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Basic Time Series 

 
Definitions 

 
A time series is (weakly) stationary if its first two moments are finite and are independent of 
time. 
A time series is strictly stationary if the distribution of ( ,... )k T kx x +  is independent of k . 
A time series of the form 1 0

p q
t j j t j j j t jy a y c ε= − = −= Σ + Σ  is an ARMA(p,q).   

AR and MA processes are obvious special cases. 
The autocovariance at lag j  is ( )j t t jE x xγ −= . 
A moving average process is invertible if it can be written as an absolutely summabble 
autoregression.   

For an invertible process, we can back out the errors from the data if we know the 
parameters.  For a non-invertible process we can’t. 

                                                              
Autocovariances 

 

For an AR(1) 2
21

j

j
φγ σ
φ

=
−

. 

For an MA(1) 2 2 2
0 1(1 ) , , 0 1j jγ θ σ γ θσ γ= + = = ∀ > . 

 
Estimating the Autocovariances 

 
It is easy to estimate the autocovariances by their sample counterparts 1ˆ ( )( )j t t jT x x x xγ −

−= Σ − − .  
Moreover, if 0 1( , ,.... ) 'hγ γ γ γ=  and 4 4( )tE ε ησ=  then 
 1/2 ˆ( ) (0, )dT N Vγ γ− →  
where 1ˆ ˆ( , ) { 3) ( ) ( ) [ ( ) ( ) ( ) ( )]}p q kCov T p q k k p q k q k pγ γ η γ γ γ γ γ γ− ∞

=−∞= ( − + Σ − + + + − . 
 

Estimation of AR and MA processes 
Estimation can take place by maximizing the likelihood function.  But that must be done 
numerically.  For an AR(p) conditioning on the first p observations makes it much easier. 
 

2 2
1 2 1 1 1 12

( ) ( ) 1log( ( , ... | ,... , )) log(2 ) log ( ... )
2 2 2

T
p p T p t p t t p t p

T p T pf y y y y y y c y yθ π σ φ φ
σ+ + = + − −

− −
= − − − Σ − − −

which can clearly be maximized in closed form.  This is the way that at an AR is usually 
estimated, although this is not the exact likelihood.  The exact likelihood includes the density of 
the first p observations and that can make a substantive difference.  For the AR(1) the exact log 
likelihood can be written as:  

2 2 2
2 1 1 12

1

( 1) 1 1 1log(2 ) log ( ) log ( )
2 2 2 2 12

T
t t t
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−
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where 
2

21
V σ

φ
=

−
 is the variance of 1y .  

We can also estimate an MA(q) more simply by conditioning on 0 1 1... 0qε ε ε− −= = = .  Given 
this assumption, the errors can all be recovered uniquely given a parameter value and the 
conditional likelihood is then 

 2 2
12

1log(2 ) log( )
2 2 2

T
t t

T Tπ σ ε
σ =− − − Σ  

  
The spectral density 

Consider a stationary time series.  There are a number of ways to represent its persistence 
properties.  It can be represented by 
1. The AR representation, ( ) t tA L y ε=  where 2

1 2( ) ... p
pA L I A L A L A L= − − −  

2. The MA representation, ( )t ty C L ε=  where 2
1 2( ) ... p

pC L I C L C L C L= + + +  
3. The autocovariance function, ( ) ( )t t jj E y yγ −= , or 
4. The spectral density.  The spectral density is  

 2
2

( ) ( )1 1( ) ( ) ( )
2 2 2 ( )

i j it t
j i

Var Var
f j e C e

A e
ω ω

ω

ε ε
ω γ

π π π
∞ −
=−∞= Σ = =  

for [ , ]ω π π= − .  Note that ( ) ( )f fω ω= − . 
Once you have any one of these, you can always work out the others.  
 
MA representation to ACF 

2
0 0 0( ) [( )( )]i i t i k k t j k i i i jj E c c c cγ ε ε σ∞ ∞ ∞

= − = − − = += Σ Σ = Σ  
 
Spectrum to ACF 

( ) i k
k f e dπ ω

πγ ω ω−= ∫  
 

Stationarity and Invertibility 
For an AR process, the condition for stationarity is that ( ) 0A L =  has only solutions such that 
| | 1L > . For an MA process, the condition for invertibility is that (L) 0C =  has only solutions 
such that | | 1L > . 
 
 

Examples of spectral density 
2 2

2

2 2
2

1 1AR(1): ( )
2 2(1 )(1 ) (1 2 cos )

MA(1): ( ) (1 )(1 ) (1 2 cos( ))
2 2

i i

i i

f
e e

f ce ce c c

ω ω

ω ω

σ σω
π πα α α α ω
σ σω ω
π π

−

−

= =
− − + −

= + + = + +

 

 
The Periodogram 

The periodogram of a time series 1{ }T
t tx =  is defined as 
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 1 2
1( ) || ||jitT

j t tI T x e λλ −−
== Σ  

for 2 / , 0,1,... / 2j j T j Tλ π= = .  The periodogram is an asymptotically unbiased but not consistent 
estimate of the spectrum.  In fact for 0, / 2j T≠  

 
2( ) (2)

( ) 2
j

d
j

I
f
λ χ
λ

→  

while for 0, / 2j T=  

 2( )
(1)

( )
j

d
j

I
f
λ

χ
λ

→  

 
Estimating the Spectral Density 

There are two ways of proceeding. 

1. Fit an AR to the time series in question.  The spectral density is 2

( ) 1
2 ( )

t
i

Var
A e ω

ε
π

.  Just replace 

the parameters with estimates. 
2. Smooth the periodogram. 
 ˆ ( ) ( ) ( )j j kf W k Iλ λ += Σ  
where the weights sum to 1 and ( ) ( )W k W k= − .  As long as the spectrum is smooth, this is 
consistent. 
 

Beveridge-Nelson Decomposition 
 
Suppose that 0 0x =  and 0( )t t j j t jx C L cε ε∞

= −∆ = = Σ .  Then 
*(1) ( )t t tx C z C L ε= +  

where 1 1
t

t t t s sz z ε ε− == + = Σ  and *
1j i j ic c∞

= += −Σ  (Permanent-Transitory Decomposition). 
Proof:  

1 1

0 1 1 2 2

0 1 1 2
1

0 0

1 2 1

*
1

( )
...
...

...

( (1) ) ( (1) ) ...

(1) ( )

t t
t s s s s

t t t

t t

t j j t j

j j t j j t

t
s s t

x x C L
c c c

c c
c c

C c C c

C C L

ε
ε ε ε

ε ε

ε ε

ε ε

ε ε

= =

− −

− −

= −

∞ ∞
= = −

=

= Σ ∆ = Σ
= + +

+ +

= + Σ

= − Σ + − Σ

= Σ +

 

 
 
 

The Central Limit Theorem for Dependent Data 
If tu  is iid with 2 δ+  moments for some 0δ > , then the central limit theorem says that 
 1/2

1 (0, ( ))T
t t d tT u N Var u−
=Σ →  
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Now suppose instead that tu  is stationary with spectral density (.)f  and covariance function 
(.)γ , but that it is not necessarily iid.  The process must satisfy some other conditions.  The 

central limit theorem for dependent data now says that  
 1/2

1 (0, 2 (0))T
t t dT u N fπ−
=Σ →  

and of course we can write 2 22 (0) ( ) ( ) (1) ( ) / (1)j t tf j Var u C Var u Aπ γ∞
=−∞= Σ = = . 

 
The regression model with Dependent Errors 

Now think of a linear regression model of the form 
 't t ty xβ ε= +  
Suppose that tε  is stationary but may be dependent.  Then from the law of large numbers: 
 1

1 ( )T
t t t p t tT x x E x x M−
= ′ ′Σ → ≡  

and from the central limit theorem for dependent data: 
 1/2

1 (0, )T
t t t dT x N Jε−
=Σ →  

where J is 2π  times the spectral density of t tx ε  at frequency zero.  Or, if ( ) ( )t t jj E z z −′Γ =  is the 

autocovariance function of t t tz x ε=  then ( )jJ j∞
=−∞= Σ Γ . 

Combining these gives  
 1/2 1 1 1/2 1 1ˆ ) ( ) (0, )t t t t dT T x x T x N M JMβ β ε− − − − −′( − = Σ Σ →  (1) 
and this is a general form for the asymptotic distribution of an OLS estimator with possibly 
dependent data.  Note that M  is a symmetric matrix. 
 
Now if tε  were iid (homoskedastic and serially uncorrelated), ( ) 0t t t j t jE x xε ε− −′ =  for 0j ≠  and 

2 2 2( ) ( ( | )) ( ) ( )t t t t t t t t t tE x x E x x E x E E x xε ε ε′ ′ ′= = .  So in this case, (0) ( )tJ Var Mε= Γ =  and  

 1/2 1ˆ( ) (0, ( ) )d tT N Var Mβ β ε −− →  
But alas we are rarely so lucky in time series and so we have to resort to the formula in (1).  To 
estimate M  is easy, as we just use 1

1
ˆ T

t t tM T x x−
= ′= Σ .  Estimating J  is harder but it is clearly a 

special case of the general problem of estimating a spectral density at frequency zero.   
 

Estimating the spectral density at zero frequency 
The problem of estimating the spectral density at frequency zero comes up quite a bit, 
particularly in getting standard errors for time series.  Of course it is a special case of estimating 
the spectral density as above.  Here are three ways of doing it. 
 
1. Fit an AR to the time series in question.  The spectral density (ignoring the 2π ) is 

1 1(1) (1) 'A A− −Σ .  Just replace the parameters with estimates.  
 
2. Hansen and Hodrick (1980) proposed ˆ ( )T

T

l
l j−Σ Γ  where 1ˆ ( ) t t jj T z z−

−′Γ = Σ   and Tl  is a truncation 

parameter.   It is intuitive that if Tl →∞  as T →∞  at the right rate that ˆ ( )T

T

l
j l pj J−Σ Γ → . 
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3. Unfortunately, the Hansen and Hodrick estimator is not necessarily positive definite.  This 
could mean that you would have negative variance estimates, and so imaginary standard errors.  

The proposal of Newey and West (1987) avoids this problem.  It uses | | ˆ(1 ) ( )
1

T

T

l
j l

T

j j
l=−Σ − Γ
+

.  It so 

happens that this estimator is not only consistent for J  but is guaranteed to be positive definite.  
As practical advice, the truncation parameter Tl  is set to the largest distance apart that two 
observations might be expected to be substantially correlated with each other.  More formal 
answers to the question of choosing this parameter (also known as the “bandwidth”) are provided 
in Andrews (1991) and Andrews and Monohan (1992).  Lazarus, Lewis, Stock and Watson 
(2018) recommend 1/21.3Tl T= .  
 

Kiefer-Vogelsang Asymptotics 
It turns out that t- and F-tests using Newey-West standard errors can have poor size, especially if 
the truncation parameter is big.  Kiefer and Vogelsang (2005) assume that Tl bT=  for some b  
between 0 and 1.  Consider the Wald test of the hypothesis that 0β β= .  Instead of the usual 2χ  
distribution, this has a distribution 

 1 1 1
0 0

2 1(1) '[ ( ) ( ) ' ( ( ) ( ) ' ( ) ( ) ') ] (1)b
b b b b b bB B r B r dr B r b B r B r b B r dr B

b b
− −∫ − ∫ + + +  

where ( )B r  is a standard Brownian motion and ( ) ( ) (1)bB r B r rB= − . The advice of Lazarus, 
Lewis, Stock and Watson (2018) includes using Kiefer-Vogelsang critical values. 
 

Clustered Standard Errors 
 
Dependent errors come up in cross-sectional and panel data too.  The general result is 

1/2 1 1ˆ( ) (0, )dn N M JMβ β − −− →  
where 1

1
n
i i i pn x x M−
= ′Σ →  and 1 1

1 1 1( ) ( )n n n
i i i j i jJ n Var z n E z z− −
= = == Σ = Σ Σ  and i i iz x ε= .  However, we 

cannot estimate J  consistently by  1
1 1

n n
i j i jn z z−
= =Σ Σ . 

 
“Clustering” uses 1

1 1
n n
i j ij i jn w z z−
= =Σ Σ  where ijw  is 1 for pairs of observations within a cluster, and 

0 otherwise.  Clustered standard errors are commonly used in panel data applications.  But 
clustered standard errors and spectral density estimators are all just ways of weighting the 
elements being summed in J  so as to avoid estimating too many free parameters. 

 
Information Criteria 

 
Consider the problem of fitting the model  
   
 0 ,

p
t j j j t ty xβ ε== Σ +  
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and we want to pick how many RHS variables to include (this includes the lag order for an AR).  

This is what information criteria do.  The residual sample variance is 2 21ˆ ( )p te p
T

σ = Σ .  

Obviously adding more regressors always reduces this, so information criteria are of the form  
 2ˆln ( )p pg Tσ +  
for different penalty functions, ( )g T .  These are 

2AIC ( )g T
T

=  

 
lnBIC ( ) Tg T
T

=  

Theorem (Consistency) If ( ) 0g T →  but ( )Tg T →∞ and there is a true model with 0p  
regressors then 0p̂ p→ .  (BIC satisfies this; AIC doesn’t). 
Outline of Proof. Suppose 0p p< . Then 

0 0

0

2
2 2 2 2

0 02

ˆ
ˆ ˆln ( ) ln ( ) ln( ) ( ) ( )

ˆ
p

p p p p
p

s s pg T p g T p p g T
σ

σ σ
σ

− = + − − = + −  

0

2 2lim 0T p ps s→∞∴ − >  

0

2 2lim ( 0) 0T p pP s s→∞∴ − < =  
Suppose 0p p>  

0

0

2
2 2

0 02

ˆ
( ) ln( ) ( ) ( ) (1) ( ) ( )

ˆ
p

p p p
p

T s s T T p p g T O T p p g T
σ
σ

− = + − = + −  

0

2 2lim ( )T p pT s s→∞∴ − = ∞  

0

2 2lim ( 0) 0T p pP s s→∞∴ − < =  
BIC has a Bayesian justification and should be thought of as selecting the true model.  AIC is 
justified for picking the model that minimizes mean square error.  These two objectives are 
fundamentally at odds with each other. 
 
Suppose that the true model is t ty ε= , but we estimate  't t ty xβ ε= +  (over-specified) 

The estimated error variance is 2 (1 )k
T

σ −  

If forecast out-of-sample, forecast variance is 2 (1 )k
T

σ +  

The intuition of AIC is that it corrects for this difference.  There are other closely related 
information criteria, such as final prediction error 

 2ˆln( ) ln( )p
T pFPE
T p

σ +
= +

−
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Handout on Panel Data 

 
Suppose that we have a model of the form 
 it i it ity xα β ε= + +   (1) 
which is a very common occurrence with macro as well as micro datasets.  In micro applications, 
n has typically been large and T is small, but there are many macro applications where that is not 
the case.  If the constant were the same for all i, then this would be a pooled regression, but the 
power of panel data is that we can allow for unobserved heterogeneity as long as it does not 
change over time. 
 
The existence of fixed effects does not avoid the need to worry about the dependence properties 
in the errors.  It is possible to assume that the errors are iid in both the cross-section and the time-
series, but that is usually too strong an assumption.  Clustering will allow for correlation within 
blocks (e.g. regions of the country, firms in an industry). 
 
Driscoll and Kraay (1998) have an approach to standard errors that are robust to both cross-
sectional dependence and some autocorrelation.  It is a panel version of Newey West.  We can 
take the model and rewrite it as 
 ( )it i it i it iy y x xβ ε ε− = − + −   (2) 
or it it ity xβ ε= +    for short.  Now consider running a pooled regression for all n and T and get the 

OLS estimate 1ˆ ( ' ) 'X X X Yβ −= .  Define ˆ( )it it it ith x y xβ= −   .   Then take the cross sectional 

averages, 1
1 N

t i ith h
N == Σ .  Define  

 1
ˆ 'T

j t j t t jh h= + −Ω = Σ   
Then the Driscoll-Kraay variance-covariance matrix is 

 1 1
0 1

1ˆ ˆ ˆ( ' ) [ ( )]( ' )
1

l
j j jX X X X

l j
− −

= ′Ω + Σ Ω +Ω
+ −

  

The Driscoll-Kraay approach makes mild assumptions and works well.  Petersen (2009) gives a 
discussion of methods for standard errors with panel data that is now a classic reference 
especially in finance applications. 
 
A situation that often arises is that we have a panel where we think that the slope coefficients 
may differ over the cross-section.  If it is as simple as: 
 it i i it ity xα β ε= + +   (3) 
then there is no real panel data estimation element.  It is SUR which is OLS equation by equation 
unless the errors are correlated cross-sectionally.  But there may be some more structure to the 
slope coefficients.  Suppose that there is some variable iz  and we are willing to assume that:  
 0 1i izβ γ γ= +   
Then, by substitution, we have: 
 0 1it i i it i ity z x zα γ γ ε= + + +   
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which is now back to being a standard fixed effects model. 
 
Recently, methods have been proposed for estimating group structure in panel data models.  You 
know that the cross-sectional observations belong to G groups.  Cross-section i  belongs to group 

( ) {1,... }g i G∈ .  The groups can differ in fixed effects and/or in slope coefficients.  Consider the 
least squares estimator 
 2

, , 1 1 ( ) ( )arg min ( )N T
g i t it g i g i ity xα β α β= =Σ Σ − −   

This has two advantages.  One is that there is an efficiency gain from reducing the number of 
fixed effects that are estimated.  The other is that there may be interesting stories about which 
cross-sections have higher and lower slope coefficients.  This leaves unadressed the question of 
what the number G is.  Lu and Su (2017) have a testing procedure where they determine the 
number G.   
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Handout on the Bootstrap 

 
The bootstrap 
 
The bootstrap is a simulation method for forming confidence intervals and obtaining standard 
errors using only information from the sample.  Like a Monte-Carlo simulation, but uses only the 
data. 
 
Advantages 

1. Applicable in a wide range of contexts 
2. Easy. 
3. The bootstrap in some cases may produce better approximations (knocks out an extra 
term in the Edgeworth expansion). 

 
Basic idea of bootstrap 
 
Suppose that 1 2, ,... nX X X  is iid with a parameter θ  and an estimator θ̂ . 
 
We can resample from 1 2, ,... nX X X  with replacement (otherwise just reordering) and get a new 

estimate ˆboot
iθ . 

 
Can repeat Bn  times. 
 
Idea is that θ  is to θ̂  as θ̂  is to ˆboot

iθ . 
 
Hall justifies the bootstrap with a “Russian Dolls” analogy 
● Doll zero: population that we do not get to see 
● Doll one: sample we observe 
● Doll two: bootstrap sample  

 
 
A simple use of the bootstrap is to estimate the bias in θ̂ . 

  1
1ˆ ˆ ˆ( ) ( )n boot

i i
B

E
n

θ θ θ θ=− ≈ Σ −  

Also, say I want a 95 percent confidence interval for θ . 
Sort the bootstrap estimates ˆboot

iθ . 

Let bootFα  denote the percentiles of the distribution of ˆboot
iθ . 

Three ways of forming the bootstrap CI. 
 
Method 1 



10 
 

A confidence interval for θ  is [ 0.025 0.975,boot bootF F ]. 
Called “other percentile” 
 
Method 2 
Pretend that we know the distribution of θ̂ θ−  and assume that this is pivotal (does not depend 
on θ ).    Call it G . 
 
If we knew G, a 1-2α  confidence interval for θ  would be 

1
ˆ{ : }G Gα αθ θ θ −≤ − ≤  

1
ˆ{ : }G Gα αθ θ θ−= − ≤ − ≤ −  

1
ˆ ˆ{ : }G Gα αθ θ θ θ−= − ≤ ≤ −  

 
But we don’t know G  
We do however know the distribution of ˆboot

iθ  and can assume that the distribution of ˆ ˆboot
iθ θ−  is 

the same as the distribution of θ̂ θ−  (assuming pivotalness again).  
ˆbootG Fα α θ= −  and 1 1

ˆbootG Fα α θ− −= −  
The confidence interval is then 

1
ˆ ˆ ˆ ˆ{ : ( ) ( )}boot bootF Fα αθ θ θ θ θ θ−− − ≤ ≤ − −  

1
ˆ ˆ{ : 2 2 }boot bootF Fα αθ θ θ θ−= − ≤ ≤ − . 

Call this the “percentile” interval. 
 
Method 3 
But alas: in most cases θ̂ θ−  is not pivotal 

Suppose that 
ˆ

ˆ

s
θ

θ θ−  is pivotal (at least asymptotically).   

Let F  be its distribution. 
If F  is known, then  

ˆ ˆ1
ˆ ˆ{ : }s F s Fα αθ θ

θ θ θ θ−− ≤ ≤ −   
is a 1 2α−  confidence interval for θ . 

Now let bootF  denote the bootstrap distribution of 
ˆ

ˆ ˆboot
i

s
θ

θ θ− .   This should be the same 

(asymptotically) as F  
CI: ˆ ˆ1

ˆ ˆ{ : }boot boots F s Fα αθ θ
θ θ θ θ−− ≤ ≤ −   

This is the percentile-t interval. 
 
Simple example of the bootstrap 
 
Suppose that these are the speeds of a sample of seven cars on a stretch of highway: 
79  73  68  77  86  71  69 
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Form a 95 percent confidence interval for the population mean (a) asymptotically, and (b) via the 
bootstrap. 
 

74.71X = , 6.40s = , 7n =  
 
The 95 percent asymptotic confidence interval is 

2.45*6.474.71
7

±  

which is from 68.78 to 80.64. 
 

Bootstrap: Simple Matlab code 
 
x=[79  73  68  77  86  71  69] ' ; 
xbar=mean(x); se=std(x)/sqrt(7); 
nboot=1000; 
for imc=1:nboot; 
 xboot=x(ceil(7*rand(7,1))); 
 xbarboot(imc)=mean(xboot); 
 xse=std(xboot)/sqrt(7); 
 tstatboot(imc)=(mean(xboot)-xbar)/xse; 
end; 
xbarboot=sort(xbarboot); tstatboot=sort(tstatboot); 
[xbarboot(25) xbarboot(975)]  
[xbar-(tstatboot(975)*se) xbar-(tstatboot(25)*se)]   
The last two lines give the OP and Percentile t CIs for mean 

Confidence Intervals 
 Lower Bound Upper Bound 
Asymptotic 68.78 80.64 
Other Percentile 70.57 79.71 
Percentile-t 69.71 78.86 
 
The bootstrap in a regression model 
 
Suppose I have a linear regression model 

'i i iy xβ ε= +  
The most standard implementation of the bootstrap entails the following steps: 
(i) Estimate the parameter vector β  and work out the residuals ˆ 'i i ie y xβ= −  
(ii) Resample from the residuals with replacement and from the regressors with replacement. 
(iii) Build up a new dataset of the dependent variables as ˆ 'BOOT BOOT BOOT

i i iy x eβ= +  
(iv) Work out the quantity of interest in this new dataset 
(v) Repeat (ii)-(iv) many times. 
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Other percentile, percentile or percentile-t confidence intervals can then be worked out.  In part 
(ii), one could hold the regressors fixed.  This amounts to making all statements conditional on 
the observed regressors.   
The bootstrap described here as the undesirable feature that it imposes that the residuals and 
regressors are independent; not just that ( | ) 0i iE e x = .  There is likely however to be conditional 
heteroskedasticity that this bootstrap is going to destroy.  A way around this is to use the wild 
bootstrap, or heteroskedasticity-robust bootstrap.  To create the bootstrap samples, for each 
observation, take the following distribution: 

 

1 5 5 1( ( ) )
2 2 5

1 5 5 1( ( ) )
2 2 5

BOOT
i i

BOOT
i i

P e e

P e e

+ −
= =

− +
= =

 

This ensures that ( | ) 0BOOT
i iE e x = , 2 2(( ) | )BOOT

i i iE e x e=  and 3 3(( ) | )BOOT
i i iE e x e= .  Intuitively, the 

idea is to randomize the sign of the residuals in repeated bootstrap samples.  That would be 
sufficient to allow for conditional heteroskedasticity, but not for skewness.    
 
The bootstrap in time series models 
 
Now, the idea of the bootstrap is that all observations are independent of each other.  That 
doesn’t work with time series.  There are three ways of proceeding, that we’ll illustrate in the 
context of the AR(1) time series model 1t t ty y uα −= + . 
 
Method 1: Parametric Bootstrap 
 
1. Estimate α  by α̂ . 
2. Form the residuals 1ˆˆt t tu y yα −= −  
3. Resample from the residuals with replacement, and form new data { }ty . 
4. Form a confidence interval for α , or a function of α , on the bootstrap data as before. 
 
The problem is that this doesn’t work if 1α =  because the distribution is not pivotal. 
 
Method 2: Bias-Adjusted parametric Bootstrap (Kilian (1998)) 
 
1. Estimate α  by α̂ . 
2. Form the residuals 1ˆˆt t tu y yα −= −  
3. Resample from the residuals with replacement, and form new data { }ty . 
4. Use the bootstrap samples to estimate the bias in α̂ , ˆ( )B α . 
5. Now form a new set of residuals as * *

1t t tu y yα −= −  where * ˆ ˆ( )Bα α α= − . 
6. Resample from the residuals with replacement, and form new data. 
7. Use the bootstrap sample to estimate α  and then adjust each of these by subtracting off the 
(negative) bias ˆ( )B α .  Take any required function of these estimates of α . 
8. Save the percentiles of the bootstrap sample in (7).  This is a bias-adjusted confidence interval.   
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Method 3: Block Bootstrap 
 
Instead of resampling individual observations, resample blocks of observations.  The blocks 
should be sufficiently short that there are many blocks; yet sufficiently long that there will be 
little dependence across blocks.  In an extension, the blocks can have random length (stationary 
bootstrap).  This idea, due to Politis and Romano (1994) can be summarized with the following 
algorithm: 

1. Randomly choose one observation from the sample. 
2. With probability p, pick the next observation, otherwise go back to 1 (and go back to 1 in 

any case if you are at the final observation in the series). 
3. Repeat  until you have a bootstrap sample with the same number of observations as the 

original sample 

This algorithm produces blocks of data of random length, but the expected length is 1
1 p−

 .  

Clearly, the more persistent the series, the longer you want the blocks and so the higher p should 
be. 
 
Method 4: Grid Bootstrap 
 
Hansen (1999) proposes instead the grid bootstrap. 
 
Consider testing the hypothesis 0α α=  
1. Form the implied errors 0 1t t tu y yα −= −  
2. Resample from these errors with replacement. 
3. Find the upper and lower percentiles of the bootstrap distribution of the t-statistic testing the 
hypothesis that 0α α= . 
4. Comparing the actual t-statistic with these critical values, decide to accept or reject. 
 
A confidence interval for α  can be formed by inverting the acceptance region of this test. 
 
See Berkowitz and Kilian (2000) for more discussion of the bootstrap in time series.  We’ll 
return to the bootstrap in the context of the estimation of VARs. 
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Handout on Markov Chain Monte Carlo (MCMC) Methods 

The potential for Bayesian analysis has been greatly increased by algorithms for simulating from 
posterior distributions.  Two (related) widely used algorithms are Gibbs sampling and Metropolis 
Hastings. 

Gibbs sampling concerns the case when you can easily draw from conditional distributions, but 
not from joint distributions.  Say you know the distribution of Y|X and X|Y.  Gibbs sampling 
simply says that you can start at any X, take a draw of Y given that X, and then iterate back and 
forth between the two conditionals.  If you discard some initial values, then the draws of X and Y 
are draws from their joint distribution. 

Metropolis-Hastings simulates samples from the full joint density function.  Suppose that ( )f Y  is 
the density that I want to draw from.  I cannot directly draw from that density.  Here is the 
algorithm. 

1. Take an arbitrary value of Y , tY  . 

2. Take a proposal distribution, ( | )tq z Y  that I can draw from. 

3. With probability ( ) ( | )min(1, )
( ) ( | )

t

t t

f z q Y z
f Y q z Y

, I accept the proposal, meaning that I set 1tY z+ = .  

Otherwise, I reject the proposal meaning that I set 1t tY Y+ = . 

4. Repeat many times. 

 
The first many draws are discarded, and the remaining draws are draws from the density ( )f Y .  It 
is important to note that they are not independent of each other, but the chain nonetheless 
converges to the required density. 

A common proposal distribution is the random walk distribution, giving random-walk  Metropolis 
Hastings.  In this, the proposed draw is tz Y ε= + , where ε  is a normal random variable.  This has 
the feature that the proposal distribution is symmetric ( ( | ) ( | )q a b q b a= ) and so the acceptance 

probability in step 3 reduces to ( )min(1, )
( )t

f z
f Y

.  This still leaves the question of the variance of ε .  

A small variance will give a high acceptance probability, but the chain will be slow to move to 
new parts of the support.  A big variance will give a lower acceptance probability.  The rule of 
thumb is to target an acceptance rate of around 35%, and pick the variance of ε  to achieve this. 
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There is a further feature of Metropolis-Hastings in the context of drawing from posterior densities.  
The basic starting point of all Bayesian analysis is Bayes rule, which says that with data X  and a 
parameter θ , 

 ( | ) ( )( | )
( | ) ( )
p X pp X

p X p d
θ θθ
θ θ θ

=
∫

  

The denominator can be tricky to compute.  But if I want to simulate from the posterior density 
using random-walk Metropolis Hastings, the acceptance probability is: 

( | ) ( | ) ( )min(1, ) min(1, )
( | ) ( | ) ( )t t t

p z X p X z p z
p X p X pθ θ θ

=  

That  involves the prior and the likelihood, but the messy integral cancels out.  (This is incidentally 
the key reason why we prefer this to the inverse cdf method which evaluates the inverse cdf at 
uniform random variables on the unit interval). 

Let’s take a trivial example.  I want to draw from an exponential density with parameter 1, but I 
don’t know how.  But I do know the exponential probability density (exppdf in Matlab).  Here is 
code for a random walk Metropolis Hastings. 

randn('seed',123); rand('seed',123); 
y(1)=0; 
for t=2:1100; 
    y0=y(t-1); 
    yp=y0+(2*randn(1,1)); 
    f0=exppdf(y0,1); 
    fp=exppdf(yp,1); 
    if rand(1,1)<min(fp/f0,1); accept(t-1,1)=1; y(t,1)=yp; else; accept(t-1,1)=0; y(t,1)=y0; end; 
end; 
disp(mean(accept)) 
hist(y(101:end)) 
 

If I run this, the accept rate is 0.34, which is good. 

A different version of Metropolis-Hastings is independence Metropolis-Hastings, where each 
proposal is an independent draw from the same proposal distribution, so ( | ) ( )tq z Y q z= .  In this 
case, of course the proposal distribution is not symmetric and so the simplification to the 
acceptance probability does not go through.      
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Handout on the Equity Risk Premium Puzzle 
 
Consider a representative agent economy in which investors trade assets so as to maximize 
 0( ( ))s

t s t sE u Cβ∞
= +Σ  

in the usual notation.  The investor’s first order condition in a consumption CAPM can be written as 
1

1 1
'( )( ( ))
'( )

t
t t t t

t

u cP E P D
u c

β +
+ += +  

which can also be rewritten as 
1

1
'( )( ) 1
'( )

t
t t

t

u CE R
u C

β +
+ =  

or 
1 1( ) 1t t tE M R+ + =  

where 1
1

'( )
'( )

t
t

t

u CM
u C

β +
+ =  is the stochastic discount factor or pricing kernel.   This means that the gross 

riskfree rate is , 11/ ( )f t t tR E m += .  And it also means that we can write 

 1 1( ) 0e
t t tE M R+ + =  

where 1 1 ,
e
t t f tR R R+ += −  is the excess return.  The two equations highlighted in red are different ways of 

writing the basic building blocks of modern finance.  The expected product of the stochastic discount 
factor and gross returns is one; the expected product of the stochastic discount factor and excess returns 
is zero. 

A natural choice for the instantaneous utility function is 
1

( )
1

t
t

Cu c
γ

γ

−

=
−

 and γ  is the coefficient of relative 

risk aversion, so this is called the constant relative risk aversion (CRRA) utility function. 
So the Euler equation is now of the form 

 1
1( ) 1t

t t
t

CE R
C

γ

γβ
−
+

+− =  

Assume consumption-growth and returns are log-normal.  Then  

1 1
1 1

2 2
1

, ,

( ) (exp(log( )))

(exp(log( ) log( ))) exp(log( ) )
2

t t
t t t t

t t

t c
t f t f t

t

C CE R E R
C C

CE r r g
C

γ γ

γ γβ β

γ σβ γ β γ

− −
+ +

+ +− −

+

=

= + − = + − +

 

 where , ,log( )f t f tr R= , 1log( )t
t

t

Cg E
C
+=  and 2 1log( )t

c t
t

CVar
C

σ += .  So 

 
2 2

,log( ) 0
2

c
f tr g γ σβ γ+ − + =  

.  Also 
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2

2 2
1 ,

1log( ) 0
2 2t t c r c rg E r γβ γ σ σ γσ+− + + + − =  

where 1 1log( )t tr R+ += , 2
1r t tVar rσ +=  and , 1 1( , log( / ))c r t t t tCov r C Cσ + += .  Hence 

 2
1 , ,

1
2t t f t c r rE r r γσ σ+ − = −  

Now let us suppose that the correlation between returns and consumption growth is 1—the highest it 

could possibly be.  Then the equity risk premium is equal to 21
2c r rγσ σ σ− .  This is an upper bound. 

 
Now, from the data we know that 0.16rσ =  and  0.01cσ = .  Here is the implied upper bound for 
different coefficients of risk aversion. 
 

Coefficient of Relative Risk Aversion Upper Bound on Equity Risk Premium 
3 -0.008 
5 -0.0048 
10 0.0032 
30 0.0352 
50 0.0672 

 
The actual observed equity risk premium is about 7 percent.   This is the equity premium puzzle of Mehra 
and Prescott (1985).  Intuitively, what makes stocks risky is that they lose value in bad times when 
marginal utility is high.  But consumption is smooth, and so unless agents are very risk-averse, marginal 
utility cannot be flapping around that much.  The basic puzzle is robust across countries and across time 
(Campbell (1999)). 
 

Another way of making the same point is to note that 

1 1 1 1 1 1

1 1 1
,

1 , 1 1
,

( ) ( , ) ( ) ( )
11 ( , ) ( )

1( ) ( , )

t t t t t t t

t t t
f t

t f t t t
f t

E M R Cov M R E M E R

Cov M R E R
R

E R R Cov M R
R

+ + + + + +

+ + +

+ + +

= +

= +

− = −

 

So you need lots of negative covariance between the pricing kernel and returns to explain a big risk 
premium. 
 
Here are a few of the explanations that have been proposed in the literature: 
 
1. Long-run risks (Bansal and Yaron (2004)). 
 
In the consumption CAPM with intertemporally separable preferences, the coefficient γ  does “double 
duty”.  It is both the coefficient of risk aversion and it is the reciprocal of the intertemporal elasticity of 
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substitution 1

,

ln( / )
log( )

t t

f t

d C C
d R

+  .   It seems intuitive that the highly risk-averse agent will also want to 

smooth consumption over time.  Epstein and Zin (1991) proposed an alternative utility function that 
breaks this link.  The utility function is  

 
1 1

1 1
1{(1 )( ) [ ] ]}t t t tU C E U

θγ
γ γθ θβ β

−
− −
+= − +   

where γ  is the coefficient of relative risk aversion, 
1

1 1/
γθ
ψ

−
=

−
  and ψ  is the intertemporal elasticity of 

substitution.   This reduces to the standard utility function if 1/γ ψ=  as in this case, we can write 
1

1 1 1
1{(1 )( ) [ ]]}t t t tU C E Uγ γ γβ β− − −
+= − +  

1 1 1
1(1 )( ) [ ]]t t t tU C E Uγ γ γβ β− − −
+∴ = − +  

Substituting 
1

1
t

t
U

V
γ

γ

−

=
−

  gives 1
1

1
1t t t tV C E Vγβ β

γ
−

+
−

= +
−

 and so the two utility functions are equivalent. 

But this restriction is not imposed. 
 
The Euler equation with these preferences turns out to be  

 / 11 1
1[ ( ) ( ) ] 1t t

t t
t t t

C W
E R

C W C
θ θ ψ θβ − −+ +

+ =
−

 

where  tW  is the total wealth of the representative agent. 
 

Let 1
1 log( )t

t
t

Cg
C
+

+ =  and 1
, 1 log( )t

d t
t

Dg
D
+

+ =  denote the growth rates of consumption and dividends, 

respectively.  The innovation of Bansal and Yaron is to allow both of these to have a small but very 
persistent component.  So 

 
1 1

, 1 , 1

1 1

t t t

d t d t d t

t t t

g x
g x
x x v

µ ε
µ φ ε

ρ

+ +

+ +

+ +

= + +

= + +

= +

 

The model is solved numerically.  They calibrate 10γ =  and 1.5ψ =  (which would not be possible 
without Epstein-Zin preferences), and can get close to the observed equity risk premium in the data.  
Intuitively, the idea is that what makes equities so risky is that they lose value in precisely the state-of-the 
world in which consumption growth is going to be low for decades, and so marginal utility is high. 
 
2. Habit formation. 
Abel (1990) and Campbell and Cochrane (1999) use habit formation as a way of accounting for the equity 
risk premium.  Suppose that the representative agent has a utility function 

 
1

0
( )( )

1
s t s t s

t s
C XE

γ

β
γ

−
∞ + +
=

−
Σ

−
 

where tX  is a “habit” level of consumption.  So what matters is the difference between your actual 
consumption, and what you have got used to.  This difference cannot go negative; if it did, then there 
would be negative infinite utility.  Define the “surplus consumption ratio” 



19 

 

 t t
t

t

C XS
C
−

=  

and assume that that  
 1 1log( ) (1 ) ( )( )t t t t ts s s s c c gφ φ λ+ += − + + − −  
where log( )t ts S= , log( )t tc C=  and λ  is a nonlinear sensitivity function.  Again, this model can 
match the equity risk premium with reasonable values of risk aversion. 
The model written down here treats habit as “external”.  That is, each individual’s habit is affected by 
everyone else’s consumption.  The effect of my own consumption on future habits is therefore negligible.  
If, instead, I care about my own habit level (“internal habits”), then things get more complicated since I 
have to think about how my consumption today affects habits in the future.  But that has been looked at 
too.  In fact, there is a taxonomy of four possible habit models: internal v. external and where habit enters 
as a difference v. habit entering as a ratio. 
 
3. The consumption of the rich.  Most individuals do not participate in the stock market, at least not 
directly.  Those that do are very rich, and may have more volatile consumption.  Aït-Sahalia, Parker and 
Yogo (2004) back out the coefficient of risk aversion implied by a consumption-CAPM using the 
volatility of consumption of luxury goods (Tiffany sales, BMW sales etc.).  The implied coefficients of 
risk aversion are typically around 6, which seems much more reasonable. 
 
4. Multiple goods (related to 3).   Following Piazzesi et al. (2007), suppose that there are preferences over 
two goods: all non-housing consumption and consumption of housing services.  The representative agent 
has the utility function 

 
1

0( )
1

s t s
t s

CE
γ

β
γ

−
∞ +
=Σ

−
 

but where consumption is ( 1)/ 1)/ /( 1)[ ]t t tC c Hε ε ε ε ε εω− ( − −= + , with tc  and tH  denoting non-housing and 
housing consumption, respectively.  Utility is not separable over non-housing and housing consumption.1  
The pricing kernel is 

 
1( 1)/
( 1)1 1

1 ( 1)/

1( ) ( )
1

t t
t

t t

cM
c

εγε ε
γ ε

ε ε

ωαβ
ωα

−−
− −+ +

+ −

+
=

+
 

where /t t tH cα = .  As long as 1 /ε γ≠ , this puts an extra term in the stochastic discount factor that may 
help generate a higher equity risk premium.   The idea is that the level of housing services directly affects 
the marginal utility of non-housing consumption.  For a reasonable parameterization, with 5γ = , they get 
an equity risk premium of 3.5 percent (not as high as in the data-but going in the right direction). 

 
5. Rare disasters.  An old idea that recent events just made popular once again (Rietz (1988), Barro 
(2006)).  Suppose that in each period, consumption growth follows the process 
 log t tC µ σε∆ = +  with probability 1 p−  
 log log(1 )t tC bµ σε∆ = + + − otherwise 

                                                           

1 Notice that if 1/γ ε=  then utility is separable for then 
1

1 1 1 1 11[ ]t t t t t tC c H C c Hγ γ γ γ γγω ω− − − − −−= + ⇒ = + . 
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So each period, there is a probability p of a disaster which permanently lowers consumption by a factor 
b .  If stocks represent claim to the consumption stream and a representative agent has CRRA preferences 
in the consumption CAPM, then the equity risk premium is 
 2 [(1 ) 1]pb b γσ γ −+ − −  
For example, let us suppose that 0.3b = , so that a disaster is a permanent 30 percent reduction in 
consumption. Let the volatility of consumption growth be 0.01σ =  and let risk aversion be 5γ = .  Here 
is the equity risk premium for different choices of p . 

p Equity Risk Premium 
0.00 0.05% 
0.01 1.53% 
0.02 3.02% 
0.05 7.47% 

So it is quite easy to get a big risk premium with only a modest probability of disaster.  These 
probabilities are so small that you may not actually observe a disaster at all in the sample (and, moreover, 
the countries and periods for which you can get data are the ones which did not have disasters). On the 
other hand, the disaster scenario is a bit extreme, especially when you note that the economy never 
recovers from the disaster at least in this baseline model. 
 
The Hansen-Jagganathan Bound 
 
These different methods are all really tricks to try to get more volatility in the stochastic discount factor.  
Hansen and Jagganathan (1991) have a nice framework for explaining the need for this.   Go back to the 
basic asset pricing equation 

1 1( ) 1t t tE M R+ + =  
From the Cauchy-Schwarz inequality, we have 

1 1| ( , ) |t t m rCov M R σ σ+ + ≤  

where 2
mσ  and 2

rσ  are the variances of 1tm +  and 1tR + , respectively.  Also, 

1 1 1 1 1 1 1 1( , ) ( ) ( ) ( ) 1 ( ) ( )t t t t t t t tCov M R E M R E M E R E M E R+ + + + + + + += − = −  
2 2 2

1 1(1 ( ) E(R ))m r t tE Mσ σ + +∴ ≥ −  
2

2 1 1
2

(1 ( ) E(R ))t t
m

r

E Mσ
σ
+ +−

∴ ≥  

The multivariate extension of this (with a vector of asset returns) is: 
2 1

1 1( ( ) ) ' ( ( ))m t ti E M i E Mσ µ −
+ +∴ ≥ − Σ −  

Where i  is a vector of ones and µ  and Σ   are the mean and variance-covariance matrix of returns. 
So this is a lower bound on the volatility of the stochastic discount factor.  This is the Hansen-
Jagganathan bound.  Given a candidate stochastic discount factor and the expected return and volatility of 
returns on any asset, it is easy to check this.  For example, using the simple consumption CAPM with 
CRRA preferences, the right-hand side will be far too big (unless the coefficient of risk aversion is about 
50).  All of the resolutions to the equity risk premium puzzle are really ways of increasing mσ  so that this 
bound is satisfied.  
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Handout on GMM 
 

Part 1: The basics 
GMM nests all the familiar estimators as special cases.  The idea is that there is a moment 
condition 0( ( , )) 0iE h Y θ =  where 1{ }n

i iY =  denotes data and 0θ  is the true value of a parameter θ .  
The moment condition is a kx1 vector, the parameter is a px1 vector.   
 
“Just identified” case 
First suppose that k=p.  We can find θ  so as to solve 

1
1

ˆ( , ) 0n
i in h Y θ−
=Σ =  

Under standard conditions, ˆ
pθ θ→  and here is a sketch of the derivation of the asymptotic 

distribution: 

Suppose that 1 0 0
1

( , ) ( , )( )n i i
i p

h Y h Yn D Eθ θ
θ θ

−
=

∂ ∂
Σ → =

∂ ∂
 and 1/2

1 0( , ) (0, )n
i i dn h Y N Eθ−
=Σ → . 

1 1 1 0
1 1 0 0 1

( , )ˆ ˆ0 ( , ) ( , ) ( )n n n i
i i i i i

h Yn h Y n h Y n θθ θ θ θ
θ

− − −
= = =

∂
= Σ = Σ + − Σ

∂
 

1/2 1 1/20
0 1 1 0

( , )ˆ( ) ( , )n ni
i i i

h Yn n n h Yθθ θ θ
θ

− −
= =

∂
∴ − Σ = − Σ

∂
 

1/2 1 1
0

ˆ( ) (0, ' )dn N D EDθ θ − −∴ − →  
 
 
“Overidentified case” 
If k>p, we can find θ  so as to solve  

1 1
1 1

ˆ arg min ( ( , )) ' ( ( , ))n n
i i i in h Y W n h Yθθ θ θ− −
= == Σ Σ  

for some symmetric positive-definite kxk weight matrix W .  Again, under standard conditions, 
ˆ

pθ θ→ .  Here is a sketch of the derivation of the asymptotic distribution of the GMM estimator. 
 

FOC: 
1

11
1

ˆ( , ) ˆ' ( , ) 0
n

ni i
i i

n h Y Wn h Yθ θ
θ

−
−=

=

∂ Σ
Σ =

∂
 

0
0 0

( , )ˆ ˆ( , ) ( , ) ( )i
i i

h Yh Y h Y θθ θ θ θ
θ

∂
= + −

∂
 

1
11 0

1 0 0

ˆ( , ) ( , ) ˆ' [ ( ( , ) ( ))] 0
n

ni i i
i i

n h Y h YW n h Yθ θθ θ θ
θ θ

−
−=

=

∂ Σ ∂
∴ Σ + − =

∂ ∂
 

1
1 0 0

ˆ' [ ( , ) ( )] 0n
i iD W n h Y Dθ θ θ−
=∴ Σ + − =  

1/2 1/2
1 0 0

ˆ' [ ( , ) ( )] 0n
i iD W n h Y Dnθ θ θ−
=∴ Σ + − =  

1/2 1 1/2
0 1 0

ˆ( ) ( ' ) ' ( , )n
i in D WD D Wn h Yθ θ θ− −
=∴ − = − Σ  
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1/2 1 1
0

ˆ( ) (0, ( ' ) ' ( ' ) )dn N D WD D WEW D WDθ θ − −∴ − →  
 
Notes: 
● If 1W E−=  (or a consistent estimate thereof), 1/2 1 1

0
ˆ( ) (0, ( ' ) )dn N D E Dθ θ − −− → . 

● Any weight matrix other than 1E−  will give a less efficient GMM estimator. 
● Chamberlain (1987) shows that this estimator is efficient in the family of all estimators that are 
based on the moment condition 0( ( , )) 0iE h Y θ = . 

● If the moment conditions are not serially correlated, then 1
1ˆ ( , ) ( , ) 'n

i i iE h Y h Y
n

θ θ== Σ  is a 

consistent estimate of E .  Or there can be serial correlation, in which case a zero-frequency 
spectral density estimator is needed. 
● Typically E  will depend on θ ; so we can do a two-step estimator starting with the identity 
weight matrix. 

1 1
(1) 1 1
ˆ arg min ( ( , )) ' ( ( , ))n n

i i i in h Y I n h Yθθ θ θ− −
= == Σ Σ   

1 1 1
(2) 1 (1) 1
ˆ ˆarg min ( ( , )) ' ( ) ( ( , ))n n

i i i in h Y E n h Yθθ θ θ θ− − −
= == Σ Σ  

This is called the two-step GMM estimator.  Or we can use “continuously updated GMM”  
1 1 1

( ) 1 1
ˆ arg min ( ( , )) ' ( ) ( ( , ))n n

cu i i i in h Y E n h Yθθ θ θ θ− − −
= == Σ Σ  

for which the FOC has an extra term 
● If k=p, the weight matrix doesn’t matter.  Moreover D  is a square matrix and so 

 1/2 1 1 1/2 1 1
0 0

ˆ ˆ( ) (0, ( ' ) ) ( ) (0, ' )d dn N D E D n N D EDθ θ θ θ− − − −− → ⇒ − →  
 
 
Everything is a special case of GMM 
Here’s how different estimators are special cases of GMM. 
(i) OLS is GMM. 

'i i iy xβ ε= +  
( ) 0i iE x ε =  so ( ( ' )) 0i i iE x y xβ− =  

k=p; so just identified. 
GMM estimator solves 1

1 1 1
ˆ( ' ) 0 ( )n n n

i i i i i i i i i ix y x x x x yβ β −
= = =′Σ − = ⇒ = Σ Σ  

which is just OLS. 
 
(ii) IV is GMM 
y X β ε= +  
X Z vπ= +  

( ' ) 0 ( '( )) 0E Z E Z y Xε β= ⇒ − =  
If k=p, GMM solves 

1ˆ ˆ'( ) 0 ( ' ) 'Z y X Z X Z yβ β −− = ⇒ =  
which is the usual IV formula with no surplus instruments. 
If k>p, the two-step GMM estimator solves 

1ˆ arg min ( ) ' ( ' ) '( )y X Z Z Z Z y Xββ β β−= − −  
 which means that 
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1 1 1ˆ ( ' ( ' ) ' ) ' ( ' ) 'X Z Z Z Z X X Z Z Z Z yβ − − −=  
which is the usual 2SLS estimator.  This simplifies to the just-identified case when k=p, but in 
this case only.  The continuous updating GMM estimator reduces to LIML. 
 
The general 2SLS formula can be written as 1ˆ ˆ ˆ( ' ) 'X X X yβ −=  where 1ˆ ( ' ) 'X Z Z Z Z X−=  which 
are the fitted values in a regression of X  on Z . 
 
It can also be written as 1ˆ ˆ ˆ ˆ( ' ) 'X X X yβ −= , which gives the estimator the “two stage least 
squares” interpretation 

- First regress X  on Z  
- The regress y  on the fitted values. 

 
(iii) Maximum likelihood is GMM. 

1
ˆ arg max log ( )n

i fθθ θ== Σ  

1
log ( ) 0n

i
f θ
θ=

∂
Σ =

∂
 is a px1 vector of scores. 

The maximum likelihood estimator is a just-identified GMM estimator solving 
1

1

ˆlog ( ) 0n
i

fn θ
θ

−
=

∂
Σ =

∂
 

Suppose that 
2

1
1 2

log ( )n
i p

fn Dθ
θ

−
=

∂
Σ →

∂
 and 1/2

1
log ( ) (0, )n

i d
fn N Eθ
θ

−
=

∂
Σ →

∂
 

Then 1 1ˆ( ) (0, )dn N D EDθ θ − −− →  
Importantly, this formula doesn’t even require that the density that is specified is correct.  If it is 
not, then this is called a pseudo-maximum likelihood estimator (it’s setting the moment condition 
to zero, but that moment condition isn’t actually maximizing the likelihood).  If it is correct, then 
the information equality is D E= −  and so things simplify  to 1ˆ( ) (0, )dn N Iθ θ −− →  where 
I D E= = − . So these give two formulas for the distribution of MLE; one that is robust to 
misspecification and one that is not.  Both require derivatives and in many cases these 
derivatives have to be calculated numerically. 
All of this carries over to the time series context.  Here we factor the density  

1 2 1 1 1( ,... ) ( | ... ) ( )T
T t t tf y y f y y y f y= −= Π   

and so write the log likelihood as 1 1log ( | )T
t t tf y Y= −Σ  where 1tY −  denotes the history up to time t-1 

and 0Y  is empty.  This is a again a just-identified GMM estimator based on the condition 

1log ( | )( ) 0t tf y YE
θ

−∂
=

∂
 . 

 
 
Testing overidentifying restrictions 
If k=p, we can see if all the moment conditions are jointly satisfied (if k=p, we cannot, because 
the conditions will be satisfied at the estimated parameter value by construction).  The test 
statistic is 
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1 1
1 1

ˆ ˆ( ( , )) ' ( ( , ))n n
i i i in h Y W n h Yθ θ− −
= =Σ Σ  

where W is an estimate of 1E− .  If there is in fact some 0θ  such that 0( ( , )) 0iE h Y θ =  then this test 
statistic is asymptotically 2 ( )k pχ −  distributed. 
 

Part 2: Identification 
 GMM requires not only that  0( ( , )) 0iE h Y θ =  at the “true” parameter value, 0θ  but also that 

( ( , )) 0tE h Y θ ≠  for 0θ θ≠ .  Otherwise, there is no way to tell apart the true parameter and an 
imposter. 
 
Moreover, the asymptotic distribution of GMM that we derived clearly requires that 

0( , )( )ih YD E θ
θ

∂
=

∂
 is of full column rank. 

 

Definitions: A model is locally identified if 0( , )( )ih YD E θ
θ

∂
=

∂
 is of full column rank. 

A model is globally identified if ( ( , )) 0tE h Y θ ≠  for all 0θ θ≠  
 
The results on consistency and the limiting distribution of GMM require local and global 
identification. 
 
Now consider the linear IV model 

y X β ε= +  
X Z vπ= +  

 
In this case ( ) '( )h Z y Xθ β= −  and so ( ' ) 'D E Z X Z Zπ= = . 
Without loss of generality, let’s assume that 'Z Z I= .  So identification (local and global) 
requires that π  is of full column rank (and therefore nonzero). 
 
Complete lack of identification 
Suppose that 0π =  and 1k p= = .   
Then 1 1 1/2 1 1/2ˆ ( ' ) ' ( ' ) ' ( ' ) 'IV Z X Z Z v Z n Z v n Zβ β ε ε ε− − − − −− = = =  
Now suppose that 1/2 2' (0, )d vn Z v N σ− →  and 1/2 2' (0, )dn Z N εε σ− →  and the correlation between 
these two is ρ .  Then 

1

2

( )ˆ
IV d

v

εσ ρ ξβ β
σ ξ

+
− →  

where 1ξ  and 2ξ  are independent standard normals.  We can see three things: 
(i) The estimator is not consistent. 
(ii) The estimator is biased, and it is biased in the same direction as OLS. 
(iii) The distribution is a Cauchy-type distribution. 
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Here is the simulated distribution of the 2SLS t-statistic with 0π =  and 1k p= =  and 0.3ρ = −  
in a sample size of 100…it's very nonnormal, centered a bit below zero and actually bimodal! 
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This basic intuition applies for other values of k  and p  and even when π  is small but nonzero. 
 
Detecting a lack of identification 
The classic test is the F-test testing the hypothesis that 0π =  in a regression of X  on Z . 
In the case 1p =  this is 

1 1 1 1 1 1 1ˆ ˆ ˆˆ ˆ'( ( ' ) ) / ' ( ' ) ' ( ' ) ' / ' ( ' ) ' /v v vZ Z k X Z Z Z Z Z Z Z Z X k X Z Z Z Z X kπ π− − − − − − −Σ = Σ = Σ  

where ˆ
vΣ  is the estimated variance-covariance matrix from the regression. 

 
But identification requires π  to have full column rank. 
 
Cragg and Donald (1993) proposed the following test 

min mineval( )g G=  
where  

1/2 1 1/2ˆ ˆ' ( ' ) ' /v vG X Z Z Z Z X k− − −= Σ Σ  
The null limiting distribution of G  is a Wishart distribution, divided by k.  Thus the limiting 
distribution of ming  is the smallest eigenvalue of a Wishart distribution, divided by k. 
 
(Note: If iX  are iid (0, )N I  px1 random vectors, then 1

n
i i iX X= ′Σ  has a Wishart distribution.) 

 
Weak identification 
The problem is that even if π  is nonzero, it may be so small that the IV estimator is biased and 
the associated t-statistic is nonnormal in relevant sample sizes.  And “relevant” sample sizes may 
mean very big sample sizes.  Stock, Wright and Yogo (2002) gives a review of some of the 
issues that arise with small π . 
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Staiger and Stock (1997) derive the limiting distribution of instrumental variables estimators 
under a "local to zero" asymptotics.  As in the near unit root asymptotics, the idea is that this 
gives a better approximation to the small sample properties of the estimators and test statistics.  
They assumed that 

1/2Cnπ −= .   Here is the derivation of the limiting distribution of 2SLS in this case with k p= . 
 
Assume that 1/2 ' (0, )d zvn Z v N− → Φ , 1/2 ' (0, )d zn Z N εε− → Φ  (where these may be correlated 
with each other) and 1 ' p zzn Z Z Q− → .  Then 

1 1 1 1/2 1 1/2ˆ ( ' ) ' ( ' ' ) ' (( ' ) ' ) 'IV Z X Z Z Z Z v Z n Z Z c n Z v n Zβ β ε π ε ε− − − − − −− = = + = +  
1ˆ ( )IV d zz Zv ZQ C εβ β −∴ − → +Φ Φ  

This provides a good approximation to the very unusual properties of 2SLS estimators in small 
samples when π  is quite small. 
 
But there is a solution to the weak instruments problem that goes back to work of Anderson and 
Rubin (1949) and relies on the relationship between tests and confidence sets.  Suppose I give up 
on estimation and just want to test the hypothesis that 0β β= .  Then, if the hypothesis is true, 

0 0u Y X β= −  will be orthogonal to Z .  We can test this with the statistic 
1

0 0
1

0 0

( ' ) '
[ ( ' ) '] / ( )

u Z Z Z Z u
AR

u I Z Z Z Z u n k

−

−

′
=

′ − −
 

which is asymptotically 2 ( )kχ  distributed (and actually has an exact F-distribution under 
normality). 
 
What happens if the hypothesis is false?  Then 0 0( )u u X β β= − −  and this will be correlated 
with Z , provided that the instruments are relevant.  If 0π =  then the test will not be consistent, 
but it shouldn't be (how can you reject a claim about β  with completely useless instruments?) 
 
What happens if the instruments aren't orthogonal to the error?  Then the test will asymptotically 
reject for all parameter values.  So it is a joint test that the instruments are valid and that we have 
found the right parameter value. 
 
Typically we want to construct a confidence set, not test a hypothesis.  But the confidence set 
can be formed as the inverse of the acceptance region of the test (from a grid).  If the instruments 
are irrelevant, the confidence set will be big, but it should be.   For a more formal treatment of 
this point, see Dufour (1997). 
 
What makes this confidence set work is the fact that the test statistic, AR , is pivotal.  Other 
pivotal statistics may give more powerful tests and smaller confidence sets.  One was proposed 
by Kleibergen (2002) for the case k p>  
 

1
0 0

1
0 0

( ' ' ) ' '
[ ( ' ) '] / ( )
u Z Z Z Z u

K
u I Z Z Z Z u n k

π π π π−

−

′
=

′ − −
   

 

 where 
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1 1
0

ˆ ˆ( ' ) '( )uu uxZ Z Z X uπ − −= − Σ Σ  
1

0
1ˆ '( ( ' ) ')xu X I Z Z Z Z u

n k
=Σ = −

−
  

and  
1

0 0
1ˆ ( ( ' ) ')uu u I Z Z Z Z u

n k
=′Σ = −

−
. 

 
Notes: (i) In the just-identified case, the π s would cancel, and we are back to AR . 
(ii) Conditional on π , the null limiting distribution of K  is 2 ( )pχ  and is independent of π  so 
this holds unconditionally as well.  So the degrees of freedom are smaller than in the AR  test.  
(iii) Intuitively, the K statistic is projecting 0u  onto a smartly chosen subspace of the instruments 
and so should be (and in small samples usually is) more efficient.  The sense in which it is wisely 
chosen is that π  is forced to be asymptotically independent of ou . 
 
The GMM Case 
In the GMM context, we can also use a weak-identification robust confidence set.  The set is 

1/2 1 1/2
1 1{ : ( , ) ' ( ) ( , ) ( )}n n

i i i in h Y E n h Y F kθ θ θ θ− − −
= =Σ Σ ≤  

where ( )F k  is the upper percentile of a 2 ( )kχ  distribution and ( )E θ  is an estimate of the 
asymptotic variance of 1/2

1 ( , )n
i in h Y θ−
=Σ .  Concretely, in the case without serial correlation,  

1
1( ) ( , ) ( , ) 'n

i i iE n h Y h Yθ θ θ−
== Σ  

This is the analog of the AR  test and makes no assumptions of local or global identification.  It 
was proposed by Stock and Wright (2000).  Note that the weight matrix is evaluated at the 
hypothesized θ , not an estimate of this parameter, and this is actually crucial.  Kleibergen (2005) 
proposes an alternative confidence set that may be smaller. 
 
As discussed in Stock, Wright and Yogo (2002), the bias of 2SLS depends on the concentration 
parameter, which is ' / kπ π .  It is the average strength of the instruments that matters; adding to 
the number of instrument can be harmful if it reduces the average strength.  An alternative way 
of looking at identification problems thinks of π  as fixed, but the number of instruments as 
large.  Bekker (1994) shows that if  π  is fixed but k nα=  then 

1
2

ˆ ( )SLS p vuQβ β α −→ + + Ω ΩΣ  
where ( )vu i iE u vΣ =  and ( )i iE v v′Ω = .  Accordingly, 2SLS is not consistent. 
 
 

 Part 3: Lots of applications 
 
(i) New-Keynesian Phillips curve. 

0 1 1 2 1 3( )t t t t t tE sπ β β π β π β ε− += + + + +  
Let 1 1 1( )t t t tv Eπ π+ + += −  be the one-step ahead forecast error.  Under rational expectations, this 
should be orthogonal to any variable in the information set at time t.  So we can substitute 

0 1 1 2 1 1 3[ ]t t t t t tv sπ β β π β π β ε− + += + + − + +  
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0 1 1 2 1 3t t t t ts uπ β β π β π β− +∴ = + + + +  
where 2 1t tvε β +− .  But this equation cannot be consistently estimated by OLS, because 1tπ +  is 
correlated with the error.  It can however be estimated by IV, using any variable in the 
information set at time t  as an instrument. 
 
The initial work on this (Gali and Gertler (1999)) used many lags as instruments.  More recently, 
authors have used smaller numbers of instruments.  Identification here is about the predictability 
of inflation and that is quite doubtful.  Generally, the coefficient 2β is found to be less than 1, but 
imprecisely estimated. 
 
Note also that this New Keynesian Phillips curve comes from a log-linearization about a steady 
state inflation rate.  Cogley and Sbordone  (2007) give a version with I(1) inflation. 
 
Barnichon and Mesters (2020) have a clever alternative way of estimating this forward looking 
New-Keynesian Phillips curve.  They take the above equation, and instrument it with a vector of 
lagged monetary policy shocks.  If tξ  is a monetary policy shock (Romer and Romer (2004), 
high frequency data or something else), then define 2

0 0 0( , , ) 'H H H
t h t h h t h h t hz h hξ ξ ξ= − = − = −= Σ Σ Σ  and 

then use that as the instruments.  As long as monetary policy shocks affect future inflation, they 
are relevant instruments.  They may be weak, but it is OK to use Anderson-Rubin methods to be 
robust to weak identification. 
 
(ii) Forward-looking Taylor rule 

0 1 1 2 1( ) ( )t t t t t ti E E yβ β π β ε+ += + + +  
Likewise, the expectations can be replaced by future realized values, appealing to rational 
expectations. 
 
(iii) Angrist and Krueger (1991).  This paper relaunched the interest in weak instruments.  A 
classical regression in labor economics is of income on education.  It suffers from endogeneity 
bias.  Angrist and Krueger revisited this regression, but used quarter-of-birth interacted with 
state-of-residence as dummies.  They therefore used many weak instruments. 
 
Later Bound, Baker and Jaeger (1995) pointed out that generating random quarter-of-birth 
dummies (useless instruments by construction) could generate similar results.  The Angrist and 
Krueger paper had in effect used many weak instruments, which is precisely the situation in 
which the small sample properties of IV estimators are worst. 
 
(iv) Regressions of growth on measures of financial intermediation, using legal origin as 
dummies. 
 
(v) The consumption CAPM 

1
1( ( ) ) 1t

t t
t

CE R
C

γδ −+
+ =  is the Euler equation with CRRA prefernces 

1
1([ ( ) 1] ) 0t

t t
t

CE R Z
C

γδ −+
+∴ − ⊗ =  
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where tZ  is any vector in the information set at time t .  Unlike the linear examples, the 
optimization in this case has to be numerical.  Letting tZ  denote lags of returns and consumption 
growth, the point estimates of δ  are close to 1; those of γ  are close to 0.  Weak-identification 
robust confidence sets however indicate large values of γ .  The required derivatives for standard 
errors are available in closed form as the derivative of the moment condition with respect to δ   

is 1
1( )t

t t
t

CR Z
C

γ−+
+ ⊗  while that respect to γ   is 1

1 ln( )t
t t

t

CR Z
C

δ +
+ ⊗ . 

(vi) Treatment of generated regressors.  Consider the model  

 

*

*

*

i i i

i i

i i i

y z
z w
z z u

β ε

δ

= +

=

= +

  

where iε  and iu  are  iid with mean zero and variance 1 and are mutually independent and iw  is 
independent of iε  and iu .  Suppose also that 2( ) 1iE w =   
    Suppose that we observe iy , iz  and iw .  A tempting procedure is the following two step 

estimator.  In step 1, regress iz  on iw  and get an estimate δ̂ .  In step 2, regress iy  on ˆ
iwδ .  This 

is a problem with a generated regressor.  The uncertainty in δ  affects our standard error.  But 
we can control for this by thinking of it as a just-identified GMM model.  The numerical 
parameter estimates we get are the same as using two moment conditions:  
(i) (( ) ) 0i i iE y w wβδ− =   
(ii) (( ) ) 0i i iE z w wδ− =   
Under the stated (special) assumptions the variance-covariance matrix of the moment conditions 

is just the identity matrix and the matrix of derivatives is 
0 1
δ β− − 

 − 
 .  GMM gives a trick for 

solving a hard problem. 
 
(vii) Factor models in finance.  Suppose that we have a scalar factor model: 

it i i t itR fα β ε= + +  
( )it iE R β λ=   

We have moment conditions 
( ) 0t tE R fα β− − =  
(( ) ) 0t t tE R f fα β− − =  
( ' ) 'tE Rβ β βλ=  

and there are a total of 2 1n +  moment conditions where n  is the number of test assets, so the 
system is just identified.  GMM is equivalent to estimating the model by the Fama-MacBeth 
procedure.  GMM has the advantage that it delivers standard errors that automatically take 
account of the fact that the β s are estimated. 
To be concrete, if Σ  is the variance-covariance matrix of the errors, then the variance-covariance 
matrix of the moment conditions is: 
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 2

2

( )
( ) ( ) ( )

' ( ) ' ' ( ' ) ( )

E f
E f E f E f

E f Var f

β
β

β β β β β β

Σ Σ Σ 
 Σ Σ Σ 
 Σ Σ Σ + 

  

and the matrix of derivatives is available in closed form as: 
 

    2

( ) 0
( ) I ( ) 0
0 ' '

n n

n n

I E f I
E f E f I

β λ β β

− − 
 − − 
 − − 

 

 
An aside on the subject of factor models in finance.  Fama and MacBeth (1973) proposed an 
alternative methodology for standard errors.  It is to first run n time series regressions to estimate 
the iβ s, then run T cross sectional regressions to get an estimate of λ  for each time period, t̂λ  

and then the overall estimator of λ  is 1
1

ˆT
t tT λ−
=Σ  with an estimated variance of 

2

1

ˆ( )1
1

T t
tT T

λ λ
=

−
Σ

−
.   

A variant on this in the second step is to regress average returns on the estimated betas and for 
this latter estimator, GMM will give the correct standard errors taking account of the fact that 
betas were estimated in the  first stage. 
 
(vii) Simulated method of moments (SMM).  SMM is a special case of GMM where the 
theoretical moments cannot be worked out directly, and so have to be obtained through 
simulation.  It arises in structural Industrial Organization. 
Here is the setup.  We have some moments of data, ( )iE Y  , 2( )iE Y   etc..  Write these in the form 

( ( ))iE f Y .  These depend on an unknown parameter vector θ  .  The moment condition is that 
( ( ) ( )) 0iE f Y m θ− = .  The problem is that the function is not observed, but can be simulated.  

Thus we replace ( )m θ  by 1
1 ( )S

j jm
S

θ=Σ  where ( )jm θ  is the j th simulation.  We then define 

1
1( ) ( )S

i i j je Y m
S

θ θ== − Σ  and solve the GMM problem: 

 1 1
ˆ arg min ( ) ' ( )n n

i t i te W eθθ θ θ= == Σ Σ   
This is a standard GMM problem, always involving a numerical optimization.  The limiting 
distribution will take account of the fact that ( )m θ  is estimated, not known.   With the usual 
efficient weight matrix, the limiting distribution is: 

1/2 1 1
0

ˆ( ) (0, (1 ) ' )dn N k D EDθ θ − −− → +  

where 
2

1
1 2

( )n i
i p

en Dθ
θ

−
=

∂
Σ →

∂
, E  is the variance of ( )ie θ  and /k S n= .   A few things to note: 

(a) With enough draws, the simulation is perfect, and k  goes to zero.  In simple applications, 
you can and should take enough draws that the simulation error can be neglected.  In some 
applications, that may not be feasible.   



31 
 

(b) When simulating the moment condition, the same seed must be used for each candidate θ .  
More precisely, for the simulations, you draw one set of shocks and use this same set for each 
parameter. 
(c) The version of SMM described here is for iid data, but standard extensions are available for 
the case of time series dependence. 
(d) If moments are in very different scales and two-step GMM is used, the first step can be very 
sensitive to scaling (which of course feeds through to the whole GMM procedure).  This problem 

can be avoided by defining 1 1
1 1( ) ( ( )) / ( )S S

i i j j j je Y m m
S S

θ θ θ= == − Σ Σ . 

 
Here is a very simple illustration of the idea.  Suppose that ~ ( ,1)iX iidN µ   and we observe the 
average of n  observations on exp( )i iY X= .  Call this Y .  We know that ( )iE Y  is a function of 
µ , ( )f µ  , but let’s pretend that we don’t know a closed form for this function (actually of 
course we do).  We have a moment condition (Y ( )) 0iE f µ− =  .  This is a case of just identified 
GMM, solving the equation ( )Y f µ=  , if we know the function f  .  But for any given µ   we 
can easily simulate m  normal random variables, and exponentiate and average them to 
approximate ( )f µ . 
 
(viii) Indirect inference.  This is a similar idea to simulated method of moments.  Suppose that I 
have data from a model and I can simulate data from this model with a px1 vector of parameters 
θ .  Suppose that there is an auxiliary model that approximates the data with a kx1 parameter 
vector β .  For this model, we can write down a log-likelihood function 

1 log( ( | , ))n
i i il f y x β== Σ  

This is  not the actual log-likelihood of the data, so it is a pseudo-log-likelihood.  Next find the 
value of β  that maximizes this function, β̂ .  Next, for any candidate θ , simulate data from the 
true model---let these data be , 1{ ( )}n

i m iy θ =   on the mth of M simulations.  Define 

 1 ,( ) arg max log( ( ( ) | , ))n
m i i m if y xββ θ θ β== Σ

   
Lastly, our indirect inference estimator is: 

 1 1
1 1ˆ ˆ ˆarg min ( ( ) ) ' ( ( ) )M M

m m m mW
M Mθθ β θ β β θ β= == Σ − Σ −   

Defining 
2

1
1 2

log ( | , ( ))plim n i i
i

f y xD n β θ
β

−
=

∂
= Σ

∂
 and log ( | , ( ))Var( )i if y xE β θ

β
∂

=
∂

, the optimal 

weight matrix is 1DE D−  and the asymptotic distribution of the indirect inference estimator is 

 1 11 ( ) ' ( )ˆ( ) (0, (1 )[ ] )d
b bn N DE D

M
θ θθ θ
θ θ

− −∂ ∂
− → +

∂ ∂
  

where ( )b θ  is the probability limit of ( )mβ θ .  
 
(ix) Bartik instruments.  This is a recipe for a widely applicable instrumental variables strategy.  
Suppose that we have a cross-sectional regression of wage growth on employment growth in 
region :i   
 0 1i i iw e uβ β= + +   
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and we want to interpret this as a labor supply curve.  To do this we need an instrument that is 
correlated with labor demand but not supply.  The instrument that Bartik (1991) proposed is to 
take the initial share of industry k  in employment in location i , ikw , and then to instrument ie  
by  k ik kw gΣ  where kg  is national employment growth in industry k .  The idea is that 
employment is growing in the region just because it happened to have started out with a large 
exposure to a growth industry and that is correlated with labor demand but not labor supply.  It is 
a widely used approach in many contexts (see Goldsmith-Pinkham, Sorkin and Swift (2020)).   
 
(x) Granular instrumental variables.  This is another recipe for a widely applicable instrumental 
variables strategy in macro, recently proposed by Gabaix and Koijen.   Here is the idea.  Let iS  
be the share of country i  in the world market. Demand by country i   at time t  is 
 it i itD S y=   
where 
 it t t ity p uφ η= + +   

Global demand is 1
n

St i i ity S y== Σ .  Define 1 1
1 1 1n n

Et i it i it
i

y y D
n n S= == Σ = Σ , 1

n
St i i itu S u== Σ  and 

1
1

n
Et i itu n u−

== Σ .  Supply is: 
 t t ts p vλ= +   
We want to regress Sty  on tp  but OLS identified a mix of demand and supply shocks.  To see 
this,  

 
St t t St t t

t St t
t

y p u p v
u vp

φ η λ
η

λ φ

= + + = +

+ −
∴ =

−
  

and so in a regression of global output on price, the explanatory variable will be correlated with 
tη .   

But the regression of Sty  on tp  with instrument 1
1( )n

t St Et i i itZ y y S u
n== − = Σ −  identifies λ  in the 

supply curve.  This is called the granular instrument.  It works because 

 1
1( ) ( ( ) ) 0n

t t i i it tE Z v E S u v
n== Σ − =   

Moreover, the regression 
 Et t t Ety p uφ η= + +   
estimated by IV using the same granular instrument identifies φ  in the demand curve.  This 
works because 

2

1 1 1 1
1 1 1 1( ( )) ( ( ) ( )) ( ( ) ) ( ) 0n n n n u

t t Et i i it t Et i i it j jt i iE Z u E S u u E S u u S
n n n n n

ση η= = = =+ = Σ − + = Σ − Σ = Σ − =   
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Handout on VARs 

Suppose that tY  is a px1 vector of time series such that ( ) t tA L Y u=  where the innovations tu  
have variance-covariance matrix Σ  and ( )A L  is a matrix lag polynomial of order n .  We 
assume that the VAR is stationary (all solutions to the equation | ( ) | 0A L = lie outside the unit 
circle). 

• MA representation: 1( ) ( )t t tY A L u C L u−= =  

• Companion form: (for the case 2n = ) 1

1 2 0
t t t

t t

Y Y u
A

Y Y
−

− −

     
= +     

    
 where 1 2

0
A A

A
I

 
=  
 

.  .  

This trick means that a univariate AR can be written as a VAR. 
 
The VAR can be estimated by OLS equation-by-equation (same as SUR estimator, if there are no 
parameter restrictions).  We’ll come back to estimation below. 
 
A VAR can be used for forecasting in a rather atheoretical way.  But the errors are one-step-
ahead prediction errors for each element of tY , that lack a substantive macroeconomic 
interpretation.  Sims (1980) proposed an approach for using a VAR to address more structural 
macroeconomic questions. 
 
Let's assume that there are underlying structural errors tε  such that t tu Rε= .  We assume that 
the structural shocks are independent and have variance 1 (a question of the units that the shocks 
are measured in).  So the variance-covariance matrix of tε  is the identity matrix and 'RRΣ = .  
Another approach would be to normalize the diagonal elements of R  to unity instead.  
 
We can write 

1( ) ( ) ( )t t t tY C L R A L R D Lε ε ε−= = =  
where 2

0 1 2( ) ....D L D D L D L= + + and can then figure out  "structural impulse 

responses".. t h
h

t

y
D

ε
+∂

=
∂

.   

We can also work out a “forecast error variance decomposition”, because 
| 0 1 1 1 1...t k t k t t k t k k tY Y D D Dε ε ε+ + + + − − +− = + +  

Taking, without loss of generality, the first element of tY , the variance of its k-period ahead 
forecast errors is 1 2

0 1 (1, )k p
l j ld j−
= =Σ Σ  where the ij th element of the matrix lD  is written as ( , )ld i j .  

So the fraction of the variance of the forecast error in the first element of tY  that is due to the first 

structural shock is   
1 2
0

1 2
0 1

(1,1)
(1, )

k
l l

k p
l j l

d
d j

−
=

−
= =

Σ
Σ Σ
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and all the forecast errors can be decomposed in this way. 
We can estimate ( )A L  and Σ  and know that 'RRΣ = .  But we need to know R  to work out 
structural impulse responses, forecast error variance decompositions and so on.  Identification is 

about solving for R  from Σ .  R  has 2p  elements; Σ  has ( 1)
2

p p +  elements, so we need more 

restrictions to solve for R  from Σ .  These are the identifying restrictions of the VAR. 
 
A common question that a VAR tries to figure out (though by no means the only one) is what are 
the effects of a monetary policy shock (others include effects of fiscal policy shocks and 
technology shocks).  It's no use regressing macroeconomic outcomes on shocks to interest rates, 
because the most obvious reason why interest rates would be tightened is that the Fed expects 
inflation or growth to be high in the future.  Monetary policy is endogenous.  The structural VAR 
though is trying to figure out the effects of exogenous monetary policy shocks—the FOMC 
changing monetary policy not because of differences in the outlook for growth or inflation  
 
 
1. Direct measurement of monetary policy shocks.  This approach has been developed in 
particular by David and Christina Romer.  It’s not really a structural VAR identification, but I 
cover it here in any case. 
 One approach, the so-called “Narrative approach” (Romer and Romer (1989)) involves 
reading FOMC minutes/records to identify 6 occasions when there was a contractionary 
monetary policy shock that owed to a change in the apparent preferences of policy makers.  Let 

tD   be the dummy that is 1 in the month of such a shock and 0 otherwise.  Then estimate the 
impulse responses by running the regression 
 24 36

1 0 errort o j j t j k k t ky a b y c D= − = −= + Σ + Σ +  (1) 
and the impulse responses can then be solved out.  The paper found that activity was 
substantially reduced, reaching a trough after about a couple of years.  These shocks also 
accounted for much of the variability in output growth. 
 
Romer and Romer (2004) propose another direct measure of monetary policy shocks.  Before 
each FOMC meeting, the Federal Reserve staff prepare a forecast, known as the Greenbook.   
Romer and Romer regress the change in the Federal Funds target announced at each FOMC 
meeting on: the old fed funds rate, the Greenbook growth forecasts for quarters 1, , 1, 2t t t t− + + , 
the revisions to those growth forecasts, the inflation forecasts, the revisions to the invlation 
forecasts and the current quarter unemployment forecast.  The residuals from this regression are 
then treated as estimates of monetary policy shocks.  They then estimate a regression of the same 
form as (1) to estimate the impulse responses.  Again large real effects of monetary policy 
shocks are found, peaking after a couple of years. 
 
2. Cholesky restrictions.  Let’s consider a toy model for concreteness.  ( , , ) 't t t tY g rπ= : growth, 
inflation and short term interest rates.  Let the structural shocks be g

tε , t
πε  and r

tε .  If we assume 
that a shock to t

πε  has no effect on tπ  (contemporaneously) and that a shock r
tε  has no effect on 
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tg  or tπ  then R  must be lower triangular.  The solution to the equation 'RRΣ =  is unique (up to 
a flipping of signs). 
 
Often applying this to estimating the effects of monetary policy shocks, the effect of shocks on 
growth is substantial and peaks after a few quarters (seems reasonable), but the effect of a 
monetary policy tightening is initially to raise prices (counter to the conventional wisdom).  This 
is the “price puzzle” (Intuitively, what might be going wrong here?). 
 
Other “short-run” restrictions can be imposed.  For example, Blanchard and Perotti identify a 
VAR in which the contemporaneous effects of output and inflation shocks on the deficit are not 
assumed to be zero, but rather are imposed from reading spending and tax code rules. 
 
Short-run restrictions may also be used to identify the effect of the monetary policy shock alone. 
Suppose that the monetary policy rule is 

 ' r
t t tr Iγ ε= +  

where tI  are variables in the information set at time t  that the Fed observes.  Suppose that there 
is no contemporaneous feedback from the monetary policy shock to tI .  Then we can run the 
regression of tr  on tI  and get an estimate of r

tε .  By the “no feedback” assumption OLS is 
consistent.  This involves fewer restrictions than the Cholesky ordering, but also only allows us 
to identify one particular shock (monetary policy).  The impulse responses can then be estimated 
by regressing tY  on 1 2, , ,...r r r

t t tε ε ε− −   .  This was the approach used by Christiano, Eichenbaum 
and Evans (1996).  Their VAR had real GDP, the GDP deflator, commodity prices, nonborrowed 
reserves, the federal funds rate and total reserves.  They argued that inclusion of commodity 
prices made the “price puzzle” disappears. 
 
3. Long-run restrictions (Blanchard and Quah).  Suppose that ty∆  is output growth and tu  is the 
unemployment rate.  The vector of time series is ( , ) '.t t tY u y= ∆   Suppose that ( ) t tA L Y u=  is the 
reduced form VAR and that  

( ) ( )t t tY C L u D L ε= =   
where the structural shocks are ( , ) 'D S

t t tε ε ε=  (“transitory” and “permanent” or “demand” and 
“supply” shocks).  By the Beveridge-Nelson decomposition, we can write 

* *
21 1 21 22 1 22(1) ( ) (1) ( )t D D t S S

t s s t s s ty D D L D D Lε ε ε ε= == Σ + + Σ +  
The identifying assumption of Blanchard and Quah is that a demand shock has no permanent 
effect on output, and so 21 (1) 0D = . 
 ( ) ( ) (1) (1) ' (1) (1) 't tD L C L u D D C Cε = ⇒ = Σ  (2) 
 ( ) ( ) (1) (1)D L C L R D C R= ⇒ =  (3) 
From (1), (1)D  is the Cholesky factor of (1) (1) 'C CΣ . 
From (2), 1(1) (1)R C D−= . 
 
So the algorithm is 1 1 1 1(1) { (1) (1) '} (1) { (1) (1) '}R C Chol C C A Chol A A− − − −= Σ = Σ .  
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4. Agnostic identification/sign restrictions (Faust (1998)).  The restriction that 'RRΣ = , coupled 
with restrictions on the signs of the contemporaneous impulse responses (e.g. a monetary policy 
tightening does not increase inflation this period) isn’t enough to identify a unique R , but it is 
enough to identify a set of possible values of R .  We say that R  is set-identified, not point-
identified.  Suppose that *R  denotes the set of possible values of R .  Then the impulse responses 
are given by * *(inf ,sup )j jR R R R

C R C R
∈ ∈

.    
The idea of identification through sign restrictions has been active in recent years.  There is also 
a Bayesian approach to sign restrictions developed by Uhlig (2005).  We return to this below. 
Here is a recent example of sign restrictions.  Cieslak and Pang (2021) consider a VAR in daily 
data on stock returns and daily short-, medium- and long-term bond yield changes.  They specify 
sign restrictions like growth surprises raise stock prices and yields but the effect on short yields 
is bigger than that on long yields.  They similarly identify monetary policy and risk premium 
surprises. 
 
5. External instruments.  Suppose that there is some variable tZ  that is correlated with a 
particular structural shock, but not with others.  For example, tZ  could be the change in interest 
rates in a small window around an FOMC announcement, which we might think is correlated 
with a structural monetary policy shock, but not other structural shocks (Gertler and Karadi 
(2013)).  Let this structural shock be the first shock, without loss of generality.  Then 

1( ) ( )t t t tE Z u R E Z ε= .  If we regress tu  on tZ  we identify 1R  up to scale. 
External instruments have become very widely used.  There are two other ways of implementing 
the idea: 
(i) One alternative implementation is proposed by Paul (2020).  It involves augmenting the VAR 
with the instrument.  So the equation is 
 1 1 ....t t n t n t tY AY A Y Zγ ε− −= + + + +  
The contemporaneous effects of the shock are estimated by γ  (subject to rescaling the first 
element to 1).  Then the remaining impulse responses are implied by the VAR.  For example, the 
impulse response at lag 1 is 1Aγ .  This gives numerically the same impact impulse response as 
the regression of  tu  on tZ .  The estimated impulse responses at longer horizons may be slightly 
different. 
(ii) Another is to do a VAR in the variable ( , ) 't tZ Y ′  with a recursive ordering (so the instrument 
is ordered first).  This is sometimes called an internal instrument.  See Plagborg-Moller and Wolf 
(2021) for more details.     The idea is that we get an augmented VAR (called a proxy SVAR) of 
the form: 

 1 1

0 11

1 0 0 0
0 0

t t t

t t t

Z Z
A Y YA

βη
η

−

−

       
= +       
       

  

This can be identified by a Cholesky ordering. 
 
6. Identification from heteroskedasticity.  Suppose that there are two regimes in which the 
structural errors have variance 1εΣ  and 2εΣ .  Normalize R  to have 1s on the diagonal.  Then the 
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variance-covariance matrix of reduced form errors is ,1 'R RεΣ  in the first regime and ,2 'R RεΣ  in 
the second regime.  The total number of unknowns is  
R    2p p−  

,1εΣ    p  

,2εΣ    p  

Total   2p p+  
The number of equations is ( 1) / 2p p +  in each period, of 2p p+  in total.  So the number of 
equations equals the number of unknowns, giving a just-identified problem. 
 
Two problems: 
(1) What if R  changes across regimes? 
(2) What if the variance-covariance matrix of the structural errors does not change (much) across 
regimes? 
  
Rigobon and Sack (2003) estimate the effects of monetary policy shocks on asset prices in this 
way in a VAR with stock prices interest rates and short-term interest rates.  The two regimes are 
(i) days of FOMC announcements and monetary policy testimonies and (ii) all other days.  It 
seems reasonable to suppose that the variance of structural monetary policy shocks is greater in 
the first regime than the second.  They estimate the effects of a surprise tightening in monetary 
policy on stock price; a 25 basis point monetary policy surprise lowers stock prices by about 2 
percentage points.  
 
7. Every possible identification implies a different forecast error variance decomposition.  We 
could select the identification based on this.  For example, Francis et al. (2014) consider a VAR 
in labor productivity, hours, the consumption-output ratio and the investment-output ratio.  They 
want to identify a technology shock.  They do so by maximizing the fraction of the forecast-error 
variance in labor productivity at the 40 quarter horizon that is explained by the technology shock. 
 
8. Narrative identification.  This is an idea pioneered by Antolin-Diaz and Rubio-Ramirez 
(2018).  The idea is that we have strong beliefs about the sign of a shock in a given period.  For 
example, we would asset that in the oil crisis, the oil supply shock was negative.  Each possible 
identification implies a complete set of structural shocks.  If an identification implies a shock that 
violates the restriction, then it gets ruled out.  This is very similar to sign restrictions, except that 
it applies to the shock in specific periods, not the impulse response. 
 
Notes 
1. Often researchers like to write a structural VAR as 
 0 1 1....t t n t n tA Y AY A Y ε− −= + +  
where tε   are the structural shocks.  This is another way of writing the VAR, with 1

0A R−= .  
Pre-multiplying through by R   gives the reduced form VAR. 
2. We can also write t tSuε =   where 1S R−= .  If iR  is the ith column of R , and iS  is the ith row 
of S , then 1

i iS R −′= Σ . 
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3. If you are just interested in the effect of one shock (very common) and are using the Cholesky 
identification, then the full ordering of the variables does not actually matter.  All that matters is 
which variables are above and below the shock of interest.  So if the monetary policy shock is 
ordered last (or first) the ordering of the other variables does not make any difference. 
   
Estimation with restrictions 
It is well known the multivariate maximum likelihood estimation of a system of equations is 
equivalent to OLS equation-by-equation if the coefficients are unrestricted and 
(i) All regressions have the same right-hand-side variables, or 
(ii) The errors are uncorrelated. 
 
Accordingly a VAR with the same number of lags in each equation, or with unrestricted 
coefficient estimates, can be estimated by OLS and this is numerically the same as the system 
MLE.  But otherwise it is not.  The MLE maximizes the log-likelihood function 

1
1

1 1 log | |
2 2

T
t t tε ε−
= ′− Σ Σ − Σ  

where ( )t tA L Yε =  with respect to Σ  and the parameters in ( )A L  
 
Inference about VAR coefficients and impulse responses 
Let α  be the vector 1 2([ .... ] ')nvec A A A which is of order 2 x1p n  and let α̂  and Σ̂  denote the 
OLS estimates of α  and Σ .  Also define 

 

(0) (1) ( 1)
(1) (0)

( 1) (0)

n

Q

n

Γ Γ Γ − 
 Γ Γ =
 
 
Γ − Γ 



  



 

where ( ) ( )t t jj E Y Y −′Γ = .  Then 
1/2 1ˆ( ) (0, )dT N Qα α −− → Σ⊗  

and 
1/2 ˆ( ( ) ( )) (0, )dT vech vech N JΣ − Σ →  

Moreover these distributions are independent of each other.  If we suppose that the errors are 
normal, then 

2 ( )p pJ D D′= Σ⊗Σ  

where (.) (.)pvech D vec= .  For example, 2

1 0 0 0
0 1 / 2 1 / 2 0
0 0 0 1

D
 
 =  
 
 

 . 

This allows us to conduct tests for individual coefficients in the VAR and to do tests for Granger 
causality.  Also, it gives standard errors for impulse responses, because an impulse response is a 
nonlinear function of α  and Σ , which can be called ( , )f α Σ  and so, by the delta method 
(Runkle (1987)) 

1/2 1ˆˆ{ ( , ) ( , )} (0, ( ) )dT f f N f Q f f Jfα αα α −
Σ Σ′ ′Σ − Σ → Σ⊗ +  
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An alternative is to use a bootstrap.  The bootstrap involves the following steps: 
1. Estimate the VAR. 
2. Resample from the residuals with replacement. 
3. Construct new artificial datasets. 
4. In each, estimate the coefficient of interest (e.g. impulse response).  Repeat (2)-(4) (say) 1,000 
times. 
5. A confidence interval can be formed from the percentiles of the distribution in (4).  Note that 
this uses the “other percentile” principle. 
 
Another alternative is to use the bias-adjusted bootstrap (Kilian (1998)).  This involves the 
following steps: 
1. Estimate the VAR. 
2. Resample from the residuals with replacement. 
3. Construct new artificial datasets. 
4. In each, estimate the coefficient vector α .  Repeat (2)-(4) 1,000 times. 
5. The OLS estimate of α  can now be bias-adjusted.  Resample from the bias-adjusted VAR 
estimate residuals with replacement. 
6. Construct new artificial datasets. 
7. In each, add the bias adjustment to the estimate of α  and then compute the coefficient of 
impulse.  Repeat (5)-(7) 1,000 times. 
8. Form a confidence interval from the percentiles of the distribution in (7). 
 
The bootstrap-based bias-adjustment of Kilian (1998) is useful, whether the objective is 
inference for impulse responses or forecasting.  An alternative is that Nicholls and Pope (1989) 
gives an analytical expression for the bias in a VAR (1) with an intercept.   This expression is 

1 2 1 1 3/2
1

ˆ( ) {( ) ( ) ( ) } (0) ( )n
n n i i n iE A I A A I A I O Tλ λ− − − −

=Α − = Σ − + − + Σ − Α Γ +  
where 1 2, .... nλ λ λ  denote the eigenvalues of A  and (0)Γ  is the variance-covariance matrix of tY , 
which solves the equation (0) (0) 'A AΓ = Γ + Σ  which implies that 

2
1( (0)) ( ( )) ( )

n
vec I A A vec−Γ = − ⊗ Σ  

The advantage of the bootstrap is its general applicability. 
 
Yet another alternative is to form a Bayesian interval (Sims and Zha (1999)), perhaps interpreted 
as a frequentist interval.  Of course, the interval depends on the choice of prior. 
 
Bayesian Treatment of VARs: Non-informative prior 
Write the model in the form Y XA u= + .  The “noninformative” prior for α  and Σ  is 
proportional to ( 1)/2| | n− +Σ . With this prior: 
 
● The posterior for α  given Σ  is 1ˆ( , ( ' ) )N X Xα −Σ⊗ .  
● The posterior for Σ  is inverse-Wishart with parameters 'e e  and T np− , where e  denotes the 
matrix of VAR residuals. 
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Sidenote: Wishart and inverse-Wishart distributions. 
Suppose that 1 2, ,.... nX X X  are iid with mean 0 and variance covariance matrix Ω .  Then 

1
n
i i iX X= ′Σ  is ( , )W nΩ .  It is a multivariate analog of a 2χ . 

We say that A   is inverse-Wishart ( , )nΩ  if 1A−  is 1( , )W n−Ω . 

Note that if A  is ( , )IW nΩ  and Ω  is xp p  then ( )
1

E A
n p

1
= Ω

− −
.  

 
So the recipe is one first takes draws of Σ , then draws of α  and then one can build up a 
posterior distribution for any object of interest (e.g. impulse response).  The percentiles of this 
distribution give a Bayesian confidence interval. 
 
It turns out that the delta method often has confidence intervals for impulse responses that are 
biased and too short.  The ordinary bootstrap does not do much better.  The Bayesian methods 
and bias-adjusted bootstrap do not fully control coverage, but get effective coverage that is in 
many cases reasonably close to the nominal level. 
 
Bayesian Treatment of VARs: Normal-Inverse Wishart Prior 
In the last section, we discussed a non-informative prior.  But informative priors may be useful in 
forecasting.  In forecasting with VARs, a challenge is that the number of parameters can be quite 
large, and informative priors may be helpful.  Consider the VAR 
 1 1 2 2...t t t n t n ty k A y A y A y u− − −= + + + +  (4) 
where ty  is an px1 vector and tu  is i.i.d. (0, )N Σ .  Write the model in the form Y XA u= +   and 
consider the prior: 

 
1

0 0

0 0

( ) | ~ ( ( ), )
~ ( , )

vec A N vec A N
IW S v

−Σ Σ⊗

Σ
  

where 0A  , 0N , 0v   and 0S   are all prior hyperparameters.  Then the posterior is given by: 

 
1( ) | ~ ( ( ), )

~ ( , )
P P

P P

vec A N vec A N
IW S v

−Σ Σ⊗
Σ

  (5) 

where 

 

0

0
1 1

0 0

0 0 0 0

'
'

ˆ ˆ ˆ ˆS ( ) '( ) ' '

P

P

P P P

P P

v T v
N N X X
A N N A N X Y

S Y XA Y XA AX XA A N A A N A

− −

= +
= +

= +

′= + − − + + −

  

Simulating from this posterior involves Gibbs sampling. 
 

Uhlig (2005) and others consider a Bayesian approach to imposing sign restrictions.  Any matrix 
R  that satisfies 'RRΣ =  can be written as R PU=   where the Cholesky factorization of Σ  is 

'PPΣ =  and U  is an orthonormal matrix.  The standard prior for U  is uniform on the space of 
orthonormal matrices (and independent of the other priors).  Rubio-Ramirez, Waggoner and Zha 
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(2010) propose a beautifully simple algorithm for this.  Let X  be a matrix of independent 
standard normal random numbers, and let X QR=  be its QR decomposition (this is a 
decomposition into an orthonormal matrix Q  and an upper triangular matrix R : qr function in 
Matlab).  Normalize the diagonal elements of R  to be positive.  Now Q  is uniformly distributed 
on the space of orthonormal matrices. 
So the algorithm for imposing sign restrictions goes as follows: 

1. Take a draw from the posterior, iterating between these two conditional densities, in (5) 
discarding the first 1,000 or so burn-in draws.  This is a simple case of Gibbs sampling. 

2. Work out the Cholesky factor of Σ  and take a random orthonormal matrix.  Compute R  
and see if the sign restrictions are satisfied. 

3. If the sign restrictions are satisfied, combine the chosen R  with the reduced form VAR 
parameters in (1) and work out impulse responses etc.  If not, repeat step 2. 

4. Repeat 1-3 to get draws from the posterior. 

Baumeister and Hamilton (2015) point out that this procedure brings in implicit prior 
information over and above the sign restrictions. 

 
Minnesota Prior 
The Minnesota prior of Doan, Litterman and Sims (1984) is an informative prior that has been 
found by many to be helpful for forecasting purposes.  Consider the VAR 
 1 1 2 2...t t t n t n ty k A y A y A y u− − −= + + + +  (6) 
where ty  is an px1 vector and tu  is i.i.d. (0, )N Σ .   
In the Minnesota prior, the priors for k , 1 2[ .... ] 'pA A A A=  and Σ  are mutually independent and 
 ( ) ~ (0, )pp k N Iκ  (7) 
 ( ( )) ~ (0, )Ap vec A N Ω  (8) 
and 
 ( 1)/2( ) | | pp − +Σ ∝ Σ  (9) 
where κ is a large number, AΩ  is a diagonal matrix, the prior variance for the ij th element of 

kA  is 
22

2 2
i

jk
σλ
σ

 where λ  is a hyperparameter that measures the overall tightness of the prior and 

2
iσ  is the residual variance from fitting an AR(1) to ity .  Note that the prior proposed by Doan, 

Litterman and Sims differed slightly from this in that they set the prior mean of the diagonal 
elements of 1A  to 1.  In other words, they were shrinking towards a random walk prior: the 
variant here instead follows Banbura, Giannone and Reichlin (2009) in instead shrinking towards 
a white noise prior. 
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The Gibbs sampler can then be used to take draws from the posterior of the parameters.  
Specifically, the posterior of ( )vec A  conditional on Σ  is 
 1 1 1 1 1 1 1(( ' ) ( ' ), ( ' ) )A AN X X vec X Y X X− − − − − − −Ω +Σ ⊗ Σ Ω +Σ ⊗  
while the posterior for Σ conditional on A  is 
 (( ) '( ), )IW Y XA Y XA T− −  
where (.,.)IW  denotes the inverse-Wishart distribution.   
 
 
Priors directly on the structural impulse responses 
Generally researchers impose priors on the VAR parameters, but economists have more ideas 
about structural impulse responses.  Plagborg-Moller (2016) specifies priors for the ( )D L  
parameters and then works out the posterior.  With a given ( )D L , the likelihood is that of a 
vector moving average and the posterior is then the prior times the likelihood, though efficient 
numerical implementation is complicated. The choice of R is not explicitly required in this 
procedure.  The likelihood will have multiple peaks, but the posterior should be single-peaked. 
 
Local Projections 
Local projections is an idea proposed by Jorda (2005).  Instead of estimating a VAR, estimate the 
univariate regression:  
 1 1...t s s t t n t n ty s y y uβ γ γ+ − −= + + +   
where ts  is a shock for different values of .s   Note that the errors are bound to be serially 
correlated.  The impulse response is different for each s  and this is the sense in which it is local.  
It can be applied in many contexts.  Like panel data:  
 , , 1 , 1 , ,...i t s s i t i t i t n i t n i ty s y y uβ α λ γ γ+ − −= + + + + +   
Or adding interaction effects:  
 1 1...t s s t x t s t t t n t n ty s x s x y y uβ ω λ γ γ+ − −= + + + + +   
And Barnichon and Brownlees (2018) have a proposal for smoothing the impulse responses.  In 
population, local projections and a VAR are equivalent (Plagborg-Moller and Wolf, 2021), but of 
course in the finite samples they are not. 
 
A Cholesky identified VAR can be estimated by local projections.  Suppose that we have a 
Cholesky ordering and we are interested in the effect of structural shock i and we let *

tY  denote 
the vector of all elements of tY  ordered above i .  Then we consider the regression 
 *

, 0 1 1...t s s t i t t n t n tY Y Y Y Y uβ γ γ γ+ − −= + + + +   

If shock i  is ordered first then *
tY  is empty and so that term is simply omitted, but otherwise it is 

present. 
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Handout on Panel VARs 

 

Suppose that itY  is an mx1 vector of variables for country i  in time period .t   There are n  countries and 
T time periods.   The cross-sectional units do not have to be countries, but they most often are.  A panel 
VAR has the potential to give big efficiency gains.  Canova and Ciccarelli (2013) give a nice survey of 
panel VAR methods, mainly from the Bayesian perspective. 

We can consider a panel VAR of the form: 

 1 1 2 2 ...it i i it i it pi it p itY A Y A Y A Y uα − − −= + + + +   

where itu  are reduced form shocks.  The coefficients are allowed to vary across the cross-sectional units.  
Without any further restrictions, this amounts to something like a separate panel for each country.  It’s not 
quite because it would actually be a seemingly unrelated regression system.  You can estimate it by OLS 
equation by equation, but feasible GLS is asymptotically more efficient if the errors are correlated across 
countries.  How this works is that we think of each equation as being a regression of the form 

i i i iY X uβ= +   and we then stack the equations to yield: 

 
1 1 1 10

0n n n n

Y X u

Y X u

β

β

      
      = +      
      
      



     



  

We then estimate this twice: first by OLS, and then by feasible GLS using the estimated residuals to estimate 
a covariance matrix of the errors of the form TIΣ⊗ . 

One approach is to assume that the slope coefficients are the same for all countries (homogenous).  This 
can be done by a pooled approach with fixed effects, stacking nT  observations.  This is easy.  One problem 
is that it is inconsistent if T  is small.  Henceforth let’s simplify everything to one lag.   

Anderson and Hsiao (1982) propose an IV approach.  This takes the equation differencing out the fixed 
effects: 

 1 1 1 2 1( ) ( )it it it it it itY Y A Y Y u u− − − −− = − + −   

and then estimating this by IV using 2itY −  as an instrument.  Arellano and Bond (1991) propose a GMM 
approach.  This is based on the moment conditions: 

1 1 1 2([( ) ( )] ) 0it it it it it jE Y Y A Y Y Y− − − −− − − = , 3,... ; 1,... 2t T j t= = −  

Notice that this is not a standard IV estimator any more because there is an instrument for each time period 
and the number of instruments differs by time period.  For t=3, there is 1 instrument, for t=2 there are 2 
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instruments and so on.   Where we have just one lag, the minimum number of time periods T is 3, and this 
gives just identification.  More lags would give overidentifying restrictions.  With two lags, the minimum 
number of time periods T would be 5. 

A related alternative, proposed by Arellano and Bover (1995) uses a forward orthogonal transformation 
instead.  Define 

 , 1 , 2 ,* ....
( ), 2... 1

1
i t i t i T

it it

Y Y YT tY Y t T
T t T t

+ ++−
= − = −

− + −
 

Then this transformation lets us wash out the fixed effects as: 

 * * *
1 1it it itY AY u−= +   

And then we can do GMM based on the moment conditions:  

* *
1([ ] ) 0it it it jE Y AY Y −− = , 2,... ; 1,... 1t T j t= = −  

Now any variable dated 1t −  is available as an instrument, so you get more instruments.  In either of these 
approaches, you don’t necessarily want to use all of the instruments that are available (Roodman 2009) in 
finite samples.   

Yet another approach is to stick with pooled least squares estimation with a dummy variable.  Kiviet (1995) 
has a formula for the bias in that case, and you can correct for the bias.  In some simulations, Judson and 
Owen (1999) find that the best results are obtained with this bias correction, with the Anderson-Hsiao IV 
estimator coming in second. 

Uribe and Yue (2006) is an example of a panel  VAR with common slope coefficients and fixed effects.  
The variables are output, investment, trade balance and real interest rates in emerging markets and the US 
real interest rate.  The US real interest rate is specified as a univariate autoegression.  The main objective 
is to study the effects of US and local real interest rate shocks.  These are identified by a Cholesky 
identification.  Each emerging market is considered on its own. 

Another example of a panel VAR with common slope coefficients and fixed effects is Love and Zicchino 
(2006).   This considers a panel VAR with about 8000 firms from 36 countries.  They consider firm level 
variables like sales-to-capital ratios, investment-to-capital ratio and cash flow and consider a panel VAR of 
the form: 

 1 1it i ct it itY d AYα ε−= + + +   

where the i  subscript indexes firms.  So there are constant parameters, but we add in country-time fixed 
effects.  Structural impulse response anaylsis is conducted using a Cholesky identification. 

Often researchers might want some structure, but not to assume that the slope coefficients are the same for 
all countries.  Pesaran and Smith (1995) assume that: 

1i iA A η= +  

We can then write the VAR in the form: 

1 1it i it i it itY AY Y uα η− −= + + +  
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which can then be estimated by pooled GLS, but giving only  estimates of the fixed effects and the matrix 
A .  Another alternative (Pesaran and Smith (1995)) is the mean group estimator.  This estimates the VAR 

for each country separately, or by the seemingly unrelated regression estimator, and then simply averages 
the estimators.  Or, if you are interested in the impulse responses, you could estimate the impulse response 
for each country and then average these.  Either way, let îθ  be the estimated object of interest for country 

i .  The mean group estimator is 1ˆ ˆ
MG inθ θ−= Σ  and the generally used estimate of the variance is 

1
1 ˆ ˆ ˆ ˆ( )( ) '

( 1)
n
i i MG i MGn n

θ θ θ θ=Σ − −
−

 . 

An example is Gambacorta, Hoffmann and Peersman (2014).  They consider a VAR for 8 countries in four 
variables: monthly output, prices, the VIX and the size of central bank balance sheets.  They estimate this 
VAR by SURE for each country separately.  For the identification of the SVAR, they combine sign 
identification with zero restrictions.  Concretely, it is assumed that for each country iP  is the Cholesky 

factor of the reduced form variance-covariance matrix and then that the reduced form errors are iPQ  times 
the structural errors.  The matrix Q   is specified as: 

 

1 0 0 0
0 1 0 0
0 0 cos( ) sin( )
0 0 sin( ) cos( )

Q
θ θ
θ θ

 
 
 =
 −
 
 

  

where θ  is in [0, 2 ]π .  If the impact impulse response of the monetary policy shock meets the sign criteria 
(the VIX does not go up and the balance sheet does go up) for all 8 countries, then that draw is accepted, 
otherwise it is rejected. Then once they have the impulse responses, they average these across the 8 
countries.  Finally they take the percentiles of these impulse responses.  In this exercise, the researcher 
considers a monetary policy shock in each country without taking a stand on how the monetary policy 
shocks are correlated across countries. 

The setup so far rules out the idea of dynamic interdependencies (lags of one country affecting another).  
Going to the other extreme, we could define 1 2( , ,... ) 't t t ntY Y Y Y′ ′ ′=  and then write a huge VAR of the form: 

1t t tY AY u−= +  

This has an enormous number of parameters.  If there are p lags, there would be 2 2pm n  parameters.  So 
something has to be done to reduce the dimension of the parameters.  One can impose a lot of zeros, which 
may get us back to something like we had without interdependencies.  Or, if we let α  denote the vector of 
parameters, we might impose a factor structure on the parameters (Canova and Ciccarelli (2004, 2009)). 

Pesaran et al. (2004) propose a solution to the dimensionality problem when modeling country 
interdependencies that he terms a GVAR (Global VAR).  The setup is that there are N+1 countries, with 
country 0 being the US.  For each country, the vector of variables is itY  and from the perspective of country 

i  the average for the rest of the world is *
itY .  We then specify: 

 * *
1 1 2 3 1it it it it itY AY A Y A Y u− −= + + +   
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The rest of the world variable is defined as *
0

n
it j ij itY Yω== Σ  and the weights could be trade weights, but the 

point is that they are not being estimated.  The weights must sum to one and 0iiω = .  This model can be 
estimated by OLS for each country separately, or it could be estimated as a system, but it is generally 
estimated by OLS for each country separately.  The shocks are assumed to be iid.  Stacking the country 
variables as 0 1( , ,.... ) 't t t ntY Y Y Y′ ′ ′=   we can again write this VAR in the form:  

 1t t tY AY u−= +   

But this time there are far fewer parameters to estimate.  The estimation is done purely at the country level; 
stacking into a single equation is for the purposes of looking at effects of shocks.   

There will be the question though of identification restrictions for a structural VAR.   Once you allow 
dynamic interdependencies, having a Cholesky ordering becomes very difficult.  Dees et al. (2007) have a 
global VAR where they order the US variables first and then have an ordering within the US variables, and 
then in this way get a Cholesky identification of a structural monetary policy shock.  But most of the time 
when researchers are using a GVAR for impulse response analysis, they give up on trying to identify 
structural shocks and instead use generalized impulse response function. 

As to standard errors, there are a number of ways of proceeding.  Writing the VAR in the form 

1t t tY AY u−= +  immediately allows us to construct a bootstrap, drawing from tu  by resampling with 
replacement. 
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Handout on Chow-Lin Interpolation 

A very common practical problem in empirical macroeconomics is that we have data at low 
frequency, but would like to estimate that time series at a higher frequency.  For example, GDP 
is produced only once a quarter, but we would like to have monthly estimates of GDP.  A 
reasonable way of solving this problem of interpolating high-frequency data entails looking at 
series that are observed at higher frequency and using the relationship between these series and 
the series that we observe at low frequency.  For example, there are monthly data on 
consumption, industrial production, retail sales, employment etc that are strongly positively 
associated with GDP.  We might use these to infer what monthly GDP would have been.  The 
intuition is that in a quarter where these monthly indicators were falling over the quarter, we 
would want to assign a disproportionate share of GDP to the first month of the quarter. 
 
A classic paper by Chow and Lin (1971) proposed a method for doing this.  In fact, under the 
assumptions that they make, it gives the best linear unbiased estimate of the high-frequency data.  
Without loss of generality, I will assume that the problem is to interpolate a quarterly time series 
to the monthly frequency.  But the same approach could be used to interpolate an annual time 
series to the quarterly frequency and so on. 
 
Suppose that ( )Q

ty  is the quarterly time series, so that ( )
,1 ,2 ,3

Q
t t t ty y y y= + +  where ,1ty  denotes 

the series in the first month of the quarter and so on.  In month i  of quarter t  we observe other 
variables and assume that 
 , 1 1, , 2 2, , , , ,...t i t i t i p p t i t iy x x x uβ β β= + + +  (1) 
and that 

, , ,t i t i t iu aLu ε= +  
where L  denotes the monthly lag operator, which could be in the previous quarter and ,t iε  is iid 

with mean zero and variance 2σ   Accordingly, the 3Tx3T variance-covariance matrix of 
monthly errors in (1) is 

 

2 3 1

2 3 2

3 1 3 2 3 3

1 ..
1 ..

.. 1

T

T

T T T

a a a
a a a

V

a a a

−

−

− − −

 
 
 =
 
  
 

 (2) 

If ( )Qy  and ( )My  denote the vectors of quarterly and monthly observations respectively, of 
lengths T  and 3T , then ( ) ( )Q My Cy=  where  
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1 1 1 0 0 0 .. 0 0 0
0 0 0 1 1 1 .. 0 0 0

0 0 0 0 0 0 .. 1 1 1

C

 
 
 =
 
 
 

 

Let ( )MX  be the 3Txp matrix of the monthly variables and define ( ) ( )Q MX CX= .  We can write 
equation (1) in the form ( ) ( )M My X uβ= + and then premultiply this by C  to get 
 ( ) ( ) ( )Q Q Qy X uβ= +  (3) 
where ( )Qu Cu= .  In this regression the variance-covariance matrix of the errors is 'CVC  and 
multiplying this out, the first autocorrelation of the errors can be calculated as 

 
5 4 3 2

2

2 3 2
3 2 4

a a a a a
a a

+ + + +
+ +

 (4) 

 
With all this, here are the steps in the Chow-Lin interpolation procedure: 
1. Construct ( ) ( )Q MX CX= . 
2. Run the regression in (3) by OLS, giving the estimator  

( ) ( ) 1 ( ) ( )ˆ ( ' ) 'Q Q Q Q
OLS X X X yβ −=  

3. Calculate the first order autocorrelation of the residuals from this OLS regression. 
4. Find the value of a  that sets the value of (4) to this autocorrelation (use the Matlab function 
fsolve).  Call this â .  Plug this into (2) to get an estimate of V , V̂ . 
5. Now run the regression in (3) by feasible GLS, giving the estimator  

( ) 1 ( ) 1 ( ) 1 ( )ˆ ˆ ˆ( '( ') ) ( ')Q Q Q Q
FGLS X CVC X X CVC yβ − − −=  

6. Obtain the corresponding residuals, ( )ˆ Q
FGLSu . 

7. Chow and Lin show that the best linear unbiased estimator of the monthly data ( )My  is 
( ) ( ) 1 ( )ˆ ˆ ˆˆ ˆ'( ')M M Q

FGLSy X VC CVC uβ −= +  
 
The Kalman filter provides an alternative (rather similar) way of interpolating monthly data. 
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Handout on Filtering 
 
The filtering problem is that there is unobserved variable (a “state” variable) that evolves by 
some law of motion and there are observed variables that are related to the unobserved state.  It 
might sound an arcane problem, but as we’ll see in a bit, it has an enormous number of important 
macroeconomic applications. 
 
The basic filtering problem is a linear model in what is known as state space form.  This is the 
model where we observe ty  while tα  is an unobserved state and 
 

t t t ty Z α ε= +   (the measurement equation) 

1t t tTα α η−= +   (the transition equation) 
where ~ (0, )t iidN Hε  and ~ (0, )t iidN Qη  
 
The Kalman Filter 
The Kalman Filter allows inference to be done in the basic state space model.  In this model 

|t sYα  is normal; let |t sα  and |t sP  denote its mean and variance.  We then have 
 
Updating Equations 

1
| | 1 | 1 | 1( )t t t t t t t t t t t tP Z F y Zα α α−

− − −′= + −  
1

| | 1 | 1 | 1t t t t t t t t t t tP P P Z F Z P−
− − −′= −  

where 
| 1t t t t tF Z P Z H− ′= +  

 
Prediction Equations 

1| |t t t tTα α+ =  

1| | 't t t tP TP T Q+ = +  
 
If tα  is stationary, we can initialize from the unconditional mean and variance-covariance matrix 
of tα .  The mean is just zero.  The variance is |t tP  which is the solution to the equation: 

0|0 0|0 'P TP T Q= +  
the solution to which is 

1
0|0( ) ( ) ( )vec P I T T vec Q−= − ⊗  

 
So, in Matlab, 0|0P  is simply  
reshape(inv(eye(n^2)-kron(T,T))*reshape(Q,n^2,1),n,n)  
where n is the number of elements in the state vector tα .   
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Or we can treat the mean and variance of 0α  as unknown parameters.  Or, especially if the state 
vector is nonstationary, we can set 0|0α  to zero and 0|0P  to Iκ  where κ  is a large number, 
constituting a “diffuse prior.” 
 
Whatever the initialization, we then iterate through the updating and predictive equations to get 

| 1t tα −  and |t tα .The Kalman filter has two potential purposes: (i) estimation and (ii) inference 
about the state vector.  For the first of these, we have the log-likelihood: 
 

1 1log( ( | ))T
t t tl f y Y= −= Σ  

1 | 1 | 1 | 1| ~ ( , ) ( , )t t t t t t t t t t t t ty Y N Z Z P Z H N Z Fα α− − − −′ + =  

1
1 1

1 1log(2 ) log | |
2 2 2

T T
t t t t t t

Tl F v F vπ −
= = ′∴ = − − Σ − Σ  

where | 1t t t t tv y Z α −= −  
 
The updating equation for the mean of the state can be written as  

| | 1 | 1( )t t t t t t t tK y yα α − −= + −  

where 1
| 1t t t t tK P Z F −
− ′=  is the Kalman gain. 

 
For inference about the state vector, we already have |t tα , the “filtered” estimates.  But we might 
want |t Tα , the “smoothed” estimates.  These are obtained with one more set of recursions known 
as the Kalman smoother: 

| | 1| 1|( )t T t t t t T t tJα α α α+ += + −  

| | 1| 1|( )t T t t t t T t t tP P J P P J+ + ′= + −  
where 

1
| 1|'t t t t tJ P T P−

+=  
The Kalman filter/smoother needs values of the parameters.  We can use numerical methods to 
find the parameter values that maximize the likelihood, and then plug these in to get filtered and 
smoothed estimates of the states, which are also of interest. 
 
In some cases, it will turn out that matrices are singular.  The formulas will still go through, but 
replacing the inverse by the Moore-Penrose generalized inverse. 
 
In Bayesian work, we often want to take a draw from the distribution of the state vector 
conditional on the full dataset and parameters.  This is accomplished by the device of Carter and 
Kohn (1994) that works as follows: 
(a) Running the Kalman filter to get |t tθ , |t tP  and 1|t tP+  for all t . 
(b) Take a draw for tθ  from the | |( , )T T T TN Pθ  distribution. 
(c) Cycle back taking draws 
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 1 1
| | 1| 1 | | | 1| |~ ( ' ( ), ' )t t t t t t t t t t t t t t t t t tN P T P T P P T P TPθ θ θ θ− −

+ + ++ − −  
which amounts to taking draws from the distribution given by the Kalman smoother. 
 
 
The EM Algorithm 
This idea of using the Kalman filter to obtain the log-likelihood and then maximize it 
numerically is easier said than done—at least if the number of parameters is large.  The EM 
algorithm is a device for maximizing the log-likelihood function obtained from the Kalman filter.  
This makes it easy to handle models with a relatively large number of parameters, and it is 
indeed an essential tool for many modern Kalman filter applications. 
 
The idea of the EM algorithm is to obtain the smoothed estimates of the state vector and then to 
treat these as observed data and maximize the likelihood function.  There are closed form 
expressions for these parameter estimates.  Essentially it boils down to OLS regressions with the 
state vector as observable, except with an adjustment for the fact that there is measurement error 
in the state variable.  With these parameter estimates, the Kalman smoother is run again, and the 
algorithm goes back and forth.  At each iteration, the log-likelihood function should increase.  
The Kalman smoother is the “E” step (E for Expectation); the maximization is the “M” step.  The 
algorithm converges once the change is small. 
 
Given the smoothed estimates, here are the expressions for the parameter estimates in the 
Kalman filter in the “M” step. 
 
 1

1 | 1| , 1| 1 1| 1| 1|
ˆ { }[ { }]T T

t t T t T t t T t t T t T t TT P Pα α α α −
= − − = − − −′ ′= Σ + Σ +  

 1 | | 1 |
1 1ˆ ( ) '( )T T

t t t t T t t t T t t t T tH y Z y Z Z P Z
T T

α α= = ′= Σ − − + Σ  

 | , 1|
1 1

, 1| 1|

1 1ˆ [ ] [ ]'t T t t TT T
t t t t

t t T t T

P P
Q I T I T

P PT T
ηη −

= =
− −

 
′= Σ + Σ − − ′ 

 

where | 1|t t T t TTη α α −= −  and , 1| | 1 1|[( )( ) ']t t T t t T t t TP E α α α α− − −= − − .  Computing , 1|t t TP −  is the only 
tricky bit.  This involves yet another set of recursions, sometimes known as the lag-one 
covariance smoother.  Like the ordinary smoother, it starts at the end with 
 1

, 1| 1| 1| 1( )T T T T T T T T TP I P Z F TP−
− − − −′= −   

and then cycles backward using 
 , 1| | 1 1, | | 1( )t t T t t t t t t T t t tP P J J P TP J− − + −′ ′= + −   
Another thing to note is that these formulas require 0|Tα  and 1,0|TP  but these can be got by 
continuing the smoothing recursions back from 1 more period.   
In many applications, tZ  is a parameter, G .  The EM algorithm also gives the MLE of this.  It is 

 1
1 | 1 | | |

ˆ [ { }]T T
t t t T t t T t T t TG y Pα α α −
= =′ ′= Σ Σ +  
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The initial condition is a tricky thing in the EM algorithm.  A standard device is to the mean of 
the 0α  to 0|Tα (which can be obtained by continuing the smoother for one more iteration) while 
holding the variance of 0α  fixed at some reasonable value. 
 
Applications of the Kalman Filter 
 
1. Time-varying parameter models 

t t t ty xβ ε′= +  

1t t tβ β η−= +  

where ( , ) 't tε η′  is iid 
2 0

(0,
0

N ε

η

σ 
  Σ 

 and the tx s are strictly exogenous.  This is immediately in 

state space form. 
 
2. Random-walk-plus noise model. 

t t ty µ ε= +  

1t t tµ µ η−= +  

where ( , ) 't tε η′  is iid 
2 0

(0,
0

N ε

η

σ 
  Σ 

.  This is useful for a permanent-transitory decomposition.  

Again, it is immediately a model in state space form. 
 
3. Mixed frequency interpolation.  Earlier, we discussed Chow-Lin interpolation.  The Kalman 
filter gives an alternative.  Consider the problem where there is a variable that is observed (say) 
monthly and another that is observed only quarterly that is an aggregate of an unobserved 
monthly series.  Let the observed monthly series be tq  and let the observed quarterly series be 

( )
1 2

Q
t t t tw w w w− −= + + .  Suppose that the state vector is  

1 2( , , , ) 't t t t tq w w wα − −=   
We assume that tq  and tw  follow a VAR (1), giving the transition equation.  In the last month of 
each quarter, the measurement equation is 

( )

1 0 0 0
0 1 1 1

t
tQ

t

q
w

α
   

=   
  

 

while in all other months, the measurement equation is 
( )1 0 0 0t tq α=  

 
4. A “factor” model.  Suppose that tc  is the unobservable “state of the economy.”  But we do 
observe an nx1 vector of indicators ty  and assume that 

t t ty f uγ= +  
( ) t tL fφ η=  
( ) t tD L u ε=  
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and tη  and the elements of tε  are mutually uncorrelated iid and normal with mean zero.  Without 
loss of generality, let’s suppose ( )Lφ  is an AR(2) and ( )D L  is a VAR(2).  Then the state vector 
is  

1 1( , , , ) 't t t t tf f u uα − −′ ′= .  
The transition equation is 

1 2

1
1 2

0 0 1 0
1 0 0 0 0 0
0 0 0
0 0 0 0 0

t
t t

tD D I
I

φ φ
η

α α
ε−

   
       = +      
   
   

 

and the measurement equation is 
( )0 0t ty Iγ α=  

 
This is one way of getting the common component from a bunch of series.  An alternative is the 
principal components estimator.  Say that we have T observations and ty  is nx1.  Then we can 
solve the problem: 
 2

, 1 1
ˆ ˆ( , ) arg min ( )

t i

n T
t f i t it i tf y fλλ λ= = ′= Σ Σ −   

and we say that tf  are the principal components and iλ  is the loading of the ith variable.  Let F 
be the Txr matrix of principal components: 1 2( .... ) 'Tf f f , let Λ  be the nxr matrix of loadings: 

1 2( .... ) 'nλ λ λ  and let Y  be the Txn data matrix 1 2( .... ) 'Ty y y . We can solve this problem subject 

to a normalization that 1 'F F I
T

=  and 'Λ Λ  is diagonal.  The solution is that F̂  is T  times 

the matrix of eigenvectors associated with the r largest eigenvalues of 'YY
nT

.  And 
ˆ'ˆ Y F

T
Λ = . 

   
5. Aruoba, Diebold and Scotti (2009) propose a measure of the state of the economy based on 
mixed frequency data.  The idea is that there is a latent daily variable that is the state of the 
economy that follows (for simplicity) an AR(1): 
 1 1 2 2...t t t p t p tx x x x uφ φ φ− − −= + + +  
and then there are observations of weekly, monthly and quarterly data (including initial claims, 
industrial production and real GDP growth).  Define the “cumulator” variables  
 1t t

Weekly t Weekly tC C xζ −= +  

where 1tζ =  on the first day of a week and zero otherwise and let t
monthlyC  and t

quarterlyC  be 

defined similarly.  Let the state vector be 1 1( , ,... , , , ) 't t t
t t t t p weekly monthly quarterlyx x x C C Cα − − += .   The 

measurement equation relates each of the observed series to the state vector.  For example, initial 
claims will be 0, 1, errort

claims claims weeklyCβ β+ + . 
 
Drifting Coefficients VAR 
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This is an example of a Bayesian model that uses filtering methods and that is useful in 
macroeconomics (Cogley and Sargent (2001)). 
 
The setup is a VAR which can be written in the form 
 ( )t t t ty I x θ ε′= ⊗ +  
where 1t t tvθ θ+ = + and ( , )t tvε ′ ′  is iid (0, )N V .   
 
Start out by specifying that the prior for 0θ  is ( , )N Pθ  and the prior for V  is 1( , )IW V T− . 
 
We can work out the posterior of 1{ }T

t tθ θ ==  and V  by Gibbs sampling. 
 
1. Take a draw from the distribution of θ  conditional on V  and Y  (the data).  This is 
accomplished by the device of Carter and Kohn (1994) that works as follows in the current 
context: 
(a) Running the Kalman filter to get |t tθ , |t tP  and 1|t tP+  for all t . 
(b) Take a draw for tθ  from the | |( , )T T T TN Pθ  distribution. 
(c) Cycle back taking draws 
 1 1

| | 1| 1 | | | 1| |~ ( ( ), )t t t t t t t t t t t t t t t t t tN P P P P P Pθ θ θ θ− −
+ + ++ − −  

 
2. Take a draw from the distribution of  V  conditional on θ  and Y .  Let V̂  denote the residual 
variance-covariance matrix.  This is given by a draw from a 1ˆ([ ] , )IW V TV T T−+ +  distribution. 
 
3. Repeat 1 and 2 many times to build up the posterior distribution, tossing away the first set of 
draws as “burn-in”, as is usual with the Gibbs sampler. 
 
In this application there is one further wrinkle.  This algorithm will generate draws of tθ  that are 
explosive.  Cogley and Sargent add in a further prior that the roots of tθ  are stationary.  This is 
easily imposed.  For each draw in step 1, check that the entire series 1{ }T

t tθ =  is stationary.  If it is 
not, simply repeat 1(b) and 1(c) until it is. 
 
Extended Kalman Filter 
This is one approach to approximately estimating a nonlinear filtering model.  The basic setup is 
as follows: 

1

( )
( )

t t t

t t t

y f v
h w
α

α α −

= +
= +

 

where tv  is iid N(0,H) and tw  is iid N(0,Q).  The state vector tα  is Lx1.  This uses the following 
recursions: 

| 1 1
| | 1 | 1 | 1

( ) '
( ( ))t t

t t t t t t t t t t
t

df
P F y f

d
α

α α α
α

− −
− − −= + −  
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| 1 | 11
| | 1 | 1 | 1

( ) ' ( )t t t t
t t t t t t t t t

t t

df df
P P P F P

d d
α α
α α

− −−
− − −= −  

where 
| 1 | 1

| 1

( ) ( ) 't t t t
t t t

t t

df df
F P H

d d
α α
α α

− −
−= +  

 
Prediction Equations 

1| |( )t t t thα α+ =  

| |
1| |

( ) ( ) 't t t t
t t t t

t t

dh dh
P P Q

d d
α α
α α+ = +  

which effectively use Taylor series expansions for the variance terms.  The derivatives could be 
computed analytically (better) or numerically.  The log-likelihood is then approximated by: 

1
1 1

1 1log(2 ) log | |
2 2 2

T T
t t t t t t

T F v F vπ −
= = ′− − Σ − Σ  

where | 1( )t t t tv y f α −= − .  The extended smoother is worked out by backward recursions: 

| | 1| 1|( )t T t t t t T t tJα α α α+ += + −  

| | 1| 1|( )t T t t t t T t t tP P J P P J+ + ′= + −  

where | 1
| 1|

( )
't t

t t t t t
t

dh
J P P

d
α
α

−
+= . 

 
Unscented Kalman Filter 
This is a powerful approach and more modern approach to estimating a nonlinear filtering 
model.  The basic setup is the same as for the extended Kalman filter, but it doesn’t rely on 
taking derivatives which makes it better for very nonlinear (or non-differentiable) functions.  The 
unscented Kalman filter is a set of recursions starting from 0|0α  and 0|0P  the unconditional mean 
and variance of the states. 
Given |t tα   and |t tP  pick “sigma points” which are meant to approximate the distribution of tα  at 
time t :  
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where ( )iA  is the ith column of the lower triangular Cholesky factor of A, 2( 1)Lλ α= − and α  
and β  are constants that might be set to 310−  and 2 respectively. 
We then use the recursions: 

2
1| 0 ,( )L m

t t i i i tW hα χ+ == Σ  
2

1| 0 , 1| , 1|( ( ) )( ( ) ) 'L c
t t i i i t t t i t t tP W h h Qχ α χ α+ = + += Σ − − +   

We then get a new set of sigma points to approximate the distribution of  1tα +  at time t :  
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+
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We then use the recursions: 
2

1| 0 ,ˆ ( )L m
t t i i i ty W f χ+ == Σ  and 2

1 0 , 1| , 1|ˆ ˆ[ ( ) ][ ( ) ]'L c
t i i i t t t i t t tF W f y f y Hχ χ+ = + += Σ − − +    

2
1 0 , 1| , 1|ˆ[ ][ ( ) ]'y L c

t i i i t t t i t t tP W f yα χ α χ+ = + += Σ − −   
Given that we assume normality, we then have the updating equations: 

1
1| 1 1| 1 1 1 1|

1 '
1| 1 1| 1 1 1

ˆ( )y
t t t t t t t t t

y y
t t t t t t t

P F y y

P P P F P

α

α α

α α −
+ + + + + + +

−
+ + + + + +

= + −

= −
  

And the log-likelihood is simply: 

 1
1 1 | 1 | 1

1 1 ˆ ˆlog(2 ) log | | ( ) ' ( )
2 2 2

T T
t t t t t t t t t t

T F y y F y yπ −
= = − −− − Σ − Σ − − . 

In some cases, the matrix of which you are taking the Cholesky factor to compute the sigma 
points will be singular or near singular.  A trick for fixing this is to use the LDU decomposition.  
If you have a matrix A, and you take [L,D]=ldl(A) in Matlab, then this will give matrices L and 
D such that 'A LDL=  .  Now set L*sqrt(max(D,0)).  This will be a more numerically stable 
version of the lower Cholesky factor (a bit like the Moore-Penrose trick described above). 
 
A neat thing that you can verify is that if you apply the unscented Kalman filter to a linear 
Gaussian model, then it will numerically give you exactly the same results, even though it looks 
quite different. 
 
An unscented Kalman smoother is also available.  When running the first set of recursions (for 

1|t tα +  and 1|t tP+ ), add in one more equation: 
2

1 0 , 1| , |( ( ) )( ) 'L c
t i i i t t t i t t tC W h χ α χ α+ = += Σ − −  

Then run the smoother backwards starting from |T Tα  and |T TP  as follows: 
1

| | 1 1| 1| 1|( )t T t t t t t t T t tC Pα α α α−
+ + + += + −  
1 1

| | 1 1| 1| 1| 1| 1( )t T t t t t t t T t t t t tP P C P P P P C− −
+ + + + + +′= + −  

 
Simulation Based Filtering 
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The Kalman filter assumes normality, although it gives the best linear estimate of the state even 
without normality.  Simulation based methods are one way to handle non-normality (and indeed 
nonlinearity).  Consider the model: 

t t t ty Z α ε= +  

1t t tTα α η−= +  
where the errors have arbitrary densities.  Consider the following algorithm: 

• Take a set of n draws from the distribution of 0α .  
• Using the model, get implied draws of 1α .  Call these 1 1{ }n

i iα =  . 
• Now compute 1 1 1( | )i iq p y α=   for each draw. 
• Resample from 1 1{ }n

i iα =  with replacement picking each draw with probability 

1 1 1 1/ n
i i j jw q q== Σ .  This is a now a set of draws from the distribution of 1 1| yα . 

• Continue in the same was cycling through the whole sample. 
• The density of ty  conditional on 1tY −  can be approximated as 1 ( | )n

i t tip y α=Σ    and the log 
likelihood is 1 1log ( | )T

t t tp y Y= −Σ .     
 
There is also a smoother.  As before, you first run the filter and save the outputs.  The outputs are 

1 1{ }n T
ti i tα = =  and 1 1{ }n T

ti i tw = = .  Now we construct alternatives weights (probabilities) for the smoother.  
These start from Ti Tiw w=  and then cycle backwards setting 

 1
1 1

1 1

( | )
( | )

ti t j tin
ti j t j n

k tk t j tk

w p
w w

w p
α α
α α
+

= +
= +

= Σ
Σ

 

 

  

Note that 1 1n
i tiw=Σ = . The density of tα  conditional on TY  can now be approximated by 

resampling from 1{ }n
ti iα =  picking each draw with probability tiw .     

 
Hamilton Switching Model 
This is an important nonlinear filtering model.   

t t ty Sα β ε= + +  
where tS  is a Markov switching process. 

1( 1| 1)t tP S S p−= = =  

1( 0 | 0)t tP S S q−= = =  
The error tε  is 2(0, )N σ  
 
Backgorund and Steady state of a Markov Chain 
Define ( ( 0), ( 1)) 't t tp P S P S= = = .  Then 1t tp p −= Π  
where Π  is the transition matrix and in this case 

1
1

q p
q p

− 
Π =  − 

 

Under regularity conditions, *
tp p→ , the “steady state”.  If so 
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* *p pπ=  
and in this case 

* *1
1

q p
p p

q p
− 

=  − 
 

Write * ( ,1 ) 'p h h= − .  Then 
1(1 )(1 )

2
ph qh p h h

p q
−

= + − − ⇒ =
− −

 

So the steady state of the Markov chain is * 1 1( , ) '
2 2

p qp
p q p q
− −

=
− − − −

 

 
Now back to the model.  The log likelihood is 

1 1log( ( | ))T
t t tf y Y= −Σ  

and 
2 2

1 1 1( | ) ( , ) ( 0 | ) ( , ) ( 1| )t t t t t tf y Y N P S Y N P S Yα σ α β σ− − −= = + + =  
2 2

1 12 1/2 2 2 1/2 2

( ) ( )1 1exp( ) ( 0 | ) exp( ) ( 1| )
(2 ) 2 (2 ) 2

t t
t t t t

y yP S Y P S Yα α β
πσ σ πσ σ− −

− − −
= − = + − =  

a mixture of normals. 
 
Prediction equations 

1 1 1 1 1( 1| ) ( 1| ) (1 ) ( 0 | )t t t t t tP S Y pP S Y q P S Y− − − − −= = = + − =  

1 1 1 1 1( 0 | ) (1 ) ( 1| ) ( 0 | )t t t t t tP S Y p P S Y qP S Y− − − − −= = − = + =  
 
Updating equations (from Bayes Theorem) 

2

1 12 1/2 2

( )1( 0 | ) exp( ) ( 0 | ) / ( | )
(2 ) 2

t
t t t t t t

yP S Y P S Y f y Yα
πσ σ − −

−
= = − =    

2

1 12 1/2 2

( )1( 1| ) exp( ) ( 1| ) / ( | )
(2 ) 2

t
t t t t t t

yP S Y P S Y f y Yα β
πσ σ − −

− −
= = − =  

 
Starting iterations 
Only need 1 0 1( 1| ) ( 1)P S Y P S= = = , the unconditional probability.   We know that 

1
1( 1)

2
pP S

p q
−

= =
− −

 

and this allows us to start the recursions. 
 
The model is useful for fitting business cycles (Hamilton (1989)).   A few last comments: 
(i) In practice, we would replace tε  by an AR process.   
(ii) Also it is possible to let p  and q  depend on variables at time 1t − .   
(iii) There is also a smoother that can be run backwards to get state probabilities conditional on 
the whole sample.  This uses the recursions  
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1 1 1 1

1 1

( 0 | ) ( 1| ) ( 0 | 1) ( 1| ) ( 1| ) ( 1| 1)( 1| )
( 0 | ) ( 1| )

t T t t t t t T t t t t
t T

t t t t

P S Y P S Y P S S P S Y P S Y P S SP S Y
P S Y P S Y

+ + + +

+ +

= = = = = = = =
= = +

= =
 

for 1, 2,...t T T= − −  starting from ( 1| )T TP S Y= . 
 
Bayesian Approach to the Hamilton Model 
A Bayesian approach to the Hamilton switching model is also available.  Sometimes maximum-
likelihood estimation of the model creates too much switching and the Bayesian approach allows 
us to keep the system in one state for longer periods of time, which has more economic appeal.   
 
Suppose for simplicity that 2σ  is known.  Let the prior for ( , ) 'θ α β=  be 0 0( , )N θ Θ .  Let p  and 
q  have beta priors that are 11 10( , )u uβ  and 00 01( , )u uβ , respectively.  A Gibbs sampler is available 
for drawing from the posterior.  The idea is that there are three steps: 
 
1. Draw from the states conditional on  α , β , p  and q .  To do this involves the following sub-
steps: 
(a) Apply the Hamilton filter to work out 1{ ( 1| )}T

t t tP S Y ==  and 1 1{ ( 1| )}T
t t tP S Y+ ==  

(b) Take a draw of TS  which will be 1 with probability ( 1| )T TP S Y=  and zero otherwise. 
(c) Because the regime is a Markovian process, the probability mass function of the vector of 
states conditional on the vector of data can be written as 
 

1 1
1 1

1 1

( | 1, ) ( 1| ) ( | 1) ( 1| )( 1| S , ) ( 1| S , )
( | ) ( | )

t t t t t t t t t
t t T t t t

t t t t

P S S Y P S Y P S S P S YP S Y P S Y
P S Y P S Y

+ +
+ +

+ +

= = = =
= = = = =  

 
for 1t T= − , where 1( | 1)t tP S S+ =  means the probability of the observed draw for 1tS +  given that  

1tS = , obtained from the transition matrix.  For example, if 1 1tS + = , then 1( | 1)t tP S S p+ = = .  
Take a draw of 1TS −  from this distribution. 
(d) Repeat step (c) backwards for 2, 3,...1t T T= − −  to generate the entire series of states. 
 
2. Conditional on the states, take a draw from the distribution of p and q ,  If 00n  is the number 
of transitions from state 0 to state 0 (from the draws of the states in part 1) and 01n , 11n and 10n  
are defined similarly, then the posterior for p  is 11 11 10 10( , )u n u nβ + +  and the posterior for q  is 

00 00 01 01( , )u n u nβ + + . 
 
3. Take a draw from the posterior distribution of α and β which is 1 1( , )N θ Θ  where  

1 1
1 0 2

1( ' )X X
σ

− −Θ = Θ +  

1
1 1 0 0 2

1( ' )X Yθ θ
σ

−= Θ Θ +  

and X  is the Tx2 matrix, the t th row of which is (1, )tS  with the draw of the state from part 1 
and Y  is the Tx1 data vector.  
 
 



60 
 

Econ 607           Jonathan Wright 
                                    Fall 2023 

 
 

News Announcements 
 

In the U.S. (and many other countries) information about the economy is released at precisely 
scheduled times.  Most economic data in the U.S. come out at 8:30am, although announcement 
by the Fed about the target federal funds rate are instead at 2:15pm.  Studying the effects of these 
announcements on asset prices is about as close as we can get in macroeconomics to a natural 
experiment.  Edderington and Lee (1993) is a pioneering paper. 
 
Ahead of each announcement, there are survey expectations of what the announced value will be 
(from Money Market Services).  The surprise component of the announcement is then given as  
 

Surprise=Actual – Expected (from survey) 
 
and it is common to scale these surprises by their standard deviation.  With high-frequency asset 
price data, we can then look at the effects of these announcements on asset prices.  Consider 
(say) an announcement at 8:30am.  The idea is to run a regression of the form 
 

Price at 8:45 – Price at 8:25 = α + β*Surprise  + Error 
 
 A question that comes up is a how small a window you want to use to measure the price impact 
(in this equation it is a 20 minute window).  From an efficient-markets perspective, agents should 
update their asset prices very quickly following the news announcement.    And it generally 
looks like they do.  This chart gives an example 
 

 
It shows the euro-dollar exchange rate around a nonfarm payrolls announcement on August 6, 
2004.  The announcement came out at 8:30 am and indicated that the U.S. labor market was 
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weaker than had been expected.  The bars in the chart show the amount that was traded at each 
price in each second.  Price is on the right side in red, time is alone the front, and the heights of 
the bars are the volumes.  What you see is that the price jumped within seconds of the 
announcement without much trading volume.  Then the volume picked up and there was high 
volatility around the new price level. 
 
So from this perspective, you want some very short window to measure asset price changes.  
Longer windows just add noise to the left-hand-side variable, which reduces the precision of the 
slope coefficient estimate.  Of course, sometimes one wonders how long the effect really sticks 
for.  That’s a hard question to answer, at least via the event-study methodology.  With 
sufficiently large windows, coefficients will be so imprecisely estimated that we will rarely find 
anything to be significant. 
 
For one announcement, it is customary not to use the survey expectations.  This is the 
announcement by the FOMC of the target for the federal funds rate.  That’s because there are 
futures markets which are bets on the average level of the federal funds rate for each calendar 
month.  These are effectively bets on the average level of the federal funds rate for that month.  
The bet is set at some level, F, which is the futures price.  When the actual realized funds rate, R, 
is known, one party pays the other party $50*(R-F). where F and R are both measured in basis 
points.  Under risk-neutrality, the federal funds futures rate should be the expectation of the 
realized funds rate.  The definition of the realized rate is the average expected daily federal funds 
rate over all days in the month. 
 
The FOMC sets the target for the federal funds rate at meetings 8 times a year.  Assume that the 
actual and target funds rate are the same, that there will be no intermeeting rate changes, and that 
investors are risk-neutral.  If there is no meeting next month, then the expected decision from the 
FOMC meeting can be read off as the next-month futures rate just before the FOMC 
announcement.  If there is a meeting next month, then we have to use the current month contract 
instead.  Suppose that the FOMC meeting is on day D(F) and that the number of days in the 
month is D.  Then the current-month futures rate before the FOMC announcement is 

( ) ( )Futures * ( )*D F D D FO E
D D

−
= +  

where O  and E  denote the old funds rate, and the expectation for the funds rate, respectively.  
We can immediately use this to solve for the expected funds rate after the meeting as  

 *Futures- ( )*
( )

D D F OE
D D F

=
−

 

The futures-based expectation of the federal funds rate can be used as the expectation instead of 
the survey quote.  This approach was first used by Kuttner (2001).  An advantage of this is that it 
is more timely.  The survey is taken the Friday before the FOMC announcement; whereas the 
futures quote can be from the day before, or even five minutes before the announcement time.  
 
Announcements contain more than just one headline number.  For macroeconomic news, there is 
a wealth of disaggregated data.  For the FOMC announcement, there is a statement that market 
participants use to infer expectations about the future path of policy.  Often there is more news in 
the statement than in the actual decision concerning the target for the federal funds rate.   Two 
approaches have been taken to quantifying the information in the text of the statement: 
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(i) Gürkaynak, Sack and Swanson (2005) use the change in futures quotes for subsequent month 
in a short window around the FOMC announcement to measure the statement surprise.  More 
precisely, they take the piece that is orthogonal to the target funds rate surprise.  Federal funds 
futures are liquid only about 6 months out.  To get interest rate futures quotes at longer horizons, 
one needs to use Eurodollar futures, which are bets on the level of the three-month interest rate. 
(ii) Lucca and Trebbi (2009) use linguistic scoring methods. 
 
Here a number of the findings that researchers have obtained on regressing changes in asset 
prices in short windows around announcements on the unexpected components of those 
announcements: 
 
(i) There are systematic relations between surprises and changes in asset prices.  In general, 
stronger-than-expected data drives interest rates up, bond prices down, and the foreign exchange 
value of the dollar up.  In lower frequency data, it is very hard to find a relationship between 
exchange rates and macroeconomic fundamentals.  For all practical purposes, in low-frequency 
data, the exchange rate is a random walk that is unrelated to fundamentals.  Nevertheless, 
stronger-than-expected data in the U.S. causes the dollar to appreciate (Andersen, Bollerslev, 
Diebold and Vega (2003).  So there is some link between fundamentals and the exchange rate, at 
least in small windows around news announcements. 
 
(ii) Announcements cause jumps in the conditional mean of asset prices and longer-lasting 
increases in both volume and volatility.   
 
(iii) Interest rates are quite sensitive to macroeconomic news, including long-term interest rates.  
More on this later. 
 
(iv) Announcements of tighter-than-expected monetary policy by the Fed cause stock prices to 
fall and affect interest rates at all maturities, although the effect on long-term bond yields is 
modest.  A 25 basis point surprise tightening lowers stock prices by about 1 percent. 
 
(v) Researchers have tried hard to find time-variation in the sensitivity of asset prices to news.  
They have had some success, but not much.  One finding of particular interest is that rising 
unemployment is associated with increasing stock prices during economic expansions ,but with 
falling stock prices during recessions (Boyd, Jagannathan and Hu (2005), Andersen, Bollerslev, 
Diebold and Vega (2007)).  The Gordon growth model provides a natural framework for 
thinking about this.  There are two offsetting effects: bad news about the economy lowers 
dividend expectations but also lower discount rates.  The balance between the two appears to be 
different in expansions and recessions.    
 
The event study methodology can also consider effects at lower frequency.  For example, 
Ottonello and Winberry (2020) look at the effects of monetary policy surprises on firm 
investment at the quarterly frequency.  In these cases, the surprises are aggregated within the 
quarter.  Also, the effects of the surprises can be allowed to vary using  interaction effects.  For 
example, Ottonello and Winberry consider panel data regressions of the form: 
 1 2 3it i t t it t it itI MPS L MPS Lα γ β β β ε= + + + + +   
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where itI  and itL are investment and leverage of firm i  and tMPS  is the monetary policy 
surprise.   
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Reverse Engineering Probabilities from Asset Prices: Ps and Qs 
 

Let us suppose that there are K possible states of the world and that there are K assets.  Suppose 
that the i th asset has a payoff of ( , )P i j  in the j th state of the world.  Let ( )p i  be the price of 
the i th asset and let ( )jπ  be the probability of the j th state of the world occurring.  Finally, let 

( (1), (2),... ( )) 'p p p p K= , ( (1), (2),... ( )) 'Kπ π π π=  and P  denote the matrix the ij th element of 
which is P .  The last asset has a payoff of 1 in all states. 
 
Finally, also assume that investors are risk-neutral, so that the price that they pay for any asset is 
equal to its expected payoff.  Then we can write 
 p Pπ=  
Provided that the matrix P  is invertible, we can reverse-engineer the probabilities of the 
different states as  
 1P pπ −=  
The inclusion of the asset which has a payoff of 1 in all states is a device to force the 
probabilities to add to 1.   
 
All this is under the assumption of risk-neutrality.  But we generally think that agents are not risk 
neutral.  The prices that they pay will in any case, under minimal assumptions, satisfy the 
relation 
 1( ) ( ( ) ( , )) ( ) ( ) ( , )K

jp i E M j P i j j M j P i jπ== = Σ  
where ( )M j  is the pricing kernel.  Now define  

( ) ( ) ( ) ( )( )
( ) ( ) ( )K

i k

j M j j M jj
k M k E M

π ππ
π=

= =
Σ

  

Since a pricing kernel is non-negative, it is easy to check that ( )jπ  satisfies the requirements to 
be a probability (non-negative, less than one, and sums to 1 over all values of j ).   And we can 
write 

 1 1
1( ) ( ) ( ) ( , ) ( ) ( , )K K

j j
f

p i E M j P i j j P i j
R

π π= == Σ = Σ   

where fR  is the gross riskfree rate.  Over a short period, we might think that this is close to 1.  
We would then have  
 ( ) ( ( , ))Qp i E P i j=  
where this expectation is taken with respect to “fake” probabilities.  These are the true 
probabilities if agents are risk-neutral, but otherwise they are fake probabilities that overweight 
bad states of the world and underweight good states.  Investors are pricing these assets as though 
they are risk neutral but with these distorted probabilities.  They are therefore called risk-neutral 
probabilities, as opposed to the actual probabilities which are called physical probabilities.  A 
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common terminology is that the physical probabilities are the P-measure and the risk-neutral 
probabilities are the Q-measure. 
 
The probabilities that we might reverse-engineer from the prices of assets are under the Q-
measure.  Only if we assume that agents are risk-neutral do they happily also turn out to be 
probabilities under the P-measure. 
 
A very standard place in which we want to back out probabilities of different states of the world 
is working out the probability density for the price of an asset that are implied by options prices.  
A call option with a strike price of K has a payoff at maturity of max(0, )P K−  where P  is the 
price of the underlying asset at maturity.  Meanwhile, the put option with the same strike price 
has a payoff of max(0, )K P− .  If we neglect any discounting, the price that I will pay today for 
the call option is (max(0, ))QE P K−  and the price for the put option is (max(0, ))QE K P− . 
 
If the number of options prices is equal to the number of possible values for P , then we can use 
the observed options prices to solve for the probability density function for the price of the asset.  
As an illustration, suppose that we have prices of call options on oil with the following strikes 
 
Strike Price Call Option Price 
70 10.50 
75 6.00 
80 3.00 
85 1.00 
 
and suppose that the possible prices for oil at maturity are 70, 75, 80, 85 and 90.  The payoffs of 
the options under the different scenarios are as follows 
 
Option P=70 P=75 P=80 P=85 P=90 
70 0 5 10 15 20 
75 0 0 5 10 15 
80 0 0 0 5 10 
85 0 0 0 0 5 
 1 1 1 1 1 
 
with the last row representing the asset with a payoff of one in all states of the world.  So if I let 
this be the matrix P  and take my vector of prices as (10.5,6,3,1,1) 'p = , I can easily solve for the 
risk-neutral probabilities which are 1P p− . 
 
Outcome Risk-Neutral Probability 
70 10% 
75 30% 
80 20% 
85 20% 
90 20% 
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One thing to be careful of in these calculations is put-call parity.  Put-call parity is an arbitrage 
relationship that exists between put and call options at the same strike price.  If you include put 
and call options in the set of asset prices used to reverse engineer the probability density, then 
some of these will be redundant.  It will manifest itself in a singular matrix P .  You avoid the 
problem simply by deleting the redundant assets. 
 
There are recent clever uses of options.  One example is from Martin (2017) to get a lower bound 
for the equity risk premium, and a bound that is not so low as to be uninformative.  Here is the 
logic.  The equity risk premium is: 
 

2 2
1 1 1 1 1 1( ) ( ) [ ( ) ( )]t t t t t t t tE R RF E R M RF E R M E R+ + + + + +− = − − −  

 
Denoting moments under risk neutral probabilities with an asterisk: 

 
* * 2 * 2 2 2 2

1 1 1 1 1 1 1 1 1( ) ( ) ( ) ( ) ( ) ( )t t t t t t t t t t t t tVar R E R E R RF E M R RF E M R RF E M R RF+ + + + + + + + += − = − = −  
 
Plugging this into the first equation gives 

 
*

1 1 1 1 1
1( ) ( ) ( , )t t t t t t

t

E R RF Var R Cov M R R
RF+ + + + +− = −  

The paper argues that the second term is negative in lots of models, which means that 
*

1
1 ( )t

t

Var R
RF +  is a lower bound on the equity risk premium.  This can in turn be measured from 

options prices as: 

 *
1

0

1 2var ( ) { ( ) ( ) }
F

t t t
t t F

R P K dK C K dK
RF S

∞

+ = +∫ ∫   

 
where tS  is the stock price today, F  is the forward stock price and tP  and tC  denote prices of 
put and call options. 
 
Kremers and Martin (2018) have a somewhat related approach to explaining, or at least 
modeling, failures of uncovered interest parity (UIP).  After some algebra, you can write: 

 *1 1 1
1 1 1* *

1( ) ( , ) ( , )t t t t
t t t t t t

t t tt t

S RF S S
E Cov R Cov M R

S S SRF RF
+ + +

+ + += + −   

where tS  is the exchange rate.  Under UIP, only the first term exists.  The second term is 
something that can be measured from quanto index contacts.  These are futures based on (say) 
the S&P500 index but in a non-dollar currency.  It turns out that the second term explains a lot of 
the failure of UIP.  
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Bond Markets and the Term Structure of Interest Rates 
 

The most basic building block of bond analysis is a zero coupon bond.  This gives the holder the 
right to $1 in n years time.  Let ( )ZCP n denote the price of this bond. 
 
The continuously compounded yield on this bond is 

 1( ) [log(1) log( ( ))] / log( ( ))cc
ZC ZC ZCy n P n n P n

n
= − = −  

and we can write 
 ( ) exp( ( ))cc

ZC ZCP n ny n= −  
The yield with annual compounding is exp( ) 1cc

ZCy − .  The yield with semiannual compounding is 
( )2[exp( ) 1]

2

cc
ZCy n

− .  In academic finance, we work with zero coupon bonds and continuous 

compounding. 
 
Forward Rates 
Zero-coupon bonds of different maturities can be combined to guarantee an interest rate on an 
investment to be made in the future.  Let PZC(n) be the price of an n-period zero-coupon bond  
Suppose that I  

● Buy ( 1)
( )

ZC

ZC

P n
P n

+  n-period bonds.  I pay ( 1)( ) ( 1)
( )

ZC
ZC ZC

ZC

P nP n P n
P n

+
= +   

and 
● Sell one (n+1)-period bond for which I receive ( 1)ZCP n +   
 
Working through what happens: 
1. The two cash flows cancel out exactly today.  
2. In year n, I receive ( 1) / ( )ZC zcP n P n+  
3. In year n+1, I pay $1. 
 
I have in this way synthesized borrowing from m to m+1, at a rate locked in today. 
 
The continuously-compounded return that I have locked in is  

, 1
( 1) ( 1) exp( ( 1) ( 1))log(1) log( ) log( ) log(

( ) ( ) exp( ( ))

cc
ZC ZC ZC

n n cc
ZC ZC ZC

P n P n n y nf
P n P n ny n+

+ + − + +
= − = − = −

−
 

 , 1 ( 1) ( 1) ( )cc cc
n n ZC ZCf n y n ny n+∴ = + + −  

  
and this is known as the continuously-compounded one-year zero-coupon forward rate from n to 
n+1 years hence. 
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Recall that the continuously-compounded return on an m-year zero-coupon bond is 
1( ) log ( )cc

ZC ZCy n P n
n

= −  

 
That can be decomposed as 

(1) (2) (3) ( )( ) [log( ) log( ) log( )... log( )] /
(0) (1) (2) ( 1)

cc ZC ZC ZC ZC
ZC

ZC ZC ZC ZC

P P P P ny n n
P P P P n

= − + + +
−

 

 0,1 1,2 2,3 1,( ) [ .... ] /cc
ZC n ny n f f f f n−= + + +  

The zero-coupon yield can thus be decomposed into the average of a string of one-year forward 
rates. 
 
● The m-period forward rate beginning n years' hence is the implied rate at which the 
investor would contract to borrow for m years beginning in n years' time.  This is 

 ,
1 [( ) ( ) ( )] [ ( ) ( )] ( )cc cc cc cc cc

n n m ZC ZC ZC ZC ZC
nf n m y n m ny n y n m y m y n m

m m+ = + + − = + − + +  

● The instantaneous forward rate is the implied rate at which the investor would contract 
today to borrow for an arbitrarily short period in n years' time.  This is 

 0 , 0( ) lim lim [ ( ) ( )] ( )INST cc cc cc
m n n m m ZC ZC ZC

nf n f y n m y n y n m
m→ + →= = + − + +  

 ( ) log ( )( )
cc

INST ZC ZCdny n d P nf m
dn dn

∴ = = −  

So we can decompose a zero-coupon yield into an average of instantaneous forward rates: 

 0
1( ) ( )cc n INST

ZCy n f t dt
n

= ∫  

 
The point of forward rates is that they allow us to isolate long-term effects on bond yields that 
are separate from short-term levels of interest rates. 
 
An influential paper using forward rates was Gürkaynak, Sack and Swanson (2005).  This paper 
looked at the effects of news announcements on forward interest rates.  It found that ten-year-
ahead forward rates were very sensitive to macroeconomic surprises.  A distant-horizon forward 
rate is (algebraically) the sum of long-term inflation expectations, the long-term expectations of 
real short-term interest rates, and the risk premium.  Gürkaynak, Sack and Swanson argued that 
the sensitivity of long-term forward rates to news represents unanchored long-term inflation 
expectations.  There is some discussion of the appropriate interpretation, but it is in any event 
very noteworthy that long-term forward rates jump around so much on one particular data 
release. 
 
Coupon-Bearing Securities 
Bonds in the U.S. pay coupons twice a year, but we will pretend that bonds pay annual coupons 
and will work with annual compounding for expositional simplicity. 
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Consider a coupon-bond that pays C each year and $1+C at the maturity of the bond in n years 
time.  Let PC,n be the price of this bond. 
 
The bond can be thought of as a bundle of zero coupon bonds and so the price must satisfy 
 , (1) (2).... (1 ) ( )C n ZC ZC ZCP CP CP C P n= + + +  
The yield with annual compounding is defined as the value of yC,m  that satisfies the equation 

 , 12 3
, , , , , ,

1 1 1.... ( ) ( )
(1 ) (1 ) (1 ) (1 ) 1 1

n j n
C n jn

C n C n C n C n C n C n

C C C CP C
y y y y y y=

+
= + + + = Σ +

+ + + + + +
 

 
Whereas academic work looks at zero coupon yields with continuous compounding, the market 
convention is to look at yields on coupon bearing securities wiith compounding at the coupon 
frequency (bond-equivalent, coupon-equivalent) 
 
Three Special Cases 
1. If yC,n=C, then  

 , , 1
, ,

1 1( ) 1
1 (1 )

n j
C n C n j n

C n C n

P y
y y== Σ + =

+ +
 

and the bond is said to be trading "at par" and  
 ,

PAR
n C ny y C= =  

 
In this case: 
 , 11 (1) (2).... (1 ) ( ) ( ) ( )n

c n ZC ZC ZC j ZC ZCP CP CP C P n C P j P n== = + + + = Σ +  

 1 ( ) 1 ( )n
j ZC ZCC P j P n=Σ = −  

 
1

1 ( )
( )

PAR ZC
n n

j ZC

P nC y
P n=

−
∴ = =

Σ
 

 
 
2. When the maturity n is infinite (perpetuity), 

 ,
, 1

, , ,

,

1( )
11 1( ) [ ]11 1 1( )1

1

C nj
C n j

C n C n C n

C n

y CP C C C
y y y

y

∞
=

+
= Σ = = =

+ + −−
+

 

In this case: 

 , 1
,

(1) (2)... ( )C n ZC ZC j ZC
C n

C P CP CP C P j
y

∞
== = + = Σ  

 1
,

( )j ZC
C n

C C P j
y

∞
== Σ  

 ,
1

1
( )C n

j ZC

y
P j∞

=

∴ =
Σ
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3. If the coupon is zero, then 0,
0,

1( )
(1 )n ZC n

n

P P n
y

= =
+

. 

 
Relationship Between Price and Yield 
For a zero-coupon n-period bond, recall that 

( ) exp( ( ))cc
ZC ZCP n ny n= −  

and hence 
( ) exp( log[ ( ) 1])ZC ZCP n n y n= − +  

 
Here is a plot of ( )ZCP n  against ( )ZCy n  for n=30. 

 
The relationship is downward sloping but is also convex. 
 
Duration  
Duration is a central concept in bond market maths. 
 
The (MacAulay) duration of a bond is  

 log( ) (1 )d PD y
dy

= − +  

The modified duration of a bond is simply 

 mod
log( )

1
d P DD

dy y
= − =

+
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What does duration mean?  It means three things at once: 
 
1. If yield rises one percentage point, then price falls by about modD  percent.  In a first order 
Taylor series expansion about price P0 and yield y0, 

 0 0( )dPP P y y
dy

≈ + −  

0
0 mod 0

0 0

1 ( ) ( )P P dP y y D y y
P P dy
−

∴ ≈ − = − −  

In other words duration is the slope of the relationship between log price and yield. 
 
2. A measure of the impact of small parallel shifts in the yield curve on the value of a fixed 
income portfolio.  If I have a portfolio of B1 units of a bond with modified duration D1, B2 units 
of a bond with duration D2,....Bq units of a bond with duration Dq, then a one percent parallel 
shift in the yield curve will lead to a percentage change in the portfolio value of 1

q
j q qB D=−Σ  

 
3. The weighted average of how long an investor has to wait to get money (hence "duration") 

 2 3
1 2 3 (1 ){ .... }

(1 ) (1 ) (1 ) (1 )m
C C C m CD

P y y y y
+

= + + +
+ + + +

 

 
The Nelson-Siegel curve 
Bonds only trade with certain coupons and certain maturities.  It is important to have a smoothed 
implied zero-coupon curve.  This can be obtained in a number of ways.  A popular method is to 
use the Nelson-Siegel functional form.  In this , the instantaneous forward rates are of the form: 

0 1 2exp( / ) ( / ) exp( / )tf n n nβ β τ β τ τ= + − + −  
and the yields, from integration, are: 

0 1 2
1 exp( / ) 1 exp( / )( ) [ exp( / )]

/ /t
n ny n n

n n
τ τβ β β τ

τ τ
− − − −

= + + − −  

The four parameters: 0β , 1β , 2β  and τ  can all be obtained by minimizing the difference between 
observed yields on coupon-bearing securities and the implied yields from this curve.  For more 
details, see Gürkaynak, Sack and Wright (2007).   

 
The Expectations Hypothesis and Affine Term Structure Models 
The expectations hypothesis says that bonds are priced as though agents are risk neutral.  This 
means that the price of a zero-coupon bond is  

( )
0( ) ( )n r s

ZC sP n E e ds−
== ∫  

where ( )r s  is the instantaneous risk-free rate at time s .  This almost says that yields will be the 
expected average short-term rate over the life of the bond.1  Except that there is a Jensen’s 
                                                           
1 Or you could instead define the expectations hypothesis as saying that yields are the expected average short-term 
rate over the life of the bond, in which case the Jensen’s inequality term means that agents are not exactly risk 
neutral. 
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inequality term which means that actually the yields will be slightly higher than the expectation 
of average short rates.  But, unless the maturity is very long, this is a small effect. 
 
Here a number of tests of the expectations hypothesis: 
 
1. Suppose I buy an n-period zero coupon bond today.  And I sell it in one year as an (n-1)-
period zero coupon bond.  My holding period return from this exercise is: 
 1log( ( 1)) log( ( ))t tP n P n+ − −  
and the excess bond returns, or excess holding period return, over the one period interest rate is: 
 1log( ( 1)) log( ( )) (1)t t texrt P n P n y+= − − −  
Now the expectations hypothesis says that this ought not to be forecastable ex-ante.  But when 
regressions of the form 

, 1 , 1't t t t texrt xα β ε+ += + +  
are run using term structure variables at time t  as the predictors, it turns out that they are 
significant.  For example, the steeper is the slope of the yield curve at time t , the higher excess 
returns subsequently tend to be.  Cochrane and Piazzesi (2005) instead use the term structure of 
forward rates as predictors, and get extremely strong forecasting power. 
 
2. Another approach, was adopted by Campbell and Shiller (1991).  The expectations hypothesis 
implies that the expectation of the future interest rate from m  to n  periods hence is the forward 
rate over that period.  So 

 ( ( )) ( ) ( )t t m t t
n mE y n m y n y m

n m n m+ − = −
− −

 

 ( ( ) ( )) ( ( ) ( ))t t m t t t
mE y n m y n y n y m

n m+∴ − − = −
−

 

and so if we regress ( ) ( )t m ty n m y n+ − −  onto ( ( ) ( ))t t
m y n y m

n m
−

−
, one ought to get a slope 

coefficient of 1.  But in the data, if m  is short (say 3 months) and n  is long (say 10 years), the 
estimated slope coefficient is negative.  When the yield curve is steep, according to the 
expectations hypothesis, long-term interest rates should be rising, but in fact they are falling.2 
 
3. Campbell and Shiller also considered a second test of the expectations hypothesis.  The EH 

implies that the n -period yield is the expected average m-period interest rate over the next n  

periods: 

 ( ) 1 ( )
0

1 ( )n k m
t t i t imy E y

k
−
= += Σ  

where /k n m= .  This means that  

                                                           
2 If the expectations hypothesis were right up to a constant risk premium, then this would just be absorbed into the 
constant of the Campbell and Shiller regression. 
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 ( ) ( ) 1 ( ) ( )
0

1 ( )n m k m m
t t t i t im ty y E y y

k
−
= +− = Σ −  

 ( ) ( ) 1 ( ) ( )
1 ( 1)(1 ) ( )n m k m m

t t i t t im t i m
iy y E y y
k

−
= + + −∴ − = Σ − −  

and so if we consider the regression 

 1 ( ) ( )
1 ( 1)(1 )( ) ( ( ) ( ))k m m

i t im t i m t t t
i y y y n y m
k

α β ε−
= + + −Σ − − = + − +   

which is a regression of a weighted-average of future short-term yield changes onto the slope of 

the term structure, then one ought to get a slope coefficient β  that is equal to one.  The 

dependent variable in this equation can be thought of as the perfect-foresight term spread, as it is 

the term spread that would prevail at time t  if the path of m  period interest rates over the next n  

periods were correctly anticipated.  Whereas tests (1) and (2) give consistent evidence against the 

expectations hypothesis, the results of test (3) are more mixed.  The slope coefficient is positive 

and in some cases not significantly different from 1. 

 
 
Affine Models 
Affine term structure models provide a way of modeling the term structure of interest rates.  
From the basic asset pricing relation, the price of the bond must be 
 1( ) ( )n

ZC t j t jP n E M= += Π  
which can be seen from recursive substitution.  Assume that the pricing kernel is conditionally 
lognormal 

 1 1
1exp( )
2t t t t t tM r λ λ λ ε+ +′ ′= − − −  

where 0 1t tXλ λ λ= +  is an affine function of an x1m  vector of state variables, tX , 1tε +  is iid 
(0, )N I , and 0 1t tr Xδ δ ′= +  is the one-period interest rate.   Assume further that the vector of 

state variables follows a vector autoregression (VAR) 
 1 1t t tX Xµ ε+ += +Φ +Σ  (1) 
It then follows that 
 ( ) exp( )ZC n n tP n A B X′= +  
where nA  is a scalar and nB  is an m x1 vector that satisfy the recursions 

1 0 0
1( ) '
2n n n n nA A B B Bδ µ λ+ ′ ′= − + + −Σ + ΣΣ  

 1 1 1( ) 'n nB Bλ δ+ = Φ −Σ −  
starting from 1 0A δ= −  and 1 1B δ= − . The bond prices given in this way are the same as though 
agents were risk-neutral ( 0 1 0λ λ= = ), but the state vector followed an alternative law of motion: 
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 * *
1 1t t tX Xµ ε+ += +Φ +Σ  (2) 

where *
0µ µ λ= −Σ  and *

1λΦ = Φ −Σ . Equations (1) and (2) are the physical and risk neutral 
representations of the law of motion for the state vector, or the P and Q measures, respectively.  
Note that the variance-covariance matrix of the shocks is the same in both equations (1) and (2).  
The yields are in turn given by 

 1( ) log( ( )) n n
t ZC t

A By n P n X
n n n

′
= − = − −  (3) 

A fairly simple way of estimating the parameters of this model is available when the elements of 
the state vector are observed.  in this case, we can estimate equation (1) by least squares and can 
estimate 0δ  and 1δ  by an OLS regression of short-term interest rates onto tX .  The remaining 
parameters are 0λ  and 1λ .  These can be estimated by minimizing the distance between actual 
yields and the yields that are implied by the model (equation (3)).  More involved approaches to 
estimation are of course available, and these can apply when the state vector is latent. 
 
A different approach to estimating the risk premium on longer term bonds is to look at the 
difference between long-term interest rates and expectations of average short-term interest rates 
over the life of the bond obtained from surveys.  At a minimum, it is useful as a robustness 
check. 
 
Arbitrage-Free Nelson-Siegel 
A number of papers have been written by Jens Christensen, Frank Diebold and Glenn Rudebusch 
that propose a powerful but simple approach to term structure modeling in a number of papers. 
 
First start out with the Nelson-Siegel curve 

0 1 2
1 exp( / ) 1 exp( / )( ) [ exp( / )]

/ /t t t t
n ny n n

n n
τ τβ β β τ

τ τ
− − − −

= + + − −  

If we fix the parameter τ , the remaining parameters ( 0tβ , 1tβ  and 2tβ )  can be estimated each 
time period and then a VAR can be used to forecast future values of these parameters and hence 
future interest rates.  Notice that I have added time subscripts to the parameters that are allowed 
to change over time.  This approach was proposed by Diebold and Li (2006).  It appears to give 
good interest rate forecasts.  
 
The problem with this is that it will typically imply that there are arbitrage opportunities.  But the 
dynamic Nelson-Siegel approach can be integrated into an affine term structure model.  Consider 
an affine term structure model with three factors and suppose that under the Q-measure (equation 

(2)), * 0µ =  and *

0 0 0
0
0 0

θ θ
θ

 
 Φ = − 
 − 

.  Then something amazing happens. When we go to work 

out the bond prices and yields, the expression for yields is approximately 

 1 2 3
1 1( ) ( ) ( )

n n
n

t t t t
e ey n X X e X
n n

θ θ
θ

θ θ

− −
−− −

≈ + + −  
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But this is now of the same functional form as the dynamic Nelson-Siegel curve, with 1/τ θ= , 
1 0t tX β= , 2 1t tX β=  and 3 2t tX β= .  The parameters 0tβ , 1tβ  and 2tβ  follow a VAR(1) under the 

P-measure, given by equation (1). 
 
Affine Models with Macroeconomic Factors 
It seems natural to include macroeconomic variables in the state vector tX  for an affine term 
structure model.  If one takes a VAR including yields and macroeconomic variables (growth, 
inflation), lags of the macroeconomic variables Granger-cause future yields.  In equation (1), the 
block of Φ  that gives the predictive power of today’s macro variables for tomorrow yields is 
nonzero.  So far so good for including macroeconomic variables in the state vector. 
 
But there is a problem.  From equation (3), the term structure of yields is a function of the state 
vector.  Unless there is some singularity, equation (3) applied over different maturities can be 
inverted to recover the state vector.  However, if one regresses inflation or GDP growth on 
yields, the R-squared values are modest.  The only way to get this singularity is if the block of 

*Φ  in equation (2) that gives the predictive power of today’s macro variables for tomorrow 
yields is equal to zero.  The macroeconomic variables are then said to be hidden or unspanned 
factors. They do not show up in today’s yields, but are important for forecasting.  Joslin, 
Priesbsch and Singleton (2009) is one of a number of recent papers advocating treating 
macroeconomic variables as hidden factors. 
 
The Bond Premium Puzzle 
The methods for understanding the term structure of interest rates discussed up till now are 
statistical methods, not models based on optimizing behavior of agents.  We would probably 
prefer a more structural model.  Some authors put more structure in the law-of-motion of the 
factors (not just saying that it is a VAR(1)).  Some authors use a pricing kernel derived from 
theory.  Some do both.  One generic problem is that most papers in which the pricing kernel is 
derived from theory cannot readily explain why bond risk premia are on average large and 
positive.  In other words, they cannot explain why yield curves on average slope up.  After all, in 
a recession, marginal utility of consumption is high and bond prices rise.  This should make 
bonds the perfect hedge, commanding a negative risk premium! 
 
The upward sloping yield curve can be thought of as the bond premium puzzle, that is analogous 
to the equity premium puzzle.  Some recent work has made progress on explaining the bond 
premium puzzle from a utility-founded model (e.g. Piazzesi and Schneider (2006) and 
Rudebusch and Swanson (2008, 2009)).  The flavor of the argument is that consumption growth 
and inflation both have persistent and transitory components, and the correlation between the 
persistent component of inflation and consumption growth is negative.  This means that inflation 
erodes the value of a nominal bond precisely when consumption growth is low and so marginal 
utility is high.  That makes nominal bonds risky and causes the yield curve to slope up.3   

                                                           
3 To get this effect to be quantitatively important, either Epstein-Zin preferences or habit formation are apparently 
also needed. 
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Index-Linked Bonds 
Most governments now issue index-linked bonds.  In the U.S., they are called TIPS.  With these 
bonds, the coupons and principal payments are tied to inflation.  The yields on the bonds are 
calculated just as before, but these are real yields.  A technical point that is of some importance 
and usefulness is that, at least in the U.S., the indexation to the principal can never be negative 
(although the indexation to the coupons can be).  In the event of deflation, the TIPS holder gets 
their money back.  
 
One of the useful spinoffs of index-linked bonds is that they provide measures of inflation 
expectations.  Let ( )Ny n  and ( )Ry n  denote the nominal and real (zero-coupon continuously 
compounded) yields with a maturity of n , respectively.  Then ( ) ( ) ( )BE N Rn y n y nπ = −  will be 
the breakeven inflation rate, or inflation compensation.  It is the level of inflation which would, 
ex-post, make an investor indifferent between holding a nominal and a real security.  If investors 
were risk neutral, it would be inflation expectations.  But there are clearly other forces driving 
these spreads.  See Campbell, Shiller and Viceria (2009) and Gürkaynak, Sack and Wright 
(2010) for more discussion. 
 
Index-linked bonds have been around for about thirty years in the UK and over ten years in the 
U.S., so there are now enough data to do good empirical work on these bonds.   
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Handout on Forecasting 
 

1. Predictive Regressions in Finance 
 
The time series evidence for time-varying risk premia comes from equations for forecasting 
excess returns.  The form of the equation is 
 

, ,'t t h t t t hr xα β ε+ += + +  
 
where ,t t hr +  denotes a return from time t  to t h+  and tx  is some predictor.  Then the ex-ante 
expected excess return, or risk premium is ' txα β+ , which will be time-varying as long as 

0β ≠ .   For stock returns, the predictors usually used are the short-term interest rate, the 
dividend yield or the consumption-wealth ratio.  For excess bond returns, the predictors are the 
slope of the yield curve or the term structure of forward rates. 
 
When 1h > , the forecast errors have an overlapping structure and so the standard errors have to 
allow for serial correlation (Newey-West or Hansen-Hodrick standard errors).  Still the 
relationship has something of a spurious regression, at least for large h , because the left-hand-
side and right-hand-side variables are both persistent.   
 
These regressions also have a potential for bias.  To see this consider the case where 1h =  where 
the regressor is an AR(1) 
 

1 1't t tr xα β ε+ += + +  

1 1t t tx x uµ φ+ += + +  
 
Now suppose the correlation between 1tε +  and 1tu +  is δ .  Then 

2
1 1 1t t t

u

uε
ε

σε δ δ σ η
σ+ += + −  

where tη  is iid with mean zero and variance 1, uncorrelated with 1tu + .  Now, neglecting the 
intercept, we have 

    21 1 1ˆ 1t t t t t t

t u t t

x x u x
x x x

ε
ε

ε σ ηβ β δ δ σ
σ

+ + +Σ Σ Σ
− = = + −

Σ Σ Σ
 

The second term is asymptotically normal.  But the first has an AR(1) type distribution which 
will be non-normal and biased, if φ  is 1 (or “local to unity”).  That gives an intuition for a bias.  
And, the bias will be a downward/upward bias if δ  is positive/negative.  Moreover, it is natural 
to expect the correlation to be big.  For example, if excess stock returns come in above 



78 

 

expectations, the dividend yield should fall—so in this predictive regression, the correlation 
should be negative. 
 
So there are strategies for predictive regressions: 
 
1. Bias-adjustment.  Estimate / uεδσ σ  and the AR bias and hence adjust β  by the estimated 
bias.  Concretely, Stambaugh’s bias-adjusted estimate for the case 1h =  is 

 1 1

1

ˆ( , ) 1 3ˆ ˆ [ ]
( )
t t

BA
t

Cov u
Var u T
ε φβ β + +

+

+
= +  

Or the bootstrap could be used for bias-adjustment. 
 
2. The standard regression will have severe size distortions if φ  is big and h  is large.  Standard 
errors that are robust to autocorrelation won’t do the job.  Hodrick (1992) came up with two 
tricks for dealing with this 
 
(a) Reorganizing the long-horizon regression.  For illustration, let’s drop all the intercepts and 
assume that the regression is 

, ,t t h t t t hr xβ ε+ += +  

Now under stationarity, 
( )

, , 1( , ) ( , )
( ) ( )

h
t t t h t t t

t t

Cov x r Cov x r
Var x Var x

β + += =  

where ( )
1 1...h

t t t t hx x x x− − += + + .  So if I run the regression 

, 1 , 1t t t t tr x uγ+ += +  
then 0 0β γ= ⇔ = .  We can test the hypothesis that 0β =  by testing the necessary and 
sufficient condition that 0γ = .  But that has much less in the way of size distortions because it’s 
not regressing one very persistent process on another (and that’s always what’s bad news). 
 
(b) Alternative standard errors for the long-horizon regression.  We can stick with the original 
regression and the estimate of the slope coefficient.  The OLS estimate of β  satisfies 

1/2 ˆ( ) (0, )dT N Vβ β− → .  Instead of estimating V  as 
1 1 1 1( ) ( )t t t tT x x T x x− − − −′ ′Σ Ω Σ  

where Ω  is the zero-frequency spectral density of ,t t t hx ε + , we can use the estimate 
1 1 1 1 1

1 1( ) ( )t t t t t tT x x T w w T x x− − − − −
+ +′ ′ ′Σ Σ Σ  

where ( )
1 1

h
t t tw r x+ +=  which is asymptotically the same thing if 0β =  (homework problem).  But 

it seems to work much better in small sample sizes. 
 
Both of these methods rely on stationarity, which makes them suspect.  But it is also true that 
they work remarkably well in relevant sample sizes.  It’s a little surprising that they aren’t used 
more often.  Perhaps it is because of the limitation that they only test the hypothesis that 0β = . 
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2. Forecast Efficiency. 
 
Another forecasting problem is that we have some forecast (from a financial market, a survey, a 
a central bank etc.) and we want to test that it is the conditional expectation given the 
information set at that time (an “efficient” forecast).  The device is to run a forecast efficiency 
regression. Suppose that the forecast is made at time t  for time t h+ .  The realized value is t hy + .  
and the forecast is |ˆt h ty + .  The regression is 

|ˆ 't h t h t t t hy y xβ ε+ + +− = +  
where tx  is a vector of variables in the information set at time t .  We could consider 1tx = , 
which is just a check for bias.  We could consider |ˆ(1, )t t h tx y += , which is the “Mincer-
Zarnowitz” regression.  Or any other variables in the information set at the time that the forecast 
is made.  In all cases, for an efficient forecast, we want 0β = .  Newey-West standard errors can 
be used. 
 
Even if β  is nonzero, it doesn’t necessarily mean that the forecast is not a conditional 
expectation because there can be structural breaks that agents are learning about slowly.  For 
example, all forecasts of inflation underpredicted inflation in the 1970s and overpredicted in the 
1980s.  If you look back and apply these tests, inflation forecasts will appear to be biased down 
in the 70s and up in the 80s.  But a more realistic interpretation is that there were changes in the 
economy that the forecasters were learning about slowly. 
 
A variant on this is that forecast revisions for a fixed period forecast should be serially 
uncorrelated.  So | 1 |ˆ ˆt h t t h ty y+ + +−  should be uncorrelated with | | 1ˆ ˆt h t t h ty y+ + −− . 
 
A recent paper by Patton and Timmerman (2010) considers jointly testing forecast efficiency 
across multiple horizons.  Consider the regression 
 1

0 | 1 | | 1ˆ ˆ ˆ[ ]h
t h t h t j j t h t j t h t j ty y y yα β β ε−
+ + = + + + + −= + + Σ − +  

So this is a regression of the outcome on the h-quarter forecast and a sequence of forecast 
revisions.  Under the null that the forecasts are efficient at all horizons, 0α = and 

0 1 2 1... 1hβ β β β −= = = =  as this is the only way that ˆ( ) 1,...t h j t h t h jE y y j h+ − + + −= ∀ = .    This test is 
more efficient than testing at each horizon separately; the power gains seem in practice to be 
quite big. 
 
  
 

3. Direct and Iterative Forecasts 
 
Suppose that we want to forecast some variable (inflation or growth) h  periods in the future.  
We can consider two approaches.  One is to write down a VAR in the variable to be forecast and 
other variables and to iterate this forward to get the required forecast.  The other is to run the 
“direct” forecasting regression 

1 1t h t t t hy y xα β γ ε+ − − += + + +  
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perhaps including more lags.  The iterative forecast has to be most efficient as long as the VAR 
is correctly specified.  The direct forecast however may be more robust to model 
misspecification.  In simulations, it generally seems that the iterative forecast works best. 
 

4. Diebold Mariano tests 
 
Out-of-sample root mean square prediction error (RMSPE) is a natural metric for the quality of 
point forecasts.  Given two competing forecasts, we can work out their out-of-sample RMSPEs 
in recursive or rolling schemes.  Let 1̂tu  and 2ˆ tu  denote the two prediction errors.  The idea of the 
Diebold-Mariano test is to apply a t test to the series 2 2

1 2t t tz u u= −  and see if the mean is zero or 
not.  Concretely, take the test statistic 

1 2 2
1 1 2ˆ ˆ( )

ˆ /

T
t t tT u u

Tσ

−
=Σ −  

where T  is the number of time periods for the out-of-sample forecast comparison and 2σ̂  is the 
sample variance of 2 2

1 2ˆ ˆt tu u− .  This is simply a t-statistic testing the hypothesis that  
2 2
1 2( ) ( )t tE u E u=  

and it has a standard normal null limiting distribution.  This all works well for “non-nested” 
forecast comparisons, that is where the neither model is nested in the other.  Unfortunately, in 
many cases, the forecasts are nested.  For example, if the two models are based on models 

1 1 1t t ty x uβ ′= +  

1 1 2 2 2t t t ty x x uβ β′ ′= + +  
then the only way that the two models will have the same prediction error variance is if 2 0β =  in 
which case 1 2t tu u= .  The fact that the errors are the same means that the normal distribution for  
the Diebold-Mariano statistic does not apply.  Fortunately, it has been derived by Clark and 
McCracken (2002).  
 
 
 

5. Forecasting with large datasets 
 
Prediction with large datasets is an important recent development in econometrics.  Suppose that 
we want to forecast inflation or growth h  periods in the future and we have a set of predictors 

1{ }n
it ix = .  Intuitively, the idea is to try to combine the information in all of these predictors while 

avoiding estimating too many free parameters.  There are many ways of setting up this idea. 
 
1. The factor-augmented autoregression.  We can take the first k  principal components of 

1{ }n
it ix =  that are assumed to be stationary, call these 1 ,....t ktf f  and can then consider the regression 

1 1 , 1
k

t h t i k k t t hy y fα β γ ε+ − = − += + + Σ +  
which can clearly be used for prediction.  To form the principal components we first rescale the 
data to have mean zero and variance 1 (this means that units are arbitrary) and then perform the 
eigenvalue decomposition on its covariance matrix.  Concretely, the Matlab code 
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for j=1:size(x,2); x(:,j)=(x(:,j)-mean(x(:,j)))/std(x(:,j)); end; 
[coeff, score] = princomp(x); 

 
will put the ordered principal components of the matrix x  in the columns of score. 
 
2. The factor-augmented VAR.  This simply fits a VAR to 1( , ,... ) 't t kty f f  and iterates this 
forward to provide forecasts of t hy + . 
 
3. Bayesian VARs.  A Bayesian VAR will impose some prior on the parameters.  This is often a 
deliberately informative prior, to combat overfitting and to shrink the model to some simple 
specification.  Even if you don’t adopt the Bayesian philosophy, this can still be a useful 
forecasting device.  The Minnesota prior (covered earlier) is a good example.  Banbura, 
Giannone and Reichlin (2009) find that it gives good forecasts. 
 
4. Equal-weighted averaging.  Suppose that we take models each of which is (say) of the form 

1 1t h t it t hy y xα β γ ε+ − − += + + +  
There are in total n  such models, all of which are quite simplistic, and each of which gives a 
forecast.  Now suppose that we simply average the forecasts from all of these models.  The idea 
that simply averaging forecasts (with equal weights) works better than trying to estimate optimal 
weights is part of the folklore of forecasting (Bates and Granger (1969)) and is surprising, but 
true. 
 
5. Bayesian model averaging.   Suppose that there are n models, each of the form 
 i i i iy Z Xγ β ε= + +  
and pretend that the regressors are strictly exogenous and the errors are iid normal with mean 
zero and variance 2σ .  So the parameter vector for model i  is 2( ', , ) 'i iθ γ β σ′= .  Z is a matrix of 
regressors that are common to all the models.  Without loss of generality, assume that Z  and iX  
are orthogonal (it is without loss of generality because one can always replace iX  by regression 
residuals). 
 
Assume that the prior for iβ  conditional on 2

iσ  is 2 1(0, ( ) )i iN X Xφσ −′  and that the prior for  
2( ', ) 'γ σ  is proportional to 21/σ .   The OLS estimate of iβ  is  

     1ˆ ( )i i i iX X X yβ −′ ′=  
and the OLS estimate of γ  is 1( ' ) 'Z Z Z y− . 
Zellner (1971) shows that: 

1. The posterior means are 
ˆ

1
i

i
β φβ
φ

=
+

  and γ̂ .  The forecast from model  i  is ˆi i iy Z Xγ β= + 

 .   

2. The likelihood for model i , iM , is 

 /2 ( )/21( | ) ( | , ) ( | ) ( ) [ ]
1 1 1

kp T p
i i i i i i

SSR SSUP D M P D M P M d φθ θ θ
φ φ φ

− −= ∝ +
+ + +∫  
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where SSR  is the sum of squared residuals from the restricted regression of y  on Z  and SSU  
is the sum of squared residuals from the unrestricted regression of y  on Z  and iX . 
 
Now suppose that all the models are equally likely a priori, so that the model prior is 

( ) 1/iP M n= .  Then the posterior probability that each model is true is given by 

1

( | ) ( )( | )
( | ) ( )

i i
i n

j j j

P D M P MP M D
P D M P M=

=
Σ

 

and the BMA forecast will be 
 1 ( | )n

i i iP M D y=Σ   
Now all the assumptions of strict exogeneity, iid errors etc. are unreasonable in a forecasting 
context, but this can be seen as just a pragmatic shrinkage device, which seems to work well in a 
number of applications. 
 
Sometimes one takes just one variable at a time in each model.  Or, one can use all possible 
permutations of variables.  In this latter case, it may be appealing not to have a prior that all 
models are equally likely.  One could instead take a set of K candidate regressors and consider as 
models all possible permutations of these variables (of which there are 2K ) but the prior that the 
i th model is correct is 

( ) (1 )i ip K p
iP M ρ ρ −= −  

where ip  is again the number of regressors in the i th model.  The parameter ρ  controls the 
model size.  The expected number of regressors under the prior is Kρ .  With this prior BMA 
can easily be implemented, at least as long as K is not too big. 
 
6. The dynamic factor model. 
 0 1 1...t t t q t q tX a f a f a f ε− −= + + +  
where tf  follows a VAR.  This can be written as a static factor model where the factors are 

1( , ... ) 't t t t qF f f f− −′ ′ ′= .  We call tf  the dynamic factors and tF  the static factors.  The model has the 
implication that ( )t t hE X +  is a linear function of tF  and the data.  If this model is correct, 
estimating the static principal components and using those for forecasting will not be the most 
efficient available method.  Intuitively, in this case, the factor augmented autoregression will be 
like OLS and alternative methods will be more efficient, like GLS.  Forni, Hallin, Lippi and 
Reichlin (2005) give more specifics. 
 
7. LASSO.  This takes all the predictors but solves the problem 
 ˆ arg min ( ) '( )LASSO Y X Y Xββ β β= − −   
subject to the constraint 
 1 | |p

j j cβ=Σ ≤   
Solving this problem will push some parameters towards zero and some all the way to zero. 
Hence it is the Least Absolute Shrinkage and Selection Operator.  This can equivalently be 
written as: 
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 1
ˆ arg min ( ) '( ) | |p

LASSO j jY X Y Xββ β β λ β== − − + Σ   
It leaves the question  of selecting the tuning parameter, c .  There are a number of ways of 
doing this.  A common one is cross-validation.  This involves defining ( , )

ˆ
LASSO c iβ −  as the LASSO 

estimate leaving out observation i  and using the tuning parameter c .  We would then select the 
tuning parameter as: 
 2

1 ( , )
ˆˆ arg min ( )n

c i i i LASSO c ic y x β= −′= Σ −   
In LASSO we nearly always standardize all the variables to have variance 1 and mean 0 and then 
run the regression without an intercept.  Otherwise the penalty term will depend on the units in 
which regressors are measured.   
 
If there is a single regressor, it turns out that LASSO has simple form: 

 

ˆ ˆ ˆif 
2 2

ˆ ˆif 
2 2

0 otherwise

LASSO
λ λβ β β

λ λβ β

= − >

+ < −   

where β̂  is the OLS estimator.  This will hold for many regressors if the regressors are 
orthonormal. 
It is tricky to do inference for LASSO.  It is often done by a bootstrap holding the tuning 
parameter fixed. 
The penalty term in LASSO is an L1-penalty.  You could have an L2-penalty. This is called 
ridge regression.  It shrinks parameters to zero, but never all the way, so there is no selection in 
ridge.  The ridge regression has a simple closed form: 
 1ˆ ( ' ) 'RIDGE X X I X Yβ λ −= +   
The elastic net combines both L1 and L2 penalties.  LASSO, ridge and the elastic net are part of 
Machine Learning which is a very active area of research in statistics/econometrics.  Machine 
Learning aims to use statistical algorithms to give good predictions in situations with many 
possible predictors. 
 
The basic idea at the root of all of these penalization estimators comes from Stein’s paradox.  
This says that if θ  is a vector of 3 or more parameters and X  is an unbiased estimator of θ , 
then X  is not the minimum mean square error estimator of θ .  Imparting some bias (shrinkage 
towards zero) helps. 
 
9. Regression Trees.  This is a very different approach, also popular in the Machine Learning 
literature.  There is no model or likelihood, unlike in any of the methods considered above.  
Rather it is a classification algorithm.  It comes in many flavors, but here is the idea.  Suppose 
that I have a dependent variable 1{ }n

i iy =  and two predictors 1 1{ }n
i ix =  and 2 1{ }n

i ix = .   
I now search across all the variables and all possible cutoffs to solve the problem: 
 * * 2

, 1 1 2, arg min ( 1( ) 1( ))n
j k i i ji jik j y y x k y x k== Σ − ≤ − >  



84 

 

where 1 1
1

1 1( )n
i i jiy y x k

n == Σ ≤   and 2 1
2

1 1( )n
i i jiy y x k

n == Σ > .  That lets us split the data according 

to whether jix k≤   or jix k> .  Then at each node, we consider splitting the data based into two 
in the same way.  We end up making decisions of the following sort: 

 
   
Each of the terminal nodes is then a “leaf” of the tree.  The value of the dependent variable is 
then averaged for each leaf.  When making a prediction, based on the explanatory variables you 
determine which leaf the observation belongs to, and the forecast is just the average of the 
dependent variable for that leaf.  We can continue until each leaf has reached a minimum size. 
 
This will tend to produce too many leaves.  Machine learning people would call this algorithm 
“greedy”.  You want to have a way of stopping, and there are many options: 
1. You could use cross validation to estimate the minimum leaf size and then use this as your 
chosen minimum leaf size. 
2. You could stop when the p-value of the significance of the difference between two leaves is 
above 0.05. 
3. You could split the sample into a training sample and a testing sample.  Use the training 
sample to construct the tree.  But then for each node, evaluate whether you would be better off 
merging them based on prediction in the testing sample.  This process is called pruning. 
 
   

All data 

X1<5 X1>5 

X2<3 X2>3 X2<4 X2>4 

X1<8 X1>8 
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6. What Forecasts Economic Activity and Inflation? 
 
There is of course an enormous literature trying to find predictors that do a good job in 
forecasting real economic activity and/or inflation.  These are mostly asset prices.  In contrast to 
the “large dataset” methods that have been popular in recent econometric work, these methods 
try to find a single model that is hoped to be helpful for prediction. 
 

Economic Activity. 
 
An old idea is to use the slope of the term structure to forecast future economic activity.  If 
recessions are times that the Fed tightens monetary policy to create economic slack in order to 
disinflate, then an inverted yield curve should presage a recession.  At least up the mid 1980s 
that seemed to be true, in the sense that the more the yield curve sloped down, the lower growth 
would subsequently be. 
 
A more recent idea is to use corporate spreads to forecast growth.  A recent paper on this is 
Gilchrist, Yankov and Zakrajsek (2008).  They find that expected default rates implicit in 
corporate bond spreads have considerable predictive power for future real economic activity 
(they use nonfarm payrolls and industrial production).   
 

Inflation 
 
The oldest approach is to use a Phillips curve relationship for predicting inflation 
 

1 1( ) ( )t t t ta L b L Xπ α π ε+ += + + +  
 
where tX  represents some measure(s) of real activity, traditionally the unemployment rate.  Or 
Gali and Gertler (1999) prefer to use marginal cost.  An alternative approach is to use the slope 
of the term structure.  However, Ang, Bekaert and Wei (2007) argue convincingly that surveys 
do a better job of forecasting inflation than either.  It seems that for inflation there are occasional 
breaks in the level of inflation that standard regressions have a hard time capturing, but that a 
judgmental forecast can pick up better.  
 
 
 

6. Density Forecasts 
 
Density forecasts are also worth a mention.  Any point forecast coupled with an estimate of the 
variance (and a distributional assumption) naturally implies a density forecast.  If the variance is 
constant, this density forecast is a rather silly one, in that the percentiles of the density forecast 
are moving in lockstep with the point forecast.  But the volatility could be specified to follow a 
GARCH process, or a stochastic volatility model, giving a genuine density forecast. 
 
Quantile regression offers an alternative.  Quantile regression has increased in popularity in 
cross-sectional econometrics, but is also being used a little in forecasting.  A conventional 
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regression estimates the mean of Y, conditional on X.  A quantile regression instead estimates 
the τ th quantile of Y conditional on X.  It is still linear, so the model is of the form 
 0 1 1( ) ... 't t p pt ty x x xτ β β β β= + + =  
where ( )ty τ  denotes the τ th quantile of Y.  It can be estimated by 

 1
ˆ arg min ( ' )T

t t ty xβ τβ ρ β== Σ −  
where ( ) ( 1( 0))z z zτρ τ= − < .  In the special case 1/ 2τ =   

 1
1ˆ arg min { ' }{ 1( ' 0)}
2

T
t t t t ty x y xββ β β== Σ − − − <  

1 1
1 1ˆ arg min { ' }1( ' 0) { ' }1( ' 0)
2 2

T T
t t t t t t t t t ty x y x y x y xββ β β β β= =∴ = Σ − − > − Σ − − <

1
ˆ arg min | ' |T

t t ty xββ β=∴ = Σ −  

which is a least absolute deviations (LAD) estimator.  This estimates the median of Y conditional 
on X.  But quantile regression allows us to estimate all the percentiles of Y conditional on X, and 
hence to obtain an estimate of the conditional density.1 

In general the function τρ (.) is piecewise linear and is known as the “check” function.  We can 

easily draw the function τρ (.) for different choices of the quantile. 
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Some of the density forecasts that get attention in macroeconomics are judgmental forecasts.  
The SPF has asked respondents to place probabilities on GDP growth and inflation falling in 
certain bins four time a year for a long time.  There are other similar survey density forecasts. 
                                                 
1 If we assume that the data are generated by a linear homoskedastic regression model in which the error density is 

iid with density (.)f , then 1/2 1
2

(1 )ˆ( ) (0, )
(0)dT N M

f
τ τβ β −−

− →  where 1
1plim T

t t tM T x x−
= ′= Σ .  The iid assumption is 

unreasonable in most contexts—but more general standard errors are available.  Note that the GMM distribution 
theory does not apply directly because the objective function is not differentiable.    
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It is natural to want to evaluate a density forecast. whether obtained from a model or judgment.  
The technology for doing this was provided in Diebold, Gunter and Tay (1998) and other papers.  
The idea is simple, using the probability integral transform result that you learned in statistics 
last year.  If I have a sequence of density forecasts, and observe 1{ }T

t tZ = –the time series of the 

percentiles of where the realizations were observed in the ex-ante forecast density, then 1{ }T
t tZ =  

should be uniform on the unit interval and should be iid (if the forecasts are non-overlapping).  
So for example, this means that the outcome should be less than the forecast median half the time 
and more than the forecast median half the time, and which it is should be purely random over 
time.  And moreover, tZ  should be orthogonal to everything that was known at the time that the 
forecast was made. 

Here are two specific tests: 

● Let 1
1ˆ ( ) 1( )T

t tF r Z r
r == Σ ≤  denote the empirical cdf of 1{ }T

t tZ = .  Let ( )F r  be the standard 

uniform cdf ( ( )F r r= ).  Under the null hypothesis that the density forecast is correctly specified, 
ˆ ( )F r  should be “close” to ( )F r .  This can be assessed by a Kolmogorov-Smirnov test. The test 

statistic is 
 0 1

ˆsup | ( ) ( ) |rKS F r F r≤ ≤= −  
Under the null hypothesis 
 1/2

0 1sup | ( ) (1) |d rT KS B r rB≤ ≤→ −  
where ( )B r  is a standard Brownian motion (and so ( ) (1)B r rB−  is a Brownian bridge).  
 
● We can test the autocorrelation of 1{ }T

t tZ = . 
An idea that combines these two is to use the Berkowitz LR test (Berkowitz (2000)).  If the 
density is correctly specified then 1{ }T

t tZ =  is iid uniform.  If Φ  denotes the standard normal cdf, 
and 1( )t tZη −= Φ  then 1{ }T

t tη =  must be iid standard normal.  Now consider the AR(1) 
 0 1 1t t tvη φ φη −= + +  
Under the null, 0 0φ = , 1 1φ =  and the variance of tv  is 1.  We can do a joint test of the three 

hypotheses by a LR test.  If the log-likelihood function is 2
0 1( , , )vl φ φ σ  then the test statistic is  

 2
0 1
ˆ ˆ ˆ2[ ( , , ) (0,0,1)]vl lφ φ σ −  

 
For point forecasts, we considered root-mean-square prediction error as a metric of forecast 
quality.  For density forecasts, a natural analog is the predictive likelihood—where in the 
forecast density the actual realization occurred.  Obviously one would like this to be as big as 
possible.  If (.)tf  is the forecast density at time t  for 1ty +  and  *T  denotes the number of out-of-
sample periods, the predictive likelihood is 
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*

1 1log ( )T
t t tf y= +Σ  

If we have two competing density forecasts 1, (.)tf  and 2, (.)tf , we can compare their predictive 
likelihoods by defining 1, 1, 1log ( )t t tf yξ +=  and 2, 2, 1log ( )t t tf yξ +=  and then considering the test 
statistic  

 
*

*

1
1 1, 1 2, 1

1 2
1 1, 1 2, 1

( )

( ) /

T
t t t

T
t t t

T

T T

ξ ξ

ξ ξ

−
= + +

−
= + +

Σ −

Σ −
 

This is just like the Diebold-Mariano statistic, but replacing squared errors from a point forecast 
with realizations of the predictive density.  See Amisano and Giacomini (2007). 
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The simplest time series model is an AR(1) 

1t t ty y uα −= +  
In the case | | 1α < , we have  

1/2 2ˆ( ) (0,1 )dT Nα α α− → −  
But this breaks down in the case 1α = , which is a random walk.  The “knife-edge” case where 
α  is exactly equal to one arguably isn’t that interesting per se.  More importantly, this result 
doesn’t work well unless the sample size is enormous if α  is close to, but less than, 1. 
 
Definitions for Nonstationary time series 
 
A time series is a random walk if 1t t ty y u−= +  where tu  is iid. 
A time series is a martingale if 1 1( )t t tE y y− −= . 
A time series is a martingale difference sequence if 1( ) 0t tE y− = . 
A time series is (weakly) stationary if it’s first two moments exist and do not change over time. 
A time series is invertible if it can be written as an autoregression. 
A time series is I(0) if it is both stationary and invertible. 
A time series is I(d) if its’ dth differences are I(0).  If a time series is I(1), it is said to have a unit 
root. 
An ARIMA(p,d,q) model is a time series the dth differences of which form a stationary and 
invertible ARMA(p,q) model. 
 
Simulated distribution of OLS estimator of α  if 100T =  
 
                      α=1       α=0.95 
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Both are skewed to the left. 
 
Normality doesn’t work and for this and many non-standard problems in econometrics, we need 
to introduce new tools; Brownian motion and a functional central limit theorem. 
 
 
The stochastic process ( )B t  is a Brownian motion if 

1. (0) 0B =  
2. 2( ) ( ) ~ (0, ( ))B t B s N t sσ− −  for any t s>  
3. If 1 2 3 4t t t t< ≤ <  then 

2 1( ) ( )B t B t−  is independent of 4 3( ) ( )B t B t−  
 
 

 
 
Brownian motion properties: 
● A Brownian motion is a martingale 
● ( ( ), ( )) min( , )Cov B s B t s t= , for a “standard” Brownian motion ( 2 1σ = ) 
 
 
Basic functional central limit theorem. 
Suppose that 1 2, ,... Tε ε ε  are iid with mean 0 and variance 2σ  and 2 δ+  finite moments.  Let 

1
t

t s sS ε== Σ .  Define the function  [ ]1/2

1( )T TrS r S
T σ

= , where [.]  denotes the integer part of the 

argument. 
The functional central limit theorem says that 

( ) ( )TS r B r⇒  
where “⇒ ” means convergence in distribution uniformly in r  and ( )B r  is a standard Brownian 
motion on the unit interval. 
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Functional central limit theorem with non-iid errors. 
Suppose that 1 2, ,... Tε ε ε  are stationary with mean 0 and (average) zero-frequency spectral density 

2ω  satisfying suitable conditions.  Let 1
t

t s sS ε== Σ .  Define the function  [ ]1/2

1( )T TrS r S
T ω

= .  

Then ( ) ( )TS r B r⇒ . 
 
Continuous mapping theorem Suppose that T dX X→  (uniformly in r , if applicable).  Then 

( ) ( )T df X f X→  where (.)f  is any continuous function. 
 
 
Derivation of the limiting distribution of OLS for the random walk model 
 
Suppose that 1t t ty y uα −= +  with 1α =  and 0 0y =  

/ / 3/2 /
1 1 ( 1)/ ( 1)/ [ ] ( 1)/ ( )t T t T t T

t t t T t T Tr t T Ty TS dr T S dr T S r drσ− − − − −= ∫ = ∫ = ∫  
2 2 / / 2 2 2 / 2

1 1 ( 1)/ ( 1)/ [ ] ( 1)/ ( )t T t T t T
t t t T t T Tr t T Ty TS dr T S dr T S r drσ− − − − −= ∫ = ∫ = ∫  

3/2 1
1 1 0 ( )T

t t Ty T S r drσ= −∴Σ = ∫  and 2 2 2 2
1 1 ( )T

t t Ty T S r drσ= −Σ = ∫  
3/2 1 1

1 1 0 0( ) ( )T
t t TT y S r dr B r drσ σ−
= −∴ Σ = ∫ ⇒ ∫  and 2 2 2 1 2 2 1 2

1 1 0 0( ) ( )T
t t TT y S r dr B r drσ σ−
= −Σ = ∫ ⇒ ∫  

 

But 1 1
2

1 1

ˆ 1
T
t t t

T
t t

y u
y

α = −

= −

Σ
− =

Σ
 

2 2 2 2 2
1 1 1 1 1 1

1 1 1{ ( ) ( ) } { } { }
2 2 2t t t t t t t t t t t t t t t t ty u y y y y u u y y y y u u y y u− − − − − −= − + − = − + − = − −  

2 2
1

2
1 1

1{ }
2ˆ 1

T
T t t

T
t t

y u

y
α

=

= −

−Σ
∴ − =

Σ
 

1 2 1 2 1/2 2 1 2
1 1

2 2 2 2
1 1 1 1

1 1{ } {[ ] }
2 2ˆ( 1)

T T
T t t T t t

T T
t t t t

T y T u T y T u
T

T y T y
α

− − − −
= =

− −
= − = −

− Σ − Σ
∴ − = =

Σ Σ
 

 
1/2 (1)TT y Bσ− ⇒ , 1 2 2

1
T
t t pT u σ−
=Σ →  and 2 2 2 1 2

1 1 0 ( )T
t tT y B r drσ−
= −Σ ⇒ ∫  

Combining these pieces, 
2

1 2
0

1 { (1) 1}
2ˆ( 1)

( )d

B
T

B r dr
α

−
− →

∫
 

Notice that 
● The scaling is by T  not 1/2T .  So the estimator is “superconsistent” 
● The distribution is not normal 
● We could also write the distribution of the numerator as 1 2 1

1 0 ( ) ( )T
t t t dT y y B r dB rσ−
=Σ ∆ → ∫ .  

Consistency of the two results arises from 1 2
0

1 1( ) ( ) (1)
2 2

B r dB r B∫ = −  (special case of Ito’s 

lemma). 
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The t-statistic testing the hypothesis that 1α =  is 

2 1/2
1 1

ˆ( 1){ }T
t ty

s
α −

= −

−
Σ  

where 2 1 2
1ˆ( )t ts T y yα−
−= Σ − .  The t-statistic converges in distribution to 

2

1 2
0

1{ (1) 1}
2

( )

B

B r dr

−

∫
 under the 

null.  This is the Dickey-Fuller distribution.  It is common to re-write this as a t-test in the 
equation 

1( 1)t t ty y uα −∆ = − +  
 
The critical values for a 5 percent one-sided test rejecting if 1α <  is -1.95.  If an intercept is 
included; the critical values is -2.89. 
 
Often, we want to test the hypothesis that 1α =  where the error term is not iid under the null, 
and instead follows an AR(p).  We can then   

1 1( 1) p
t t j j t j ty y y uα φ− = −∆ = − + Σ ∆ +  

and again test the hypothesis that the first coefficient is equal to zero.  This is called an 
Augmented Dickey-Fuller test.  The distribution is again the Dickey-Fuller distribution. 
 
Nelson and Plosser (1982) was a seminal paper testing for unit roots in macroeconomic time 
series , finding that the hypothesis of a unit root could not be rejected for 13 out of 14 time series 
considered.   
 
Initially there were two reasons why the profession was excited about whether there were unit 
roots or not.  First, it was thought to tell us what the main sources of business cycle fluctuations 
were.  If there is a unit root in real output, a shock today lasts infinitely far into the future, which 
may suggest that it is a technology shock and if there is little persistence, the shocks must come 
from monetary policy and fiscal shocks.  West (1988) and Christiano and Eichenbaum argue 
compellingly against this view. 
 
Second, it was thought that the way we should do inference about relations among time series 
depends on whether they have unit roots.  That part still seems right, but the same issues crop up 
if time series are very persistent but do not have exact unit roots.  And it is impossible to tell 
these two apart in the sample sizes that are actually available. 
 
Beveridge-Nelson Decomposition 
 
Suppose that tx  is a random walk, tu  is stationary and t t ty kx u= + .  The process ty  is I(1), but 
the “degree” of nonstationarity depends on k .  The Beveridge-Nelson decomposition is a way to 
decompose any I(1) series into random walk and stationary pieces. 
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B-N decomposition: If ty  is any series such that ( )t ty C L ε∆ =  then 
*

1(1) ( )t
t s s ty C C Lε ε== Σ +  

where * *
0( ) j

j jC L c L∞
== Σ  and *

1j i j ic c∞
= += −Σ .  The first piece is a random walk; the second piece is 

stationary. 
Proof: 1 1 ( )t t

t s s s sy y C L ε= == Σ ∆ = Σ  

0 1 1 2 2 0 1 1 2( ..) ( ...)..t t t t t ty c c c c cε ε ε ε ε− − − −∴ = + + + +  

0 1 0 2 1( ) ( ) ...j j j j t j j j j tc c c cε ε∞ ∞ ∞ ∞
= = = = −= Σ − Σ + Σ − Σ  

* *
0 1 1[ (1) ] [ (1) ] ...t tC c C cε ε −= + + +  

*
1(1) ( )t

s s tC C Lε ε== Σ +  
 

The spectral density of ty∆  at frequency zero is 
2

2(1)
2

Cσ
π

.  So the “size” of the random walk 

piece is proportional to the zero-frequency spectral density of the first differences.  A key point 
is that a time series may be I(1) yet have only a very small random walk component. 
 
Spurious Regressions 
 
Suppose that tx  and ty  are two unrelated random walks.  In a regression of one on the other, the 
coefficient is likely to be significant and the R-squared is likely to be high.  But there is in fact 
no relation between the series!  It’s called a spurious regression. 
 
Yule (1927) and Granger and Newbold (1974) found this in simulations.  Phillips (1986) gave 
some analytical results.  Suppose that 

1 ,t t t xx x u−= + , 1 ,t t t yy y u−= +  

and the shocks are iid and mutually independent with variances 2
xσ  and 2

yσ , respectively.  Let 

  [ ]1/2

1( )T Tr
x

X r x
T σ

=  and [ ]1/2

1( )T Tr
y

Y r y
T σ

= . 

Then ( ) ( )TX r U r⇒  and ( ) ( )TY r V r⇒  where these are two independent Brownian motions. 

We have 
2

1 1
2 2 2 2

1 1

( ) ( )ˆ
( )

T T
yt t t t t t

T T
t t t t x

U r V r drx y T x y
x T x U r dr

σ
β

σ

−
= =

−
= =

∫Σ Σ
= = ⇒

Σ Σ ∫
 

2 2 2 2 2 2
2 1 1 1 1 1 1

2 2 2
1 1 1

ˆ ˆ ˆ ˆ ˆ( ) 2 21 1
T T T T T T
t t t t t t t t t t t t t t t

T T T
t t t t t t

y x y x y x x y xR
y y y
β β β β β= = = = = =

= = =

Σ − Σ − Σ + Σ Σ − Σ
= − = − =

Σ Σ Σ
 

2 2 2
2 2 2

2
2 2 2 2

( ) ( ) ( ) ( )
2 ( ) ( ) { } ( )

( ) ( ) [ ( ) ( ) ]
( ) ( ) ( )

y y
x y x

x x
d

y

U r V r dr U r V r dr
U r V r dr U r dr

U r dr U r dr U r V r drR
V r dr U r dr V r dr

σ σ
σ σ σ

σ σ
σ

∫ ∫
∫ − ∫

∫ ∫ ∫
∴ → =

∫ ∫ ∫
 
This is a simulation of this limiting distribution.  The mean is a bit above 0.2. 
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In a similar way, it can be shown that the Durbin-Watson statistic converges in probability to 
zero.  A problem is that spurious regressions can arise if the time series do not have unit roots, 
but are just very persistent.  A context where this comes up is a long-horizon predictive 
regression in finance where an h-period return is regressed on some predictor, like a dividend-
yield. 
 
Cointegration 
 
The fact that two time series have unit roots, does not mean that a relationship between them is a 
spurious regression.  It is also possible that they are cointegrated. 
 
Cointegration: Approximate Definition.  Two drunks are walking in the park, but are tied 
together with a piece of string.  Each is a random walk.  The two drunks are cointegrated. 
 
More formal definition.  Two nonstationary time series tx  and ty  are said to be cointegrated if 
they are both I(1) but if there is exists some linear combination t t tu y xβ= − , for 0 k< < ∞ , that 
is I(0). 
 
We can rewrite the definition of cointegration as t t ty x uβ= +  where the regressor is I(1) and the 
error term is I(0).  This model has intriguing statistical properties 
● OLS is superconsistent (meaning ˆ( )T β β−  converges to a distribution, that is a function of 
Brownian motions). 
● If tx  is strictly exogenous (independent of the error at all leads and lags), then t- and F-
statistics associated with OLS have their usual normal and 2χ  limiting distributions. 
● If tx  is not strictly exogenous, there are estimators other than OLS such that t- and F-statistics 
have normal and 2χ  limiting distributions.  A popular choice is dynamic OLS which estimates 
the relationship 

( )t t t ty x d L x uβ= + ∆ +  
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where ( )d L  is a two-sided polynomial (Stock and Watson (1993)).  Another choice is the 
maximum likelihood estimator proposed by Soren Johansen that is implemented in Eviews. 
 
More econometric detail on cointegration. 
A cointegrating system can be written in “triangular form” 

1t t ty xβ ε= +  

2t tx ε∆ =  

where 1tε  and 2tε  are I(0).  Suppose that 1 1 1
t

t s sS ε== Σ  and 2 1 2
t

t s sS ε== Σ .  Let 1 1[ ]1/2
1

1( )T TrS r S
T σ

=  

and 2 2[ ]1/2
1

1( )T TrS r S
T σ

= .  Suppose further that 1 1( ) ( )TS r W r⇒  and 2 2( ) ( )TS r W r⇒  where 

1( )W r  and 2 ( )W r  are two standard Brownian motions. 
 
The OLS coefficient in a cointegrating regression has the distribution 

1
1 0 2 1

1 2
2 0 2

( ) ( )ˆ( )
( )

W r dW rT
W r dr

σβ β
σ
∫

− →
∫

 

because 1 1
1 1 1 2 0 2 1( ) ( )T

t t t dT x W r dW rε σ σ−
=Σ → ∫  and 2 2 2 1 2

1 2 0 2 ( )T
t t dT x W r drσ−
=Σ → ∫ .  The null 

distribution of the t-statistic is 

 
1
0 2 1

1 2
0 2

( ) ( )
( )

W r dW r
W r dr

∫

∫
 

Under strict exogeneity, the two Brownian motions are independent, and so this distribution 
reduces to normal.  Otherwise it is a nonstandard distribution.  Likewise, under strict exogeneity, 
the distribution of an F-statistic is 2χ .  Otherwise it is a function of Brownian motions. 
 
Now  consider three cases 
Case (a) 1tε  and 2tε  are iid and mutually uncorrelated.  In this case tx  is strictly exogenous.  So 
OLS allows standard inference. 
Case (b) 1tε  and 2tε  are iid but mutually correlated.  Let 1 1 2t t tdε ε ε= −  where 

1 2 2( , ) / ( )t t td Cov Varε ε ε= .  Then 

1t t t ty x d xβ ε= + ∆ +   

2t tx ε∆ =  
and now tx  is strictly exogenous.  Dynamic OLS will work; standard OLS will not give standard 
inference (though it will still be superconsistent). 
Case (c) 1tε  and 2tε  are just I(0).  Let 1 1 2( )t t td Lε ε ε= −  where ( )d L  is such that 1tε  and 2tε  are 
orthogonal at all leads and lags.  Then  

1( )t t t ty x d L xβ ε= + ∆ +   

2t tx ε∆ =  
and again tx  is strictly exogenous. 
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The Bottom Line 
If two I(1) variables are cointegrated, then we would want to estimate their relationship by OLS 
or dynamic OLS. 
 
On the other hand, if they are not cointegrated, we would be concerned about a spurious 
regression and would want to estimate the relationship in first differences, or transforming it in 
some other suitable way. 
 
In principle, the way to tell if the I(1) variables ty  and tx  are cointegrated or not is to apply a 
unit root test to the residuals from the regression of ty  on tx .  The null hypothesis is of a unit 
root; and so of no cointegration.  But the critical values are different from the ordinary unit root 
test (tabulated by Engle and Yoo (1987)). 
 
If two series are I(1) and are cointegrated, then they have an error correction representation: 
 1 0 1 1( ) ( ) ( )t t t t ta L y c b L x y xα β β ε− −∆ = + ∆ + − − +   
This is intuitive as the model corrects some of the cointegrating error.  One way of estimating 
this model is to first estimate the cointegrating regression (i.e. 0β  and 1β ) and then estimate the 
error correction model by regressing ty∆  on lags of ty∆ , tx∆  and lags of tx∆  and  

1 0 1 1
ˆ ˆ

t ty xβ β− −− − .  A system with an error correction model for ty∆  and an analogous equation 
for tx∆  is a vector error correction model (VECM).  A VECM is a restricted VAR. 
 
Near Unit Roots 
 
However, the problems associated with unit roots do not arise just in the knife-edge case of an 
exact unit root.  The downward bias in an AR model was well known by 1950, long before unit 
roots.  Yet, it is essentially the same problem.   
 
A device that gives a better approximation to the small sample behavior of estimators and test 
statistics with near unit roots is to specify that in the AR(1) 1t T t ty y uα −= + , 1 /T c Tα = + .  The 
parameter depends on the sample size, which is a fiction, but it is a useful fiction if it provides a 
good approximation to the distribution of estimators and test statistics. 
 

In this case, if [ ]1/2

1( )T TrY r y
T σ

= , then ( ) ( )T cY r J r⇒  where 

( ) ( ) ( )c cdJ r cJ r dr dB r= +  
is an Ornstein-Uhlenbeck process.  It is the continuous-time analog of an AR(1).  If in fact 

1 /T c Tα = + , but we test for an exact unit root, the limiting distribution of the t-statistic testing 
the hypothesis that 1α =  is 

2

1 2 1/2
0

1 ( (1) 1)
2

{ ( ) )

c

d
c

J
t

J r dr

−
→

∫
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Proof: 1 1
2

1 1

ˆ 1
T
t t t

T
t t

y y
y

α = −

= −

Σ ∆
− =

Σ
 

2 2 2 2 2
1 1 1 1 1 1

1 1 1{ ( ) ( ) } { } { }
2 2 2t t t t t t t t t t t t t t t t ty y y y y y y y y y y y y y y y y− − − − − −∆ = − + −∆ ∆ = − + ∆ −∆ = − −∆  

2 2
1

2
1 1

1{ }
2ˆ 1

T
T t t

T
t t

y y

y
α

=

= −

−Σ ∆
∴ − =

Σ
 

1 2 1 2 1/2 2 1 2
1 1

2 2 2 2
1 1 1 1

1 1{ } {[ ] }
2 2ˆ( 1)

T T
T t t T t t

T T
t t t t

T y T y T y T y
T

T y T y
α

− − − −
= =

− −
= − = −

− Σ ∆ − Σ ∆
∴ − = =

Σ Σ
 

1 2 1 2 1 2 1 2 2
1 1 1 1 1 1 1 1 1 13 2

1( ) ( ) 2T T T T T T
t t t t t t t t t t t t t t t

c cT y T y y T u y T u c y y u
T T T

− − − −
= = − = − = = − = −Σ ∆ = Σ − = Σ + = Σ + Σ + Σ  

1 2 2
t pT y σ−∴ Σ∆ →  

2

1 2
0

1 ( (1) 1)
2ˆ( 1)

( )

c

d
c

J
T

J r dr
α

−
∴ − →

∫
 

2

1 2 1/2
0

1 ( (1) 1)
2

{ ( ) )

c

d
c

J
t

J r dr

−
∴ →

∫
 

 
So we can form a confidence interval for c  by inverting the acceptance region of this test (Stock 
(1991)).  The idea is that we form a grid of values of c .  Test each, by comparing the observed 
test statistic with the critical values from this distribution.  The set of values of c for which this 
test accepts (the acceptance region of the test)  is the confidence set for c .  Then divide by the 
sample size and add 1 to get the corresponding confidence set for α .   
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Handout on Conditional Heteroskedasticity 

 
It is very common for macroeconomic and especially finance time series to exhibit bursts of 
volatility.  Modeling this seems important for forecasting and other purposes.  The original 
model was autoregressive conditional heteroskedasticity (ARCH) which specifies that 

t t tr µ σ ε= +  
2 2

1( )t trσ ω α µ−= + −  
2
1 / (1 )σ ω α= −  

where tε  is iid standard normal.  We can compute the kurtosis of this process as follows: 
4 2 2 4 2 2 2 4 2 2 4 2 1( ) 3 ( ) 2 ( ) 3 ( ) 2 / (1 ) 3 ( ) [ ]

1t t t t tE E E E E ασ ω α σ αω σ ω α σ αω α α σ ω
α

+
= + + = + + − = +

−
2 2

4 4 4 2 22 2

2 2 2 2 2 2 2 2 2 2 2

1 1 13 3 (1 )( ) 3 ( ) 3 (1 )(1 ) 3(1 )1 1 3 1 3 3
( ) / (1 ) / (1 ) / (1 ) (1 3 ) (1 3 )

t t t

t t

E E
E

αω ω ασ ε σ ω α α αα α α
σ ε ω α ω α ω α ω α α

+
+ + − −− − −= = = = = >

− − − − −
 

As a result we see that not only does this model allow for bursts of volatility, but it also accounts 
for fat tails. 
 
Estimation is fairly easy by maximum likelihood as the log-likelihood function is (apart from a 
constant): 

 2
1 1 2

1 1log( ) ( )
2 2

T T t
t t t

t

r µσ
σ= =

−
− Σ − Σ  

and can be numerically maximized with respect to the parameters α , µ  and ω . 
 
A test for the null hypothesis that 0α = is obtained from the 2R  in a regression of 2( )tr r−  on 

2
1( )tr r− − .  Under the null, 2*T R  has a 2 (1)χ  limiting distribution.  This test has a Lagrange 

multiplier interpretation.  It has the useful feature that the parameters of the model do not need to 
be estimated.  
 
The model has been extended in a great many ways.  Three in particular are: 
(i) Generalized ARCH (GARCH).  A GARCH(p,q) model is 

t t tr µ σ ε= +  
2 2 2

1 1( )q p
t i i t i i i t irσ ω α µ β σ= − = −= + Σ − +Σ  

and this can also be estimated by maximum likelihood. 
 
(ii) GARCH in mean 

t t t tr µ λσ σ ε= + +  
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2 2 2
1 1( )q p

t i i t i i i t irσ ω α µ β σ= − = −= + Σ − +Σ  
(iii) Exponential GARCH 

t t tr µ σ ε= +  
2 2

1log log( ) [ (| | (| |))]t t t t tEσ ω α σ β θε ε ε−= + + + −  

Since tε  is standard normal, (| |) 2 /tE ε π= .  This model is particularly useful for representing 
stock returns, because they not only show burst of volatility, but volatility tends to rise when 
returns are low.  This model can capture a skewness effect of this sort. 
 
Any number of extensions to this framework have been proposed.  One can add in explanatory 
variables, or have nonlinear or multivariate specifications.  A general challenge is ensuring that 
the variances remain positive.  Of course, any parameterization which gives negative variances 
will in turn have a likelihood of minus infinity. 
 
Stochastic volatility. 
Stochastic volatility is a different type of model, which arguably fits the data better, and is in 
some ways more appealing.  In it, volatility is random.  The simplest model is 
 t t tr σ ε=  
 2 2

1log( ) log( )t t u tuσ ω φ σ σ−= + +  
where the errors tε  and tu  are iid standard normal, and mutually independent.  The model has 
therefore three parameters: ω , φ  and uσ . 
 
One can write the model as 

 
2 2 2

2 2
1

log( ) log( ) log( )

log( ) log( )
t t t

t t u t

r

u

σ ε

σ ω φ σ σ−

= +

= + +
 

which is a model in state space form with 2log( )tσ  as the state, except that the error term in the 
measurement equation is nonnormal.  The Kalman filter can still be used as if the measurement 
error were normal (the Kalman filter is still the best linear estimate but it will not be optimal).  
Doing the filter right is harder.  The particle filter is one way. Kim, Shephard and Chib (1998) 
propose another, that has the useful spinoff of being a good general algorithm for a linear 
filtering problem with non-Gaussian errors. 
 
To see how this algorithm works, write the model as 

2log( )t tα σ=  

1t t u tuα ω φα σ−= + +  
2

1log( ) n
t t i it itr q vα == + Σ  

where exactly one of 1 2{ , ,... }t t ntq q q  is equal to 1 and the others are all equal to zero, 
( 1)it iP q p= =  and 2~ ( , )it i iv iidN µ σ .  In other words, the log- 2 (1)χ  random error is being 

approximated by a mixture of normals.  The parameters of this mixing distribution are not to be 
estimated…rather they are given by matching moments and, for n=7, are as follows: 
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 ip  iµ  2
iσ  

i=1 0.00730 -11.40039 5.79596 
i=2 0.10556 -5.24321 2.61369 
i=3 0.00002 -9.83726 5.17950 
i=4 0.04395  1.50746 0.16735 
i=5 0.34001  -0.65098 0.64009 
i=6 0.24566  0.52478 0.34023 
i=7 0.25750 -2.35859 1.26261 
Source: Kim, Shephard and Chib (1998). 
  
We start with a prior for the parameters.  For example, we could have an inverse-Wishart prior 
for 2

uσ , a rescaled beta prior for φ  and a normal prior for ω .  We can then use Gibbs sampling 
to work out the distribution of tα  and the parameters, conditional on TY .  Here is the algorithm: 
 
1.  Hold the { }itq s and the parameters fixed.   Now this is a linear state space model.  We use the 
simulation smoother to take a draw of the { }t sα .  
2.  Hold the tα s and the parameters fixed.   Now we can work out 

2 2
1log( ) log( ) n

t t t i it ity q vε α == − = Σ .  Now 
2

1 2
1

( , )( 1|{ } , )
( , )

T i i i
it t t T n

j j j j

N pP q Y
N p
µ σα
µ σ=

=

= =
Σ

 

and this gives us | ,it t Tq Yα . 
3. Finally take draws of the parameters conditional on { }itq s and tα .  Expressions for the 
posteriors are in Kim, Shephard and Chib (1998). 
 
Then repeat in the usual way. 
 
Realized volatility 
In the last ten years or so, high-frequency data have become available.  Taking the sum of 
squares of five-minute returns gives a natural estimator of daily volatility.  In fact, in the limit as 
the observation window size goes to zero, the sum of squared returns is an arbitrarily good 
estimator of variance under some assumptions (that rule out market microstructure noise, 
infrequent trading and so on).  This is called realized volatility.  It is has the desirable feature of 
being model-free. 
 
One might wish to evaluate a forecast of volatility.  People at one stage used to run regressions 
of the form 
 2 2ˆt t tr α βσ ε= + +  
to evaluate a forecast of volatility on day t , where 2ˆtσ  is the forecast obtained from a GARCH 
model and tr  is the return on that day.  They would get very low R-squared values from this 
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regression, and conclude that the volatility forecasts were poor.  Instead, Andersen and 
Bollerslev (1998) considered the regression 
 2ˆt t tRVOL α βσ ε= + +  
where tRVOL  denotes the realized volatility on day t .  Suddenly, the R-squared value became 
something in the range 40-50 percent.  It seems that the daily squared return is too noisy a 
measure of volatility.  The problem was not that GARCH models gave poor forecasts, but that 
daily squared return was too noisy a measure to evaluate those forecasts. 
 
We can fit time series models directly to realized volatility to obtain forecasts.  This also raises 
an intriguing possibility for measuring risk-aversion, considered by Bollerslev, Tauchen and 
Zhou (2009).  We can get a forecast of the realized volatility from fitting an autoregression.  We 
can get options implied volatility for the same period.  The difference between those two is a risk 
premium that compensates investors for uncertainty about volatility.  Under some assumptions, 
that is proportional to risk aversion.  So the spread between a forecast of realized volatility and 
options-implied volatility represents a market-based measure of risk aversion. 
 
Another concept is the realized semivariance.   The downside realized semivariance is 

21( 0)t tr rΣ <  where tr  is the tth intraday return on day t.  The upside realized semivariance is 
21( 0)t tr rΣ >  and the two together sum to the realized variance.  We can similarly estimate 

downside and upside betas.  Ang et al. (2006) show that downside and upside risk are priced 
differently.   
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Handout on Structural Stability 
 
Let’s consider a regression model of the form 

t t t ty x β ε′= +  
where tε  is an mds and 1 [ ]

1
T

t t t p xT x xλ λ−
= ′Σ → Σ , uniformly in λ .  Also  

1/2 [ ] 1/2
1 ( )T

t t t xT x Bλ ε σ λ− −
=Σ ⇒ Σ  

where 2σ  is the variance of tε  and ( )B r  is a k-dimensional standard Brownian motion.   
The null hypothesis is that 

t tβ β= ∀  
where tβ  is a k-dimensional parameter vector.  The alternative could be 

,t t rβ β= ≤  
,t t rβ β γ= + >  

where r , the break date is either known a priori or unknown.  Or the alternative could be 
1t t tβ β η−= +  

where tη  is (0, )iid G . 
 
The Chow test 
The standard Chow test gives a test of the null of stability against the first kind of alternative, 
when the break date is known.  The test statistic is of the form 

( )
/ ( )

SSR SSUF r
SSU T k

−
=

−
 

where SSR  and SSU  are restricted an unrestricted sums of squares respectively. 
 
But the break date is rarely known ahead of time.  Even when we think that the potential break 
date is obvious, it’s really because we already took a peak at the data.  So it is usually more 
appropriate to treat the break date as unknown.  We can try every possible break date and work 
out the statistic 

 
 

 
Andrews (1993) derived the distribution of this test statistic.  Here is the derivation.  In the 
restricted regression, let the OLS estimator be β̂ .  As 1

1 1
ˆ ( )T T

t t t t t tx x xβ β ε−
= =′− = Σ Σ , it follows that 

1/2 1/2ˆ( ) (1)xT Bβ β σ −− → Σ  
In the unrestricted regression, let the break date be Tλ  and let the OLS estimators before and 
after the break be 1̂β  and 2β̂ .  We similarly have  

1/2 1/2 1
1 1

ˆ( ) ( )xT Bβ β σ λ λ−− → Σ  

(1 )sup sup ( )T TF Fπ λ π λ≤ ≤ −=
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and 
1/2 1/2 1

2 2
ˆ( ) (1 ) (1 )xT Bβ β σ λ λ−− → Σ − −  

The restricted sum of squared residuals is: 
2 2 2

1 1 1 1 1
ˆ ˆ ˆ ˆ ˆ( ' ) ( ( ) ' ) ( ) ' ( ) 2( ) 'T T T T T

t t t t t t t t t t t t t ty x x x x xβ ε β β ε β β β β β β ε= = = = =′Σ − = Σ − − = Σ + − Σ − − − Σ  
and the unrestricted sum of squared residuals is 

2
1 1 1 1 1 1 2 1 2 2 1

ˆ ˆ ˆ ˆ ˆ ˆ( ) ' ( ) 2( ) ' ( ) ' ( ) 2( ) 'T T T T T
t t t t t t t t t T t t t T t tx x x x x xλ λ

λ λε β β β β β β ε β β β β β β ε= = = = + = +′ ′Σ + − Σ − − − Σ + − Σ − − − Σ
The numerator of the Chow statistic is therefore 

1 1 1 1 1 1 1

2 1 2 2 1

ˆ ˆ ˆ ˆ ˆ ˆ( ) ' ( ) 2( ) ' ( ) ' ( ) 2( ) '
ˆ ˆ ˆ( ) ' ( ) 2( ) '

T T T T
t t t t t t t t t t t t

T T
t T t t t T t t

x x x x x x

x x x

λ λ

λ λ

β β β β β β ε β β β β β β ε

β β β β β β ε
= = = =

= + = +

′ ′− Σ − − − Σ − − Σ − + − Σ

′− − Σ − + − Σ
 

Taking the limits of each element gives: 
2 2 2 2 1

2 2 1

(1) ' (1) 2 (1) ' (1) ( ) ' ( ) 2 ( ) ' ( )
(1 ) (1 ) '(1 ) (1 ) 2 (1 ) (1 ) ' (1 )

dSSR SSU B B B B B B B B
B B B B

σ σ λ λ λ λ σ λ λ λ

λ λ λ λ σ λ λ λ

− −

− −

− → − − +

− − − − − + − − −
 

2 ( ) ' ( ) (1 ) ' (1 ){ (1) ' (1)}
1d

B B B BSSR SSU B Bλ λ λ λσ
λ λ

− −
∴ − → + −

−
 

2 ( ) ' ( ) [( (1) ( )) '( (1) ( ))]{ (1) ' (1)}
1

B B B B B B B Bλ λ λ λσ
λ λ

− −
= + −

−
 

2

{(1 ) ( ) ' ( ) [( (1) ( )) '( (1) ( ))] (1 ) (1) ' (1)}
(1 )

B B B B B B B Bσ λ λ λ λ λ λ λ λ
λ λ

= − + − − − −
−

 

2

{(1 ) ( ) ' ( ) (1) ' (1) 2 ( ) ' (1) ( ) ' ( ) (1 ) (1) ' (1)}
(1 )

B B B B B B B B B Bσ λ λ λ λ λ λ λ λ λ λ λ
λ λ

= − + − + − −
−

 

2 2
2{ ( ) ' ( ) (1) ' (1) 2 ( ) ' (1)} [ ( ) (1)]'[ ( ) (1)]

(1 ) (1 )
B B B B B B B B B Bσ σλ λ λ λ λ λ λ λ λ

λ λ λ λ
= + − = − −

− −
 

The denominator of the Chow statistic is 2 2
1/ ( ) / ( ) (1)T

t t p pSSU T k T k oε σ=− = Σ − + →  and so for 
any break point Tλ , the limiting distribution of the Chow statistic is: 

( ( ) (1))( ( ) (1)) '( )
(1 )

B B B BF λ λ λ λλ
λ λ

− −
⇒

−
 

For any fixed λ , this is a 2χ  distribution on k degrees of freedom.  But this distribution holds 
jointly in all λ  and so the sup-F statistic has the distribution: 

1
( ( ) (1))( ( ) (1)) 'sup sup

(1 )d
B B B BF π λ π
λ λ λ λ

λ λ≤ ≤ −

− −
→

−
 

This is the distribution that was derived by Andrews (1993).  It is nonstandard, but it can be 
simulated and is tabulated in Andrews (1993). 
 
The Chow test compares parameters before and after a potential break date.  But it will not work 
well if the alleged break is at the very end (or very start) of the sample.  That is because one 
sample will have too few observations to obtain a precise estimate.  A different kind of break test 
is appropriate in this case.  It estimates the parameters on the first (large) part of the data and 
then assesses the size of the residuals on the second (small) part of the data. 
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Suppose that the parameters are estimated on a sample of size T  but that we wish to check for a 
structural break over  a subsequent sample of size *T  where * /T T θ= .   
 
Let β̂  denote the OLS estimate from the original sample and let ˆ 't t te y xβ= −  denote the 
forecasting error for an observation in the subsequent sample, *1, 2,..t T T T T= + + + .  Let V  
denote an estimator of 2π  times the spectral density of t tx ε .  Then we can form the test statistic 

 
* ** 1/2 1 * 1/2
1 1[ ]'( (1 )) [ ]T T T T

t T t t t T t tT x e V T x eθ− + − − +
= + = +Σ + Σ  

which will have a 2χ  pointwise limiting distribution under the null of no structural break on k  
degrees of freedom.  One can also search over possible break-dates and this will have the same 
distribution as the sup-F test. 
 
Estimating the Break Date 
A separate question is estimation of the break date, given that there is a one-time structural 
break.  The value of λ  that maximizes the sup-F statistic can be thought of as an estimator of the 
break date.  Bai (1997) considers estimation of the break date.  Consider the model 
 1( )t t t ty X X t rβ δ ε′ ′= + > +  
and so there is a break at time r .  Note that r  is the break date, not the fraction of the way 
through the sample that the break occurs.  Let’s estimate the parameters, including the break 
date, my minimizing the sum of squared residuals: 
 2

{ , , , }
ˆ ˆˆ ˆ( , , , } arg min ( 1( ))r t t tr y X X t rα β δα β δ β δ′ ′= Σ − − >  

which has to be done numerically.  Suppose that ( )t tM E x x′=  and the shocks are conditionally 
homoskedastic. Then Bai shows that 

 2
' | |ˆ( ) arg max { ( ) }

2d s
M sr r W sδ δ
σ

− → −  

where ( )W s  is a two-sided Brownian motion (defined over s−∞ < < ∞ ).  A two-sided Brownian 
motion  is  

1( )W s    if 0s >   
0           if 0s =   

2 ( )W s−  if 0s <   
where 1W  and 2W  are two independent standard Brownian motions defined over 0 s< < ∞ .   
This means that if we define 

 2

ˆ ˆˆ'ˆ
ˆ
Mm δ δ
σ

=  

from the inverse of the acceptance region of a test, a 95 percent confidence interval for r  will be 
given by 0.975 0.025ˆ ˆ[ , ]r P m r P m− −  where Pα  denotes the α  percentile of the distribution of 

| |arg max { ( ) }
2s
sW s − . 

 



105 

 

The Nyblom Test 
Turning to the random walk parameter alternative, a Lagrange multiplier test does not require the 
alternative to be estimated (convenient because that would involve running the Kalman filter).  
Nyblom (1989) shows that the LM statistic is 

1 2
12

1 ˆ ˆˆ ˆ( ) ' ( ) /T T T
r s r s x s r tL z z

T
σ−

= = == Σ Σ Σ Σ  

where ˆt t tz x e=  and ˆ( )t t te xε β β′= − − .  Now 
1 1 1

1 1 1 1
ˆˆ ˆ ˆ ˆ { ( )}T T r r r

s r s s s s s s s s s s s sz z z z x x xε β β− − −
= = = = = ′Σ = Σ −Σ = −Σ = −Σ − −  

1/2 1/2 1 1 1 1 1 1/2
1 1 1 1ˆ ( )T r r T T

s r s s s s s s s t t t t t tT z T x T x x T x x T xε ε− − − − − − − −
= = = = =′ ′∴ Σ = − Σ + Σ Σ Σ  

1/2 1/2 1/2 1/2ˆ ( ) (1) ( ( ) (1))T
s r s x x xT z B B B Bσ λ λσ σ λ λ−
=∴ Σ → − Σ + Σ = − Σ −  

1
0 ( ( ) (1)) '( ( ) (1))L B B B B dλ λ λ λ λ∴ → ∫ − −  

 
Again this is a nonstandard distribution that has to be tabulated. 
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Handout on Threshold Models 
 
The threshold model can be popular in a number of contexts.  For example, the Phillips curve 
may be steep at very high or low level of unemployment, but flat in an intermediate range.  A 
simple threshold model is: 

 1

2

,
,

i i i i

i i i i

y x q
y x q

β ε θ
β ε θ
′= + <
′= + ≥

  

and θ  is the threshold parameter.   The model may be written as: 
 1 2 1( ) 1( )i i i i iy x q qβ β β θ ε′ ′= + − ≥ +   
Of course, iq  could be equal to ix  which would make for a kink in the relationship between iy  
and ix , but the model is more general than that.  In the case of the kinked model, we might well 
want to impose the restriction that 1 2β θ β θ′ ′=  so that there is no jump at the threshold parameter. 
 
Least squares estimation of the parameters is the natural way of proceeding.  This can be done by 
concentrated optimization.  Suppose that I fix the parameter θ .  Then all the other parameters of 
the model can be estimated in closed form by simple OLS (or restricted least squares if there is a 
parameter restriction of the sort described in the last paragraph).  Let the sum of squared 
residuals be ( )S θ .  The estimate of θ  is then arg min ( )Sθ θ . 
 
Inference in this model is difficult.  Hansen (2000) proposes a way of getting a useable 
asymptotic distribution.  He adopts the device of saying that 2 1 cn αβ β −− =  with 0c ≠  and 
0 1/ 2α< < .  Under homoscedasticity, and if ( )i iM E x x′= , 2 ( )iVarσ ε=   and f  is the density 
of iq  evaluated at the true threshold parameter: 

 1 2
2

( ' ) 1ˆ( ) arg max [ ( ) | |]
2d r

f c Mcn W r rα θ θ
σ

−
−∞< <∞− → −   

where ( )W r  is a two-sided Brownian motion.  (The similarity of this to the Bai result on 
estimating the date of a structural break is no accident.) 
 
We might want to test the hypothesis that 1 2β β= , meaning that there is no actual threshold 
effect.  The likelihood ratio test of this hypothesis is: 

 
/

SSR SSUF
SSU n

−
=   

where SSU  depends on the estimated threshold, γ̂ .  Unfortunately the asymptotic distribution of 
this test statistic depends on nuisance parameters and cannot be tabulated.  The bootstrap strategy 
of Hansen (1996) is however available and does get the correct asymptotic distribution.  The idea 
of this bootstrap is as follows: 
 
1. Hold fixed the regressors and the threshold variable. 
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2. Obtain the residuals. 
3. In each bootstrap draw, resample from the residuals with replacement and build up a new 
dataset assuming that there is no threshold effect and that 1 2 0β β= = . 
4. Compute the F-statistic. 
5. Repeat steps 3-4 many times to obtain the bootstrap distribution of the F statistic.  
6. Reject the null of no threshold effect only if the actual F statistic is above the 95th percentile of 
the bootstrap distribution. 
 
Other notes. 
1. The transition function can be smoother than in the simple threshold model.  We might specify 
that: 

 1 2 1
1( )

1 exp( ( ))t i i
i

y x
q a

β β β ε
γ

′ ′= + − +
+ − −

  

2. We could have a model in which the right hand side variable is a lagged dependent variable, 
along the lines: 

 
1 1 1

2 1 1

,
,

t t t t

t t t t

y y y
y y y

β ε θ
β ε θ

− −

− −

= + <
= + ≥   

This would be a threshold autoregression.  
3. There is no restriction on the number of regimes to being just 2.  For example people estimate 
models of interest rates where there is fast mean reversion for either very high or very low 
interest rates, but slow mean reversion in between. 
4. We can also lag the threshold variable, and this can be called the delay parameter. 
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Handout on Solving Rational Expectations Linear Difference Models 
 

Suppose that we have a model of the form 
 1t t t tAE y By Cε+ = +   (1) 
where ( , ) 't t ty k d′ ′= , tk  is an  kn x1 vector of predetermined variables that are given at time t  
(they were determined earlier), td  is an dn x1 vector of forward-looking (jump) variables that 
can be controlled at time t , and tε  is an iid shock. 
 
Let us define the matrices 1F A B−=  and 1G A C−= .  Suppose that all the eigenvalues of F  are 
unique, and that we can write 1F V JV−=  where J  is a diagonal matrix of eigenvalues and V  is 
the inverse of the matrix of corresponding eigenvectors.  This is called the Jordan form (there is 
an extension to the case of repeated eigenvalues). 
 
Blanchard and Kahn (1980) showed that the condition for equation (1) to have a unique solution 
is that 1A B−  has kn  eigenvalues less than 1 in absolute value and dn  eigenvalues greater than 
one in absolute magnitude.   If there are too many stable roots, then there will be multiple 
equilibria.  If there are too few, them there will be no solution. 
 
The Blanchard and Kahn solution method relies on the matrix A  being invertible.  Other 
techniques are available instead when it is not.  Here is the Blanchard-Kahn method: 
 
1. Obtain the Jordan form of 1F V JV−= .  Order the Jordan blocks such that the first kn  diagonal 
elements are less than 1 in absolute value and the remainder are greater than 1 in absolute value. 
2. Partition F  , G  , 1V −  and J  conformably with ty  as  

 11 12

21 22

F F
F

F F
 

=  
 

, 1

2

G
G

G
 

=  
 

, 11 121

21 22

V V
V

V V
−  
=  
 

 and 1

2

0
0
J

J
J

 
=  
 

 

3. The solution is then 
 1 1 1

1 11 12 22 21 1 12 22 2 21 1 22 2[ ] [ ( )]t t tk F F V V k G F V J V G V G ε− − −
+ = − + − +   (2) 

 1 1 1
22 21 22 2 21 1 22 2[ ]t t td V V k V J V G V G ε− − −= − − +   (3) 

  
So if I wanted to simulate data from this process, the steps would be: 
1. Start out with 0 0k = . 
2. Draw the exogenous process { }tε . 
3. Compute { }tk  from the VAR in (2). 
4. Compute { }td  from (3). 
 
Idea of the solution method 
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Where this is coming from is that I can rewrite equation (1)  as 
1t t t tAE y By Cx+ = +  

1 1
1t t t tE y A By A Cx− −
+∴ = +  

1 1
1t t t tE y V JVy A Cx− −
+∴ = +  

1
1t t t tE Vy JVy VA Cx−
+∴ = +  

* * *
1t t t tE y Jy C x+∴ = +  

where *
t ty Vy= .  But the matrix J  is diagonal, so this allows me to decouple the system into two 

parts: one stable, and one unstable.  I solve the transformed equations separately to get *
ty  and 

then rotate back to get the solution for ( , ) 't t ty k d′ ′= . 
 
Example 1 
As an example, consider the benchmark forward-looking new-Keynesian model (in which the 
steady state level of inflation is zero): 
 1 1t t f t t b tg Eπ κ γ π γ π+ −= + +  (4) 
 1 1( )t t t t t t tg E g i E iσ π ε+ += − − − +  (5) 
 1 2t t ti i gφ π φ= + +  (6) 
Substituting (6) into (5) gives 
 1 1 2 1( ( ))t t t t t t t tg E g g Eσ φπ φ π ε+ += − + − +  (7) 
The combination of (4) and (7) can be written as: 

 
1

1

1 1 2

1 0 0 0 1 0 0
0 0 1 0
0 1 0 1 1

t t

f t t b t t

t t t

E
E g g

π π
γ π γ κ π ε
σ σφ σφ

−

+

+

       
       − = − +       
       +       

 (8) 

which is clearly a model in the form of equation (1) and can be solved by the Blanchard-Kahn 
method.  In this example, there is one predetermined variable, 1tπ −  and there are two jump 
variables tπ  and tg .  
 
Example 2 
Example 2 is a little simpler, but the same kind of setup: 
 1 1t t f t t b tg Eπ κ γ π γ π+ −= + +  (9) 
 1 1 2 1t t t tg gφ φ π ε− −= + +  (10) 
This can be written as: 

 
1 2 1

1

1

1 0 0 0 1
0 1 0 0 0 1 0

1 0 0 0

t t

t t t

f t t b t

g g

E

φ φ
π π ε

κ γ π γ π

−

−

+

       
       = +       

       − −        

 (11) 

which is another model in the form of equation (1) and can be solved by the Blanchard-Kahn 
method.  In this example, there are two predetermined variables, 1tg −  and 1tπ −  and there is one 
jump variable tπ .  


