Problem Set 3

Due Date: November 1, 2019

1. Please download data on real GDP (billions of chained 2012 dollars, seasonally adjusted) from the economic database at the Saint Louis Fed from 1947Q1 to 2019Q2:

https://fred.stlouisfed.org/series/GDPC1

Take 400 times the first differences of the log data, which are effectively annualized percentage changes. Call these data \(y_t \). Consider applying a Markov switching model to these data:

\[
y_t = \alpha + \beta S_t + \epsilon_t
\]

where \(\epsilon_t \) is iid \(N(0, \sigma^2) \) and \(S_t \) is a Markov switching process with two states 0 and 1 such that \(P(S_t = 1 | S_{t-1} = 1) = p \) and \(P(S_t = 0 | S_{t-1} = 0) = q \).

(a) Please find the maximum likelihood point estimates of the five parameters.

(b) Plot the filtered probability of being in the low growth state.

2. Suppose that a bond pays coupons \(C \) and has a face value of $1 and that the yield is compounded at the same frequency as the coupons. Let the price of the bond be \(P \), the maturity be \(m \), and the yield be \(y \). Define duration as

\[
D = \frac{1}{P} \left\{ \frac{C}{(1+y)} + \frac{2C}{(1+y)^2} + \frac{3C}{(1+y)^3} + \ldots + \frac{m(1+C)}{(1+y)^m} \right\}
\]

Prove that \(\frac{d \log(P)}{dy} = -\frac{D}{(1+y)} \).

3. Suppose that the yields on zero-coupon bonds are as shown in the Table below.

<table>
<thead>
<tr>
<th>Maturity</th>
<th>Yield (Cont. Comp)</th>
<th>Maturity</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 months</td>
<td>5.4</td>
<td>3 years</td>
<td>5.5</td>
</tr>
<tr>
<td>1 year</td>
<td>5.3</td>
<td>3-1/2 years</td>
<td>6</td>
</tr>
<tr>
<td>18 months</td>
<td>5</td>
<td>4 years</td>
<td>6.5</td>
</tr>
<tr>
<td>2 years</td>
<td>4.5</td>
<td>4-1/2 years</td>
<td>7</td>
</tr>
<tr>
<td>2-1/2 years</td>
<td>5</td>
<td>5 years</td>
<td>7.5</td>
</tr>
</tbody>
</table>

(a) What will the price of a bond that pays coupons of 3 percent twice a year (called a 6 percent bond) be? Assume that the first coupon is in exactly 6 months.

(b) Compute the duration of the bond in (a).