1 1 2 2( ) ( | ) ( ) ( | ) ( )... ( | ) ( )h hP B P B A P A P B A P A P B A P A     

 
   



Bayes Rule: Example 1 
A car dealership knows that 10% of people who come into 
the showroom purchase a car.  The dealership offers a 
promotion where free lunch is offered to anyone who listens 
to a sales pitch.  40% of people who purchased cars had a 
free lunch.  10% of the people who did not purchase cars had 
a free lunch. 
How likely are people who accept the lunch to buy a car? 
 

( | ) ( )( | )
( | ) ( ) ( | ) ( )

P Lunch Buy P BuyP Buy Lunch
P Lunch Buy P Buy P Lunch Not P Not




 
0.40*0.10 0.308

(0.40*0.10) (0.10*0.90)
 


 



Bayes Rule: Example 2 
Suppose one has a test for a disease 
P(Disease)=0.005 --- prevalence of the disease in the 
population 
P(Negative|Disease)=0.01 (prob. of false negative) 
P(Positive|No Disease)=0.05 (prob. of false positive) 
 
Questions. 
1. Is this a good test? 
2. If you test positive, how worried should you be?  



We are interested in 
P(Positive|Disease)P(Disease)P(Disease|Positive)=

P(Positive)
 

0.99*0.005P(Disease|Positive)=
P(Positive)

 

 
P(Positive)=P(Positive|Disease)P(Disease)

P(Positive|No Disease)P(No Disease)
 

 
P(Positive)=0.05*0.995+0.99*0.005=0.0547  

 
0.99*0.005P(Disease|Positive)= 0.0905

0.0547
   



Bayes Rule: Example 3 
Suppose you are in a game show. You are given the choice of 
three doors – one of which conceals a valuable prize and the 
others conceal a goat. 
 
After you make a choice, the host opens one of the other 
doors (–one without a prize).  
 
He then gives you the option of staying with the initial 
choice of door or switching to the other door.  
 
The door finally chosen is then opened. 
 
 



Should you switch, not switch, or does it make no difference 
what the contestant does? 
 
Call: 
A: The door you initially choose; 
B: The door the host, opens; 
C: The remaining door. 
We want to compare: 
 
P(“Prize is behind A”|“Host opens B”) 
and 
P(“Prize is behind C”|“Host opens B”). 
 



Bayes’ Rule: P(Prize is behind A|Host opens B) is 
P(Host opens B|Prize behind A) × P(Prize behind A) 
                             P(Host opens B) 
 
Now, notice that: 
2 P($ is behind A) = P($ is behind B) = P($ is behind C) =1/3 
2 P(Opens B|Prize behind A) = ½ 
   P(Opens B|Prize behind is B) = 0 
   P(Opens B|Prize behind is C) = 1 
  

P(Prize behind A|Host opens B) is (1/ 2)*(1/ 3)
P(Host Opens B)

 

P(Prize behind C|Host opens B”) is 1*(1/ 3)
P(Host Opens B)

 



P(Host Opens B)= 
P(Host Opens B|Prize Behind A)*P(Prize Behind A) 
P(Host Opens B|Prize Behind B)*P(Prize Behind B) 
P(Host Opens B|Prize Behind C)*P(Prize Behind C) 
 
=(1/2)*(1/3)  + 0*(1/3)  + 1*(1/3)=1/2 
 

P(“Prize behind A”|“Host opens B”) is (1/ 2)*(1/ 3) 1
1/2 3

  

P(“Prize behind C”|“Host opens B”) is 1*(1/ 3) 2
1/2 3

  

The contestant should switch! 



A random variable is a variable that takes on one of a 
number of different numerical values with uncertainty as to 
which one occurs 
 
More formally, a random variable is a function that maps the 
sample space to R  
 
e.g. Number that I get when I roll a die is 1, 2, 3, 4, 5 or 6.  
This is a random variable. 
 
Notation: X is the random variable and x denotes the values 
that it can take on 
 



A random variable is continuous if it can take on any value 
in an interval 
 
Otherwise it is discrete  
 
Examples of continuous random variables 
The maximum temperature on any day 
The time between the arrival of two buses 
 
Examples of discrete random variables 
The number of heads when I toss a coin 10 times 
The number of claims on an insurance policy in a given year. 



Probability Distribution (Mass) Function for a discrete 
random variable gives the probability that the random 
variable takes on each possible value, P(X=x) for each x 
 
We write it as P(x) 
 
For example, if a die is thrown, the probability distribution 
function is 
P(1)=1/6 
P(2)=1/6 
P(3)=1/6 
P(4)=1/6 
P(5)=1/6 
P(6)=1/6 



Properties of a probability mass function 
 
1. P(x)0 for all x 
 
2. ( ) 1xP x   



The cumulative probability function 0( )F x  gives the 
probability that a discrete random variable X does not exceed 

0x  
 

00 0( ) ( ) ( )x xF x P X x P x     
 
 
Also 

( ) ( )a x bP a X b P x      



Properties of cumulative probability function 
 
1. 0 ( ) 1F x   for every x 
 
2.  If 0 1x x  then 0 1( ) ( )F x F x  
 



Example.  The number of computers sold per day is a 
random variable with the following probability distribution 
function 
x P(x) 
0 0.05 
1 0.1 
2 0.2 
3 0.2 
4 0.2 
5 0.15 
6 0.1 

(4) ( 4) 0.05 0.1 0.2 0.2 0.2 0.75F P X         
(6) ( 6) 0.05 0.1 0.2 0.2 0.2 0.15 0.1 1F P X           

4 6(4 6) ( ) 0.2 0.15 0.1 0.45xP X P x          



Example of a discrete distribution: the binomial distribution 
 
Suppose that an experiment is repeated n times and on each 
time, the probability of success is p.  Let X be the number of 
successes. 
 
X is said to have a binomial distribution with parameters n 
and p 
 

!( ) (1 ) (1 )
!( )!

n x n x x n x
x

nP X x C p p p p
x n x

     


 

 
Note: A Binomial with parameters 1 and p is called a 
Bernoulli random variable.  It is 1 w.p. p and 0 otherwise.



Example: You toss a fair coin 10 times.  What is the 
probability of exactly 3 heads?  What is the probability of at 
least 3 heads? 
 
Let X be the number of heads.  On each experiment, there is a 
head with probability 0.5 and a tail with probability 0.5 
 

3 710!(3) (0.5) (1 0.5) 0.1172
3!7!

P     

 
Probability of at least 3 heads is 1-P(0)-P(1)-P(2)=0.945 



Another example of a discrete distribution: Poisson 
 
Suppose that we are interested in the number of successes 
that happen in an interval of time 
 
Examples. 
1. # of customers to arrive at a checkout aisle in an hour. 
2. # of failures on a computer network during a day. 
3. # of jumps (large price movements) in the price of a stock 
during a year. 



Suppose that 
 
1. The probability of a success at any one instant is constant. 
 
2. The probability of two successes happening at exactly the 
same time is small. 
 
3. The timing of successes are independent. 
 
Then the number of successes in any interval of time follows 
a Poisson distribution. 
 



The Poisson Distribution takes on the values 0,1,2,...... 
 
 
The probability distribution function for the Poisson is 

( )
!

xeP X x
x



   

 
where   is a parameter that determines how frequently 
events occur and 2.71828e   



Example: The number of failures on a computer network per 
day is Poisson with parameter 1.   
 
What is the probability that more than 2 computers fail on a 
given day? 

1 01( 0) 0.368
0!

eP X


    
1 11( 1) 0.368

1!
eP X


    
1 21( 2) 0.184
2!

eP X


    

Probability more than 2 is 1-0.368-0.368-0.184=0.08



A continuous random variable can take on any value in an 
interval 
 
A discrete random variable cannot 
 
For a continuous random variable, the probability that it 
takes on any specific value is zero. 
 
We have to use integral calculus to work with continuous 
random variables. 
 



Let X  be a continuous random variable, and let x be any 
number in the range of possible values for this random 
variable. The cumulative distribution function of this 
random variable is defined as 

0 0( ) ( )F x P X x   
 
Note that since 0( ) 0P X x  , it does not matter whether the 
definition states 0( )P X x  or 0( )P X x  
 
Given the cumulative distribution function ( )F x , the 
probability density function is 

( )( ) dF xf x
dx

  

 



Properties of a continuous probability density function ( )f x : 
 
1. ( ) 0f x   for all x 
2. The area under the probability density function ( )f x  over 
all values of the random variable X equals 1: ( ) 1f x

   
3. ( ) ( ) ( ) ( )b

aP a X b f x dx F b F a       
 
Properties of a continuous cumulative dist. function  ( )F x  
1. 0

0 0( ) ( ) ( )xP X x F x f x dx     
2. 0 ( ) 1F x   for every x 
3.  If 0 1x x  then 0 1( ) ( )F x F x  
 
 



We can construct the following parallels 
 
Discrete Continuous 
P(X=x) f(x) 

( ) 1xP X x    ( ) 1f x
   

00( ) ( )x xP X x P x   0
0( ) ( )xF x f x dx   

( ) ( )a x bP a X b P x     ( ) ( ) ( )P a X b F b F a   
 
 
 



Example of a continuous distribution: the uniform 
distribution 
 
The uniform distribution can take on any value between a 
and b.  Each value is equally likely. 
 

( ) x aF x
b a





 

 
1( )f x

b a



 

 



X is uniform on the unit interval (i.e. between 0 and 1). 
 
What is the probability that X is between ½ and ¾? 
 
F(½)=(½-0)/(1-0)= ½ 
 
F(¾)=(¾-0)/(1-0)= ¾ 
 
The probability that X is between ½ and ¾ is F(¾)-F(½)=¼ 
 
  



Example of a continuous distribution: the logistic distribution 
 

cdf  1( )
1 xF x

e


 

 

pdf 2( )
(1 )

x

x

ef x
e






 

 
 



Expectations: For a discrete random variable 
 
The expected value for a random variable X, E(X), is  
 ( ) ( )x xE X P x x    
The expected value is also known as the mean 
 
Example: The probability distribution function for the 
number of errors on each page of a book is 
P(0)=0.81 
P(1)=0.17 
P(2)=0.02 
 
The expected number of errors is 
 (0.81*0)+(0.17*1)+(0.02*2)=0.21 



Saint Petersburg Paradox (Bernoulli in the 18th century) 
 
Suppose that there is a lottery with possible payoffs: 
Payoff Probability 
1 ½ 
2 ¼ 
4 1/8 
8 1/16 
16 1/32 
etc.... etc... 
What is the expected payoff from this lottery? 
 

1 2 4 8 1 1 1 1( ) ( ) .... ...
2 4 8 16 2 2 2 2

E X P x x             



How much would you pay for one of these lottery tickets? 
 
 
They have an infinite expected value 
 
 
 
 



Expectations also exist for functions of a random variable 
 
The expected value for g(X), E(g(X)), is given by 
 ( )( ( )) ( ) ( )g x xE g X P x g x    
 



Example.  There is a project which will take a number of 
days to complete.  Here is the probability distribution of the 
number of days 
P(1)=0.5 
P(2)=0.25 
P(3)=0.15 
P(4)=0.1 
The cost to the contractor is the number of days squared 
(costs go up because the 3rd and 4th days are weekends). 
What is the expected cost to the contractor? 
(0.5*1)+(0.25*4)+(0.15*9)+(0.1*16)=4.45 



Example: binomial distribution 
 
An experiment is repeated n times and the probability of 
success each time is p.  X is the number of successes  
 

!( ) (1 ) (1 )
!( )!

n x n x x n x
x

nP X x C p p p p
x n x

     


 

 

0 0
!( ) ( ) (1 )

!( )!
n n x n x
x x

n xE X P X x x p p np
x n x


       


 

(after a few lines of algebra) 



Example: Poisson distribution 

( )
!

xeP X x
x



   

0( )
!

x

x
eE X x

x



   

1

1 1 1( )
! ( 1)! ( 1)!

x x x

x x x
e eE X x e

x x x

 
  

  
   
        

 
 

0 !

x

xe
x

   
   

2 3

01 ...
2! 3! !

i
z

i
z z ze z

i

       (Defn. of exponential) 

( )E X e e      



Expectations: For a continuous random variable 
 

( ) ( )E X xf x dx   
 
where the integral is taken over the “support” of the random 
variable....i.e. the set of possible outcomes. 
 



Example.  X is uniform between a and b.  
21 1( ) ( ) [ ]

2
b b b b
a a a a

x xE X xf x dx dx xdx
b a b a b a

      
  

2 2 2 21 ( )( )( ) ( )
2 2 2( ) 2( 2)
b a b a b a b aE X

b a b
b a

a b a
  

    
 





 



Example. 1 | |( ) exp( )
2 / 2

xf x 
 


  .   Find ( )E X  

| |( ) ( ) exp( )
2 / 2
x xE X xf x dx dx
 

 
 


      

exp( ) exp( )
2 / 2 2 / 2
x x x xdx dx


 

   



 

     
 

Use integration by parts 
( ) '( ) [ ( ) ( )] '( ) ( )b b b

a a af x g x dx f x g x f x g x dx     
 

exp( ) [ exp( )]
2 / 2 2 2 / 2
1 exp( )
2 2 / 2

x x x xdx

x dx

 



  
   
 

 

 



 
 


 



1[ exp( )] exp( )
2 2/ 2 / 2
x x x dx  

  
 

    

1[ exp( )] [ exp( )]
2 2/ 2 2 / 2
x x x   

  
 

   

1[ ]
2 2 22 2 2
   

     

Similarly, exp( )
22 / 2 2 2

x x dx
  

 
 
    

( )
2 22 2 2 2

E X            

 



For a continuous random variable 
 

( ( )) ( ) ( )E g X g x f x dx   



For a discrete or continuous random variable, the nth 
uncentered moment is ( )n

n E X   
 
The nth centered moment is [( ( )) ]n

n E X X     
(It is centered around the mean, ( ))E X  
 
For 2n  : 2

2 [( ( )) ]E X E X    is the variance of X, var( )X  
 

2  is the standard deviation 



Properties of expectation and variance 
 

( ) ( )E a bX a bE X    
 

( ) ( )i i i iE a b X a b E X      
 

2Var( ) Var( )a bX b X   
 

2 2Var( ) ( ) ( ( ))X E X E X   
 
 
 
 
 



Variance of a uniform random variable 
Let X be uniform from a to b. 
 

1( )f x
b a




 and ( )
2

a bE X 
  

2 3 3 3
2 1( ) [ ]

3 3( )
b b
a a

x x b aE X dx
b a b a b a


   

  
 

3 3 2
2 2 ( )( ) ( ) ( )

3( ) 4
b a a bVar X E X E X

b a
 

   


 
3 3 24( ) 3( )( )( )

12( ) 12( )
b a b a a bVar X

b a b a
  

  
 

 
3 3 2 2 3 2( )3 3 ( )( )

12( ) 1 12( ) 2
b a ab a b b aVar X

b
a

a b a
b   




  
 

 



Expectations and variances of the rvs we’ve seen 
 
 Expectation  Variance 

 
Binomial np (1 )np p

 
Poisson     

 
Uniform a to b 

2
a b  

2( )
12

b a  

 



Jensen’s Inequality 
For a nonlinear function g(.) 

( ( )) ( ( ))E g X g E X  
 
● If g is concave then ( ( )) ( ( ))E g X g E X    
● If g is convex then ( ( )) ( ( ))E g X g E X    
 



Jensen’s Inequality can be used to prove an inequality 
between arithmetic and geometric means 
 

If 1 2
1 ( ... )nX X X X
n

    is the arithmetic mean of 1,... nX X  

and 1/
1 2[ ... ] n

G nX X X X  is their geometric mean 
then GX X . 
 
Proof: Define X  as a discrete random variable with support 

1,... nX X  such that ( ) 1 /iP X X n  . 

1
1log( ) log( ) (log( ))n

G i iX X E X
n     

(log( )) log( ( ))E X E X   (Jensen’s Inequality) 



1
1log( ) log( ) log( ( ))n

i iX X E X
n     

log( ) log( )GX X   
GX X   

 
 
 



An individual maximizes the expectation of the utility 
function ( )u c  where the function is concave and c is 
consumption.  Which will this individual prefer, 1c   or c is 
a random variable that is uniform from 0 to 2? 
 
By Jensen’s inequality, ( ( ( ))) ( ( )) ( ( ))E u E c u E c E u c   and 
so the individual will always prefer 1c  .



Moment generating function 
 
The moment generating function of a random variable X is 

( ) ( )tXM t E e .  So 
( ) ( )txM t e P X x     (for discrete X) 
( ) ( )txM t e f x dx        (for continuous X) 

 
 
The uncentered moments of X are generated from the 
moment generating function by 

0( ) ( ) |
n

n
tn

dE X M t
dt   

 
 



Example: Poisson random variable ( )
!

xeP X x
x



   

( ) ( )txM t e P X x    

0 0
( )( )

! !

x t x
tx

x x
e eM t e e

x x


 

  
       

2 3

01 ...
2! 3! !

i
z

i
z z ze z

i

       (Defn. of exponential) 

( ) exp( ( 1))
te tM t e e e       

 
Now '( ) exp( ( 1)) '(0) ( )t tM t e e M E X          

2 2''( ) ( )exp( ( 1))t t tM t e e e      
2 2 2'(0) ( )M E X          

2 2 2 2Var( ) ( ) ( ( ))X E X E X           



Moment generating functions are useful because they can 
characterize moments, and especially, because in many 
cases, they characterize a distribution. 
 
Theorem. If ( )XM t  and ( )XM t  are the mgfs of X  and Y  
respectively, then ( ) ( )X YM t M t  for all t in some 
neighborhood of zero, then ( ) ( )X YF u F u  for all u. 
 
Result: If Y aX b   and ( )m t  is the mgf of X , then ( )bte m at  
is the mgf of Y . 
 



Characteristic function 
 
The characteristic function of a random variable X is 

 ( ) ( ) ( )itX itx
X Xt E e e f x dx 

    
 
The moment generating function uniquely determines a 
distribution, if the mgf exists. 
 
But a characteristic function always exists and uniquely 
characterizes a distribution (every cdf has a unique 
characteristic function). 
 
Inversion formula.   

1( ) ( )
2

itx
X Xf x e t dt


 
   



Transformations of random variables 
 
Suppose that X is a continuous random variable with cdf XF , 
pdf  Xf  and Y=g(X).  Y is also a random variable.  What is its 
cdf and pdf? 
 



Suppose g is monotone 
 

1. If g is monotone increasing  1( ) ( ( ))Y XF y F g y  
2. If g is monotone decreasing  1( ) 1 ( ( ))Y XF y F g y   

3. 
1

1 ( )( ) ( ( )) | |Y X
dg yf y f g y

dy


  

4. If the support of X is from minX  to maxX , the support of Y 
is from min( )g X  to max( )g X  



Example 1: X is uniform between -1 and +1 and exp( )Y X  
( ) ( 1) / 2XF x x   and ( ) 1 / 2Xf x   

g(.) is a monotone increasing transformation 
1(.) exp(.) (.) ln(.)g g     

( ) (ln( ) 1) / 2YF y y    
 
The support of Y is [1/ , ]e e .  
 

The pdf is 1( ) ( )
2Y Yf y F y

y
    

Or 
1

1 ( ) 1 1 1( ) ( ( ) ) | |
2 2Y X

dg yf y f g y
dy y y


    



Example 2: X is uniform between 0 and 1 and log( )Y X   
( )XF x x  and ( ) 1Xf x   

g(.) is a monotone decreasing transformation 
1(.) log(.) (.) exp( / )g g y       

( ) 1 exp( / )YF y y      
 
The support of Y is from   to 0.  
 

The pdf is /1( ) ( ) y
Y Yf y F y e 


    

Or 
1

1 /( ) 1 1( ) ( ( ) ) | | 1 | exp( / ) | y
Y X

dg yf y f g y y e
dy


 


       



Example 3: X is uniform between -1 and +1 and 2Y X  
( ) ( 1) / 2XF x x   

g(.) is NOT monotone transformation..formula doesn’t work 
2( ) ( )YF y P X y   

( )P y X y     
( ) ( )X XF y F y    

1 1
2 2

y y  
   

y  

The support of Y is from 0 to 1.The pdf is 1( )
2Yf y

y
  



Example 4: X has the pdf ( ) xf x e  for 0x  .  Find the cdf 
and pdf of 1 /Y X . 
 

( ) 1 xF x e   
 

( )g X  is a monotone decreasing transformation 
1( ) 1 /g Y Y   

1/ 1/( ) 1 {1 }y y
YF y e e       

The support of Y is 0 to . 

The pdf is 1/
2

1( ) ( ) y
Y Yf y F y e

y
    

Or 
1

1 1/ 1/
2 2

( ) 1 1( ) ( ( ) ) | | | |y y
Y X

dg yf y f g y e e
dy y y


       



Example 5: X has the pdf ( ) xf x e  for 0x  .  Find the cdf 
and pdf of log( )Y X . 
 

( ) 1 xF x e   
 

( )g X  is a monotone increasing transformation 
1( ) exp( )X g Y Y   

exp( )( ) 1 y
YF y e    

The support of Y is   to . 
The pdf is exp( )( ) ( ) exp( )y y y

Y Yf y F y e e y e      

Or 
1

1 ( )( ) ( ( ) ) | | | | exp( )
ye y y

Y X
dg yf y f g y e e y e

dy


      

 



Example 6: X has the pdf ( ) xf x e  for 0x  .  Find the cdf 
and pdf of 1 XY e  . 
 

( ) 1 xF x e   
 

( )g X  is a monotone increasing transformation 
1( ) log(1 )X g Y Y     

log(1 )( ) 1 y
YF y e     

The support of Y is from 0 to 1. 

The pdf is 
log(1 )

( ) ( ) 1
1

y

Y Y
ef y F y

y



  


  

Or 
1 log(1 )

1 log(1 )( ) 1( ) ( ( ) ) | | | | 1
1 1

y
y

Y X
dg y ef y f g y e

dy y y

 
    

 
 



Theorem.    If X has a continuous cdf ( )XF x  and ( )XY F X  
then Y is uniform on the unit interval, i.e. ( )YF y y . 
 
Proof. g(.) is monotone  

1( ) ( ( ))Y XF y F g y  
1 1

X Xg F g F     
1( ) ( ( ))Y X XF y F F y y    

 
Intuition of why this is useful.  Suppose I think I know the 
cdf of X, but I want to check. 
 
Define ( )XY F X  and look to see if Y seems uniform. 



Specific Discrete Distributions 
 

- Binomial 
- Poisson 
- Negative Binomial 
- Geometric 



The Poisson Distribution 
 
We’ve already seen the Poisson Distribution 

( )
!

xeP X x
x



   

 
Useful facts about Poisson distribution 
● The sum of K Poisson Random Variables with parameter 
  is a Poisson Random Variable with parameter K . 
● If the number of events occurring in a period of time is 
Poisson with parameter   then the number of events in t 
periods is Poisson with parameter t  



Example. A computer manager reports that the expected 
number of component failures on a system is 3 every 100 
days.  The number of component failures is Poisson. 
 
(a) What is the probability of no failures in a given day? 
(b) What is the probability of one or more component 
failures on a given day? 
(c) What is the probability of at least two failures in a three 
day period? 



Let X be the number of computer failures per day.   
 
The number of computer failures in 100 days is Poisson with 
expectation 3. 
 
Therefore the number of computer failures in 100 days is 
Poisson with parameter 3. 
 
Therefore the number of computer failures in 1 day is 
Poisson with parameter 0.03. 
 



(a) The probability of no failure on one day is 
0.03 00.03(0) 0.97

0!
eP


   

 
(b) The probability of one or more failures is 
1 (0) 1 0.97 0.03P     
 



Therefore the number of computer failures in 100 days is 
Poisson with parameter 3. 
 
Therefore the number of computer failures in 3 days is 
Poisson with parameter 0.09. 
 

The probability of no failure is 
0.09 00.09(0) 0.914

0!
eP


   

 

The probability of 1 failure is 
0.09 10.09(1) 0.082

1!
eP


   

 
The probability of 2 or more failures is 
1 (0) (1) 1 0.914 0.082 0.004P P       



The Poisson can be used to approximate the binomial 
 
Let X be binomial with parameters n and p. 
 
If n is large, X also has approximately a Poisson distribution 
with parameter np   
 
 



Sketch of Proof:  
mgf of a binomial is ( ) [ (1 )]t n

XM t pe p    
mgf of a Poisson is  ( ) exp( ( 1))t

YM t e   
Let /p n  

lim ( ) lim [ 1 ]t n
n X nM t e

n n
 

     

1lim [1 ] exp( ( 1))
t

n t
n

e e
n

 


     

 

(using lim (1 )x n
n

xe
n  ) 



Negative binomial distribution 
 
The binomial distribution gives the number of successes 
when a trial is repeated n times (p: prob. of success each 
time) 
 
The negative binomial distribution turns the question around 
and gives the number of trials needed for r successes to 
occur. 
 

1
1( ) (1 ) , , 1, 2,...x r x r

rP X x C p p x r r r 
       

 



Example: What is the probability that I need to toss a fair 
coin exactly 5 times to get 2 heads? 
 
Answer: x=5, r=2 

1
1( ) (1 )x r x r

rP X x C p p 
    

4 1 4 4 5
1

4! 1( 5) (1 ) *0.5*0.5 4*0.5
1!3! 8

P X C p p        



Geometric distribution 
 
The geometric distribution is the number of trials needed for 
the first success. 
 
It is a special case of the negative binomial distribution with 
r=1 
  

1( ) (1 ) , 1,2,3,...xP X x p p x     
 



Specific Continuous Distributions 
 

- Uniform    (already) 
- Normal    (now) 
- Log-Normal 
- Beta 
- Truncated Normal (later in the class) 
- Exponential 
- Gamma 
- Chi-Squared  
- T-distribution 
- Cauchy 
- F-distribution 

 



The normal distribution 
 
The most important distribution is the normal. 

 
It was discovered by Gauss and is also called the Gaussian 
distribution. 
 
 
The probability density function for a normal random 
variable is 
 

2 2( ) /2

2

1( )
2

xf x e  


   for x    



If X has a normal distribution then 
( )E X   

and 
2( )Var X   

 
The parameters of the normal distribution are    (the 
“mean”)  and 2  (the “variance”) 
  

2  must be positive, which is why we write it as sigma-
squared 
 



We write a normal random variable with mean   and 
variance 2  as an 2( , )N    random variable 
 
 
The special case in which 0   and 2 1   is a standard 
normal random variable. 
 

We write its pdf as 
2 /21( )

2
xx e


  and its cdf as ( )x  

 



Normal probability density functions 

  



            Normal cumulative distribution functions 

 



Properties of the normal distribution 
 
● The normal distribution is symmetric about zero 

( ) ( ) 1 ( )P X x P X x P X x         
 
● There is no closed form expression for the cdf of a normal 
random variable. 
- But there are tables for looking up the cdf of a standard 
normal random variable. 
- These give ( )P X x  where X is a standard normal random 
variable for 0x   
 
● If 2~ ( , )X N    then 2 2~ ( , )aX b N a b a    
  



Tables of the Normal Distribution  

Probability Content  
from  -∞ to Z  

  Z | 0.00   0.01   0.02   0.03   0.04   0.05   0.06   0.07   0.08   0.09 
----+---------------------------------------------------------------------- 
0.0 | 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359 
0.1 | 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753 
0.2 | 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141 
0.3 | 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517 
0.4 | 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879 
0.5 | 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224 
0.6 | 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549 
0.7 | 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852 
0.8 | 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133 
0.9 | 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389 
1.0 | 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621 
1.1 | 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830 
1.2 | 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015 
1.3 | 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177 
1.4 | 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319 
1.5 | 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441 
1.6 | 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545 
1.7 | 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633 
1.8 | 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706 
1.9 | 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767 
2.0 | 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817 
2.1 | 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857 
2.2 | 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890 
2.3 | 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916 
2.4 | 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936 
2.5 | 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952 
2.6 | 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964 



Gives ( )P X x  for 0x   
 
But ( ) 1 ( )P X x P X x      
 
So ( 1) 1 ( 1) 1 0.8413 0.1587P X P X         
 
Classic cases 

( 1.64) ( 1.64) 0.05P X P X      
( 1.28) ( 1.28) 0.1P X P X      
( 1.96) ( 1.96) 0.025P X P X      

 



If X is 2( , )N    then XZ 



  is N(0,1) 

 

P(Xk)= ( )P X k    =P( )X k 
 
 

 =P(Z k 

 ) 

 
If   denotes the standard normal cdf and 2~ ( , )X N    then 

the cumulative distribution function of X  is ( ) ( )xF x 



   

 
Example. Suppose that X is N(4,5).  Find ( 1)P X    

( 1)P X   = ( 2.236)   =0.013 
 



If (.)  denotes the standard normal probability density and 
2~ ( , )X N    then the probability density function of X  is 

1( ) ( )xf x 
 


  

 

Follows from ( ) ( )xF x 



   by differentiating both sides 



The normal moment generating function is 
2

2
( ) 2 2

2
2

1( ) ( ) exp( )
22

x
tX tx tM t E e e e dx t


 






      

The standard normal mgf is 2exp( / 2)t  
 
Higher moments of a normal distribution 
 
If 2~ ( , )X N   , then  

- Skewness:  3(( ) ) 0E X    

- Kurtosis:    
4

4 4
4

( )(( ) ) 3 ( ) 3XE X E  



     

 



The log-normal distribution 
 
Another important distribution is the log-normal. 
 
If 2~ ( , )X N   , then exp( )X  is log normal. 
 
The support is from zero to infinity and it is skewed to the 
right. 
 
It is useful for modeling variables such as individual incomes 
or interest rates. 
 



2 2( ) / 2

2

1( )
2

xf x e  


   is the pdf of X 

1exp( ) (.) log(.)Y X g     
2 2log(( ) /2

2

)1 1( )
2

yf y e
y

 


   

 
The normal mgf was 

2 2

( ) exp( )
2

tX tE e t    

So 
2

( ) exp( )
2

E Y    is the mean of a lognormal 

( ) exp( ( ))E Y E X    (consistent with Jensen’s inequality) 



The beta distribution 
 
The beta distribution has support on the unit interval. 
 
It has two parameters,   and   that determine the shape of 
the density. 
 

( ) / ( )E X      
 

1    is the uniform, but the beta distribution can be 
much more flexible and is useful for modeling random 
variables must lie in given intervals. 



Beta probability density functions 

 



The beta pdf is 
1 1( )( ) (1 )

( ) ( )
f x x x  

 
  

 
 

,  0 1x  , 0, 0    

 
where 1

0( ) tt e dt      .  
 
Note: ( ) ( 1)!     for positive integer   



Chebychev’s Inequality.   
 
For any nonnegative random variable X and constant c>0 

( )( ) E XP X c
c

   

Proof: 0 0( ) ( ) ( ) ( )c
cE X xf x dx xf x dx xf x dx        

( ) ( )cE X xf x dx    
 ( ) ( ) ( )c ccf x dx c f x dx cP X c        

( ) ( ) ( ) ( ) /E X cP X c P X c E X c       
 



Simpler form of Chebychev (often quoted).  For any random 
variable Y with mean   and variance 2  and constant c>0 

2 2 1(( ) )P Y c
c

     

Proof: Let 2( )YX 



  

( )( ) E XP X c
c

   

2 2
22

1(( ) ) (( ) ) 1(( ) )

YE E YYP c
c c c

   





      

2 2 1(( ) )P Y c
c

      



Example of Chebychev 
 
Let Y be a N(0,1) random variable. 

2 1( )P Y c
c

   

1( ) ( )P Y c P Y c
c

       

12 ( )P Y c
c

    

1( )
2

P Y c
c

    

e.g. 2

1( 1.96) 0.13
2*1.96

P Y     

True, but not a “sharp” bound. 



Multiple Random Variables: Discrete 
 

An n-dimensional random variable is a function from the 
sample space to nR . 
 
The joint cumulative distribution function for an n-
dimensional random variable is 

1 1 2 2( , ,... )n nP X x X x X x    
 
The joint probability mass function for an n-dimensional 
random variable is 

1 1 2 2( , ,... )n nP X x X x X x    
 
 



Let X and Y  denote two discrete random variables. 
 

Here is a way to represent them: 
 1y  2y .. ky

1x  1 1x y 1 2x y  1 kx y
2x  2 1x y 2 2x y  2 kx y

     
hx  1hx y 2hx y  h kx y

 
( , )i jP X x Y y   is a joint probability 
( ) ( , )i j i jP X x P X x Y y      is a marginal probability 



We can define conditional probabilities for pairs of random 
variables 
 

( , )
( | )

( )
i j

i j
j

P X x Y y
P X x Y y

P Y y
 

  


 



Example.  Toss a fair coin three times.  The sample space is 
HHH,HHT,HTH,HTT,THH,THT,TTH,TTT 

each of which is equally likely. 
X: Number of heads in the first two tosses 
Y: Number of heads in the second two tosses 
  Y=0 Y=1 Y=2 
X=0  TTT TTH  
X=1  HTT HTH,THT THH 
X=2   HHT HHH 
    
 



Joint Probabilities 
  Y=0 Y=1 Y=2   
X=0  1/8 1/8 0  1/4 
X=1  1/8 1/4 1/8  1/2 
X=2  0 1/8 1/8  1/4 
  1/4 1/2 1/4   
 
● What is ( 1, 1)?P Y X     

5/8 
● What is ( 2 | 1)P Y X  ? 

( 2, 1) 1/ 8 1( 2 | 1)
( 1) 1/ 2 4

P Y XP Y X
P X
 

    




Example. Here is the joint distribution of two random 
variables.  What is P(Y=0|X=0)? 
  Y=0 Y=1 
X=0  0.3 0.5 
X=1  0.1 0.1 
 

( 0, 0) 0.3( 0 | 0) 0.375
( 0) 0.8

P Y XP Y X
P X
 

    


 

 
 



Multiple Random Variables: Continuous 
 
Let X and Y  denote two continuous random variables. 
 
The joint cumulative distribution function of X and Y is 
defined as 

( , ) ( , )F x y P X x Y y    
 
The joint probability density function is 

2 ( , )( , ) F x yf x y
x y




 
 

So ( , ) ( , )x yF x y f s t dtds     
( , )(( , ) ) ( , )s t AP X Y A f s t dtds   



Marginal densities from integrating rather than summing 
 

( ) ( , )f x f x y dy
   

 
Example: 2( , ) 6 , 0 1 and 0 1f x y xy x y      
and 0 otherwise.  What is the marginal density of X? 
 

1 1 2
0 0( ) ( , ) ( , ) 6f x f x y dy f x y dy xy dy

       
3

1
0

6( ) 6 [ ] 2
3 3
y xf x x x     

 



Example.  Suppose that the joint pdf of X and Y is given by 
2x yce e      if 0 x   and 0 y   

0   otherwise 
 
1. What is c? 

2 2 2 2
0 0 0 0 0 0[ ] [ ]

2 2
x y x y y yc cce e dxdy ce e dy ce dy e                    

So 2c   
 
2. What is the marginal density of X? 

2
2

0 0( ) 2 2 [ ]
2

y
x y x x

X
ef x e e dy e e


           



3. What is ( , )F x y ? 
2 2

2
0 0 0 0 0

12 2 [ ] 2 [ ]
2 2

t y
x y s t x s y x se ee e dtds e ds e ds

 
    

        
2 2

2
0

1 1( )[ 2 ] 2( )(1 ) (1 )(1 )
2 2

y y
s x x y xe ee e e e

 
    

        

 
4. What is P(X>1,Y<1)? 

1 2 1 2 1 2 1 1 2
0 1 0 1 02 2 [ ] 2 (1 )x y y x ye e dxdy e e dy e e dy e e                 

 
5. What is P(X<Y)? 

2 2 1 2
0 0 0 0 02 2 [ ] 2 (1 )y x y y x y y ye e dxdy e e dy e e dy                

2 3 2 3
0 0 0 0

2 2 12 2 [ ] [ ] 1
3 3 3

y y y ye dy e dy e e                   



 
The conditional probability density is defined as 

( , )( | )
( )

f x yf y x
f x

  

 
Example.  Suppose that ( , ) , 0yf x y e x y      
and 0 otherwise. 
 
What is ( | )f y x ? 

( ) ( , ) ( , ) y
x xf x f x y dy f x y dy e dy   

       
( ) [ ] (0 )y x x

xf x e e e           
( )( | )

y
y x

x

ef y x e
e


 

    if y x  and 0 otherwise 



( , )( | )
( )

x A f x y dxf y X A
P X A





     

 
 

( )1( )( | )
( )

f x x Af x X A
P X A




   

[1(.) is the indicator function, 1 iff the argument is true] 



Example 1. X is uniform in the unit interval.  What’s the 
density of X conditional on X>1/2? 
 

( ) 1 ( | 1 / 2) 2f x f x X       if X>1/2 
0 otherwise 

 



Example 2. X is binomial with parameters 5 and p.  What’s 
the density of X conditional on X>3? 
 

4 15!( 4) 0.5 (1 0.5) 0.156
1!4!

P X      

4 15!( 5) 0.5 (1 0.5) 0.031
0!5!

P X      

( 3) 0.187P X    
0.156 5( 4 | 3)
0.187 6

P X X     

1( 5 | 3)
6

P X X  



Bayes Rule applies to random variables (of course) 
 

( | ) ( )( | )
( )

f y x f xf x y
f y

  (and similarly for discrete random 

variables). 
 
Example.  Suppose that ( , ) , 0yf x y e x y      
and 0 otherwise. 
 
What is ( | )f x y ? 
 



We saw earlier that 
( ) xf x e  

( )( | )
y

y x
x

ef y x e
e


 

   if y x  and 0 otherwise 

 
0 0( ) ( , ) ( , )y y y yf y f x y dx f x y dx e dx ye  

        
( )1( ) 1( )( | )

x y x y

y y

e e y x e y xf x y
ye ye

   

 

 
    

 
So ( | ) 1 /f x y y  if x y  and 0 otherwise. 
 



The pattern….. 
 
For events, discrete random variables or continuous random 
variables 
 
● Conditional = Joint/Marginal 
 
● To get the marginal density you add up (or integrate) the 
joint density 
 
● Bayes Rule 



Conditional expectation 
 
Discrete case: ( ( ) | ) ( ) ( | )E g Y x g y f y x   
 
Continuous case: ( ( ) | ) ( ) ( | )E g Y x g y f y x dy

   
 



Example.  Suppose that ( , ) , 0yf x y e x y      
and 0 otherwise.  What is ( | )E Y x ? 
 

( )( | ) ( | ) y x
xE Y x yf y x dy ye dy   

     
Use integration by parts 

( ) '( ) [ ( ) ( )] '( ) ( )b b b
a a af y g y dy f y g y f y g y dy     

( ) ( ) ( )[ ]y x y x y x
x x xye dy ye e dy               

( )y x
xx e dy      

( )[ ]y x
xx e      

1x   
 

( | ) 1E Y x x    
 



Two discrete random variables X and Y are said to be 
independent if 
 

( , ) ( ) ( )P X x Y y P X x P Y y      
 
Two continuous random variables X and Y are said to be 
independent if  
 

( , ) ( ) ( )f x y f x f y  
 
If X and Y are independent then ( | ) ( )f y x f y  and 

( | ) ( )f x y f x  
 



Example.  Consider the discrete bivariate random vector with 
joint probability mass function 

 Y=1 Y=2 Y=3  
X=10 0.1 0.2 0.3 0.5 
X=20 0.1 0.1 0.2 0.5 
 0.2 0.3 0.5  

 
Are X and Y independent? 
P(X=10,Y=3)=0.3≠0.5*0.5 
 
No, they are not independent. 



Example: Consider the continuous random variables X and Y 
with joint pdf  

( , ) 1f x y   for 0 1x   and 0 1y   
Are X and Y independent? 
 

1 1 1
0 0 0( ) ( , ) 1 [ ] 1f x f x y dy dy y       
1 1 1
0 0 0( ) ( , ) 1 [ ] 1f y f x y dx dx x       

( , ) ( ) ( )f x y f x f y   
 
Yes, they are independent 



If X and Y are independent, then ( ) ( ) ( )E XY E X E Y  
 
Proof: (continuous random variables) 

( ) ( , ) ( ) ( )E XY xyf x y dxdy xyf x f y dxdy       
( ) ( )xf x yf y dydx    
( ) ( )xf x dx yf y dy    

( ) ( )E X E Y  
 
 



If 1 2, ,.... nX X X  are independent random variables with pdfs 
1 2, ,... nf f f , then the joint pdf of 1 2, ,.... nX X X  is 

 
1( ) ( )n

i if x f x   
 
If 1 2, ,.... nX X X  are independent random variables with the 
same pdf f , then the joint pdf of 1 2, ,.... nX X X  is 
 

( ) ( )nf x f x  
 
These are said to be independently and identically distributed 
(iid). 
 



Covariance 
The covariance between two random variables X and Y is 
 

( , ) (( ( ))( ( ))) ( ) ( ) ( )Cov X Y E X E X Y E Y E XY E X E Y      
Note: 2( , ) (( ( )) ) ( )Cov X X E X E X Var X    
 
Useful rules on variances and covariances 
 
● ( ) ( ) ( ) 2 ( , )Var X Y Var X Var Y Cov X Y     
● 2 2( ) ( ) ( ) 2 ( , )Var aX bY c a Var X b Var Y abCov X Y      
● ( , ) ( , ) ( , )Cov X Y Z Cov X Z Cov Y Z  



Correlation 
The correlation between two random variables X and Y is 
 

( , )( , )
( ) ( )

Cov X YCorr X Y
Var X Var Y

  

 
which is between -1 and +1 (we’ll prove this later..) 
 



Covariance and independence 
 
If X and Y are independent, then their covariance (and 
correlation) is zero.  They are “uncorrelated”. 
 

( , ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0Cov X Y E XY E X E Y E X E Y E X E Y    
 
But the converse is not true.  Counterexample. 
X=-1, 0, 1: each with probability 1/3 

2Y X  
 



The joint density of X and Y is 
 X=-1 X=0 X=1   
Y=0 0 1/3 0  1/3 
Y=1 1/3 0 1/3  2/3 
 1/3 1/3 1/3   
 
Clearly X and Y are NOT independent.  But 

1 1 1( ) * ( 1*1) *(0*0) *(1*1) 0
3 3 3

E XY       

1 1 1( ) * ( 1) *0 *1 0
3 3 3

E X      .   1 2 2( ) *0 *1
3 3 3

E Y     

( , ) ( ) ( ) ( ) 0Cov X Y E XY E X E Y     
X and Y are uncorrelated 



More results on independent random variables 
 

1. If X and Y are independent, g is a function only of X and 
h is a function only of Y then g(X) and g(Y) are 
independent 

 
2. If X and Y have a joint probability density ( , )f x y  then 

they are independent if and only if there exist functions 
( )g x  and ( )h y  such that ( , ) ( ) ( )f x y g x h y .  If these 

satisfy the conditions for pdfs, then they are the 
marginal pdfs of X and Y. 



3. If 1 2, ,.... nX X X  are mutually independent, then 
1 2 1 2( ( ) ( )... ( )) ( ( )) ( ( ))... ( ( ))n nE g X g X g X E g X E g X E g X

 
4. If 1 2, ,.... nX X X  are mutually independent random 

variables with moment generating functions 
1 2
( ), ( ),.. ( )

nX X XM t M t M t , respectively and 1
n
i iZ X  , the 

moment generating function of Z  is 
 

1 2
( ) ( ) ( )... ( )

nZ X X XM t M t M t M t  
 



 Proof of result 3: 
1 2

1 2 1 2 1 2

1 2 1 2 1 2

1 1 1 2 2 2

1 2

( ( ) ( )... ( ))

.. ( ) ( )... ( ) ( , ,... ) ..

.. ( ) ( )... ( ) ( ) ( )... ( ) ..

( ) ( ) ( ) ( ) ... ( ) ( )
( ( )) ( ( ))... ( ( ))

n

n n n

n n n

n n n

n

E g X g X g X

g x g x g x f x x x dx dx dx

g x g x g x f x f x f x dx dx dx

g x f x dx g x f x dx g x f x dx
E g X E g X E g X

   

   

   



 

 
Proof of result 4: 
 1 2 1 2( .. )( ) ( ) ( ) ( ... )n nX X X t X tX t X tZt

ZM t E e E e E e e e     
1 2( ) ( ) ( )... ( )nX tX t X t

ZM t E e E e E e     
1 2

( ) ( ) ( )... ( )
nZ X X XM t M t M t M t    



Moment generating function of independent random vars 
 
Result 4: If 1,... nX X  are independent rvs with mgf 

1( ),.... ( )nm t m t , then the mgf of 1
n
i iX  is 1 ( )n

i im t  
 
If 1,... nX X  are independent rvs all with the same mgf ( )m t , 
then the mgf of 1

n
i iX  is ( )nm t  

 
 
 
 
 



If 1 2, ,.... nX X X  are independent Bernoulli random variables 
then 1

n
i iX  is Binomial with parameters n and p. 

 
The mgf of a Bernoulli is ( ) (1 )tX tE e pe p    
 
The mgf of 1

n
i iX  is [ (1 )]t npe p   and this is the Binomial 

mgf. 



More practice with multiple random variables 
 
Example 1. (X,Y) are uniformly distributed on the unit 
interval such that 

( , ) 1f x y  , 0 1x   and 0 1y   
 
Q. What is ( )f x ?  

1 1 1
0 0 0( ) ( , ) 1 [ ] 1f x f x y dy dy y       

 
Q.  What is ( , | 1 / 2)f x y x  ?  

 ( , )( , | 1 / 2)
( 1/ 2)
f x yf x y x

P x
 


 for 1 / 2X   

     0              otherwise 



( , | 1 / 2) 2f x y x    for 1 / 2X   
 
Q. What is ( | 1 / 2)f y x  ? 

1 1 1
1/2 1/2 1/2( | 1 / 2) ( , | 1 / 2) 2 [2 ] 1f y x f x y x dx dx x         

 
Q.  What is ( )P X Y ? 

1 1 1 1
0 0( ) ( , ) 1y yP X Y f x y dxdy dxdy        

2
1 1 1 1
0 0 0( ) [ ] (1 ) [ ]

2y
yP X Y x dy y dy y          

1 1( ) 1
2 2

P X Y      



 
Q. What is ( , | )f x y x y ? 

  ( , )( , | )
( )
f x yf x y x y

P X Y
 


    for X Y  

    0                  otherwise 
          ( , | ) 2f x y x y       for X Y  
 
Q. What is ( | )f y x y ? 

1 1 1( | ) ( , | ) 2 [2 ] 2(1 )y y yf y x y f x y x y dx dx y y          



Example 2: (X,Y) are uniformly distributed with support 
{( , ) : 0 2 ,0 1 / 2 }x y x y x       

( , )f x y c  
 
Q. What is c? 

2 1 /2 2 1 /2 2
0 0 0 0 0

2 2
2 2
0 0

[ ] (1 )
2

4[ ] [ ] 2 2
2 2 2 2

x x xcdydx cy dx c dx

c x ccx c c c c

    

 


   

 

       

      
 

Since this must integrate to 1, 1 1 /cc     
 



Q. What is f(X)? 
1 1

2 2
0 0

1 1 1( ) ( , ) [ ] (1 )
2

x x xf x f x y dy dy y 

   
 

        

 
Q. What is E(X)? 

2 2 2 2
0 0 02

2 3 2 3
2 2
0 02 2

1 1 1( ) ( ) (1 )
2 2

1 1 1 4 1 8 8 2[ ] [ ] 2
2 2 3 2 2 3 6 3

xE X xf x dx x dx xdx x dx

x x

  

 

   
    

   


        

      

 



Example 3: Two bidders participate in an auction for a white 
elephant. Each bidder has the same underlying valuation for 
the elephant, given by the same random variable ~ [0,1]V U .  
 
Neither bidder knows V .  Each bidder receives an 
independent signal about V : | ~ [0, ]iX V U V  
 
Assume each bidder submits a bid equal to her conditional 
expectation: for bidder 1, this is 1( | )E V X . How much does 
she bid? 

 



Bayes Rule: 1
1

1

( | ) ( )( | )
( )

f x v f vf v x
f x

  

1( | ) 1 /f x v v   for 10 x v   
( ) 1f v      for 0 1v   

1
1( , )f x v
v

    for 1 1x v   

1 1

1 1 1
1 1 1 1( ) ( , ) ln(1) ln( ) ln( )x xf x f x v dv v dv x x        

1

1
1 1

1( | )
ln( ) ln( )

vf v x
x v x



      

1 1

1 1 1 1
1

1 1 1 1

1 1 1 1( | )
ln( ) ln( ) ln( ) ln( )x x

x xE V x vdv dv
v x x x x

 
         

 
 



Specific Continuous Distributions 
 

- Uniform    (already) 
- Normal 
- Log-Normal 
- Beta 
- Truncated Normal (now) 
- Exponential 
- Gamma 
- Chi-Squared   (later in the class)  
- T-distribution 
- Cauchy 
- F-distribution 



The Truncated Normal Distribution 
 
This can be useful in empirical micro.  Suppose that 

2~ ( , )X N    but we condition on a X b  .  Then the 
conditional density of X  is truncated normal with the density 

1 ( )
( )

( ) ( )

x

f x b a


 
 

 




 

 
  if a X b   

0                               otherwise 
 

which follows from the definition of conditional probability.



There are closed from expressions for the mean and variance 
of a truncated normal.  For example, 

( ) ( )
( | )

( ) ( )

a b

E X a X b b a

  
   
 

 
   

 
 

 

( )
( | )

1 ( )

a

E X X a a


 




  



 

(special case of the first with b  ) 



Example.  An individuals desired consumption of tobacco is 
(0,1)X N .  But no individual can consume a negative 

quantity of tobacco.  So the observed tobacco consumption is 
  Y X  if 0X    

  0 otherwise 
What is ( )E Y ? 
 

( ) ( | 0) ( 0) ( | 0) * ( 0)E Y E Y X P X E Y X P X       
( ) ( | 0) *1 / 2E Y E X X    

(0) (0)( | 0) 2 (0)
1 (0) 1 / 2

E X X      


 

1( ) (0)
2

E Y 


     (remember: 
21( ) exp( )

22
xx


  )   



The Exponential Distribution 
 

Useful for modeling waiting times (times between events) 
 

cdf: /( ) 1 0xF x e x      

pdf: /1( ) , 0xf x e x


    

( )E X   
2( )Var X   

 



Example: The time between incoming phone calls in a call 
center is exponential with parameter 3 (in minutes). 

 
A call comes in at 14:00.  What is the probability that the 
next call will not come until AFTER 14:02? 

 
The probability that it comes in LESS than 2 minutes is 

 
2/3(2) 1 0.487F e    

 
The answer is 0.513 
 
 



If X has an exponential distribution then if s t  
( | ) ( )P X s X t P X s t      

This property is called “memoryless” 
 

Proof: ( , )( | )
( )

P X s X tP X s X t
P X t
 

  


 
1 / /

( )/
1 / /

( ) exp( / ) [ ]
( ) exp( / ) [ ]

x s
t ss s

x t
t t

P X s x dx e e e
P X t x dx e e

 


 

 
 

    


    

   
    

   
1 / ( )/ ( )/( ) exp( / ) [ ]x s t t s

s t s tP X s t x dx e e e         
         

( | ) ( )P X s X t P X s t       



The gamma distribution 
 
Memorylessness is often unappealing.  The gamma 
distribution also has support from 0 to  but is more general, 
and not memoryless.  It has two parameters:   and  . 
 

The pdf is 1 /1( )
( )

xf x x e 
 

 


 

 
If 1  , then this reduces to an exponential. 
  



Distribution of the max and the min 
 
Suppose that 1 2, ,... nX X X  are iid random variables with a 
probability density ( )f x  and cdf ( )F x .  What’s the 
distribution of the max and the min of these random 
variables? 
 
The cdf of the maximum is 

max 1( ) (max({ }) ) ( ) ( )n n
i i iF x P X x P X x F x       

 
The corresponding pdf is 

1
max ( ) ( ) ( )nf x nF x f x  

 
 



The cdf of the minimum is 
min 1( ) (min({ }) ) 1 ( ) 1 (1 ( ))n n

i i iF x P X x P X x F x       
 
 
The corresponding pdf is 

1
min ( ) (1 ( )) ( )nf x n F x f x   



Example.  If I draw n uniform random numbers on the unit 
interval, how many do I have to draw to have a 99 percent 
chance that at least one is above 0.8. 
 

( )F x x  
max ( ) nF x x    (cdf of the max of n uniforms) 

1(max{ } ) 1n n
i iP X x x     

1(max{ } 0.8) 1 0.8n n
i iP X      

 
I need to solve for the smallest n such that 1 0.8 0.99n   
 
The answer is 21



Distribution of order statistics. 
 
Continue with this problem.  Let the variables be ordered as 

(1) (2) ( )... nX X X  .  What is the cdf and pdf of ( 1)nX  ? 
 

1
( 1)( ) ( ) ( 1) ( )n n
nP X x nF x n F x
         (Convince yourself) 

 
The pdf of ( 1)nX   is  

2 1( 1) ( ) ( ) ( 1) ( ) ( )n nn n F x f x n nF x f x     
2( 1) ( ) ( )(1 ( ))nn n F x f x F x    

 



In general, the pdf for ( )jX  (the jth smallest statistic) is  
1! ( ) ( ) (1 ( ))

( 1)!( )!
j n jn f x F x F x

j n j
 

 
 

 



Example.  If I draw n uniform random numbers on the unit 
interval, how many do I have to draw to have a 99 percent 
chance that at least two are above 0.8. 
 

1
( 1)( ) ( ) ( 1) ( )n n
nP X x nF x n F x
      

1
( 1)( ) ( 1)n n
nP X x nx n x
      

1
( 1)( ) 1 { ( 1) }n n
nP X x nx n x
       

1
( 1)( 0.8) 1 { 0.8 ( 1)0.8 }n n
nP X n n
       

 
The smallest n that satisfies this is 31.



Variance-Covariance Matrix 
 
Suppose that we have n random variables: 1 2, ,.... nX X X  
 
The variance-covariance matrix of these is as follows 
 

1 1 2 1

2 1 2

1

( ) ( , ) ( , )
( , ) ( )

( , ) ( )

n

n n

Var X Cov X X Cov X X
Cov X X Var X

Cov X X Var X

 
 
 
 
 
 



  


 

 
It is square and symmetric and positive definite. 



Example: X and Y are both normal with mean zero and 
variances 1 and 4, respectively.  Their correlation is 0.3.  
What is the variance-covariance matrix of these two random 
variables? 
 

Answer: 
1 0.6

0.6 4
 
 
 

  (Cov(X,Y)=2*1*0.3=0.6) 



The correlation matrix is 
 

1 2 1

2 1

1

1 ( , ) ( , )
( , ) 1

( , ) 1

n

n

Corr X X Corr X X
Corr X X

Corr X X

 
 
 
 
 
 



  




More properties of expectations and variances 
 
Suppose that the nx1 vector 1 2( , ,... ) 'nX X X X  has mean   
and variance-covariance matrix .  Then 
 

( )E a b X a b      
 

( )Var a b X b b      
 



The bivariate normal density 
 
Suppose that 1X  is 2

1 1( , )N    and 2X  is 2
2 2( , )N    and the 

two random variables have a correlation of  .  Then the 
vector 1 2( , ) 'X X X  has a bivariate normal distribution with 
pdf 
 

1 1/2 11( ) ( ) | | exp( ( ) ' ( ))
2

f x x x            

 

where 1 2( , ) '    and 
2
1 1 2

2
1 2 2

  
  

 
   

 
 is the variance-

covariance matrix of 1X  and 2X . 



Graph of bivariate normal pdf 
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Properties of the bivariate normal density 
 
● If 1X  and 2X  are uncorrelated then they are independent. 
 
● 2 2 2 2

1 2 1 2 1 2 1 2~ ( , 2 )aX bX c N a b c a b ab             
 
 
 



The conditional normal density 
 
The distribution of 2X  conditional on 1 1X x  is 

2 22
2 1 1 2

1

( ( ), (1 ))N x   


    

Proof: Let 2 1
2 1

1Z X X
 

   

1 1 2 1
2 1

1( , ) ( , ) ( )Cov Z X Cov X X Var X
 

   
2

1 2 1
1 1

2 1

0    
 

      

Z  and 1X  are uncorrelated and so independent (by property 
1). 



From property 2,  Z is 22 1

2 1

( ,1 )N   
 

   

As Z and 1X  are independent the distribution of Z conditional 
on 1 1X x  is the same as the unconditional distribution.  
 

Rearranging the definition of Z, 2
2 1 2

1

X X Z 


   

So the distribution of 2X  conditional on 1 1X x  is 
2 22 1 1 2

2 2
1 1

( , (1 ))xN    
 

    

2 22
2 1 1 2

1

( ( ), (1 ))N x   


     



Example: Suppose that annual US and Canadian stock 
returns are both normally distributed with 8   and 16  .  
Suppose that the correlation between them is 0.7.  If in a 
given year, U.S. stock returns are 10 percent, what is the 
probability that Canadian returns are at least 10 percent? 
 
Let 1X  and 2X  be US and Canadian returns.  The conditional 
distribution of 2X  given that 1 10X   is:  

2 20.7 *16(8 (10 8),16 (1 0.7 )) (9.4,130.56)
16

N N     

 
So the probability that Canadian returns are at least 10 
percent is 0.479. 



How to simulate correlated normal random variables 
 
Suppose we want to generate standard normal random 
variables X and Y with correlation   (common situation). 
 
● Let X be standard normal. 
● Let U be standard normal (independent of X). 
● Let 21Y X U     
 

( ) 0E Y  , 2 2( ) 1 1Var Y      , 
( , ) ( ) ( )Cov X Y E XY Var X     

 
So X and Y are standard normal with correlation    



Matlab code 
 
Generate random variables Y and X with correlation 0.9. 
 
x=randn(100000,1); 
a1=0.9; a2=sqrt(0.19); 
y=(a1*x)+(a2*randn(100000,1)); 
mean(x.*y)



Gibbs sampling 
 
General method for simulating from joint distn of 2 rvs 
 
Suppose I can’t draw directly from the distn of Y and X. 

I can draw from the distribution of Y|X and X|Y 
 
Algorithm. Pick an X. 
1. Take a draw from Y given X. 
2. Take a draw from X given Y. 
3. Repeat 1 and 2 many times. 
 
The draws from 1 and 2 after discarding an initial “burnin” 
are draws from the joint distribution of Y and X. 



Gibbs sampling example. 
 

Suppose that 
0 1

~ [ , ]
0 1

X
N

Y



     
     
     

 but we cannot draw 

from the joint distribution.  We know that 
2| ~ ( ,1 )X Y y N y    
2| ~ ( ,1 )Y X x N y    

 
Then we can use the Gibbs sampler. 
 
The Gibbs sampler is widely used in Bayesian methods 
(more on this later). 



 
The multivariate normal density 
 
Suppose that X  is an nx1 vector with pdf 

/2 1/2 11( ) ( ) | | exp( ( ) ' ( ))
2

nf x x x            

 
where   is an nx1 vector and  is an nxn variance-
covariance matrix then ~ ( , )X N    
 
Properties of the multivariate normal density 
● If two elements of X  are uncorrelated, then they are 
independent 
● ' ~ ( ' , ' )a b X N a b b b    



The conditional normal density 
 
Suppose that ~ ( , )X N    where 1 2( , ) 'X X X  , 1 2( , ) '     

and 11 12

21 22

  
     

.  Then the distribution of 2X  conditional 

on 1X x  is  
 

1 1
2 21 11 1 1 22 21 11 12( ( ), )N x            

 



Multivariate Transformation Formula 
Let X and Y have a joint pdf , ( , )X Yf x y  and U and V be 
random variables such that 1( , )U g X Y  and 2 ( , )V g X Y  is 
a one-to-one transformation. 
 
Define inverse transforms 1( , )X h U V  and 2 ( , )Y h U V  
Let J  denote the determinant of the matrix  

1 1

2 2

( , ) ( , )

( , ) ( , )

h u v h u v
u v

h u v h u v
u v

  
  
 
   

  

 

Then the density of U and V is 
, , 1 2( , ) ( ( , ), ( , )) | |U V X Yf u v f h u v h u v J  



Example 1. ( , ) 2, 0 1, 0 1, 1f x y x y x y        
and zero otherwise.  Let U X Y   and V X Y  .  What is 
the joint density of U and V? 
 

( ) / 2X U V   and ( ) / 2Y U V   
/ / 1 / 2 1 / 2

| | 1 / 2
/ / 1 / 2 1 / 2

X U X V
J

Y U Y V
      

            
 

, ,
1 1 1 1( , ) ( ( ), ( )) * 2* 1
2 2 2 2U V X Yf u v f u v u v       

 
Support: [0,1]U  , [ 1,1]V   , U V  



Example 2. Suppose that X and Y are independent standard 
normal random variables, so that  

2 2
2 2

/2 /21 1 1( , ) exp( )
2 22 2

x y x yf x y e e
 

  
    

Let U X Y   and V X Y  .  What is the joint density of U 
and V? 
 

( ) / 2X U V   and ( ) / 2Y U V   
/ / 1 / 2 1 / 2

| | 1 / 2
/ / 1 / 2 1 / 2

X U X V
J

Y U Y V
      

            
 

2 2

,
1 ( ) / 4 ( ) / 4 1( , ) exp( )

2 2 2U V
u v u vf u v


  

    



2 2

,
1 ( ) ( )( , ) exp( )

4 8U V
u v u vf u v


  

    
2 2 2 2

,
1 2 2( , ) exp( )

4 8U V
u v uv u v uvf u v


    

    

    
2 21 exp( )

4 4
u v




   

 
2 2/4

,
/4( , ) 11

4 4
v

V
u

U ef v eu
 

   

 
So U and V are independent with 

2 /41( )
4

uf u e


  and  
2 /41( )

4
vf v e






The marginal densities of U and V are both (0,2)N . 
 
In fact it can be shown that if X and Y are independent with a 
common distribution function F then U=X+Y and V=X-Y are 
independent if and only if F is normal. 
 



Example 3.  Suppose that X and Y are independent gamma 
random variables with params ( ,1 / )   and ( ,1 / )   so that 

1 1 1 1

( , )
( )(1 / ) ( )(1 / ) ( ) ( )

x x x yx e x e x e y ef x y
         

 

 
     

       

 
   

 

( ) 1 1

( ) ( )
x ye x y

 
  

 


   

 
 

 
Let U X Y   and / ( )V X X Y  .  What is the joint 
density of U and V? 
 
X UV  and (1 )Y U V   

/ /
| |

/ / 1
X U X V V U

J U
Y U Y V V U
      

             
 



( (1 )) 1 1( , ) ( ) ( (1 ))
( ) ( )

uv u vf u v e uv u v u
 

  
 


      

 
 

1 1 1(1 )
( ) ( )

ue u v v
 

    
 


     

 
1

1 1( )
( )

( ) (1 )( , )
( ) ( )

u

v vf u v e u  
 

   
   

 

 











 

 
So U and V are independent where U has a gamma 
distribution with parameters ( ,1 / )    and V has a beta 
distribution with parameters ( , )  . 



Law of Iterated Expectations 
 
Useful result 
 
If X and Y are any two random variables then 

( ( | )) ( )E E X Y E X  
 
Let’s check this in one case: the bivariate normal 

2
2 1 1 2 1 1

1

( | ) ( )E X X x x 


     

2
2 2 1 1 2 1 1 2

1

( ) ( ( | )) ( ( ))E X E E X X x E x  


       

Works in this case…… 



More substantive example. 
 
Suppose that X is binomial with parameters n and p and p is 
beta-distributed with parameters   and   (“hierarchical” 
model). 
 

( | )E X P np  
 

( ) ( ( | )) ( ) ( )E X E E X p E np nE p n 
 

   




Conditional variance identity 
 
If X and Y are any two random variables then 
 

( ) (var( | )) ( ( | ))Var X E X Y Var E X Y   
 



Stein’s Lemma 
 
If X is 2( , )N    and g  is any function that satisfies 

( '( ))E g X   then 2(( ( )( )) ( '( ))E g X X E g X    
 
Proof: 

2

22

1 ( )(( ( )( )) ( )( ) exp( )
22

xE g X X g x x dx 






      

2
2

22

2
2

22

1 ( )[ ( ) exp( )]
22

1 ( )exp( ) '( )
22

xg x

x g x dx













  


   

 



2
2

22

2
2

22

1 ( )[ ( ) exp( )]
22

1 ( )'( ) exp( )
22

xg x

xg x dx













  


  

 

2 ( '( ))E g X  



Useful inequalities 
 
● Cauchy-Schwarz Inequality 
Suppose X and Y are two random variables 

2 2| ( ) | ( ) ( )E XY E X E Y  
 
Let ( )X U E U   and ( )Y V E V   

2 2| (( ( ))( ( )) | (( ( )) ) (( ( )) )E U E U V E V E U E U E V E V    
| ( , ) | ( ) ( )Cov U V Var U Var V   

 
This implies that correlations must be between -1 and +1 
 



● Hölder’s Inequality 
Suppose X and Y are two random variables 

1/ 1/| ( ) | ( ) ( )p p q qE XY E X E Y  

where 1 1 1
p q
  . 

Cauchy-Schwarz is a special case with p=q=2. 
 
● Liapounov’s Inequality 
Suppose X is a random variable 

1/ 1/{ (| | )} { (| | )} , 1r r s sE X E X r s    



● Minkowski’s Inequality 
Suppose X and Y are two random variables 

1/ 1/ 1/(| | ) (| | ) (| | ) , 1p p p p p pE X Y E X E Y p     
 

● Covariance Inequality 
Let X be any random variable and g and h are functions such 
that E(g(X)), E(h(X)) and E(g(X)h(X)) exist.  Then 

-  If g is nondecreasing and h is nonincreasing 
        ( ( ) ( )) ( ( )) ( ( ))E g X h X E g X E h X  

-  If g and h are both nondecreasing or both nonincreasing 
( ( ) ( )) ( ( )) ( ( ))E g X h X E g X E h X  

 
 
 



Stochastic Processes 
 
A stochastic process 1{ }T

t tX   is a collection of random 
variables, where the index t refers to time. 
 
Example. Consider flipping a coin forever.  Let 1tX   if the 
tth toss is heads and 2 otherwise.  This defines a stochastic 
process where sX  is independent of rX  for r s . 
 
The index t  can be continuous (continuous time) or discrete 
(discrete time). 



Consider a stochastic process in discrete time that takes on a 
finite number of possible values (e.g. 1 and 2). 
 
If 

1 1 1 1( | , ,... ) ( | ) 1,2,..t t t t tP X j X i X X P X j X i t          
 
then the stochastic process is said to be a Markov Chain. 
 
“Transition probabilities”: 1( | )ij t tp P X j X i    

“Transition matrix”: 
11 1

1

..
:

..

k

k kk

p p
P

p p

 
   
 
 

 

 



Transition probabilities have the property that 1j ijp   
In other words, each column of P  adds up to 1. 



Recall: If 1 2, ,... hA A A  is a mutually exclusive and collectively 
exhaustive set of events 

1 2( ) ( ) ( )... ( )hP B P B A P B A P B A       
1 1 2 2( ) ( | ) ( ) ( | ) ( )... ( | ) ( )h hP B P B A P A P B A P A P B A P A     

 
Hence 

1 1 1( ) ( | ) * ( )k
t i t t tP X j P X j X i P X i         

 
Hence 
If ( ( 1), ( 2),... ( )) 'X

t t t tP P X P X P X k     then 
1 *X X

t tP P P   
 
 



Let  ( )nP  denote the n-step transition matrix, the ijth element 
of which is 

( | )t n tP X j X i    
 
Then ( )n nP P  



Under some conditions 
 lim ( | )n t n t jP X j X i       
exists and is independent of i.  If 1( ,... ) 'k   , then it solves 
the equation ( ) 0P I    
 
This means that   is the unit-length eigenvector of P  
corresponding to the unit eigenvalue. 
 
  gives the “steady state” probabilities of the Markov-Chain.  

j  is the “proportion of time” that the process is in state j.  



Example: The coin-flip process is a Markov chain with 
 

0.5 0.5
0.5 0.5

P
 

  
 

 

 



Example. Suppose that the economy can be in two states: 
expansion and recession with transition matrix 

0.9 0.4
0.1 0.6
 
 
 

 

 
Given that the economy is in expansion in quarter t, what is 
the probability that it will be in expansion in quarter t+2? 
 
Given that the economy is in recession in quarter t, what is 
the probability that it will be in expansion in quarter t+3? 
 
What is the steady state probability of expansion/recession? 



Given that the economy is in expansion in quarter t, what is 
the probability that it will be in expansion in quarter t+2? 
 

20.9 0.4 0.85 0.6
0.1 0.6 0.15 0.4

P P
   

     
   

 

 
Answer: 0.85 
 
 



Given that the economy is in recession in quarter t, what is 
the probability that it will be in expansion in quarter t+3? 
 

30.9 0.4 0.825 0.7
0.1 0.6 0.175 0.3

P P
   

     
   

 

 
Answer: 0.7. 



What is the steady state probability of expansion/recession? 
 
( ) 0P I    

1

1

0.1 0.4
0

10.1 0.4



   
     

 

 
1 1 1 10.1 0.4(1 ) 0 0.5 0.4 0.8            

 
80 percent of the time, the economy is in expansion 
20 percent of the time, the economy is in recession 



Unusual transition matrices for Markov Chains 
 

Periodic: 
0 1
1 0
 
 
 

  (no “steady state”) 

 

Absorbing: 
0.9 0
0.1 1
 
 
 

 (once in state 2, you never leave) 



More Markov Chain Definitions.   
 
A Markov chain is said to be aperiodic if 0iip i  . 
 
A Markov chain is said to be positive recurrent if 

(inf{ : | })t n tE n X i X i i       
 
A Markov chain is said to be ergodic if it is both aperiodic 
and positive recurrent. 



A counting process is a stochastic process in continuous 
time. 
 
Intuitively: How many events have happened by time t  
 
Formally: A counting process is a stochastic process { ( )}N t  
where [0, )t   such that 

(i) ( ) 0N t   
(ii) ( )N t  is integer-valued 
(iii) ( ) ( )s t N s N t    
(iv) If s t  then ( ) ( )N t N s  is the number of events 

between s  and t . 
  



A counting process ( )N t  is a Poisson process with rate 0   
if 

(i) (0) 0N   
(ii) If 1 2 3 4t t t t    then 2 1( ) ( )N t N t  is independent of 

4 3( ) ( )N t N t  
(iii) If s t  then the number of events between s  and t , 

( ) ( )N t N s , is Poisson distributed with mean ( )t s  .  
That is 

 
( ) ( ( ))( ( ) ( ) )

!

t s ne t sP N t N s n
n

   
    

for 0,1,2,...n   



A discrete time stochastic process, tX , is said to be white 
noise if 

(i) ( ) 0tE X t   
(ii) ( )tVar X t    
(iii) ( , ) 0s tCov X X   for s t  

 
A discrete time stochastic process, tX , is said to be Gaussian 
white noise if 2~ ( , )tX N   and are independent of each 
other. 



A discrete time stochastic process, tX , is said to be a 
random walk if 1t t tX X    where t  is white noise. 
 
A discrete time stochastic process, tX , is said to be a 
martingale if 1 1( )t t tE X X   where 1(.)tE   denotes the 
expectation conditional on the information set at time 1t  . 
 
A discrete time stochastic process, tX , is said to be a 
martingale difference sequence if 1( ) 0t tE X  . 
 



A random walk is a martingale, but the converse is not true. 
 

1 1 1( | )t t t t t tX X E X X X       
 
Suppose that 1t t t tX X     where 2 2

1log( ) log( )t t tu     
and tu  and t  are independent white noise processes. 
 

tX  is not a random walk 
 

1 1 1 1 1 1 1( ) ( ) ( ) ( )t t t t t t t t t t t tE X X E X E E X               
 
So tX  is a martingale. 



Financial asset prices are often thought to be martingales, but 
not random walks, because of clustering in volatility. 
 
 
A white noise process is a martingale difference sequence, 
but the converse is not true. 
 
 



By the law of iterated expectations, if tX  is a martingale then 
( )t t h tE X X   for all h. 

 
2 1 2 1( ) ( ( )) ( )t t t t t t t tE X E E X E X X       
3 1 3 1( ) ( ( )) ( )t t t t t t t tE X E E X E X X       

and so on… 
 
 



Brownian motion. 
 
A Brownian motion is the most important continuous time 
stochastic process in macro and finance. 
 
A Brownian motion is the continuous time analog of a 
Gaussian random walk. 
 
The stochastic process ( )B t  is a Brownian motion if 

1. (0) 0B   
2. 2( ) ( ) ~ (0, ( ))B t B s N t s   for any t s  
3. If 1 2 3 4t t t t    then 

2 1( ) ( )B t B t  is independent of 4 3( ) ( )B t B t  



 
 
 
 



Some Brownian motion properties 
 
● A Brownian motion is a martingale: ( ) | ( ) ( )EB t t B t B t    
 
● ( ( ), ( )) min( , )Cov B s B t s t  
Proof: Suppose wlog that s<t 

( ( ), ( )) ( ( ) ( )) (( ( ) ( ) ( )) ( ))Cov B s B t E B s B t E B t B s B s B s     
2( ( ), ( )) [( ( ) ( ))( ( ) (0))] ( ( ) )Cov B s B t E B t B s B s B E B s      

( ( ), ( ))Cov B s B t s   
 
● If aT  is the first time that ( )B t  hits a (“first hitting time”) 

2 /2
| |/

2( ) y
a a t

P T t e dy


     



2 /2
0

2( ) lim ( ) 1y
a t aP T P T t e dy


 

         

 
● ( )aE T   
 

● 
2 /2

0 /

2(max ( ) ) 1 y
s t a t

P B s a e dy


 
       for 0a   

     Proof: 0(max ( ) ) 1 ( )s t aP B s a P T t       

   
2 /2

/

21 y
a t

e dy


     

● P(Goes up A before going down B)= B
A B

 



Generating a Brownian Motion on the computer 
 
randn(‘seed’,123); 
p=1; 
n=1000;     %Some large number 
x=cumsum(randn(n*p,1)/sqrt(n)); 
 
x is now (1 / ), (2 / ),... ( )B n B n B p



Brownian Motion with drift 
 

The stochastic process ( )B t  is a Brownian motion if 
1. (0) 0B   
2. 2( ) ( ) ~ ( , ( ))B t B s N t s    for any t s  
3. If 1 2 3 4t t t t    then 

2 1( ) ( )B t B t  is independent of 4 3( ) ( )B t B t  
 
 
 
 
 



 
 



Some Brownian motion with drift properties 
● If 0  , ( ) 1aP T          if 0a   
          = 2 ae    if 0a   
 
● If 0  , ( ) 1aP T          if 0a   
          = 2 ae    if 0a   
 

● P(Goes up A before going down B)=
2

2 2

1B

B A

e
e e



 




 



Geometric Brownian Motion 
 
If ( )B t  is a Brownian motion, then ( ) exp( ( ))Y t B t  is a 
geometric Brownian motion.  It is useful for modeling 
financial asset prices. 



 



Example: Suppose that a stock price ( )Y t  follows a 
geometric Brownian motion with 2 1  . At time zero, the 
stock price is (0) 1Y   and an investor has an option to buy 
the stock at time T at a price K.  The investor will exercise 
the option if and only if ( )Y T K .  What is the probability 
that the investor will exercise the option? 
 

( ( ) ) (exp( ( )) ) ( ( ) log( ))P Y T K P B T K P B T K      
 
But ( ) ~ (0, )B T N T  and so the probability of exercising is  

log( ) log( )( (0, ) log( )) ( (0,1) ) 1 ( )K KP N T K P N
T T

      

 
 



Behavior of the sample average and sample variance. 
 
Suppose that 1 2, ,... nX X X  are independent random variables 
all drawn from the same 2( , )N    distribution 
(independently and identically distributed). 
 

1
1

n
i iX n X
   is a natural estimator of   

2 1 2
1( 1) ( )n

i is n X X
     is a natural estimator of 2  

 
What are their sampling distributions? 



Results: 
● ( )E X   
● 2~ ( , / )X N n   
● 2 2( )E s   
● X  and 2s  are independent 



Proof that 2 2( )E s  : 
2 2

2 2 1
1

1 ( )
1 1

n
n i i
i i

X nXs X X
n n




 
   

 
 

2 2
2 ( ) ( )( )

1
inE X nE XE s
n


 


 
2 2 2( )iE X     and 2( )i jE X X   for i j  

2 2 2
2 2

1 22 2

1 ( ) ( 1)( ) (( ... ) )n
n n nE X E X X X

n n
    

     
2 2 2 2

2 2( 1)( ) nE X
n n

      
     

2 2 2 2 2
2 2( ) ( 1)( )

1 1
n n nE s

n n
        

   
 

  

 



For more results, need to introduce the remaining continuous 
distributions 
 
Chi-squared distribution 
 
Suppose that 1 2, ... pZ Z Z  are independent (0,1)N  random 
variables. 
 
Then 2

1
p
i iZ Z   is 2  distributed on p degrees of freedom 

 
( )E Z p  

( ) 2Var Z p  
0 Z   



Two more results about the chi-squared distribution 
 
● If X and Y are two independent 2  random variables on Xn  
and Yn  degrees of freedom, respectively, then X Y  is 2  on 

X Yn n  degrees of freedom. 
 
● If  ~ (0, )X N   is kx1 with a multivariate normal 
distribution, then 1'X X  is 2 ( )k  distributed.



The t distribution 
 
If ~ (0,1)Y N  and 2~ ( )X p  are independent then 
 

/ /Z Y X p  is t  distributed on p degrees of freedom 
 

( ) 0E Z   if 1p   (and infinite if 1p  ) 

( )
2

pVar Z
p




 if 2p   (and infinite if 2p  ) 

 
A t  distribution on 1 degree of freedom is also known as a 
Cauchy distribution. 



Result: If ~ (0,1)Y N  and ~ (0,1)X N  are independent, then 
/Y X  is Cauchy distributed. 

 
Proof. Let 2Z X  

2~ (1)Z   
/ / 1 ~ (1)Y Z t  
/ ~ (1)Y X t   (a.k.a. Cauchy) 

 
A Cauchy distribution has infinite mean and infinite variance 
 
 



The F distribution 
 
If 1V  and 2V  are independent 2

1( )d  and 2
2( )d  variables, 

respectively, then 1 1

2 2

/
/

V d
V d

 is F  distributed on 1d  and 2d  

degrees of freedom. 



Now back to the problem…. 
 
Suppose that 1 2, ,... nX X X  are independent random variables 
all drawn from the same 2( , )N    distribution 
(independently and identically distributed). 
  
We already had 
● ( )E X   
● 2~ ( , / )X N n   
● 2 2( )E s   
● X  and 2s  are independent 
 



Now we can add two new results: 

● 
2

2
2

( 1) ~ ( 1)n s n



  

● ( ) ~ ( 1)
/

X t n
s n


  



Suppose that 1 2, ,... nX X X  are independent random variables 
all drawn from the same distribution (independently and 
identically distributed) with mean   and variance 2  but are 
not necessarily normal. 
 
What can we say about the sampling distribution of X ? 
 
As n gets big, X  “converges” to  . 
 
What exactly does this mean?



Nonstochastic limits. 
 
limn nX a   means 

0 00, such that | |nn n n X a         
 
limn nX a   and limn nY b   implies that 
● lim ( )n n nX Y a b     
● limn n nX Y ab   
● lim ( ) ( )n ng X g a   for any cts fn (.)g  
 
 
 



Nonstochastic orders of magnitude 
 
We say that nX  is of order of magnitude nf , ( )n nX O f   if 
lim /n n nX f C  , 0 C  . 
 
We say that nX  is of smaller order of magnitude than nf , 

( )n nX o f   if lim / 0n n nX f   
 
Example: 2

1 ( )n
i i O n   

1
1 2 2

( 1) ( 1) 1
2 2 2

n
n i
i

n n i n ni
n n




  
      as n . 

 
 



( )n nX O f  and ( )n nY O g  (max( , ))n n n nX Y O f g    
 

( )n nX O f  and ( )n nY O g  ( )n n n nX Y O f g   
 

( )n nX o f  and ( )n nY o g  (max( , ))n n n nX Y o f g    
 

( )n nX o f  and ( )n nY o g  ( )n n n nX Y o f g   
 



Suppose that nX  is a random sequence. 
 

nX  converges in probability to   if for all 0   
lim (| | ) 0n nP X      .   

- We write this as n pX   
 

nX  converges almost surely to   if for all 0   
(lim ) 1n nP X    .   
- We write this as n asX   

 
nX  converges in quadratic mean to   if 

2lim (( ) ) 0n nE X     
- We write this as n qmX   



nX  is unbiased for   if ( )nE X   
 

nX  is asymptotically unbiased for   if lim ( )n nE X    
 



Theorems. 
 
● If n asX   then n pX   but the converse is not true. 
 
● If n qmX   then n pX   but the converse is not true. 
 
 
 
Almost sure                 Quadratic Mean 
 
 
               In Probability 



Example that convergence in probability does not imply 
convergence almost surely. 
Let S  be uniform on the unit interval.  Consider the random 
sequence 

1( ) 1(0 1)X s s s     
2 ( ) 1(0 1/ 2)X s s s      3( ) 1(1/ 2 1)X s s s     
4 ( ) 1(0 1/ 3)X s s s      5 ( ) 1(1/ 3 2 / 3)X s s s     
6 ( ) 1(2 / 3 1)X s s s     

 
etc. and let ( )X s s  
lim (| ( ) ( ) | ) 0 0 ( ) ( )n n n pP X s X s X s X s          
 
But for every s, ( )nX s  alternates between s  and 1s   
So ( )nX s  does not converge almost surely to ( )X s  



Proof that convergence in q.m. implies convergence in 
probability. 
  
By Chebychev, for any 0   

2
2 2

2

(( ) )[| | ] [( ) ] n
n n

E XP X P X    



        

 
Suppose that n qmX  .   

2lim (( ) ) 0n nE X     
lim [| | ] 0n nP X       

n pX    
 



Counterexample that the converse is not true 
 
Suppose that nX   w.p 1 1/ n  

 nX n  w.p. 1 / n 
 

lim (| | ) 0n nP X       
n pX    

 
2

2 21 1 ( )(( ) ) 0*(1 ) ( ) * ( )n
nE X n

n n n
  

       
2lim (( ) ) 0n nE X     (actually it is ) 

nX  does not converge in quadratic mean to   
 



More results 
 
● If n p xX   and n p yY   then n n p x yX Y      
 
● If n p xX   and n p yY   then n n p x yX Y    
 
● If n pX    and (.)g  is a continuous function then 

( ) ( )n pg X g    



Three ways of saying the same thing: 
● n pX   
● The probability limit (or “plim”) of nX  is   
● nX  is consistent for   
 



Weak Law of Large Numbers 
If 1 2{ , ,.... }nX X X  is iid with mean   and variance 2   
then 1

1
n
i i pX n X 
    

 
Proof: 

2 2
2 2

2 2

(( ) )(| | ) (( ) ) n
n n

E XP X P X
n

    
 


        

lim (| | ) 0n nP X       
n pX    

 
“You can…never fortell what any one man will do, but you can say 
with precision what the average number will be up to.  Individuals vary 
but percentages remain constant.  So says the statistician.”   
Sherlock Holmes.



Implication of WLLN 
 
If 1 2{ , ,.... }nX X X  is iid with mean   and variance 2   
then 2 1 2 2

1( 1) ( )n
i i ps n X X 
      

 

Proof: 2 1 2 2 2
1 1

1( 1) ( ) ( )
1

n n
i i i i

ns n X X X nX
n n


       


 

1 2 2 2 2
1 ( )n

i i p in X E X  
     

2 2
p pX X     

2 2 2 2 2 2
1

1 n
i i pX nX

n
           

2 2
ps  



Strong Law of Large Numbers 
 
If 1 2{ , ,.... }nX X X  is iid with mean   and variance 2   
then 1

1
n
i i asX n X 
    



Convergence in distribution 
 
If nX  is a sequence of random variables each with cdf nF , 
then nX  converges in distribution to X , written n dX X  
if lim ( ) ( )n nF x F x   for all x where F  is the cdf of X . 
 



Results on convergence in distribution 
 
● Slutsky’s Theorem 
If n dZ Z  and n pY   (a constant), then 

n n dZ Y Z  
n n dZ Y Z     

 
● If n pX X  then n dX X   
 
● If c is a constant then n pX c  if and only if n dX c   



Central Limit Theorem 
 

pX  …just tells us that the distribution of X  is 
degenerate in a large enough sample. 
 
The central limit theorem.  If 1 2, ... nX X X  are independently 
and identically distributed with mean  , variance 2  and 
2   finite moments for some 0   then:  

2( ) (0, )dn X N    
 
Amazing result….the { }iX s are not normal, but average is. 
 



The approximation to the sampling distribution of X  obtains 
by “flipping over” the results of the CLT 
 

2
approx~ ( , / )X N n   

 
This is not an approximation if the { }iX s are normal 



Illustration of the central limit theorem 
 
Let iX  be a Bernoulli random variable (1 with probability p 
and 0 otherwise). 
 

1
n
i iX X   is binomial with parameters n and p 

!( ) (1 ) (1 )
!( )!

n x n x x n x
x

nP X x C p p p p
x n x

     


 

 
{ }iX  are independent, ( )iE X p  and ( ) (1 )iVar X p p   

( ) (0, (1 ))dn X p N p p     (CLT) 

approx
(1 )~ ( , )p pX N p

n


  



1 approx~ ( , (1 ))n
i iX N np np p    

 
The central limit theorem implies the normal approximation 
to the binomial.  A binomial random variable with 
parameters n and p is approximately ( , (1 ))N np np p . 
 



Example.  Suppose that 52 percent of voters in fact plan to 
vote for candidate X.  A random sample of 1,000 voters is 
chosen.  What is the probability that at least 500 people in  
the sample plan to vote for candidate X? 
 
The exact answer is the probability that a Binomial with 
parameters 1,000 and 0.52 is greater than or equal to 500.  
Hard to calculate. 
 
But the number in the sample who vote for X 

(0.52*1000,0.52*0.48*1000) (520,249.6)N N   
 
Probability that this is at least 500=0.897 
 



{ }iX  is Bernoulli.  
Monte-Carlo Simulated distribution of 1

1
n
i iX n X
   

 



Sketch of proof of the Central Limit Theorem 

Let i
i

XY 



 .  Then 1
( ) 1 n

i i
n X Y

n


 


  . 

Let ( )YM t  denote the moment generating function of iY . 

The mgf of 1
1 n

i iY
n   is ( )n

Y
tM
n

 
21( ) (0) (0) (0)

2Y Y Y Y
t t tM M M M

nn n
     

(0) (exp(0* )) 1Y iM E Y   
(0) ( ) 0Y iM E Y    

2(0) ( ) 1Y iM E Y    



21( ) 1
2Y

t tM
nn

    
21( ) [1 ]

2
n n

Y
t tM

nn
    

2lim ( ) exp( / 2)n
n Y

tM t
n    (using lim (1 )x n

n
xe
n  ) 

The limiting mgf of 1
1 n

i iY
n   is 2exp( / 2)t  

1
1 ( )(0,1) (0,1)n

i i d d
n XY N N

n





      

2( ) (0, )dn X N     



Application of Slutsky’s Theorem 
 
If 1 2, ... nX X X  are independently and identically distributed 
with mean  , variance 2 , what’s the distribution of 

( )n X
s

 ? 

( ) ( )n X n X
s s

  


 
  

CLT: ( ) (0,1)d
n X N




  

Showed Earlier: 2 2 / 1p ps s     

Using these + Slutsky: ( ) (0,1)d
n X N

s






Cumulants 
● Define the “cumulant generating function” as log( ( ))M t  
where ( )M t  is the moment generating function. 
● Define the “cumulants” of a random variable as 

0

log( ( ))j

j j
t

d M t
dt




  

● For a random variable X 
1 ( )E X    

     2 2
2 (( ) )E X      

3
3 (( ) )E X    

4 4
4 (( ) ) 3E X      

Note: If X is normal, then 3 4 0    



Edgeworth Expansion: Refinement on the CLT 
Suppose that 1 2, ,... nX X X  are iid with a cdf F with mean   
and variance 2 .    Let be the ith cumulant of F. 
 
●  Define the “standardized cumulants”: / i

i i    

●  Let ( )nF x  denote the cdf of ( )n X 

  

 
Edgeworth Expansion (Two Terms) 

(3)
3 ( ) 1( ) ( ) ( )
6n

xF x x O
nn

 
     

where ( )x  is the (0,1)N  cdf and ( ) ( )( )
j

j
j

d xx
dx


   



Edgeworth Expansion (Three Terms) 
(3) (4) 2 (6)

3 4 3
3/2

( ) 1 ( ) ( ) 1( ) ( ) [ ] ( )
24 726n

x x xF x x O
n nn

    
     

 
Note: If the “parent” distribution, F, is normal, 3 4 0    
and ( ) ( )nF x x  . 



Immediate implication of the Edgeworth expansion 
 
If 1 2, ,... nX X X  are iid with a cdf F with mean   and variance 

2  then 
  

1/2( ) ( ) ( )nF x x O n    
 
Tells us about speed of convergence.   
 
Berry-Esseen Bound 

3
1/2

3

(| | )| ( ) ( ) | i
n

CE XF x x n


 



Central limit theorems for non iid random variables 
 
● Suppose that 1 2, ... nX X X  are independently distributed with 
different means 1,... n   and different variances 2 2

1 ,... n  .  
Then (under regularity conditions) 

2( ) (0, )dn X N    
where 1

1lim n
n i in 
    and 2 1 2

1lim n
n i in 
   .   

 
● Suppose that 1 2, ... TX X X  is a martingale difference 
sequence and 2 2( )tE X  .  Then (under some conditions) 
    2(0, )dT X N 



Stochastic Orders of Magnitude 
 
Stochastic orders of magnitude can be useful in asymptotic 
statistical theory. 
 
Suppose that nX  is a random sequence. 
 
We say that nX  is of order of magnitude nf , ( )n p nX O f   if 

0  , C   and 0n  such that (| | / )n nP X f C    for all 
0n n . 

 
We say that nX  is of smaller order of magnitude than nf , 

( )n p nX o f   if / 0n n pX f   



( )n p nX O f  and ( )n p nY O g  (max( , ))n n p n nX Y O f g    
 

( )n p nX O f  and ( )n p nY O g  ( )n n p n nX Y O f g   
 

( )n p nX o f  and ( )n p nY o g  (max( , ))n n p n nX Y o f g    
 

( )n p nX o f  and ( )n p nY o g  ( )n n p n nX Y o f g   
 

( ) ( )n p n n p nX o f X O f    
 

If / 0n nf g   then ( ) ( )n p n n p nX O f X o g    
 

1/(( | | ) )r r
n p nX O E X  for 0r   (from Chebychev Inequality) 

 

( ) ( )n p n n n p n nX O f X g O f g    



Suppose that 1 2, ,... nX X X  are iid with mean   and variance 
2 . 

 
Example 1. 
By the CLT, 2( ) ( , )dn X N     

1/2( )pX O n     
 
Example 2. 

Let 2 2
1

1ˆ ( )n
i iX X

n
    .  What is the asymptotic 

Distribution of 2 2ˆ( )n   ? 
 



2 2 2
1 1

1 1ˆ ( ) ( )n n
i i i iX X X X

n n
            
 

2 2
1 1 1

1 1 2( ) ( ) ( )( )n n n
i i i i iX X X X

n n n
                

 
2 2 2 1

1 1
1 1( ) ( ) ( ) ( )n n

i i i i pX X X O n
n n

   
           

 
2 2 2 2 1/2

1
1ˆ( ) { ( ) } ( )n

i i pn X O n
n

    
        

 
2 2 2 2

1
1ˆ( ) { ( ) } (1)n

i i pn X o
n

           

 



By the CLT  
2 2 2

1
1 {( ) } (0, (( ) ))n

i i d iX N Var X
n

        

 
So by Slutsky’s Theorem 

2 2 2ˆ( ) (0, (( ) ))d in N Var X      
 
If the data were normal, this would reduce to 

2 2 4ˆ( ) (0,2 )dn N     
 



 “Stable” random variables 
 
If 1 2, ,... nX X X  are iid random variables with some 
distribution and 1

n
i iX  has the same distribution, then these 

random variables are stable. 
 
● The normal distribution is stable 
 
● By the CLT, most distributions are not stable 
 
● A Brownian motion has normal increments.  Would it 
make sense to change the increments to be (say) t(10)? 
 
● But the Cauchy distribution is stable 



To recap…we have a random sample 1 2, ... nX X X  that is 
drawn from a distribution with mean   and variance 2  
 
Parameter  2
Estimator 1

1
n
i iX n X
   2 1 2

1( 1) ( )n
i is n X X
     

Expectation ( )E X   2 2( )E s   
Variance 
 

2

( )Var X
n


  
4

2 2( )
1

Var s
n





 

If 1 2, ... nX X X  are 
normal 

X  is 
2

( , )N
n
  

2

2

( 1)n s

  is 2 ( 1)n   

In large samples 
 X  is 

2

( , )N
n
  

2 2 2( ) (0, )dn s N  
2 2(( ) )iVar X    

 
  



Convergence results for nonlinear transformations 
 
Continuous Mapping Theorem 
If n dX X  and (.)g  is a continuous function then 

( ) ( )n dg X g X  
 
Delta Method 
If 2( ) (0, )n dn X N    and (.)g  is a continuous function 
s.t. '( ) 0g    then 2 2( ( ) ( )) (0, '( ) )n dn g X g N g     
 
Proof: ( ) ( ) ( ) '( )n ng X g X g      

( ( ) ( )) '( ) ( )n nn g X g g n X       
2 2 2( ( ) ( )) '( ) (0, ) (0, '( ) )n dn g X g g N N g         



Example 1.  If 1 2{ , ,.... }nX X X  is iid with mean   and 

variance 2 , what is the distribution of 1
X

? 

 
2( ) (0, )dn X N    

2( ) 1 / '( ) 1 /g z z g z z     
2

2 2
2 4

1 1 1( ) (0,{ } ) (0, )dn N N
X


  

     



Example 2.  If 1 2{ , ,.... }nX X X  is iid with mean   and 
variance 2 , what is the distribution of Xe ? 
 

2( ) (0, )dn X N    
( ) '( )z zg z e g z e    

2 2 2 2( ) (0,{ } ) (0, )X
dn e e N e N e       



Example 3.  If 1 2{ , ,.... }nX X X  is iid with mean 0   and 
variance 2 , what is the distribution of log( )X ? 
 

2( ) (0, )dn X N    
( ) log( ) '( ) 1 /g z z g z z    

2
2 2

2

1(log( ) log( )) (0,{ } ) (0, )dn X N N  
 

    



Multivariate central limit theorem 
 
Suppose that 1 2{ , ,... }nX X X  are x1k  random vectors that are 
independently and identically distributed with mean   and 
variance-covariance matrix .  Then 
 

( ) (0, )dn X N    
 



Cramer-Wold device 
 
If nX  and X  are kx1 random vectors, then if ' 'n dX X   
for all fixed kx1 vectors  , then  n dX X . 
 
Immediately gives a proof of the multivariate CLT as a 
consequence of the univariate CLT.



Multivariate delta method 
 
If ( ) (0, )n dn X N    and (.)g  is a continuous function, 
then 

( ( ) ( )) (0, )
'n d

g gn g X g N
 
 

  
 

 



Example.  Suppose that 1,... nU U  and 1,... nV V  are random 
variables that are iid with mean U  and V , variance 2

U  and 
2
V  and correlation  .  What is the distribution of /U V ? 

 
2

2(0, )U U U V
d

V U V V

U
n N

V
   
   

  
      

 

2 1: : ( , ) /g R R g u v u v   
1g

u v





 and 2

g u
v v


 


 



2

2 2

2

1
1( ) (0, )VU U VU U

d
UV V V U V V

V

Un N
V

   
     


 
                 
 

2 2 2

2 4 3( ) (0, 2 )U U V U U V U
d

V V V V

Un N
V

      
   

      



 
 
  
 
 
 
       Statistical Inference           

                                         Probability and 
                                         Probability Distribution

Population: 
Complete set of items of interest 

Sample: 
Subset of population



Parameter Estimation 
 
Say I have an unknown parameter.  For example 1 2, ,... nX X X  
are iid with some mean   and variance 2 .  We want to 
estimate the parameters. 
 
Three methods: 

1. Method of moments. 
2. Maximum Likelihood. 
3. Bayesian estimation. 



Method of moments 
Say 1 2, ,... nX X X  is iid from a density ( , )f x   where   is a 
kx1 vector of parameters. 

 
Rule.  Set the first k sample uncentered moments to their 
population counterparts and solve the equations for ̂  

1
1 ˆ( , )n

i iX xf x dx
n

     (or ( )ixP X x  ) 

2 2
1

1 ˆ( , )n
i iX x f x dx

n
    

… 

1
1 ˆ( , )n k k

i iX x f x dx
n

    



Method of Moments Example 1: 
Suppose that 1 2, ,... nX X X  is iid 2( , )N   . 

ˆX   
2 2 2

1
1 ˆ ˆn

i iX
n

     

2 2 2
1

1 ˆn
i iX X

n
     

2 2
1

1ˆ ( )n
i iX X

n
      

Gives estimators ̂  and 2̂  
…the sample mean and (almost) sample variance



Method of Moments Example 2: 
Suppose that 1 2, ,... nX X X  is iid Binomial with parameters k  
and p.  We want to estimate k  and p. 
 

1
1

ˆˆn
i in X kp
   

1 2 2 2
1

ˆ ˆˆ ˆ ˆ(1 )n
i in X kp p k p
     

 
Solving these equations for k̂  and p̂ yields: 

2

1 2
1

ˆ
( )n

i i

Xk
X n X X




  

 

ˆˆ /p X k  



Method of Moments Example 3: 
Suppose that 1 2, ,... nX X X  is iid uniform from 0 to  . 

1
1

ˆ / 2n
i in X 
   

ˆ 2X   
 
Q. Do you think this is a sensible estimator of  ? 



Maximum Likelihood estimation 
Say 1 2, ,... nX X X  is iid from a density ( , )f x   where   is a 
kx1 vector of parameters. 
 
The joint probability density of the data is 1 ( , )n

i if X   
 
Idea of maximum likelihood estimation.  View this as a 
function of   called the likelihood function: 

1( ) ( , )n
i iL f X    

 
The MLE is the value of    that maximizes the likelihood 
function: 
ˆ arg max ( )MLE L   



Because it is easier to work with sums than products, we 
generally write the MLE as 
ˆ arg max ( )MLE l   

where 
1( ) log ( ) log ( , )n

i il L f X      
 
 



Maximum Likelihood Example 1: 
Suppose that 1 2, ,... nX X X  is iid ( ,1)N  . 

2

1/2

1 ( )( , ) exp( )
(2 ) 2

xf x 



   

2log(2 ) ( )log ( , )
2 2

xf x   
     

2
1

log(2 ) 1( ) ( )
2 2

n
i i

nl X        

FOC: 1'( ) 0 ( )*( 1) 0n
i il X        

1 ˆ( ) 0n
i i MLEX     

ˆMLE X   
 



Maximum Likelihood Example 2: 
Suppose that 1 2, ,... nX X X  is iid 2( , )N   . 

2
2

2 1/2 2

1 ( )( , , ) exp( )
(2 ) 2

xf x  
 


   

2 2
2

2

log(2 ) ( )log ( , , )
2 2

xf x   



     

2 2
12

log(2 ) 1( , ) ( )
2 2

n
i i

nl X  




       

FOC: 12

1 ˆ'( ) 0 ( )*( 1) 0n
i i MLEl X X  

           

2 2
12 4

1 1'( ) 0 2 ( ) 0
2 2 2

n
i i

nl X  
          



2
12 4

1 ( ) 0
2 2

n
i i

n X 
        

2
12

1 ( ) 0n
i in X 

       

2
12

1 ( )n
i iX n

      

2 2
1

1ˆ ˆ( )n
MLE i i MLEX

n
      

 
 
 
 
 



Maximum Likelihood Example 3: 
Suppose that 1 2, ,... nX X X  is iid uniform from 0 to  . 

1( ) 1(0 )f x x 


    

1
1(0 )( ) log( )n i

i
Xl 


 
    

 
Suppose 1,...max i n iX  .   

Then ( )l   . 
Suppose 1,...max i n iX  .   

Then 1( ) log(1/ ) log(1/ )n
il n     . 

 This is monotonically decreasing in  . 
1,....

ˆ maxMLE i n iX    



Maximum Likelihood Example 4: 
Suppose that 1 2, ,... nX X X  is iid Bernoulli with parameter p 

1( ) (1 )x xf x p p    
log ( ) log( ) (1 )log(1 )f x x p x p      

1( ) { log( ) (1 )log(1 )}n
i i il p X p X p       

1 1( ) log( ) log(1 )( )n n
i i i il p p X p n X        
1 1'( ) 0 0

1

n n
i i i iX n Xl p
p p
  

    


 

1 1(1 ) ( )n n
i i i ip X p n X       

1
n
i iX pn   

1ˆ /n
MLE i ip X n    



Maximum Likelihood Example 5: 
Suppose that 1 2, ,... nX X X  is iid Poisson with parameter   

( )
!

xef x
x

 

  

log ( ) log( ) log( !)f x x x      
1( ) ( log( ) log( !))n

i i il X X        
1

1'( ) ( 1)
n

n i i i
i

X X nXl n n
  





        

'( ) 0 0 1nX nX Xl n n
  

         
ˆ
MLE X   



For the last example, suppose that 20n  , 1X   and 
1 log( !) 40n

i iX  .   
Here’s what the log-likelihood function looks like. 
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  
Often maximize log-likelihood numerically. 



EM Algorithm 
 
Method for numerically maximizing log-likelihood. 
 
Sometimes we can find “missing data” such that 

( , ) ( , , )i i i if y f y z dz    and 1 ( , | )n
i i iEf y z  is easy to maximize.  

 
EM Algorithm. 
1. Take a draw of θ and work out the distribution of z.   
2. Maximize  1 ( , | )n

i i iEf y z  wrt θ. 
 
On any iteration, the likelihood can only go up 



Example.  Suppose that 1 2, ,... nX X X  is drawn from a mixture 
of normals, 0( ,1)N   wp ½ and 1( ,1)N   otherwise.  There are 
two parameters: 0  and 1  and the log-likelihood is 

2 2
0 1

1
( ) ( )1 1 1 1log{ [ exp( )] [ exp( )]}

2 2 2 22 2
n i i
i

x x 
 

 
     

Let iz  be the indicator that ix  is 0( ,1)N   

2 2
10 1

( ) ( , 1) ( , 0)

1 1 ( ) 1 ( )( , ) [ exp( )] [ exp( )]
2 2 22 2

i i

i i i i i

z zi i
i i

f x f x z f x z

x xf x z  
 



   

 
  

The “complete” log-likelihood is, apart from a constant: 
2 2

1 1 0 1 1
1 1log( ( , )) ( ) (1 )( )
2 2

n n n
i i i i i i i i if x z z x z x             



EM Algorithm 
1. For any 0  and 1  

0 1
0 1

0 1 0 1

0

0 1

( | 1, , )( 1| , , )
( | 1, , ) ( | 0, , )

( , ,1)
( , ,1) ( , ,0)

i i
i i

i i i i

i
i

i i

f x zP z x
f x z f x z

y p
y y

  
   

 
   


 

  

 


 

 
The expected log-likelihood is (apart from a constant) 

2 2
1 0 1 1

1 1( ) (1 )( )
2 2

n n
i i i i i ip x p x          

 
2. Maximizing this yields 

1 1
0 1

1 1

(1 ),
(1 )

n n
i i i i i i

n n
i i i i

p x p x
p p

  

 

  
 

  
   



Bayesian Inference 
 
Fundamentally different thought-experiment. 
  is not a fixed parameter; it is a random variable 

Researchers beliefs about   are summarized in a prior 
probability density function ( )f    
 

By Bayes rule, 1
1

1

( ,... | ) ( )( | ,... )
( ,... )

n
n

n

f X X ff X X
f X X

    

                1
1

1

( ,... | ) ( )( | ,... )
( ,... | ) ( )

n
n

n

f X X ff X X
f X X f d

 
  

   

1( | ,... )nf X X  is called the posterior density. 



A Bayesian estimator of   is just some moment of the 
posterior density. 
 
Posterior mean: 1( | ,... )nf X X d    
Posterior mode: 1max ( | ,... )nf X X   
 
Bayesian researchers often report the whole posterior 
density, not just a moment of it



Bayesian Inference: Example 1. 
 

1 2, ,... nX X X  are iid 2( , )N    where 2  is known 
Prior for   is flat  
 
Posterior distribution is: 

 
2

1| ,... ~ ( , )nX X N X
n
  

 
Posterior mean (Bayes estimator of  ) is X  

 



Bayesian Inference: Example 2. 
 

1 2, ,... nX X X  are iid 2( , )N    where 2  is known 
Prior: 2~ ( , )N     
 
Posterior distribution is: 

 
2 2 2 2

1 2 2 2 2 2 2| ,... ~ ( , )n
nX X N X

n n n
    

     


  
 

 
Posterior mean (Bayes estimator of  ) is  

2 2

2 2 2 2

n X
n n

  
   


 

 



Posterior mean (Bayes estimator of  ) is  
2 2

2 2 2 2

n X
n n

  
   


 

 

 
Intuition: Weighted average of X  (the data) and   (the prior 
belief). 

● The larger is n, the more weight I put on the data 
  ● The larger is 2 , the more weight I put on the data 
 ● The larger is 2 , the more weight I put on the prior 
 
In the limit as n , the posterior mean of   is X ….just 
the same thing as MLE. 



Bayes estimator: Example 3. 
 
X is a Bernoulli random variable with parameter p.  
The prior for p is uniform on the unit interval. 
 

( ) 1f p   
1( | ) (1 )x xf x p p p    

( 0) ( 1) 1 / 2P X P X     
 

1
1(1 )( | ) 2 (1 )

1/ 2

x x
x xp pf p x p p




     



If I observe X=1, then the posterior is 2 p. 

The posterior mean is 
3

1 2 1
0 0

22 [ ] 2 / 3
3
pp dp    

 
If I observe X=0, then the posterior is 2(1 )p . 
The posterior mean is 

3
1 1 2 2 1
0 0 0

2 2 12 (1 ) 2 2 [ ] 1
3 3 3
pp p dp p p dp p           

 
 
 
 
 



Bayes estimator: Example 4. 
 
Again X is a Bernoulli random variable with parameter p.  
 
But we want the prior for p to be more general.  The prior for  
p is beta distributed with parameters   and  . 
 

( )E p 
 




 is the prior mean 

 
The uniform prior is a special case 1    



The posterior of p is beta with parameters X   and 
1 X   . 
 

So the posterior mean is 
1 1

X X
X X
 

   
 


     

 

 
If we observe 1X  , the posterior mean is above the prior 
mean. 
 
If we observe 0X  , the posterior mean is below the prior 
mean. 



Bayes estimator: Example 5. 
 
X is a Binomial random variable with parameters n and p. 
We observe s  successes. 
 
n is known.  The prior for p is beta distributed with 
parameters   and  . 
 
The posterior of p  is beta with params s   and n s   . 
 

So the posterior mean is s
n


 


 

 

 
As ,n s  this becomes /s n, the sample proportion of 
successes 



“Conjugate” priors 
 
Suppose that 1,... nX X  are iid with a density ( , )f x  .  A prior 
for   is said to be conjugate for f  if the posterior for   is 
the same type of density. 
 
● For the normal density with known variance, the normal 
prior is conjugate 
 
● For the binomial density, the beta prior is conjugate 
 
Conjugate priors are often relatively easy to work with 
analytically. 



Priors: Uninformative versus Informative 
 
- Can be thought of as a “necessary evil” and trying to 
introduce as little information as possible 
 
- Or can be informative, based on earlier studies



Priors: Proper and improper 
 
A proper prior is a prior that is itself a well defined density 
(integrates to one). 
 
But you can write down a prior that is not a well defined 
density (such as ( )p k   where   is unbounded which does 
not integrate to 1) and still apply Bayes rule and get a 
posterior density. 
 
This could be useful as an uninformative prior. 
 
It is called an improper prior



Gibbs sampling and computing the posterior 
 
The cases listed above are ones in which the posterior is 
available in closed form. 
 
Most of the time, that isn’t the case: computational advances 
have made Bayesian approaches much more widely used. 
 
Gibbs sampling (discussed earlier) is very useful in 
simulating posteriors.  An example is in the HW. 



Random Walk Metropolis Hastings Algorithm 
Suppose I want to draw from a posterior ( ) ( | )f f Y   and 
don’t have a way of breaking it down into conditionals.  
 
1. Take some candidate 1 . 

2. Set 2t   and define *
1t t     where t  is an iid random 

disturbance (probably Gaussian). 

3. Set *
t   w.p. 

*

1

( )min(1, )
( )t

f
f

 

  and 1t t    otherwise. 

4. Repeat (2) and (3) for 3,4,...t  . 
5. Discard the first (say) 1,000 draws.  The remaining 
distribution is a random sample from the posterior. 



Simple Example of Metropolis-Hastings 
 
Suppose I want to take draws from a posterior that is gamma 
(9,0.5).   Here is code for doing it. 
 
x(1)=1; 
for t=2:20000; 
    xstar=x(t-1)+randn(1,1); 
    alpha=min(1,gampdf(xstar,9,0.5)/gampdf(x(t-1),9,0.5)); 
    if rand(1,1)<alpha; x(t)=xstar; else; x(t)=x(t-1); end; 
end; 
x=x(1001:end); 
hist(x,50); 



The resulting histogram and the actual gamma pdf: 
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Works well here and is a reliable general method for 
simulating posteriors. 
 



Methods of evaluating estimators 
Suppose that W  is some estimator of a parameter  . 
 
● The mean square error of W  is 2(( ) )E W   
 - or 2(|| || )E W   for a vector estimator 
 
● The bias of W  is ( )E W   
 
● If ( )E W  , then W  is an unbiased estimator of  . 
  



The mean square error can be decomposed as 
 

2 2(( ) ) (( ( ) ( ) ) )E W E W E W E W       
2 2(( ( )) ( ( ) ) 2( ( ) ) ( ( ))E W E W E W E W E W E W         
2 2(( ( )) ( ( ) )E W E W E W      

2( ) ( ( ) )Var W E W     
 
MSE = Variance + Bias2 



Mean square error is the most common criterion for an 
estimator: want to select  the W  that mimimizes MSE. 
 
But it isn’t the only criterion. 
 
Could pick an estimator to minimize any loss function 
 
Mean absolute error loss: (| |)E W   
“Utility based” loss function.



We say that W  is the minimum variance unbiased 
estimator (MVUE) for a parameter   if ( )E W   and 

( ) ( )Var W Var W   where W  is any other unbiased estimator 
of  . 
 
Example: I have two estimators of a parameter  . 

ˆ( ) 0.1E     and ˆ( ) 1Var    
( )E    and ( ) 2Var    

 
Q. Could ̂  be the MVUE? 
A. No.  ̂  is not even unbiased.  But   could be. 



Example: Suppose that 1,... nX X  are iid uniform from 0 to  . 
Consider the following estimators of  : ˆ 2X   
                     1max( ,... )nX X   
 
What of these estimators could be the MVUE? 
 

1
2 2ˆ( ) 2 ( ) ( ) ( ) 2

2
n
i i iE E X E X nE X

n n
       .   

So ̂  is unbiased. 
 

2 2

12 2

4 4 4ˆ( ) 4 ( ) ( ) ( )
12 3

n
i i iVar Var X Var X nVar X

n n n n
       

 



1max( ,... )nX X   
The cdf of  is ( / )nx  . 

The pdf of  is 1 1( )nxn
 

  
1

1
0 0

1( ) ( )
1 1

n
n n

n n

x n n nE xn dx x dx
n n

   
   


      

 
  

So  is not unbiased. 
2

2 2 1 1 2
0 0

1( ) ( )
2 2

n
n n

n n

x n n nE x n dx x dx
n n

   
   


      

 
  

2 2
2 2 2

2 2( ) [ ]
2 ( 1) 2 ( 1)

n n n nVar
n n n n

       
   

  
2

2( 1) ( 2)
n

n n



 



1ˆ( ) ( )Var O
n

   and 2

1( ) ( )Var O
n

   

 
 has a smaller variance than ̂ , but is biased.  
 
 cannot be the MVUE. 

But what about a bias-adjusted counterpart? ( 1)
BA

n
n

  
   

 
( )BAE    and 

2 2 2

2 2

( 1)( )
( 1) ( 2) ( 2)BA

n nVar
n n n n n

  
  

  
  

This could be the MVUE. 



Optimal choice of estimators depends on the loss function. 
 
Suppose that ̂  is an estimator and that the loss function is 

2ˆ(( ) )E   . 
 
Then clearly the estimator with minimum mean square error 
will be optimal. 
 
But we could pick an estimator to minimize ˆ(| |)E    or an 
asymmetric loss function. 



Admissible Estimators 
 
An estimator ̂  is said to be admissible if there does not 
exist any other estimator   such that 

 
ˆ( , ) ( , )L L       

 
where (.,.)L  denotes the loss function that is being used.  
Most often, this is MSE loss. 
  



Stein Estimator 
 
Suppose that   is an mx1 parameter vector, and 

2~ ( , )i iidx N I   for i=1,2,…n. 

Estimator of   is ˆ x  .  This is the MVUE. 
Now for any fixed    consider a new estimator for m>2 

              
2 2

2 2

( 2) ( 2)ˆ (1 )
|| || || ||S
m mx

n x n x
  
 

 
  

 
 

It is biased, but amazing thing is: ˆ ˆ( ) ( )SMSE MSE     
(improvement is biggest if   is close to  )  

So MLE is not admissible for m>2 
It turns out that MLE is admissible for m≤2 



Admissibility of Bayes estimators 
 
Suppose that we have a posterior density ( | )f X  and we 
select   to solve 

*
ˆ

ˆ ˆarg min ( , ) ( | )L f X d


       
For example 

* 2 *
ˆ

ˆ ˆ ˆarg min ( ) ( | ) ( | )f X d f X d


               
 
This is Bayes estimator optimizing a particular loss function 



Admissibility of Bayes estimators 
 
Under some mild conditions we have: 
 
Result 1: With a proper prior a Bayes estimator must be 
admissible 
 
Result 2: Any admissible rule is Bayes for some prior 
distribution. 
 
In contrast, MLE may not be admissible (see Stein estimator) 
 
 



Sufficient statistics 
 
A statistic ( )T X  is a sufficient statistic for a parameter   if 
the distribution of X  given T  does not depend on  . 
 
Intuition: A sufficient statistic contains all the information in 
the data for a parameter of interest. 
 
Given the sufficient statistic, the data are irrelevant for telling 
us what the parameter is. 



Example.  If 1,... nX X  are Bernoulli random variables, their 
joint pmf is 

1 1
1 2( , ,... ) (1 )

n n
i i i iX n X

nf x x x p p     
Let 1

n
i iT X   

The conditional pmf of 1,... nX X  given T is  
1 2( , ,... | ) 1 / n

n tf x x x t C   if 1
n
i it x   

0 otherwise 
 
So the conditional distribution does not depend on p and so 

1
n
i iX  is a sufficient statistic. 



The factorization theorem. 
 
If a joint pdf ( , )f x   can be factorized as 

( , ) ( ( ), ) ( )f x g t x h x    
Then ( )T X  is a sufficient statistic for  . 
 
Example.  Suppose that 1 2, ,... nX X X  are iid 2( , )N    where 

2  is known.  The joint pdf is 
2

2 1/2
1 2

( )(2 ) exp( )
2

n i
i

x 






   

2
2 /2

1 2

( )(2 ) exp( )
2

n n i
i

x 






   



2
2 /2

1 2

( )(2 ) exp( )
2

n n i
i

x 






   

2 2
2 /2 1 1

2

2(2 ) exp( )
2

n n
n i i i ix n x 


     

   
2 2

2 /2 1
2

2(2 ) exp( )
2

n
n i ix n nx 


   

  
2 2

2 /2 1
2 2

( ( ), ) ( )

2(2 ) exp( )exp( )
2 2

n
n i i

g t x h x

nx n x



 
 

  
 


 

 
By the factorization theorem, this means that X  is a 
sufficient statistic for  . 



Techniques for finding the MVUE 
 
Rao Blackwell Theorem 
Let ( )W W X  be any unbiased estimator for   and 

( )T T X  be a sufficient statistic for  .  Then  
( | )W E W T  

must have smaller variance than W .  Under further 
conditions, it is the MVUE of  . 
 
So we just have to look for any unbiased estimator and take 
its conditional expectation to find the MVUE.  



Example of Rao-Blackwell Theorem. 
 
Suppose that 1 2, ,... nX X X  are iid 2( , )N    where 2  is 
known.  
 

1( )E X   so 1X  is an unbiased, if ridiculous, estimator for 
 . 
 
X  is a sufficient statistic for   
 

1( | )E X X X  (intuitive, but formal derivation next slide) 
 
By Rao-Blackwell, this means X  is the MVUE of   



Formal proof that 1( | )E X X X : 
 

2 2

2 2
1

/ /
~ ( ,

/
X n n

N
X n

  
  

    
    

    
 

1( , ) 1 /Corr X X n  
2

1
(1 / ) 1| ~ ( ( ), (1 ))

/
nX X N X

nn
  


     

1( | )E X X X X       
1( | )E X X X   

 



Cramer-Rao Bound 

Let X  be one or more random variables with a joint pdf 
( , )f x  .  Let W  be any unbiased estimator of  .  Under 

suitable regularity conditions 

20

1( ) log( ( , )){[ ] }
Var W f xE 








 

where 0  denotes the true parameter value. 

Or, in the vector case 
10 0log( ( , )) log( ( , ))( ) [ { }]

'
f x f xVar W E  
 

 


 
 

An estimator that reaches the Cramer-Rao bound is MVUE. 



 Example: Let X  be a single exponential random variable 

with pdf 1( , ) exp( )xf x 
 

  .  What is the Cramer-Rao 

bound for an estimator of ? 
 

1( , ) exp( ) log ( , ) log( )x xf x f x  
  

       

2 2

log ( , ) 1 ( )f x x x 
   

 
   


 

2
2 2

4 4

log ( , ) ( ) 1{[ ] } { } ( )f x xE E E x  
  

 
   


 

( )E x   and 2( )Var x   
 



2 2
4 2

log ( , ) 1 1{[ ] }f xE  
  


  


 

So the Cramer-Rao bound is 2
2

1
1/




  

 
Does the method of moments estimator reach the bound? 

ˆX   
2( )Var X   

This estimator does attain the bound. 



Sketch of the derivation of the CR bound 

Let ( )W x  be any estimator of   and log( ( , ))f xV 



 

log( ( , )) ( , )( ) ( ) ( , ) ( ) ( ( ))f x f xE VW W x f x dx W x dx E W x   
    

    

Suppose that ( )W x  is unbiased.     

Then ( ( ))E W x   and ( ( )) 1E W x



 

( , ) ( ) ( ) ( ) ( ) 1 (E(V)=0)Cov V W E VW E V E W E VW      

From the Cauchy-Schwarz Inequality 

2

( , ) 1 1( ( )) log( ( , ))( ) ( ) [( ) ]

Cov V WVar W x f xVar V Var V E 


  




 



Cramer-Rao Bound for iid random variables 
 
Suppose that 1 2, ,... nX X X  are iid random variables each with 
the same pdf ( , )f x  .  Let W  be any unbiased estimator of  .  
Under suitable regularity conditions 

20

1( ) log( ( , )){[ ] }
Var W f xnE 








 

where 0  denotes the true parameter value. 
 
Or, in the vector case 

10 01 log( ( , )) log( ( , ))( ) [ { }]
'

f x f xVar W E
n

 
 

 


 
 



Is the bound for n iid variables consistent with the more 
general bound?  Yes. 
 

2 21 0 0
1

log( ( ,... , )) log( ( , )){[ ] } {[ ] }nn i
i

f x x f xE E 
 

 
 

 
 

2
0

1
log( ( , )){ }n i

i
f xE 



 


 

00
1 1,

log( ( , ))log( ( , )){ }jn n i
i j j i

f xf xE


   


 

 
 

2
0log( ( , )){ }if xnE 









Example 1: Suppose that 1 2, ,... nX X X  are iid random 
variables each with a 2( , )N    distribution where 2  is 
known. What is the Cramer-Rao bound for an estimator of 
 ? 

2
2

2

log(2 ) 1log( ( , )) ( )
2 2

f x x 


     

2

log( ( , )) 1 ( )f x x 
 


  


 

2
2 2

4 4 2

log( ( , )) 1 1{[ ] } (( ) )f xE E x 
   


    


 

So the Cramer-Rao bound for an estimator of   is 
2

2

1
(1/ )n n




  



In this case, the method of moments estimator and the MLE 
are both X . 
 
 
Both attain the Cramer-Rao bound because 2( ) /Var X n . 
 



Example 2: Suppose that 1 2, ,... nX X X  are iid random 
variables each with a 2( , )N    distribution where   and 2  
are unknown. What is the Cramer-Rao bound for an 
estimator of 2( , ) '   ? 

2
2

2

log(2 ) 1log( ( , )) ( )
2 2

f x x 


     

2

log( ( , )) 1 ( )f x x 
 


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
 

2
2 2 4

log( ( , )) 1 1 ( )
2 2

f x x 
  


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
 

2
2 2

4 4 2

log( ( , )) 1 1{[ ] } (( ) )f xE E x 
   


    


 



4 2
2

2 4 8 6

log( ( , )) 1 (( ) ) 2 (( ) ){[ ] }
4 4 4

f x E x E xE   
   

  
   


 

4 2

4 8 6 4 4

1 3 2 1 3 2 1
4 4 4 4 2

 
    

 
      

3

2 4 6

log( ( , )) log( ( , )) ( ) (( ) ){ } 0
2 2

f x f x E x E xE    
   

   
    

 
So the Cramer-Rao bound for an estimator of   is 

12 2

4 4

1 / 0 / 01
0 1/ 2 0 2 /

n
n n

 
 


   

   
   

 



Example 3 Suppose that 1 2, ,... nX X X  is iid Poisson with 
parameter  .  What is the Cramer-Rao bound for an 
estimator of ? 

( , )
!

xef x
x




  

log ( , ) log( ) log( !)f x x x       
log ( , ) 1f x x

 


  


 
2

2 2
2

log ( , ) ( ) ( ){[ ] } {[ 1] } 2 1f x x E X E XE E
   


     


 

2 2

2 2

( ) ( ) ( ) 12 1 2 1Var X E X E X   
    
 

        

So the Cramer-Rao bound for an estimator of   is 
n
  



Under regularity conditions, we have the “information 
equality” 
 

2
2

2

log( ( , )) log( ( , )){[ ] } { }f x f xE E 
 

 
 

 
 

 
This means that the Cramer-Rao bound can also be written as 

2

2

1( )
log( ( , )){ }

Var W
f xnE 


 




 



Example 1: Again 1 2, ,... nX X X  are iid 2( , )N     random 
variables where 2  is known. What is the Cramer-Rao bound 
for an estimator of   using the information equality? 
 

2
2

2

log(2 ) 1log( ( , )) ( )
2 2

f x x 


     

2

log( ( , )) 1 ( )f x x 
 


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
 

2 2

2 2 2 2

log( ( , )) 1 log( ( , )) 1{ }f x f xE 
   

 
     

 
 

So the Cramer-Rao bound for an estimator of   is (as before) 
2

2

1
*( 1/ )n n




 


 



Example 2: Suppose that 1 2, ,... nX X X  are iid random 
variables each with a 2( , )N    distribution with known  . 
What is the Cramer-Rao bound for an estimator of 2 ? 

2
2 2

2

log(2 ) 1log( ( , )) ( )
2 2

f x x 


     
2

2
2 2 4

log( ( , )) 1 1 ( )
2 2

f x x 
  


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
 

2 2
2

2 2 4 6

log( ( , )) 1 1 ( )
( ) 2

f x x 
  


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
 

2 2 2

2 2 4 6 4

log( ( , )) 1 1{ }
( ) 2 2

f xE  
   


    


 

So the Cramer Rao bound is 
4

4

1 2
*( 1/ 2 )n n




 


 



Sketch of proof of information equality 
 

log( ( , )) log( ( , ))( ) ( , )f x f xE f x dx  
 

 
 

 
 

1 ( , ) ( , )( , ) ( , )
( , )

f x f xf x dx dx f x dx
f x

  
   

  
     

  
 

1 0



 


 

Differentiating both sides 
log( ( , ))( ) 0f xE 

 
 


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But 
log( ( , )) log( ( , ))( ) [ ( , )]f x f xE f x dx  

   
   

 
   

 



log( ( , ))[ ( , )]f x f x dx 
 
 

 
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log( ( , )) log( ( , )) ( , )( , )f x f x f xf x dx  
  

  
  

  
 

2

2

log( ( , )) log( ( , )) log( ( , ))( , ) ( , )f x f x f xf x f x dx   
  

  
  

  
 

2
2

2

log( ( , )) log( ( , ))( ) {[ ] }f x f xE E 
 

 
 

 
 

So 
2

2
2

log( ( , )) log( ( , ))( ) {[ ] } 0f x f xE E 
 

 
 

 
 

2
2

2

log( ( , )) log( ( , ))( ) {[ ] }f x f xE E 
 

 
  

 
 



If we find that an estimator reaches the Cramer-Rao bound, 
we know that there is no other unbiased estimator with 
smaller variance. 
 
But if it doesn’t then there could be a better estimator, though 
there doesn’t have to be.  
 
But we have an important result.  An unbiased estimator with 
variance equal to the Cramer-Rao bound exists if and only if 

log( ( , )) ( )( ( ) )f x a W x  



 


 

for some functions (.)a  and (.)W .  Moreover, ( )W X  is the 
MVUE and the MLE. 



Example: Suppose that 1 2, ,... nX X X  are iid random variables 
each with a 2( , )N    distribution where 2  is known. 
 

2
2

1 2

1 ( )log( ( , )) log(2 )
2 2

n i
i

xf x  



    

12 2 2

log( ( , )) 1 ( )( ) ( )n
i i

f x n x nx x  
   

 
      


 

 
So X  reaches the Cramer-Rao bound. 
 
It is the MVUE and the MLE.   
 
(we already knew this, but this is another way of showing it)



Cramer-Rao intuition 
 
log( ( , ))f x   is just the log-likelihood function 
 
The steeper it is near 0 , the more accurate an estimator 
should be. 
 

A high value of  
2

0
2

log( ( , ))f x 






 means a steep log-

likelihood and a small variance estimator



Large sample properties of estimators 
 
Suppose that { }nW  is a sequence of estimators that is a 
function of data 1 2{ , ,... }nX X X  that are iid with pdf ( , )f x  . 
 
{ }nW  is said to be consistent for   if n pW  . 
 
If ( ) (0, )n dn W N V  , then V  is the asymptotic variance 
of { }nW . 
 
{ }nW  is said to be asymptotically efficient for   if 

( ) (0, )n dn W N V   where 



2

1
log ( , ){[ ] }

V f xE 







 

which is the Cramer-Rao bound 
 
If { }nV  and { }nW  are two alternative estimators of   such that 

2( ) (0, )n d Vn V N    and 2( ) (0, )n d Wn W N   , then the 

asymptotic relative efficiency of { }nV  relative to { }nW  is 
2

2
W

V




. 



Useful properties of maximum likelihood estimators 
Suppose 1 2{ , ,... }nX X X  that are iid with pdf ( , )f x   and let 

 1arg max log ( , )n
i if X    

denote the MLE.  Then we have 
 
● Consistency.  p   
 
● Asymptotic distribution. ( ) (0,1 / )dn N I    where 

 
2

2
2

log ( , ) log ( , ){[ ] } { }f x f xI E E 
 

 
  

 
.  

  
● The MLE is asymptotically efficient. 

 
● Invariance. ( )   is the MLE of ( )   for any function (.)  



Asymptotic distribution of MLE ( ) (0,1/ )dn N I    
where 

 
2

2
2

log ( , ) log ( , ){[ ] } { }f x f xI E E 
 

 
  

 
.  

  
We “flip this around” to get the approximate variance of  . 
 

  is approximately 11( , )N I
n

   

 
But what we call the “asymptotic variance” of   is 1I  . 



Example 1: Suppose that 1 2, ,... nX X X  is iid 2( , )N    where 
2  is known. 

2

2 1/2 2

1 ( )( , ) exp( )
(2 ) 2

xf x 
 


   

We know that the MLE is X  
2 2

2

log(2 ) ( )log ( , )
2 2

xf x  



    

2

log( ( , ))f x x 
 

 
 


 

2
2 2

4 4 2

log( ( , )) 1 1{[ ] } (( ) )f xI E E x 
   


     


 

( ) (0, )dn X N      



Example 2: Suppose that 1 2, ,... nX X X  is iid Poisson. 

( , )
!

xef x
x




  

We know that the MLE is X  
log( ( , )) log( ) log( !)f x x x      

log( ( , )) 1f x x
 


  


 

2
2 2

2

log( ( , )) ( ) 2{[ ] } (( 1) ) ( ) 1f x x E xI E E E x
   


      


 

2 2

2 2

( ) ( ) 2 2 1( ) 1 1Var x E x E x   
    
 

        

( ) (0, )dn X N     



Example 3: Suppose that 1 2{ , ,... }nX X X  is iid Bernoulli with 
parameter p 

1( , ) (1 )x xf x p p p    
We know that the MLE is X  
log( ( , )) log( ) (1 )log(1 )f x p x p x p     

log( ( , )) 1 (1 ) (1 )
1 (1 )

f x p x x x p p x
p p p p p

    
  

  
 

(1 ) (1 )
x xp p px x p

p p p p
   

 
 

 
2 2 2

2
2 2 2 2

log( ( , )) ( ) ( ) 2 ( ){[ ] }
(1 ) (1 )

f x p E x p E x pE x pE
p p p p p

   
  

  
 

 
2 2 2

2 2 2 2 2 2

2 (1 ) 1
(1 ) (1 ) (1 ) (1 )

p p p p p p p
p p p p p p p p
   

   
   

 



( ) (0, (1 ))dn X p N p p     
 
We knew this before, but now can derive it from a general 
formula for the MLE distribution.



Sketch of the proof that 1( ) (0, )dn N I      
10 '( ) ' ) ( ) ''( ) ''( ) ' )l l l l l                     

11 1( ) [ ''( )] ' )n l l
n n

         
2 2

1 2 2

1 1 log ( , ) log ( , )''( ) { }n i
i p

f x f xl E
n n

 
 

 
  

 
 

2

2

1 log ( , )''( ) { }p
f xl E

n





  


 

2
1

log( ( , ))1 1 log ( , )' ) (0, {[ ] })n i
i d

f x f xl N E
n n

 
 

 
   

 
 

But 
2

2
2

log ( , ) log ( , ){[ ] } { }f x f xI E E 
 

 
  

 
 

1 1 1( ) (0, ) (0, )dn N I II N I         



Multivariate case 
 
If   is a vector 1( ) (0, )dn N I     where 

 
2log ( , ) log ( , ) log ( , ){[ ][ ]'} { }

'
f x f x f xI E E  
   

  
  

   
.  

  
Example: Suppose that 1 2, ,... nX X X  is iid 2( , )N    
The MLE of   is X  and the MLE of 2  is  1 2

1( )n
i in X X
   
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4

1 / 0
0 1 / 2

I



 

  
 

 

 
2

4

0
( ) (0, )

0 2dn N


 


 
    

 
  



Pseudo-maximum likelihood estimation (PMLE) 
 
Maximum-likelihood estimation requires the probability 
density to be completely specified. 
 
What if it is wrong? 
 
For example, we assume that 1 2{ , ,... }nX X X  are iid 2( , )N    
when in fact they are just iid with mean   and variance 2 ? 
 
Maximizing the Gaussian log-likelihood is still an estimator, 
but it is the quasi- or pseudo- maximum likelihood estimator. 



Theorem. If  is the pseudo-maximum likelihood estimator 
of  , then p   (i.e. is consistent) and 

1 1( ) (0, )dn N A BA      
 

where 
2

2

log ( , ){ }f xA E 






 and 2log ( , ){[ ] }f xB E 







. 

 
But when the density is misspecified, the information 
equality does not hold, so A B  .



Estimating the mean of a population (again) 
 
Suppose that 1 2, ,... nX X X   is iid with pdf ( )f x , mean   and 
variance 2 .  We want to estimate  . 
 
A natural estimator is X  

2( ) (0, )dn X N    
 
 
An alternative estimator is mX , the median of 1 2, ,... nX X X  

2

1( ) (0, )
4 ( )m dn X N

f



   

Asymptotic distribution depends on data distribution



Now suppose that the data are normal, which means that X  
is the MLE 
 

2

2 1/2 2

1 ( )( ) exp( )
(2 ) 2

xf x 
 


   

2 1/2

1( )
(2 )

f u
    

 
2( ) (0, )dn X N    

2
22( ) (0, ) (0, )

4 2m dn X N N      

So the asymptotic efficiency of X  relative to mX  is 
/ 2 1.57  . 



Q. So why would anyone use the sample median rather than 
the sample mean? 
 
A. The sample median may be more efficient with certain 
heavy-tailed distributions. 
 



For example, suppose that 1 | |( ) exp( )
2 / 2

xf x 
 


   

( )E X   and 2( )Var X    (earlier in lectures and HW) 
1( )
2

f 


  

 
2( ) (0, )dn X N    

2 22( ) (0, ) (0, )
4 2m dn X N N     

So the asymptotic efficiency of X  relative to mX  is 0.5. 
 
Now the median is more efficient 



Asymptotic distribution of extremum estimates 
 
 
Suppose that ˆ arg min ( )nQ    
Then we say that ̂  is an extremum estimate (defined to 
maximize of minimize an objective function) 
 
Most estimators are extremum estimates (e.g. MLE, PMLE) 
 

If 1/2 0( ) (0, )n
d

Qn N D


 



 and 

2
1 0( )

' p
Qn E
 

 


 
 then 

1 1
0

ˆ( ) (0, )dn N E DE      



Sketch of the proof of the asymptotic distribution of 
extremum estimates 
 
 

0 0
ˆ ˆ0 ( ) ( ) ( ) ( )n n nQ Q Q           

0 0
ˆ( ) ( ) ( ) 0n nQ Q         

1 1/2
0 0

1ˆ( ) [ ( )] ( )n nn Q n Q
n

          
1 1ˆ( ) (0, )dn N E DE       



Hypothesis testing. 
 
We have seen how we can use sample information to make 
“guesses” about population parameters through the use of 
appropriate estimators. 
 
 
We will now investigate what to do when we want to test 
hypotheses (claims) about population parameters. 
 



Setup: We have a claim about a population parameter that 
we want to assess using a randomly chosen sample. 
 
Examples: 
 
● A coin is fair (p=1/2) 
● A treatment has no effect (mean effect of drug is zero, on 
average for the human population) 
● Average returns on bonds and stocks are the same 
( STOCK BOND  , on average over all time periods) 
● The height of the average human (in the world population) 
is 2 feet.  



Claim: The average human is 2 feet tall. 
 
Randomly chosen sample of 10 humans 
 

6’2    6’0   5’11  5’10  5’8   
5’7  5’7   5’5  5’3  5’1 

 
 
Logically, is it possible that the average human is 2 feet tall 
(using this information alone)?   Yes. 
 
Do we want to believe the claim?   Seems suspicious. 
 
Making this more precise is what hypothesis testing is about.



Setup is that there is a parameter  , a null hypothesis 
(usually 0  ) and some alternative (usually 0  ). 
 
In assessing the claim, there are four possible outcomes 
 

  Truth 
  True False 

Decision 

Accept 
Claim 

Correct 
Decision 

Type 2 
Error 

Reject 
Claim 

Type 1 
Error 

Correct 
Decision 

 



Statistics has a particular way of testing the claim. 
 

1. Pick a test statistic (function of the data and parameter). 
2. Tentatively suppose that the hypothesis is true. 
3. Work out the sampling distribution of the test statistic if 

the hypothesis really is true. 
4. Identify a rejection region XC  which is a set of values of 

the test statistic which has small probability of occurring 
if the hypothesis is true but large probability under the 
alternative. 

5. Then we look at the test statistic from our sample, reject 
the hypothesis if it is XC  and accept otherwise. 



The probability of Type 1 error is the probability of being in 
XC  if the null hypothesis is true. 

 
This is the size or significance level of the test. 
 
We set XC  so that the size is some pre-set level either in all 
sample sizes (exact test) or in the limit as the sample size 
goes to infinity (asymptotic test). 
 
The power is the probability of rejecting a false hypothesis.  
It is 1 minus the probability of type 2 error. 



Example 1.  A college admits 25 percent of applicants.  In a 
pool of 20 Canadian applicants, 3 were admitted.  Test the 
hypothesis that the probability of acceptance for Canadians is 
0.25.  Let the alternative be that the probability is less than 
0.25. 
 
Suppose the hypothesis is true. 
X, the number of applicants admitted is binomial with 
parameters 20 and 0.25. 

20 0 20
0( 0) 0.25 0.75 0.0032P X C    
20 1 19

1( 1) 0.25 0.75 0.0211P X C    
20 1 19
2( 2) 0.25 0.75 0.0669P X C    

etc. 



A natural shape for the critical regions is XC ={0,1,…K}  
 
If XC ={0,1} then the probability of being in XC  under the 
null is 0.0243.   
 
So the test accepts. 
 
We could define XC  as {0,1} and including 2 with 
probability 0.38.   
 
But again the test accepts. 



The power of the test. 
 
Stick with the rejection region XC ={0,1}. 
 
The power of the test is the probability of rejection if the true 
probability of a Canadian being admitted is p. 
 

20 1
1Power( ) (1 ) (1 )n np p C p p      

 
Here is the power for some values of p 
 
p    Power(p) 
0.25   0.0243 
0.1    0.3917 
0.05   0.7358 



Example 2.   We have a random sample 1,... nX X  drawn from 
a population that is normal with unknown mean   and 
known variance 2 . 
 

If  0   then 0

/
X

n



  is (0,1)N  

Rejection rule: Reject if 0| | 1.96
/

X
n





  

 



An auto manufacturer claims that gas mileage for a 
new model averages 31.5 mpg. The population is 
normally distributed with standard deviation 2.4 mpg. A 
random sample of 16 cars has been taken. The sample mean 
is X  = 30.6 mpg. We want to test the null hypothesis that the 
population mean is 31.5 mpg with a 5% significance level. 
 
 



Suppose that the claim is true. 

Rejection rule: Reject if 31.5| | 1.96
2.4 / 16
X 

  

Reject if X <30.324 or>32.676 
 
In our sample, X  = 30.6 mpg. 
 
Claim is accepted 
 
Interpretation: the sample mean is 30.6 which is not the 
claim, 31.5.  However, it is close enough to the claim that we 
can believe that the difference can be explained by chance 
alone. 
 



The higher is the significance level 
 
● The more likely we are to reject a hypothesis 
 
● The more likely we are to make Type 1 errors 
(reject a true hypothesis) 
 
● The less likely we are to make Type 2 errors 
(accept a false hypothesis) 



● If 0X  , then there is no significance level at which we 
reject the hypothesis. 
 
 
● If 0X  ,  there will be some cutoff significance level,  , 
such that the hypothesis will be rejected at all significance 
levels higher than   and accepted at all levels lower than 
 . 
 
 
 
 
 
 



●   solves the equation 
0

/ 2| |
/

X z
n 





  

where X  is the observed sample mean. 
 

In our example, 0

/
X

n



 =-1.5 

P(N(0,1)>1.5)=0.067 
So  =0.134. 
 
The hypothesis will be rejected at all significance levels 
higher than 13.4 percent and accepted at all levels lower than 
13.4 percent. 
 



  is called the p-value of the test. 
 
 
Definition: The p-value is the significance level at which we 
are just on the point of accepting or rejecting the hypothesis. 



A hypothesis test has a 
● Size: Probability of falsely rejecting a true null 
● Rejection region: values of the test statistic which reject 
● Power: Probability of correctly rejecting a false null 
 



Example: An auto manufacturer claims that gas mileage for a 
new model averages 31.5 mpg. The population is 
normally distributed with standard deviation 2.4 mpg. A 
random sample of 16 cars has been taken. If the true gas 
mileage is 30 mpg, what is the power of the test? 
 
The test rejects if X  is less than 30.324 or more than 32.676. 
 

X  is 
22.4(30, )

16
N  which is (30,0.36)N  

( 30.324) 0.705P X    and ( 32.676) 0P X    
 
The power of the test is 0.705. 



A plot of the power of a test against the alternative is called a 
power curve. 

 



Formula for the power curve 
 
If 1,... nX X  is drawn from a population that is normal with 
unknown mean   and known variance 2 , the rejection 

region for a 5 percent test of 0   is  0| | 1.96
/

X
n





 . 

 
What is the power function of the test? 
 

0 0
1.96 1.96Power( ) 1 ( )P X

n n
          



2

0 0
1.96 1.961 ( ( , ) )P N

nn n
         

2

0 0
1.96 1.961 ( (0, ) )P N

nn n
              

0 01 ( 1.96 (0,1) 1.96)
/ /

P N
n n

   
 

 
       

0 01 ( 1.96) ( 1.96)
/ /n n

   
 

 
      

 
If 0  , this is 1-0.975+0.025=0.05, which reduces to the 
size.  For other values of  , it is the power, and will be 
bigger. 



Problem.  If 1   and 0 0.1    (i.e. the difference 
between the hypothesized and true values is 1, how big a 
sample size do I need to get a power of at least 50 percent. 
 

0 00.5 1 ( 1.96) ( 1.96)
/ /n n

   
 

 
      

0.1 0.10.5 1 ( 1.96) ( 1.96)
1 / 1 /n n

       

0.5 1 (0.1 1.96) (0.1 1.96)n n       
385n   

 



A test is said to be consistent if the probability of rejecting 
any false hypothesis converges to 1 in the limit as the sample 
size goes to infinity. 
 
Consistency is a minimal property of a test. 
 
The power function we just had is 

0 0Power( ) 1 ( 1.96) ( 1.96)
/ /n n

   
 

 
      

 
As n , this converges to 1 ( ) ( ) 1      
 
So the test is consistent. 



Pitman Alternatives (Local Asymptotic Power) 
 
Consistency means that we can’t use asymptotic theory to 
say much about the relative power of different tests. 
 
We can instead adopt the thought experiment that 

0n
m
n

    so that the hypothesis is “nearly” true 

 
This is called a sequence of Pitman alternatives. 
 



The limit as n  of the probability of rejecting the null 

that 0   when in fact 0n
m
n

    is called the local 

asymptotic power. 
 
For the power function we just had 

0 0 00

Power( ) 1 ( 1.96) ( 1.96)
( ) ( )

/ /n

m m
n n

n n

 








 
   






1 ( 1.96) ( 1.96)m m
 

        

 
This is the local asymptotic power (and does not equal 1). 



More common testing situations 
1. 1 2, ,... nX X X  are iid with some distribution with mean   
and variance 2 .  2  is known.  Test null 0  . 
2. 1 2, ,... nX X X  are iid 2( , )N   .  2  is not known.  Test null 

0  . 
3. 1 2, ,... nX X X  are iid with some distribution with mean   
and variance 2 .  2  is not known.  Test null 0  . 
4. 1 2, ,... nX X X  and 1 2, ,... nY Y Y  are iid with some distributions 
with means X  and Y  and variances 2

X  and 2
Y .  But the Xs 

and Ys are independent.  Test null X Y   
5. p̂  is a sample proportion from a binomial.  Test null 

0p p . 
6. ̂  is a sample correlation.  Test null 0  . 



1. 1 2, ,... nX X X  are iid with some distribution with mean   
and variance 2 .  2  is known.  Test null 0  . 
 
Suppose the hypothesis is true 

0( ) (0,1)d
n X N




  

Test statistic: 0( )n X 

  

Rejection Region: Reject if absolute value exceeds 1.96. 
Size: Asymptotically 5 percent (by CLT). 



2. 1 2, ,... nX X X  are iid 2( , )N   .  2  is not known.  Test null 
0  . 

 
Suppose the hypothesis is true 

0( ) ~ ( 1)n X t n
s


  

Test statistic: 0( )n X
s

  

Rejection Region: Reject if absolute value exceeds the upper 
2-1/2 percentile of the t distribution on n-1 degrees of 
freedom. 
Size: Exact test.  5 percent. 



3. 1 2, ,... nX X X  are iid with some distribution with mean   
and variance 2 .  2  is not known.  Test null 0  . 
Suppose the hypothesis is true 

0( ) (0,1)d
n X N

s


  

Test statistic: 0( )n X
s

  

Rejection Region: Reject if absolute value exceeds 1.96. 
Size: Asymptotically 5 percent (by CLT). 



4. 1 2, ,... nX X X  and 1 2, ,... nY Y Y  are iid with some distributions 
with means X  and Y  and variances 2

X  and 2
Y .  The Xs and 

Ys are independent.  Test null X Y   
 
By the CLT, 

2( ) (0, )X d Xn X N    and 2( ) (0, )Y d Yn Y N    

X Y   is approximately 
2 2

( , )X Y
X YN

n n
     

Suppose the null hypothesis is true 

X Y  is approximately 
2 2

(0, )X YN
n n
 

  



2 2
( ) (0,1)d

X Y

X Y N
s s
n n


 



 

Test statistic: 
2 2

( )

X Y

n X Y
s s




 

Rejection Region: Reject if absolute value exceeds 1.96. 
Size: Asymptotically 5 percent. 
 
 



Example: Shirley Brown, an agricultural economist wants to 
compare cow manure and turkey dung as fertilizers.  She 
wants to test the hypothesis that they give equal crop yield. 
 
She applies cow manure to 25 randomly chosen fields.  The 
mean crop yield in this sample is 100 with a sample variance 
of 400.  She applies turkey dung to another 25 randomly 
chosen fields.  The mean crop yield in this sample is 115 
with a sample variance of 225.  Assuming that yields are 
normal, test the hypothesis of equal crop yield at the 5 
percent level. 
 
 
 



Test statistic:  

2 2

( ) 25( ) 25( )| | | | | |
400 225 625

X Y

n X Y X Y X Y
s s

  
 


 

5( )| | | |
25 5

X Y X Y 
   

 
So the rejection region is | | 5*1.96 9.8X Y    
 
In fact, 15X Y    and so the hypothesis is rejected. 



5. p̂  is a sample proportion from a binomial.  Test null 
0p p . 

 
Suppose the hypothesis is true 0 0

0
(1 )ˆ ( , )d

p pp N p
n


  

Test statistic: 0

0 0

ˆ
(1 )

p p
p p

n




 

Rejection Region: Reject if absolute value exceeds 1.96. 
Size: Asymptotically 5 percent (by CLT). 



Example: An opinion poll asked 1,000 randomly sampled 
voters whether they would vote for Obama.  48 percent 
replied yes.  Test the hypothesis that 50 percent of all voters 
will vote for Obama. 
 
Test statistic: 0.48 0.5 1.26

0.5*(1 0.5)
1000


 


 

 
The hypothesis is not rejected. 



In this last example, what would the power of the test be 
against the alternative that 45 percent of all voters will vote 
for Obama. 
 
The rejection region of the test is for p below 
0.5 1.96 0.5*0.5 /1000 0.469   and for p above 0.531. 
 
If in fact p=0.45, the probability of rejecting is 
 

0.45*0.55 0.45*0.55( (0.45, ) 0.531) ( (0.45, ) 0.469)
1000 1000

P N P N  

 
=0+0.886=0.886. 



6. ̂  is a sample correlation.  Test null 0  . 
Suppose that   denotes the correlation between X and Y. 

Let 1
2 2

1 1

( )( )ˆ
( ) ( )

n
i i i

n n
i i i i

X X Y Y
X X Y Y

 

 

  


   
 

denote the sample correlation. 
 
If 0   then ˆ (0,1 / )d N n  . 
Useful and simple result. 
Test statistic: ˆ ˆ/ 1 / n n   
Rejection Region: Reject if absolute value exceeds 1.96. 
Size: Asymptotically 5 percent. 



Example.  Over 60 days, the correlation between stock 
returns and oil returns is  -0.2.  Is this significantly different 
from zero? 
 
Test statistic: 0.2 / 1 / 60 0.2* 60 1.549      
 
At the 5 percent level, the hypothesis is NOT rejected. 
 
p-value: 0.121 



Uniformly Most Powerful Tests 
 
Consider testing the hypothesis 0   against the alternative 

1  .  Let C  be the set of rejection regions such that the 
probability of rejecting under the null is  . 
 
A test is said to be uniformly most powerful if it is in C  
and has higher power than any other test in C , for all 1  . 
 
Finding a uniformly most powerful test is a tall order. 
 
But in one special case, we can….. 
 
 



The Neyman-Pearson Lemma 
 
Suppose that we have data X with joint pdf ( , )f x  .  We wish 
to test the hypothesis that 0   against the alternative that 

1  , then the test with the rejection region 1

0

( , ){ : }
( , )

f xx k
f x 




  

where k  is such that the probability of rejecting under the 
null is   is the uniformly most powerful test. 



Neyman-Pearson Lemma Example 1: 
 
Suppose that X has an exponential distribution with 
parameter  .  We wish to test the hypothesis that 1   
against the alternative 0.5  .   
The Neyman-Pearson rejection region is  

2
22{ : } { : 2 } { : 2 } { : }

x
x x

x

ex k x e k e x x k x x x k
e    


 


         

 
Now we choose k so as to ensure that ( )P x k    under 
the null (with 0.05  ). 
 

0 00.05 [ ] 0.05 1 0.05 0.95k k k kx xe e e e                   
and so log(0.95)k   .  The rejection region is [0,-log(0.95)]. 



Neyman-Pearson Lemma Example 2: 
 
Suppose that 1,... nX X  are iid ( ,1)N  .  We want to test the null 
that 0   against the alternative 1   for some 1 0  . 
The Neyman-Pearson rejection region is 

2 2
1/2 1 1

1 1

2 2
1/2 0 0

1 1

( ) ( )(2 ) exp( ) exp( )
2 2{ : } { : }

( ) ( )(2 ) exp( ) exp( )
2 2

n ni i
i i

n ni i
i i

X X

x k x k
X X 

 

 


 


 

 
  

  
 

  
2 2

1
1 1 1

2 2
0

1 1 0

exp( )
2 2{ : }

exp( )
2 2

n ni
i i i

n ni
i i i

X nX
x k

X nX






 

 

   
 

   
 



2 2
0 1

1 1 0{ : exp( ( ) ) }
2 2

n
i i

n nx X k
         

2 2
0 1

1 0{ : ( ) ) }
2 2

n nx nX k
         

2 2
0 1

1 0{ : ( ) } { : }
2

x X k x X k 
            

Suppose we want to test at the 0.05 level.  Then 
( ) 0.05P X k   

0 0
1.64~ ( ,1 / ) ( ) 0.05X N n P X

n
      

So the rejection region is 0
1.64X

n
   

In this case, the rejection region doesn’t depend on 1  



Likelihood Ratio Test 
 
A very general method.  Almost always applicable and 
sometimes optimal. 
 
Let ( )L   denote the likelihood function.  To test the 
hypothesis that 0   against the alternative 0  , the 
likelihood ratio test is 
 

0
sup ( )
sup ( )

L
L









  

 
The rejection region is of the form { : }x c  .  
Note that by construction 0 1  . 



Example. Let 1 2, ,... nX X X  be an iid random sample from a 
population with pdf  

( )( ) xf x e    x   
            0        otherwise 
 
What is a LR test of 0   against the alternative 0  .   
 
log( ( )) ( )f x x x       if x   and   otherwise. 
 

1( ) n
i il n X       if 1min( ,... )nX X   and   otherwise. 

 
The maximum likelihood estimator is 1min( ,.. )nX X  . 
 



0( )
0 1 1 0( ) exp( ( ))iXn n

i i iL e X  
       

0 0 1( ) exp( )n
i iL n X        

if 1 0min( ,... )nX X   and   otherwise. 
 
Meanwhile, 

1( min( ,... ))
1 1 1( ) exp( ( min( ,... )))i nX X Xn n

i i i nL e X X X  
       

1 1( ) exp( min( ,... ) )n
n i iL n X X X      

 
Hence the LR statistic is 

0 1exp( ( min( ,... ))nn X X    
 
The rejection region is 
 { : } { : log( ) log( )}x c x c     

1 1 0{ : min( ,... ) '} { : min( ,... ) }n nx X X c x X X     



To work out the rejection region ( 'c )  need to know the cdf of 
1min( ,.. )nX X  

 
( )( ) 1 xF x e     

( )
min ( ) 1 (1 ( )) 1n n xF x F x e         

( ' ) ( ' )
1(min( ,... ) ') 1 [1 ]n c n c

nP X X c e e           
To set this to (say) 5 percent 

( ' ) 0.05n ce     
which can be solved for 'c . 
 



The holy trinity of tests: Wald, LR and LM. 
 
Suppose that   is a parameter, ( )l   is the log-likelihood 
function and arg max ( )l   is the MLE. 
 
We want to test 0   against 0   



 
Wald: Compare  and 0  
LR: Compare ( )l   and 0( )l   
LM: See how close 0'( )l   is to zero 



Suppose that p is the dimension of  .  Under the null 0  , 
● LR statistic:  2

02( ( ) ( )) ( )dl l p     
● Wald statistic:  2

0 0( ) ' ( )( ) ( )dn I p           

● LM statistic: 1 2
0 0 0

1 '( ) ( ) '( ) ( )dl I l p
n

      

 
Note: The LR test is minus twice the log of what was called 
the likelihood ratio earlier. 
 



Example 1 of the LR, Wald and LM statistics. 
 
Suppose that 1 2, ,... nX X X  are iid Poisson with parameter  . 

( )
!

x

i
eP X x
x

 

   

 
We want to test the null 6   against the alternative 6   
Suppose that 100n   and 1 500n

i iX  . 
 
The log-likelihood is 

1( ) { log( ) log( !)}n
i i il x x       



The MLE is 5X    (showed this earlier) 
 
The LR test is  

1 12*[ { log(5) 5 log( !)} { log(6) 6 log( !)}]n n
i i i i i iLR x x x x        

 1 12*{ log(5) 500 log(6) 600}n n
i i i ix x       
12*{ (log(5) log(6)) 100}n

i ix     
2*{500*(log(5) log(6)) 100} 17.6      

 
1 /I   (derived earlier too) and our estimate of I  is 1 / 5 

 
The Wald test is  

1100*(5 6)* *(5 6) 100*(5 6)* *(5 6) 20
5

W I        



The LM test is derived as follows: 
 

1
1

0 0

( ) 500( 1) 100 16.7
6

n
n i i i
i

x xl n
  





        


  

1 1* 16.7* * 16.7 16.73
100 1/ 6

LM      

 
All three statistics are different, but they all reject  
(critical value: 3.84 for a 5 percent test) 



Example 2 of the LR, Wald and LM statistics. 
 
Suppose that 1 2, ,... nX X X  are iid ( ,1)N  . 
 
We want to test the null 0   against the alternative 0   
 
The log-likelihood is 
 

2

1
( )( ) log(2 )

2 2
n i
i

n Xl   


      

 
and the MLE is X  . 
 



The LR test is 
2*( ( ) (0))LR l X l   

2 2

1 1
( )2{ log(2 ) log(2 ) }

2 2 2 2
n ni i
i i

n X X n X  


        
2 2

1 1
( )2{ }

2 2
n ni i
i i

X X X
 


     

2 2 2
1 12{ }
2 2

n n
i i i iX X nX   

   
2nX  

 



The Wald test is 
2( 0)W n I   

 
X   

2

1 1I


   
2W nX   

 
This is a squared t-test….the t-test would be 

 0( )
1

Xn nX
  



As for the LM test… 
2

1
( )( ) log(2 )

2 2
n i
i

n Xl   


     

1 1'( ) ( ) '(0)n n
i i i il X l X nX           

1I   
2 2

2n XLM nX
n

    

 
In this case it just so happens that all three tests are the same. 



Example 3 of the LR, Wald and LM statistics 
 
Suppose that 1 2{ , ,... }nX X X  is iid Bernoulli with parameter p 
 
We want to test the null 1 / 2p   against the alternative 

1/ 2p   
 
The MLE of p is p̂ X . 
Suppose this is 0.55 in a sample of 100 observations. 
 
The log-likelihood is 

1( ) log( ) (1 )log(1 )n
i i il p X p X p      

1 1log( ) log(1 ) (1 )n n
i i i ip X p X        



ˆ ˆ ˆ ˆlog( ) log(1 ) (1 ) (log( ) log(1 )(1 ))p np p n p n p p p p       
 
The LR test is 

0 0

ˆ ˆ ˆ ˆ ˆ2( ( ) ( )) 2 (log( ) log(1 )(1 )
ˆ ˆlog( ) log(1 )(1 ))

l p l p n p p p p
p p p p
    

   
 

0 0

ˆ ˆ1ˆ ˆ2 ( log( ) (1 )log( ))
1

p pn p p
p p


  


 

 
In this case 

0.55 0.452*100*(0.55log( ) 0.45log( )) 1.00
0.5 0.5

LR     

So the test accepts 
 



1
(1 )

I
p p




 (showed this earlier) 

 
The Wald statistic is 

2 2ˆ( ) (0.55 0.5)100*
ˆ ˆ(1 ) 0.55*0.45
p pn

p p
 




 

 
With our numbers, this is 1.01. 
So the test accepts. 
 



As for the LM test… 
ˆ ˆ1'( ) ( )

1
p pl p n
p p


 


 

2 2ˆ ˆ1 1( ) (1 )
1

p pLM n p p
n p p


   


 

2ˆ ˆ1( ) (1 )
1

p pn p p
p p


  


 

 
With our numbers, this is 1.00. 
So the test accepts. 
 
 
 



Example 4 of the LR, Wald and LM statistics. 
 
Suppose that 1 2, ,... nX X X  are iid 2( , )N   . 
 
We want to test the null 0   against the alternative 0   
where 2( , ) '   . 
 
The log-likelihood is 

2
2

1 2

( )( ) log(2 )
2 2

n i
i

n Xl  



     

and the MLE is X   and 2 1 2
1( )n

i in X X 
   . 

 



The LR statistic is 
2

2
0 1 2

2
2 0
0 1 2

0

( )2( ( ) ( )) log(2 )

( )log(2 )

n i
i

n i
i

X Xl l n

Xn

  










    


  

 


 

 



The Wald statistic is 
2

02 2
0 0 2 24

0

1 / 0
( )

0 1 / 2
n

 
   

 
  

      


 
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( ) ( )
2

n n   
 
 

 
 
 

 

 



Sketch of the proof of the asymptotic distribution 
 

02( ( ) ( ))LR l l    
0 0( ) ' ( )( )W n I          

10 0
0

1 ( ) ( )( )
' '

dl dlLM I
n d d

 
 

  

 
Assume that 0( ) ( )I I I    



Results from earlier 

● 
2 2

2

1 ( ) log ( , ){ }
' p

l f xE I
n

 
  
 

  
  

 

● 0( )1 (0, )d
dl N I

dn



  

● 1
0( ) (0, )dn N I     

● If ~ (0, )X N   has a multivariate normal distribution, then 
1'X X  is 2 ( )k  distributed where k  is the dimension of  

 
Hence, 

2
0 0( ) ' ( ) ( )dW n I n W p           

 



Similarly, 
1 20 01 ( ) 1 ( ) ( )

' d
dl dlLM I LM p

d dn n
  
 

    

 
Finally, 

2

0 0 0 0
( ) 1 ( )( ) ( ) ( ) ' ( ) ' ( )

2 '
l ll l         
  

 
     

  

      
2

0 0 0
( ) 1 ( )0 ( ) ( ) ( ) ' ( )

2 '
l ll l      
  

 
     

  

     
2

0 0 0
( )2( ( ) ( )) ( ) ' ( )

'
ll l      
 


     
 

    
2

0 0( ) ' ( ) ( )dLR n I p           



Hypothesis tests and the delta method 
If 1 2{ , ,.... }nX X X  is iid with mean   and variance 2 , how 

can I test the hypothesis that 1 2

 ? 

We know from the delta method that 
2

4

1 1( ) (0, )dn N
X


 

   

21( 2) (0,16 )dn N
X

    
1 2( ) (0,1)
4 d

Xn N
s

 
   

This allows us to do a test. 



t-tests are not invariant to nonlinear reparameterization. 
 
Example. 0.9X  , 1s   and n=25.   
First want to test 0.5   
 

0.5 0.9 0.5 2
/ 1 / 25

X
s n
 

  …reject 

 

Next test 1 2

 …same hypothesis, parameterized differently 

1 12 0.9 2 1.11
4 / 4 / 25
X
s n

  
   …don’t reject 

 



Hypothesis tests and the delta method 
Suppose that 1,... nU U  and 1,... nV V  are random variables that 
are iid with mean U  and V , variance 2

U  and 2
V  and 

correlation  .  Let * /U V   .  We want to test the 
hypothesis that * *

0  .  
 
We know from the delta method that 

2( ) (0, )U
d

V

Un N
V

 


   

where 
2 2 2

2
2 4 32U V U U V U

V V V

     
  

   .  Hence  

*
0/( ) (0,1)ˆ d

U Vn N



  



Fieller’s Method 
Check the size of tests about the ratio of two means  
Simple Matlab code 
n=50; 
randn('seed',123); 
for imc=1:10000; 

u=randn(n,1)+1; v=randn(n,1)+0.1; 
ubar=mean(u); vbar=mean(v); 
lambdasq=(1/(vbar^2))+((ubar^2)/(vbar^4)); 
tstat(imc)=sqrt(n)*((ubar/vbar)-10)/sqrt(lambdasq); 

end; 
mean(abs(tstat)>1.96) 
 
Has poor size  
 
Fieller (1954) proposed a simple trick to do exact inference 
on a ratio of two means if the data are normal. 



Suppose that 1,... nU U  and 1,... nV V  are random variables that 
are iid normal with mean U  and V , known variances 2

U  
and 2

V  and correlation 0.  
 
Let * /U V   .  We want to test the hypothesis that * *

0  .  
2( ) ~ (0, )U Un U N   
2( ) ~ (0, )V Vn V N   

 
Consider the variable *

0U V   . 
* * 2 *2 2
0 0 0( ( )) ~ (0, )U V U Vn U V N           

 



Under the null hypothesis *
0 0U V    .  So under the null 

* 2 *2 2
0 0( ) ~ (0, )U Vn U V N      

 
This gives an exact test. 
 

Test statistic is 
*
0

2 *2 2
0

( )

U V

n U V
  




 

 
It works even where there is correlation between the 
variables, or when the variances are not known (here the 
distribution becomes t, not normal). 
 
See page. 464 of Casella and Berger. 



Bayesian approach to tests 
 
Recall that the Bayesian paradigm treats the parameter   as a 
random variable. 
 
Suppose that ( )f   is the prior density and  

1
1

1

( ,... | ) ( )( | ,... )
( ,... )

n
n

n

f X X ff X X
f X X

    

is the posterior density. 
 



In assessing the hypothesis that 0   and the alternative 
0  , the posterior odds ratio is 

0

0
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0 1 1
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( | ,... ) ( | ,... )

nn

n n

f X X dP X X
P X X f X X d
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n

f X X f d
f X X f d





  
  
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





 

 
Special case.  Comparing hypothesis that 0   against the 
alternative that 1  , the posterior odds ratio is 

1 0 0 0 0

1 1 1 1 1

( ,... | ) ( ) ( ) ( )
( ,... | ) ( ) ( ) ( )

n

n

f X X f L f
f X X f L f

   
   

  

where (.)L  is the likelihood function. 



If the prior is equal for the two points, 0 1( ) ( ) 1 / 2f f    

then the posterior odds is 0

1

( )
( )

L
L



 

 
This is the likelihood ratio…but the interpretation is 
different. 



Bayesians statisticians don’t look at p-values.   
 
For comparing the hypothesis against the alternative, Jeffreys 
proposed the following scale for odds ratios 
 
Posterior Odds Ratio Conclusion 
<1 No evidence for hypothesis 
1-3 Barely worth a mention 
3-10 Substantial 
10-30 Strong 
30-100 Very Strong 
>100 Decisive 
 



Interval estimation. 
 
In interval estimation, we give up on trying to get a single 
estimate, but rather instead look for range. 
 
Suppose that [ ( ), ( )]L X U X  is a confidence interval for a 
parameter  .  Then we say that the coverage of this 
confidence interval is ( ( ) ( ))P L X U X  . 
 
Of course [ , ]   is a confidence interval with coverage 1.  
But it isn’t very  useful. 
 
The width of a confidence interval is ( ) ( )U X L X . 



Example. 1 2, ,... nX X X  are iid uniform between 0 and  .  
1 2max( , ,... )n nY X X X .  Consider two confidence intervals 

for  . 
 
[ , ]n naY bY  where 1 a b   
[ , ]n nY c Y d   where 0 c d   
 
What is the coverage of each confidence interval? 



The coverage of the confidence interval [ , ]n naY bY  is 

( ) ( )n n nP aY bY P Y
b a
       

The pdf of nY  is 11 n
n ny


  

/ 1 / 1
/ /

1 1( ) a n a n
n b bn nP Y ny dy ny dy

b a
 
 

 
 

         

/
/

1 ( / ) ( / )( ) [ ]
n n

n a
n bn n

a bP Y y
b a




   
 


      

( ) (1/ ) (1/ )n n
nP Y a b

b a
 

      

is the required coverage. 



The coverage of the confidence interval [ , ]n nY c Y d   is 
( ) ( )n n nP Y c Y d P d Y c            

The pdf of nY  is 11 n
n ny


  

1 11 1( ) c n c n
n d dn nP d Y c ny dy ny dy 

  
 

   
           

1 ( ) ( )( ) [ ]
n n

n c
n dn n

c dP d Y c y 


  
 




  
        

is the required coverage. 



General method for forming a confidence set 
Consider a test of the hypothesis 0  .  Let ( )C X  denote 
the set of values of 0  for which this test does not reject. 
 

Q. What is the probability that ( )C X   includes the true 
value of  ,  ? 
A. It is the probability that the test does not reject the 
hypothesis   .  This is 1 minus the probability that the 
test rejects the hypothesis   . 

 
● If the test has a size of exactly  , then ( )C X  is a 
confidence set with coverage exactly 1- . 
● If the test has asymptotic size of  , then ( )C X  is a 
confidence set with asymptotic coverage 1- . 



From the first principals construction of a confidence set, it 
could have a wierd shape (e.g. disjoint).   Sometimes that’s 
true.  Usually not. 
 
Most typically, let ̂  be an estimator such that 

ˆ
( ) (0,1)dn N

V
 

  

 
 
 
 
 
 
 



The test of the hypothesis 0    will accept (at the 5 percent 

level) if 0
ˆ

| ( ) | 1.96n
V

 
  

 
So the set of 0  for which the test accepts is 

0
0

ˆ
{ : 1.96 ( ) 1.96}n

V
  

    

0 0
1.96 1.96ˆ{ : }V V

n n
        

0 0
1.96 1.96ˆ{ : }V V

n n
        

0 0
1.96 1.96ˆ ˆ{ : }V V

n n
        



which is 1.96ˆ V
n

  .  This confidence set has asymptotic 

coverage of 95 percent. 
 

If ̂  were an estimator such that 
ˆ

( ) ~ (0,1)n N
V

  , then  

1.96ˆ V
n

   would be a confidence set for   with coverage of 

exactly 95 percent. 
 
 
 



Example 1. 1 2, ,... nX X X  are iid 2( , )N    where 2  is known.  
We want to form a 95 percent confidence interval for  . 
 

( ) ~ (0,1)Xn N

  

1.96X
n


   is a confidence interval for   with coverage of 

exactly 95 percent. 



Example 2.  Same but the parent distribution is not 
necessarily normal. 

( ) (0,1)d
Xn N



  

1.96X
n


   is a confidence interval for   with asymptotic 

coverage of 95 percent. 



Example 3: ˆnp  is a sample proportion when an experiment is 
repeated n times.  We want to form a 95 percent confidence 
interval for p, the probability of success. 
 

ˆ
(0,1)

(1 )
n

d
p p N
p p

n





 

ˆ ˆ(1 )ˆ 1.96 n n
n

p pp
n


   is a confidence interval for p with 

asymptotic coverage of 95 percent. 
  



Opinion polls often say that they have a “±3 percent margin 
of error” 
 
This comes from the formula 

ˆ ˆ(1 )ˆ 1.96 n n
n

p pp
n


   

 
ˆ 0.5np   and 1,000n   (typically) so 

ˆ ˆ(1 ) 0.5*0.51.96 1.96 0.0310
1000

n np p
n


   

 



If 
ˆ

( )n
V

   has a distribution that does not depend on the 

parameter  , then it is said to be pivotal. 
 

If 
ˆ

( )n
V

   has an asymptotic distribution that does not 

depend on the parameter  , then it is said to be 
asymptotically pivotal. 



Suppose that 
ˆ

( )n
V

   has a pivotal distribution with lower 

and upper   percentiles F  and 1F  , respectively. 
 
The test of the hypothesis 0    will accept (at the 2  

significance level) if  0
0 1

ˆ
{ : ( ) }F n F

V 
  


   

The confidence set is 0
0 1

ˆ
{ : ( ) }F n F

V 
  


   

1
0 0

ˆ{ : }VF VF
n n
        1

0 0
ˆ{ : }VF VF

n n
          

1
0 0

ˆ ˆ{ : }VF VF
n n
         



Similarly, if  
ˆ

( )n
V

   has an asymptotically pivotal 

distribution with lower and upper   percentiles F  and 1F  , 
respectively, the confidence set 
 

1
0 0

ˆ ˆ{ : }VF VF
n n
         

 
has asymptotic coverage 1 2 . 



Example. 1 2, ,... nX X X  are iid 2( , )N    where 2  is unknown 
and 10n  .  We want to form a 95 percent confidence 
interval for  . 
 

ˆ
( )n

s
   is t-distributed on 9 degrees of freedom. 

It is pivotal. 
 
The 95 percent confidence interval is 

2.26 2.26ˆ ˆ{ : }s s
n n

        



If 1 2, ,... nX X X  are iid 2( , )N    then 
2

2

( 1)n s

  is 2  

distributed on 9 degrees of freedom. This is also pivotal and 
enables a confidence set to be constructed for 2 . 
 
Let the lower and upper   percentiles of the 2 ( 1)n   
distribution be F  and 1F  , respectively. 
 
The 1 2  confidence interval is 

2
2

12

( 1){ : }n sF F 
 


   
2

2
2

1

1 1{ : }
( 1)F n s F 




  


 



2 2
2 2

1

( 1) ( 1){ : }n s n s
F F 

 


 
    

“flipped around” again. 
 
For example, if 10n   and 2 1s  , the 95 percent confidence 
interval for 2  is 

2 29 9{ : }
19.02 2.70

    which is from 0.47 to 3.33. 

 



It’s much easier to form confidence intervals with pivotal test 
statistics.  So we do that when possible (occasionally it’s 
not). 
 
The important (asymptotically) pivotal distributions are 
 

( )Xn
s
     t/normal 

2

2

( 1)n s

      2  

 
in the usual notation. 



The regression model 
 

0 1 1 2 2.... 'i i i k ik i i iy x x x u x u            ,  1,2,...i n  
Can be written as Y X u   where 

 

1 11 12 1 0

2 21 22 2 1
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y x x x
y x x x
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
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     
       
     
     
     

 and 

1

2

:

n

u
u

u

u

 
 
 
 
 
 

 

 
Assumptions: 
1. ix  is fixed (hence uncorrelated with the error term) 
2. iu  is iid with mean zero and variance 2  
3. ix s are not perfectly multicollinear 



OLS is an intuitive estimator 
        1 1

1 1
ˆ ( ) ( ' ) 'n n

i i i i i ix x x y X X X y  
      

 
Assuming the errors are normal and 2  is known, the log-
likelihood function is 

2 2
12

1( ) log(2 ) ( ' )
2 2

n
i i i

nl y x  
       

and the MLE is OLS 

12

1'( ) n
i i il u x

    

12

1''( ) n
i i il x x

      

 
 



Basic statistical results applying to linear regression 
 
1.  1/2 2 1

1 1(0, )n n
i i i d i i in u x N n x x 
        

2. 1
1

n
i i in x x M
    

 
So 1 1ˆ ( ' ) ' ( ' ) 'X X X y X X X u      
 

1/2 1 1 1/2
1 1

ˆ( ) [ ]n n
i i i i i in n x x n x u    
      

 
              2 1ˆ( ) (0, )dn N M      



So in different ways, we can see that 

             2

1I M


  

                2 1ˆ( ) (0, )dn N M      
 
Wald, LR and LM tests can then be done.  For example, the 
LM test of 0   uses the statistic 

        2 2
1 0 12

1 ˆ{ ( ) ( ' ) }n n
i i i i i iy x y x 

        

and the Wald test statistic is 
 2

0 0
ˆ ˆ( ) ' ( )n M       



MLE works as well if the error variance 2  is unknown. 
 
The log-likelihood function is  

2 2 2
12

1( , ) log(2 ) ( ' )
2 2

n
i i i

nl y x   
       

 1ˆ ( ' ) 'X X X y   
2 1ˆ ˆ ˆ'u u

n
   

where ˆû y X  .  This is not the unbiased estimator of 2 , 

which is 2 1 ˆ ˆ's u u
n k




.   Also 

 
2

4

(1 / ) 0
0 1 / 2

M
I




 
  
 

 



The Inverse-Gamma distribution 
 
The inverse-gamma distribution arises in the context of 
Bayesian analysis of the regression model. 
 

We say that if 2 ~ ( , )IG a b  then 2
2 ( )
ab

b



  

 
(Sometimes parameterized differently)



Bayesian approach.  We’ll consider two priors, one non-
informative and one informative. 
 
Prior 1.  Diffuse Prior 

2 2( , ) 1 /p     for     and 2 0   
With this prior, the posterior is 

2 2 1ˆ( | , , ) ~ ( , ( ' ) )p y X N X X      
2 1 ˆ ˆ( | , , ) ~ ( ( ) '( ), )p y X IG y X y X n k

n k
     


 

 
Recall that in the “location” model with the diffuse prior and 
known variance: 
 

2 2( , | ) ~ ( , / )p x N x n    



Prior 2: “Informative” prior 
 

2 2( | ) ~ ( , )p N A     
2 2

0 0( ) ~ ( , )p IG s v  
 
With this prior, the posterior is  

2 2 1 1( | , , ) ( , ( ' ) )p y X N X X A        
1 1 1 1 1 ˆ( ' ) ( ' ) 'X X A A X X A X X           

2 2 1 1
0 0 0

0

1 ˆ ˆ ˆ ˆ( | , ) ~ ( [ ( ) '( ) ( ) '( ( ' ) ) ( )], )p y X IG v s y X y X A X X v n
v n

              


 



 
Recall that in the “location” model with an informative 

2( , )N    prior and known variance: 
 

 
2 2 2 2

2 2 2 2 2 2| ~ ( , )nX N X
n n n

    
     


  

 

 
This is the same as in the regression model with    and 

2 2/A    



The bootstrap 
 
The bootstrap is a simulation method for forming confidence 
intervals and obtaining standard errors using only 
information from the sample. 
 
Like a Monte-Carlo simulation, but uses only the data. 
 
Advantages 

1. Applicable in a wide range of contexts 
2. Easy. 
3. The bootstrap in some cases may produce better 

approximations 



Basic idea of bootstrap 
 
Suppose that 1 2, ,... nX X X  is iid with a parameter   and an 
estimator ̂ . 
 
We can resample from 1 2, ,... nX X X  with replacement 
(otherwise just reordering) and get a new estimate ˆboot

i . 
 
Can repeat Bn  times 
 

Estimate standard error of ̂  as 2
1

1 ˆ ˆ( )
1

Bn boot
i i

Bn
  


 

 



Bootstrapping the binomial mean: a simple illustration 
 
Suppose that we add up two independent Bernoulli random 
variables, each of which is 1 with probability p and 0 
otherwise. 
 
Let p̂ be the average of this sample of 2…an unbiased 
estimate of p. 
 
Suppose that we observe 1 and 0 

Then ˆ 1 / 2p   and the standard error is 
ˆ ˆ(1 ) 1

2 8
p p

 . 

Now let’s work this out by the bootstrap. 



We observe 1 and 0. 
 
Resampling with replacement will give the four following 
outcomes each with equal probability 
Draw 1 Draw 2 Estimate of p 
0 0 0 
0 1 0.5 
1 0 0.5 
1 1 1 
 
Across the bootstrap samples, the variance of the estimates of 
p is 2 2(0 0.5 0.5 0) / 4 1 / 8    1 / 8SE  . 
 
Exactly right!



Say I want a 95 percent confidence interval for  . 
 
Sort the bootstrap estimates ˆboot

i . 
 
Let bootF  denote the percentiles of the distribution of ˆboot

i . 
 
A confidence interval for   is [ 0.025 0.975,boot bootF F ]. 



Hall justifies the bootstrap with a “Russian Dolls” analogy 
● Doll zero: population that we do not get to see 
● Doll one: sample we observe 
● Doll two: bootstrap sample  

 
 
● Key idea: Doll 0 is to doll 1 as doll 1 is to doll 2 
● Population is to sample as sample is to bootstrap sample 



Pretend that we know the distribution of ̂   and assume 
that this is pivotal (does not depend on  ).    Call it G . 
 
If we knew G, a 1-2  confidence interval for   would be 

1
ˆ{ : }G G        

1
ˆ{ : }G G          

1
ˆ ˆ{ : }G G          



But we don’t know G  
 
We do however know the distribution of ˆboot

i  and can 
assume that the distribution of ˆ ˆboot

i   is the same as the 
distribution of ̂   (assuming pivotalness again).  
 

ˆbootG F     and 1 1
ˆbootG F      

 
The confidence interval is then 

1
ˆ ˆ ˆ ˆ{ : ( ) ( )}boot bootF F             

1
ˆ ˆ{ : 2 2 }boot bootF F          

 
But alas: in most cases ̂   is not pivotal 



Suppose that 
ˆ

ˆ

s


   is pivotal (at least asymptotically).   

Let F  be its distribution. 
 
If F  is known, then  

ˆ ˆ1
ˆ ˆ{ : }s F s F  

         
is a 1 2  confidence interval for  . 
 

Now let bootF  denote the bootstrap distribution of 
ˆ

ˆ ˆboot
i

s


  .   

This should be the same (asymptotically) as F  
CI: ˆ ˆ1

ˆ ˆ{ : }boot boots F s F  
         



Three ways of getting a bootstrap confidence interval in 
Hall’s terminology: 
 

1. Other percentile: 
[ 1,boot bootF F  ]. 

2. Percentile: 
1

ˆ ˆ[2 ,2 ]boot bootF F     
3. Percentile-t: 

ˆ ˆ1
ˆ ˆ[ , ]boot boots F s F  
     



From the Edgeworth expansion, we saw that the cdf of 
X 

  was 1/2( ) ( ) ( )nF x x O n   . 

 
An asymptotic confidence interval should have coverage that 
is the nominal coverage plus 1/2( )O n . 
 
True for the other percentile and percentile bootstraps too. 
 
But the percentile-t bootstrap gives a “higher order” 
refinement: error in coverage probability is 1( )O n . 
 
In practice though, the percentile and other percentile 
methods can work well in small samples. 



Example of the bootstrap 
 
Suppose that these are the speeds of a sample of seven cars 
on a stretch of highway: 
79  73  68  77  86  71  69 
 
Form a 95 percent confidence interval for the population 
mean (a) asymptotically, and (b) via the bootstrap. 



74.71X  , 6.40s  , 7n   
 
The 95 percent asymptotic confidence interval is 

2.45*6.474.71
7

  

which is from 68.78 to 80.64. 



Bootstrap: Simple Matlab code 
 
x=[79  73  68  77  86  71  69]'; 
xbar=mean(x); se=std(x)/sqrt(7); 
nboot=1000; 
for imc=1:nboot; 
 xboot=x(ceil(7*rand(7,1))); 
 xbarboot(imc)=mean(xboot); 
 tstatboot(imc)=(mean(xboot)-xbar)/se; 
end; 
xbarboot=sort(xbarboot); tstatboot=sort(tstatboot); 
[xbarboot(25) xbarboot(975)]  
[xbar-(tstatboot(975)*se) xbar-(tstatboot(25)*se)]   
The last two lines give the OP and Percentile t CIs for mean 



Confidence Intervals 
 Lower Bound Upper Bound 
Asymptotic 68.78 80.64 
Other Percentile 70.57 79.71 
Percentile-t 69.71 78.86 
 
In this case, they are all fairly similar. 
 
But the bootstrap ones needed no asymptotic theory 



Bootstrap test 
 
Suppose that we have a test statistic for a hypothesis 0θ θ=  , 

based on iid data 1,... nX X , such as 0
ˆ

ˆ( )
t

SE
θ θ

θ
−

=    

 
We don’t know it’s distribution. 
 
We can approximate it’s distribution by creating bootstrap 
samples of the same test, but of the hypothesis ˆθ θ=  

*
*

*

ˆ ˆ
ˆ( )

t
SE
θ θ

θ
−

=  

 
 



We can use the bootstrap in linear regression.  Model is 
i i iy xβ ε= +   

 
A standard bootstrap would resample pairs ( , )i iy x  
 
Can then get a bootstrap standard error for the OLS estimate 
of β  or a bootstrap test or confidence interval  
 
Some alternative bootstraps 

• Hold X fixed and resample the residuals. 
• Hold X fixed and multiply the randomize the sign of 

the residuals (wild bootstrap). 
 
 



Density estimation 
Suppose that 1 2, ,... nX X X  are iid with some density f .  We 
want to estimate f . 
 
One approach is to specify a model, like that the density is 
normal and estimate the parameters. 
 
A nonparametric approach avoids writing down a particular 
model. 
 
Goal is minimizing integrated risk: 2ˆ( ( ) ( ))E f x f x dx∫ −   
 
 
 



With a parametric model, risk is 1( )O
n

 . 

Example: 1( ) ( )xf x µφ
σ σ

−
=   and apply delta method to get 

1/2ˆ ( ) ( ) ( )pf x f x O n−− =   
Hence 2 1ˆ( ( ) ( )) ( )pf x f x O n−− =  



A histogram is a simple non-parametric density estimator. 
 
Of the n  observations, let jn  be the number falling in bin j  
and let h be the width of each bin. 
 
The estimate of the density is equal for all points in the bin 
and is jn

nh
. 

 
Let ( )

jj Bp f u du= ∫  be the probability of being in bin jB  which 
we normalize to go from ( 1)j h−  to jh.  
 



If jB  is the bin containing a fixed x, then 
ˆ( ( )) jp

E f x
h

=  

2

(1 )ˆ( ( )) j jp p
Var f x

nh
−

=   

  
If the bin width is small, ( ) ( )

jB f u du hf x∫   and hence 
( )ˆ( ( )) ( )hf xE f x f x
h

=  

 



Suppose that for any u in jB   ( ) ( ) ( ) '( )f u f x u x f x+ −  
Then 

2

( 1)

2 2

( ) [ ( ) ( ) '( )]

( )( ) '( )[ ]
2

( ) ( ( 1) )( ) '( )[ ]
2

j jj B B

hj
h j

p f u du f x u x f x du

u xf x h f x

hj x h j xf x h f x

−

= ∫ = ∫ + −

−
= +

− − − −
= +

 

 

2 2 2 2 2 2 2 2

2 2

2 2 2 2( ) '( )[ ]
2

2 2( ) '( )[ ]
2

1( ) '( ) [ ( ) ]
2

h j x xhj h j h jh x xhj xhf x h f x

h jh xhf x h f x

f x h f x h h j x

+ − − − + − + −
= +

− + −
= +

= + − −

 

  



The bias of the estimator in general is 
1( ) '( )( ( ) ) 12 ( ) '( )( ( ) )

2

f x h hf x h j x
f x f x h j x

h

+ − −
− = − −  

 
MSE of the estimator is bias-squared plus variance. 
 



Average bias squared is 
2

2'( )
12
h f x dx∫   

Variance is 1
nh

   

So risk is 
2

2 1'( )
12
h f x dx

nh
∫ +  

The choice of h that minimizes risk is 1/3
1/3 2

1 6( )
'( )n f u du∫

 . 

With this choice of binwidth, the risk is 2/3

C
n

 . 

 



A practical way to choose the binwidth is by cross-
validation. 
 
The loss function is 

2

2 2

ˆ( ( ) ( ))
ˆ ˆ( ) 2 ( ) ( ) ( )

f x f x dx

f x dx f x f x dx f x dx

∫ −

= ∫ − ∫ + ∫
  

 
The last term doesn’t depend on the binwidth, so minimizing 
binwidth amounts to minimizing 

2 2ˆ ˆ ˆ ˆ( ) 2 ( ) ( ) ( ) 2 [ ( )]L f x dx f x f x dx f x dx E f x= ∫ − ∫ = ∫ −  
 
The cross-validation estimator of this is 

2 2
1 ( )

2 2 1ˆ ˆˆ ( ) ( )] ( )
( 1) ( 1)

jn
i i i

nnL f x dx f X
n n h n h n=

+
= ∫ − Σ = − Σ

− −
 



The kernel density estimator is 

1
1 1ˆ ( ) ( )n i

i
x Xf x K

n h h=

−
= Σ  

 
()K  is any nonnegative smooth function such that ( ) 1K x dx∫ =  

and ( ) 0xK x dx∫ =  . 
  
A histogram is like a kernel estimator where (.)K  is the 
indicator that the argument is in a bin. 
 
Two widely used kernels are 

2
23 1 0.2( ) 1( 5)

4 5
xK x x−

= <   Epanechnikov  

( ) ( )K x xφ=        Gaussian 



For general density f  and kernel K   
 
Risk is 
 

2
2 2 4 21 ( )[ ( ) ] ''( )

4
K x dxx K x dx h f x dx

nh
∫

∫ ∫ +   

 
Minimizing this with respect to the bandwidth h gives 

* 1/5( )h O n−=  and a risk 4/5

C
n

.  

 
Asymptotic distribution if 1/5h Cn−=   

ˆ( ( ) ( )) ( , )dnh f x f x N B V− →   



A sequence of functions 1 2, ,...φ φ  is orthonormal on [a,b] if 
2 ( ) 1b

a j x dxφ∫ =  and ( ) ( ) 0b
a i jx x dxφ φ∫ =  for i j≠  . 

 
The cosine basis is orthonormal on [0,1].  They are 

( ) 2 cos( )j x jxφ π=  
 
 



  
Any density with support on [a,b] can be written as 

0( ) ( )j j jf x xβ φ∞
== Σ  where 0 ( ) 1xφ =   

 
Define 1

1ˆ ( )n
j i j iX

n
β φ== Σ   

 
ˆ( )j jE β β=   

2 2ˆ( ) ( ( ) ) ( )j j j jVar x f x dxβ φ β σ= ∫ − =   
 
The orthonormal density estimator is 

1
ˆ ˆ( ) 1 ( )J

j j jf x xβ φ== + Σ   
The number of terms J  is like the bandwidth.  Increasing it 
reduces bias but increase variance. 



 
The risk of the estimator is 

2
2

1 1
jJ

j j J jn
σ

β∞
= = +Σ + Σ   

 
An estimator of the risk is  

2 2
2

1 1

ˆ ˆˆmax( ,0)j jJ J
j j J jn n
σ σ

β= = +Σ + Σ −  

2 2
1

1 ˆˆ ( ( ) )
1

n
j i j i jX

n
σ φ β== Σ −

−
  



Maximum likelihood estimator of the density 
 
Likelihood function: 1

ˆ ˆ( ) ( )n
i iL f f X== Π  

 
This is obviously maximized by having all the mass at the 
observed points, which is a silly density estimator. 
 
A variant on this introduces a smoothness penalty. 
 

2'ˆ arg max log ( )
2f

ff L f
f

λ
= − ∫   

 



Density estimation methods have regression analogs 
( )i i iy f x ε= +  

1(| | )ˆ ( )
1(| | )

i i

i

x X h Yf x
x X h

Σ − <
=

Σ − <
  

Like a histogram, and called a “binning estimator”.  
 



Can have  

1

1

( )
ˆ ( )

( )

n i
i i

n i
i

x XK Y
hf x x XK
h

=

=

−
Σ

=
−

Σ
  

for a kernel function as before.  This is called the Nadaraya-
Watson estimator. 
 
The risk of the Nadaraya-Watson estimator is 4/5( )pO n−  . 
 
We would typically pick h by a cross-validation criterion 
minimizing 

2
1 ( )

ˆ( ( ))n
i i i iY f X= −Σ −  



Delinquency rates and FICO scores for loans made in 2002 

 
 



We can alternatively write ( ) ( )j jf x xβ φ= Σ  where ( )j xφ  is an 
orthonormal series estimator.  We then estimate 

1
1ˆ ( )n

j i i j iY X
n

β φ== Σ   and use a series estimator. 



Principal components 
 
Often in economic applications of statistics, there will be 
several series that have some common component and we 
would like to estimate that common component. 
 
e.g. many indicators of the business cycle. 
 
Let 1 2( ), ( ),.... ( )nX t X t X t  denote a set of n time series 
variables with mean zero and covariance matrix Σ. 
 
Task: Find the linear combination of these n series with the 
biggest variance. 
 



1( ( )) 'n
i i iVar X tλ λ λ=Σ = Σ  where 1 2( , ,... ) 'nλ λ λ λ= . 

 
So the problem is to find 

(1)
:|| || 1arg max 'λ λλ λ λ== Σ  

 
Solution: (1)λ  is the eigenvector of Σ corresponding to the 
largest eigenvalue of Σ, normalized to have length 1. 
 

(1) (1)
1

n
i i tX Xλ λ=Σ =  is then the “first” principal component. 

 



Now let  
(1)

(2)
:|| || 1, ( , 0)

arg max '
Cov X Xλ λ λ λ

λ λ λ
= =

= Σ  
 
Solution: (2)λ  is the eigenvector of Σ corresponding to the 
second largest eigenvalue of Σ, normalized to have length 1. 
 

(2) (2)
1

n
i i tX Xλ λ=Σ =  is then the “first” principal component. 

 
If ( )jλ  is the eigenvector of Σ corresponding to the jth largest 
eigenvalue of Σ, normalized to have length 1, then  

( ) (2)
1

n j
i i tX Xλ λ=Σ =   

is the jth principal component. 
 
All principal components are uncorrelated with each other. 



● For principal component analysis, the series must have 
mean zero.  We subtract the mean off from each series first. 
 
● As defined, principal component analysis will not be scale 
invariant (changing units changes principal components). 
 
● If the variables are divided by their standard deviation first, 
then it will be scale invariant. 
 
● This is principal component analysis based on the 
correlation matrix, not the covariance matrix. 



  
If many series that seem to have much in common.  
 
What’s the first principal component? 
 
Recipe. 

1. Subtract the mean from each series. 
2. Divide each by the standard deviation. 
3. Compute the variance-covariance matrix. 
4. Find the eigenvector corresponding to the largest 

eigenvalue. 
5. Weight each series by the element of this eigenvector. 



Factor analysis 
 
A related (but distinct) method.  Let 1 2( ), ( ),.... ( )nX t X t X t  
denote a set of n times series.  Suppose that 
 

( ) ( ) ( )i i iX t f t tβ ε= +   for 1,....i n=  
 
where 1 2( ), ( ),.... ( )nt t tε ε ε  are n white noise processes with 
variance 2

εσ  that are all mutually independent and ( )f t  is iid 
2(0, )fN σ  that is independent of all the ε s. 

 
Example: The Xs are returns on individual stocks and ( )f t  is 
the market return. 



Let 1 2( ( ), ( ),... ( )) 't nX X t X t X t=  and 1 2( , ,... ) 'nβ β β β=  
 

tX  is iid (0, )N Σ  where 2 2' ( )f diag εββ σ σΣ = + . 
 
We could always double β  and halve fσ .  So we adopt the 
normalization 2 1fσ = .  This means that 2' ( )diag εββ σΣ = +  
and we just have two parameters to estimate. 
 



The pdf of tX  (assuming normality) is 

            /2 1/2 11(2 ) | | exp( )
2

n
t tX Xπ − − −′Σ − Σ   

 
The log pdf of tX  is  

           11 1log( ) log(| |)
2 2 2 t t
n X Xπ −′− 2 − Σ − Σ  

 
So the log-likelihood function is 

          1
1

1log(2 ) log(| |)
2 2 2

T
t t t

nT T X Xπ −
= ′− − Σ − Σ Σ  

No closed form maximum in this case, but it can be 
maximized numerically wrt β  and 2

εσ .   



We could have multiple factors. 
 
Suppose that 
 

1 1 2 2( ) ( ) ( )... ( ) ( )i i i ik k iX t f t f t f t tβ β β ε= + + +   for 1,....i n=  
 
where the ( )f t  is iid (0, )fN Σ .  Let β  be the nxk matrix [ ]ijβ .  
Then tX  is iid (0, )N Σ  where 2' ( )f diag εβ β σΣ = Σ +  
 
We need to adopt a normalization (e.g. diagonal elements of 

fΣ  are all 1) and can then again estimate by MLE.  
 


