BAREBONES MODEL:

VARIABLES:

 $Y \equiv \text{output}$ $\dot{Y} \equiv \text{output growth}$ $\dot{Y}^* \equiv LTSG$

LF \equiv labor force $L\dot{F} \equiv$ labor force growth

LP \equiv labor productivity $\dot{LP} \equiv$ labor productivity growth

 $E_L \equiv \text{Employment level}$ $\dot{E} \equiv \text{employment growth}$

P = price level $\dot{P} = \pi \equiv \text{inflation rate}$ $\pi^* \equiv \text{target inflation rate}$

POP \equiv working age population $P\dot{O}P \equiv$ working age population growth

 $U_L \equiv U_L \equiv U_L$

 $f \equiv fed funds rate$ $r \equiv real fed funds rate$ $r^* \equiv neutral r$

EQUATIONS:

(1) Output equation $\dot{Y} = \dot{L}F + \dot{L}P$ $\dot{Y}^* \equiv \dot{L}F^* + \dot{L}P^*$

(2) IS Curve $Y_t = A - ar_t$

(3) Phillips Curve $\pi_1 = \pi_e + \alpha(U^* - U_1)$ (4) Okun's Law $\dot{Y}_t = \dot{Y}^* + c(U_{t-1} - U_t)$

(5) Taylor Rule $f = \pi + \alpha(\pi - \pi^*) + \beta \cdot (U^* - U) + r^*$

Expanded Equations:

(1.1) $\dot{LP} = f(K, L_E, S)$ K = capital stock $L_E =$ efficiency of labor S = Solow residual

(1.2) LF = POP * LFPR

(1.3) LF = $(POP_{16-24}*LFPR_{16-24}) + (POP_{25-54}*LFPR_{25-54}) + (POP_{55-64}*LFPR_{55-64}) + (POP_{\geq 65}*LFPR_{\geq 65})$

(1.4) LFPR = LF/POP

(1.5) $U_L = LF - E_L$ $U_L \neq POP - E_L$

(1.6) $U = (U_L/LF) * 100$

Real World Practices:

(1.1) LP shifts periodically, and defies prediction. Forecasters extrapolate.

(1.2) π_e are backward looking, excepting amid large oil and/or TW\$ shocks

(1.3) U* is identifiable, after the fact. We only know we pierced U*, when π accelerates

(1.4) r* changes, cycle to cycle.

(1.5) α Phillips Curve parameter, appears to be quite low, amid 'anchored' π expectations

(1.6) β Taylor rule parameter, historically is "1", when using U to calibrate resource use.