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Abstract

Accurate measures and forecasts of volatility are indispensable for asset pricing, portfolio se-

lection and risk management. Instrumental for these tasks have been statistical approaches

such as Autoregressive Conditional Heteroskedastic (ARCH) and Stochastic Volatility mod-

els as well as economic formulations that imply future volatility estimates using the informa-

tion contained in options. The resulting volatility estimates are however model driven and

therefore sensitive to the particular specification chosen. Our first chapter introduces this

dissertation and outlines in greater detail the limitations of the existing methods when mea-

suring, modeling and/or forecasting volatility. In the second chapter we derive that under

general conditions daily volatility can be measured model-free and to any degree of accu-

racy from intradaily return observations. Using the record of each transaction underlying

the Dow Jones Industrials Average portfolio, we next document the empirical properties of

such ‘realized’ volatility measure and capture its characteristics using a time-series model.

On the basis of ex ante one-day-ahead prediction criteria we find that this specification

yields unbiased and accurate volatility predictions and that these clearly improve upon the

ones obtained by various ARCH models, including those that closely match the volatility

regularities we document. The third chapter concerns the identification of models that

provide good volatility forecast over short and long horizons ex ante and ex post. We also

examine whether the very ‘model-free’ advantage of the employed realized volatility mea-

sure makes it inefficient as it ignores any structural dependence in the intradaily data. As

this structure turns out to be quite complex, we extend traditional ARCH specifications

via semi-parametric methods to model intradaily returns. We find that the realized volatil-

ity and semi-parametric specifications perform equally well and that, for various in-sample

and out-of-sample horizons, both of them yield far better forecasts than the ones that are

obtained using numerous daily ARCH models. The last chapter concludes the dissertation

with recommendations for future research.
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Chapter 1

Introduction

Asset return volatility is indispensable for the theory and practice of finance. Pricing models

dictate that investors require higher returns for volatile securities. Portfolio strategies rest

on the notion that the return on a large number of assets fluctuates less than the average

portfolio component return. An option contract is more valuable when the price of the

underlying asset becomes erratic. Moreover, financial market volatility is an important

economic risk factor. The Asian Currency Crises had adverse macroeconomic implications

for several countries throughout the world and billions of dollars have been spent to bailout

Long Term Capital Management with the purpose of maintaining financial and economic

stability.

It becomes evident that asset return volatility is crucially important to investors and of

substantial concern to policy makers. However, as volatility is not a directly observable

variable, our understanding of it is limited, the utility of financial models is compromised,

and regulatory policy is difficult to formulate.

We can identify three distinct ways in the literature that attempt to cope with the mea-

surement problem. The first approach obtains mode-free volatility estimates directly from

return observations, while the second and third approach consider volatility as an unob-

served variable that can be recovered using either a statistical or an economic model.
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The direct measurement method consists of calculating the sample return variance from

daily data. This approach gives model-free volatility estimates, but requires an important

tradeoff. If one chooses a large number of daily returns to calculate a variance observation,

the resulting statistic does not contain any information about the behavior of volatility

within the used timeframe. If, on the other hand, a small number of returns are used, the

variance estimator is subject to great measurement error – at the extreme, only one return

observation is used for a daily variance estimate.

The second measurement approach treats volatility as an unobservable variable that is

to be obtained by a statistical model filtering the data. Models of the Autoregressive

Conditionally Heteroskedastic (ARCH) and Stochastic Volatility class fall in this category.

Both types of specifications have in common that the return process is assumed a product of

two components, standard deviations and noise. The ARCH approach rests on the notion

that the volatility component can be identified by making it a function of past returns

and noise innovations. The closely related Stochastic Volatility models are more general in

that the volatility process is additionally allowed to be a function of past innovations that

come from a volatility specific noise term. In either case, the proper specification of the

functional form that relates volatility to past information is subject to very active research

and no single model has emerged that is viewed as best. Naturally, competing models

provide different estimates.

The third approach to measuring volatility consists of backing out estimates from option

pricing models. The celebrated Black-Scholes formula is most frequently used in this con-

text. This pricing model holds under an array of technical assumptions, including no market

imperfections, unlimited borrowing and lending at a risk-free rate and no arbitrage. From

the observed call and stock price, the risk-free rate and dividend payments, a return vari-

ance estimate for the underlying asset over the duration of the option contract can be

traced out. Unlike the approaches discussed above, the ‘implied’ volatility has therefore

a forward-looking character and thus may be regarded as a volatility forecast implied by

2



option market participants. This volatility measurement approach has however several dis-

advantages, among those are: estimates are only available for the limited number of asset

on which option contracts can be written, the option implied measures do not contain any

information about the volatility process within the time to expiration of contracts and,

finally, the volatility estimates are only valid if the assumptions of the employed pricing

formula hold.

Given the difficulties with the aforementioned methods, the approach taken in this thesis

is to measure daily volatility from the sample variance of intraday return data that have

recently become available. Specifically, we use the transaction record of the Dow Jones

Industrials Average (DJIA) portfolio to obtain a time series of ‘realized’ daily variance

estimates. These are free of the assumptions necessary when the statistical or economic

approaches are employed. Moreover, as we have an (almost) continuous record of returns

for each day, we can calculate interdaily variances with negligible error. Using our methods,

volatility thus becomes an observed variable that can be analyzed using conventional time

series techniques.

The second chapter of this dissertation, entitled “Realized Stock Volatility”, first gives a

formal justification of the employed volatility measure and derives its theoretical properties.

Using our data for the DJIA, we next document the empirical regularities of this volatility

variable. These findings set the stage for the development of a time series model that

captures the temporal dependency of realized volatility. Finally, we compare the predictive

one-step-ahead ability of such specification to various ARCH formulations fitted to daily

data in order to investigate whether this new approach is of practical relevance.

The third chapter, entitled “Forecasting Stock Volatility”, concerns the identification of

models that provide good out-of-sample predictions of asset return volatility at alternative

forecast horizons. Next to forecasting volatility over multiple days using daily ARCH and

realized volatility specifications, we also consider a third approach, specifically, forecasting

3



volatility over multi-day horizons using ARCH models fitted directly to intradaily returns.

If such model imposes the correct structure on the return process, it should yield superior

forecasts. However, moving to higher frequency data, we face the problem of intraday

seasonality, i.e. that volatility changes systematically within the day. We explicitly address

this problem by extending traditional ARCH models via nonparametric methods.

The fourth chapter concludes this dissertation with a summary of our main findings. We

additionally formulate several recommendations for future research.

4



Chapter 2

Realized Stock Volatility

2.1 Introduction

Financial market volatility is indispensable for asset and derivative pricing, asset allocation,

and risk management. As volatility is not a directly observable variable, large research areas

have emerged that attempt to best address this problem. By far the most popular approach

is to obtain volatility estimates using the statistical models that have been proposed in the

ARCH and Stochastic Volatility literature. Another method of extracting information about

volatility is to formulate and apply economic models that link the information contained in

options to the volatility of the underlying asset. All these approaches have in common that

the resulting volatility measures are only valid under the specific assumptions of the models

used and it is generally uncertain which or whether any of these specifications provide a

good description of actual volatility.

A model-free measure of volatility is the sample variance of returns. Using daily data,

for instance, it may be freely estimated using returns spanning over any number of days

and, as such, one can construct a time series of model-free variance estimates. When one

chooses the observation frequency of this series, an important trade-off has to be made,

however. When the variances are calculated using a large number of observations (e.g. the

returns over an entire year), many interesting properties of volatility tend to disappear (the
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volatility clustering and leverage effect, for instance). On the other hand, if only very few

observations are used, the measures are subject to great error. At the extreme, only one

return observation is used for each daily variance estimate.

The approach taken in this dissertation is to calculate the daily volatility from the sample

variance of intraday returns, the ‘realized’ volatility. Specifically, we use the transaction

record of the Dow Jones Industrials Average (DJIA) portfolio over the period extending

from January 1993 to May 1998, to obtain a time series of 1366 daily realized variances.

These are free of the assumptions necessary when the statistical or economic approaches

are employed and, as we have an (almost) continuous record of returns for each day, we can

calculate the interdaily variances with little or perhaps negligible error.

In this chapter, we shall first give a through account of the theoretical properties that

underlie the concept of realized volatility measurement. Using our data for the DJIA, we

next document the empirical regularities of this volatility variable and then capture these

using a parametric model. Finally, we compare the predictive ability of the realized volatility

model to various ARCH formulations.

Almost all of the work on daily volatility is within the confines of ARCH and Stochastic

Volatility models or derivative pricing formulas. There are exceptions, however. Schwert

(1990) and Hsieh (1991) have computed sample standard deviations from intradaily returns

on the S&P 500 index. However, the modeling and investigation of the properties of volatil-

ity have not been the major focus and consequently these two papers do not present a

thorough analysis of the constructed series. More recently, Andersen and Bollerslev (1998)

have calculated a time series of realized exchange rate variances to evaluate one-day-ahead

GARCH model forecasts while Andersen, Bollerslev, Diebold and Labys (1999) use realized

variance estimates to document the properties of daily exchange rate volatility. Our study is

in spirit close to the latter paper, but distinct in two key aspects. Firstly, our analysis is on

stock return volatility and as a result we characterize important empirical regularities not
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found for exchange rates. Secondly, we not only examine but also model realized volatility

and determine whether this new approach is of practical relevance.

Following this introduction, Section 2.2 gives an account of the theoretical underpinnings of

the realized volatility measure. Section 2.3 details the construction of the data that provide

the basis for our subsequent empirical analysis. In Section 2.4 we investigate the properties

of stock return volatility and, in Section 2.5, we fit parametric models to our volatility

series. We compare the performance of these models to four ARCH formulations in Section

2.6. We finish in Section 2.7 with concluding remarks.

2.2 Realized Volatility Measurement

A common model-free indicator of volatility is the daily squared return. In this paper we

measure interdaily volatility using intradaily high-frequency returns. We highlight in this

section the relation between these two measures and discuss their individual properties.

To set forth the notation, let pn,t denote the time n ≥ 0 logarithmic price at day t. The

discretely observed time series of continuously compounded returns with N observations

per day is then defined by:

rn,t = pn,t − pn−1,t

where n = 1, . . . , N and t = 1, . . . , T . If N = 1, for any series we ignore the first subscript

n and thus rt denotes the time series of daily return.

We shall assume that:

A.1: E[ rn,t ] = 0

A.2: E[ rn,t rm,s ] = 0 ∀n,m, s, t but not n = m and s = t

A.3: E[ r2n,t r
2
m,s ] < ∞ ∀n,m, s, t

7



Hence, returns are assumed to have mean zero and to be uncorrelated and it is assumed

that the variance and covariances of squared returns exist and are finite.

The continuously compounded daily squared returns may be decomposed as:

r2t =
( N∑

n=1

rn,t

)2

=
N∑

n=1

r2n,t +
N∑

n=1
n �=m

N∑
m=1

rn,t rm,t =
N∑

n=1

r2n,t + 2
N∑

n=1

N∑
m=n+1

rn,t rm−n,t (2.2.1)

Assuming that A.1 holds, the squared daily return is therefore the sum of two components:

the sample variance (at the daily unit) and twice the sum of N − 1 sample autocovariances

(at the 1/Nth day interval unit). In this decomposition it is the sample variance that is of

interest – the sample autocovariances are measurement error and induce noise in the daily

squared return measure.

From (2.2.1) and A.1 and A.2 it therefore follows that an unbiased estimator of the daily

return volatility is the sum of intraday squared returns, the realized volatility:

s2t =
N∑
i=1

r2n,t

as:

E
[
s2t

]
= σ2t

where σ2t is daily population variance.

Because the realized volatility s2t is an estimator, it has itself a variance which can be

interpreted as measurement error. From now on we shall assume that A.1 to A.3 hold, and

then the variance of s2t is given by:

V (s2t ) = E

[ ( N∑
n=1

r2n,t − σ2t

)2
]

= E

[
N∑

n=1

N∑
m=1

(
r2n,t −

σ2t
N

) (
r2m,t −

σ2t
N

) ]
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Thus the variance of s2t depends on the sum of all covariances of the squared return process.

Upon separating the double sum for all n �= m, taking expectations and rearranging terms

it follows:

= E

[
N∑

n=1

(
r2n,t −

σ2t
N

)2
]
+ 2E

[
N∑

n=1

N∑
m=n+1

(
r2n,t −

σ2t
N

) (
r2m,t −

σ2t
N

) ]

The first term is the variance of the intraday squared returns process (at the daily unit)

and the second term is the sum of all squared return autocovariances (at the 1/Nth day

interval unit). Upon dividing the term on the right by 1 over N times the expression on the

left and taking expectations one obtains:

= E

[
N∑

n=1

(r2n,t −
σ2t
N
)2

](
1 + 2

N∑
n=1

N − n

N
ρN,n,t

)

where ρN,n,t the nth autocorrelation of {r2n,t}N1 . Finally, after expanding the factor on the

left and taking expectations it follows:

V (s2t ) =
σ4t
N

(
KN,t − 1

)(
1 + 2

N−1∑
n=1

N − n

N
ρN,n,t

)
(2.2.2)

whereKN,t denotes the kurtosis of {rn,t}N1 . Note that the kurtosis and autocorrelations have
subscript N as these may change with the number of intraday returns. From (2.2.2) follows

that for any particular value of N , measurement error increases with the daily population

variance, with the kurtosis of intraday returns and with the autocorrelations of intraday

squared returns.

Special cases of equation 2.2.2 reduce to familiar expressions. For instance, if rn,t is i.i.d.

normal with E[ r2n,t ] = σ2t /N (variances are constant within the day), equation (2.2.2) be-

comes: V [ s2t ] = 2σ4t /N . This result can be found in Kendall and Stuart (1963, p. 243), for

instance. Note that under these assumptions the variance of the realized volatility decreases

at rate N . However, for various assets it is well documented that returns have kurtosis in

9



excess of three and that the squares of returns are correlated (the ARCH effect). Under

these circumstances, this expression will therefore give the lower bound of measurement

error.

To establish consistency of s2t , we require the two additional assumptions that:

A.4: KN,t < ∞ ∀N

A.5: ∃ ρN,n,t s.t ρN,n,t < 1

Boundedness ofKN,t rules out jump-diffusions (Drost, Nijman andWerker 1998) and implies

continuity of the sample paths of σ2n,t by the Kolmogorov criterion (Revuz and Yor 1991,

Theorem I.1.8). Assumption A.5 states that the squared return process has at least one

autocorrelation that is less than unity.

Suppose ρN,n,t = 1 for n = 1, . . . , N , then the last factor in (2.2.2) becomes:
(
1+2 (N−1)−

2N−1
∑N−1

n=1 n
)
= N , since

∑N−1
n=1 n = 0.5 (N − 1)N . Therefore, V (s2t ) = σ4t (KN,t − 1).

By A.5, however, V (s2t ) will decrease in N and by A.4 it follows therefore that:

limN→∞V [ s2t ] = 0

Thus, the realized volatility measure converges in mean-square and is consistent.1 The

daily variance may therefore be estimated to any desired degree of accuracy by the realized

volatility.

Recall that the results reported thus far are derived under the assumption that returns

are uncorrelated. This assumption is questionable when N is large, as serial correlation in

returns is a common symptom of market micro-structure effects such as price discreteness,
1Consistency may alternatively be established under the assumption that the price process pn,t follows

dpn,t = σn,t dWn,t, where Wn,t denotes a Wiener process. Under the assumption that σn,t is continuous,
it follows from the results in Karatzas and Shreve (1988, Chapter 1.5) or Barndorff-Nielsen and Shephard
(1999) that plimN→∞

∑N
i=1 r

2
n,t =

∫ ∞
1
σ2

n,t dn = σ2
t . See also Andersen et al. (1999) for a thorough treatment

along these lines in the context of special semi-martingales.
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bid-ask bounces and non-synchronous trading (see for instance the textbook treatment by

Campbell, Lo and MacKinlay 1997; Chapter 3). Any violation of this assumption can easily

studied when considering the MA(q) (moving average) representation of rn,t:

rn,t = εn,t +
q∑

i=1

ψi,t εn−i,t (2.2.3)

where the innovations εn,t are assumed to be uncorrelated across all leads and lags. Note

that we allow the moving average representation to change across t. This simply reflects

that our realized volatility measure does not require processes to remain constant over time.

Upon squaring (2.2.3), taking expectations, and summing over n = 1, . . . , N , it follows that:

E

[
N∑

n=1

r2n,t

]
= E

[
s2t

]
= (1 +

q∑
1

ψ2
i,t) E

[
N∑

n=1

ε2n,t

]
(2.2.4)

where E[
∑N

n=1 ε
2
n,t ] = σ2t . At day t therefore, the cumulative squared returns measure has

a multiplicative bias that is given by the squared dynamic coefficients of the moving average

representation. Under conditions of serial correlation, the realized variance will therefore

unambiguously overestimate actual volatility. One may, of course, test for the statistical

significance of the parameters that are used to capture any temporal dependence in returns

and use (2.2.4) to determine whether any bias is economically important.

2.3 Data Source and Construction

Our empirical analysis is based on data from the NYSE Transaction and Quote (TAQ)

database which records all trades and quotations for the securities listed on the NYSE,

AMEX, NASDAQ, and the regional exchanges (Boston, Cincinnati, Midwest, Pacific,

Philadelphia, Instinet, and CBOE). Our sample consists of the Dow Jones Industrials Aver-

age (DJIA) index constructed from the transaction prices of the 30 stocks that are contained

in it.2 The data span from January 4, 1993 to May 29, 1998 (1366 observations). Within
2The reconstruction of the index is straightforward. The DJIA is the sum of all prices adjusted by

a devisor that changes once an index stock splits, pays a stock dividend of more than 10% or when one
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each day, we consider the transaction record extending from 9:30 to 16:05, the time when

the number of trades noticeably dropped. Next to transaction prices, volume and time

(rounded to the nearest second) TAQ records various codes describing each trade. We used

this information to filter trades that were recorded in error and out of time sequence.3

Taking all 30 stocks together, we observe a trade about every one second. Naturally, the

trading frequency of the index components is lower. It also varies greatly across stocks: the

median time between trades in a single stock ranges from a low of 7 seconds to a high of 54

seconds. This suggests that one should worry that non-synchronous trading induces serial

correlation in the returns process which, in turn, would render the cumulative squared

returns measure biased. Since we are focusing on an index, the market micro-structure

effects that are due to price discreteness and bid-ask bounces are of less concern as these

tend to wash out in the aggregate (see Gottlieb and Kalay 1985, Ball 1988 and Harris 1990

for instance).4

To mitigate the problem of bias, following Andersen and Bollerslev (1998) and Andersen et

al. (1999), we shall rely on five-minute returns to obtain daily variance estimates. These are

constructed from the logarithmic difference between the prices recorded at or immediately

before the five-minute marks. When considering the transactions record extending from

9:30 to 16:05, this provides us with N = 79 returns for each of the T = 1366 days.

company in the group of thirty is replaced by another. Over our sample, the composition of the DJIA index
changed March 17, 1997, when four stocks were replaced. Naturally, we accounted for this.

3Specifically, we omitted all trades that carry the ‘correction indicators’ 2 (symbol correction; out of
time sequence), 7 (trade canceled due to error), 8 (trade cancelled) and 9 (trade canceled due to symbol
correction). Moreover, we filtered all trades with the ‘condition indicator’ G (bunched sold; a bunched trade
not reported within 90 seconds of execution time), L (sold last; a transaction that occur in sequence but is
reported to the tape at a later time) and Z (sold sale; a transaction that is reported to the tape at a time
later than it occurred and when other trades occurred between the time of the transaction and its report
time). We refer to corresponding data manual for a more complete description of these and other codes.

4The theoretical literature on price discreteness suggests that the upward bias of the volatility estimate
decreases with the price level. This suggests that one can detect the presence of bias by examining whether
a time series of volatility estimates is negatively correlated with the corresponding prices. For our data
we find a slight positive correlation – suggesting therefore that the discreteness of prices should not be of
concern.
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It remains an empirical question whether the five-minute cut-off is sufficient large enough

so that the problem of bias due to market micro-structure effects is of no practical concern.

For our data we find that the first two sample autocorrelations are 0.080 and −0.018 and

these are significant judged by the ±1.96√(1/N T ) 5% confidence interval. Consistent

with the spurious dependencies that would be induced in an index by non-synchronous

trading, the first order autocorrelation is positive. The consequences of serial correlation

are minimal, however. Upon estimating the MA(2) model defined by equation (2.2.3), we

obtain ψ̂1 = 0.0431 and ψ̂2 = −0.0317. Form (2.2.4) it follows that the bias resulting

from serial correlation scales the volatility estimates upward by a factor of only 1.0029.

Considering that the mean realized variance equals 0.4166, we view this bias too small to

be of any economic significance – no correction is therefore made.

The reduction in measurement error when using intradaily data to calculate volatility mea-

sures becomes readily apparent in Figure 2.1. The solid line plots realized variances, i.e.

cumulative 5-minute squared returns, while the dotted line displays squared daily returns.

For the latter series the two highest values are 39.4 (October 27, 1997) and 48.5 (October

28, 1997) and these two observations are outside the plot region. Although both series are

correlated, the variability in the realized volatility series is small compared to the variability

in the squared returns.

2.4 Properties of Realized Volatility

The main subject of this section is to investigate the properties of realized stock return

volatility. Using intradaily returns on the DJIA portfolio over the period January 4, 1993

to May 29, 1998 (1366 observations), we focus on three volatility measures: variances

(s2t ) standard deviations (st) and logarithmic variances (ln(st)2). For each of these three

measures, we investigate the distribution, persistency and relation to current and lagged

returns. Our findings shall set the stage for the development of realized volatility models in

our next section. In the literature on ARCH and Stochastic Volatility models considerable

13



Figure 2.1: Squared Daily Returns and Realized Variances

The graph displays realized variances (solid line) and daily squared returns (dashed line) for the Dow Jones Industrials
Average over the period January 4, 1993 to May 29, 1998 (1366 observations). Variances are obtained using cumulative
5-minute squared returns. For the squared return series the two highest values are outside the plot region (39.4 and
48.5 recorded for October 27 and 28, 1997).

interest is in the distribution of daily returns divided by their daily standard deviations.

Therefore, we characterize this distribution as well using our measures of volatility. Finally,

as some of our analysis overlaps with the work by Andersen et al. (1999) on exchange rates,

we will compare our results to theirs at the end of this section.

2.4.1 Distribution of Volatility

We graph the distributions of the variance, standard deviation and logarithmic variance

series in Figure 2.2.5 The skewness (Ŝ) and kurtosis (K̂) coefficients are displayed in the

top-right corner of each plot. The distributions of variances and standard deviations are
5Density estimates throughout this paper are based on the Gaussian kernel. The bandwidths are calcu-

lated according to equation 3.31 of Silverman (1986).

14



clearly non-normal – both are skewed right and leptokurtic. The square root transformation

of variances to standard deviations, however, reduces the skewness estimate from 8.19 to 2.57

and the kurtosis estimate from 121.59 to 16.78. The distribution of logarithmic variances

appears to be approximately normal (the normal density is displayed by dashed lines).

Nonetheless, standard tests reject normality. For instance, under the null hypothesis of

i.i.d. normality, Ŝ and K̂ are distributed normal as well with standard errors equal to√
6/T = 0.066 and

√
24/T = 0.133; the skewness and kurtosis estimates for logarithmic

variances are several standard errors away from their hypothesized values.6

2.4.2 Persistency of Volatility

Dating back to Mandelbrot (1963) and Fama (1965), volatility clustering has a long his-

tory as a salient empirical regularity characterizing speculative returns. The literature on

volatility modeling has almost universally documented that any such temporal dependency

is highly persistent. The time series plot of the realized volatility in Figure 2.1 – displaying

identifiable periods of high and low variances – seems to already intimate that view. The

temporal dependency of volatility is reinforced by Figure 2.3, where we plot the sample

autocorrelation function for each series (boxes). For all three volatility measures, the auto-

correlations begin around 0.65 and decay very slowly. The 100 day correlation is 0.15, 0.28

and 0.32 for the variance, standard deviation and logarithmic variance series, respectively.

At the 200 day offset, the functions take a value of 0.08, 0.15 and 0.18.

The low first-order autocorrelations already suggests that the three volatility measures do

not contain a unit root. The Augmented Dickey-Fuller test, allowing for a constant and

22 lags, yields test statistics of -4.692, -3.666 and -3.096 – rejecting therefore the unit root

hypothesis, I(1), at the 5% level. The slow hyperbolic decay, however, indicates the presence
6It is often noted that tests for normality can be grossly incorrect in finite samples and/or when the

observations are dependent (see for instance Beran 1994, Chapter 10 and the references therein). Upon sim-
ulating the fractionally integrated process (1−L)0.4 yt = −0.04+ εt, εt ∼ i.i.d.N(0, 0.2) and t = 1, . . . , 1366
(see Table 2.1 later in this chapter), we find for yt, using 100,000 trials, that the 95% confidence interval
for Ŝ and K̂ is given by [−0.195, 0.194] and [2.707, 3.305], respectively. For εt, we obtain [−0.130, 0.130] and
[2.760, 3.278]. The asymptotic intervals under i.i.d. normality are [−0.130, 0.130] and [2.740, 3.260]. Under
these conditions, the degree of bias is therefore not severe.
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Figure 2.2: Distribution of Realized Volatility

The graphs display the density estimates of variances (top panel), standard deviations (middle panel) and logarithmic
variances (bottom panel). All series are standardized to mean zero and variance one. The bottom panel graphs along

with the density estimates the standard normal probability distribution function (dashed line). Skewness (Ŝ) and

kurtosis (K̂) coefficients are displayed in the top-right corner of each plot.

of long-memory. Using squared returns (or some transform thereof), this phenomenon has

been documented by Ding, Granger and Engle (1993) and Crato and de Lima (1994), among

others.

A covariance stationary fractionally integrated process, I(d), has the property of long-

memory in the sense that the autocorrelations decay at a slow hyperbolic rate when 0 <

d < 0.5. In the top-right corner of each plot in Figure 2.2 we display the Geweke and

Porter-Hudak (1993) log-periodogram estimate for the fractional integration parameter d;

standard errors are given in parentheses.7 The theoretical autocorrelation functions implied
7The estimates are obtained using the first tom = T 4/5 = 322 spectral ordinates and this choice is optimal

according to Hurvich, Deo and Brodsky (1998). Standard errors are obtained using the usual OLS regression
formula and are slightly higher than the asymptotic standard error of the estimator, π/

√
24m = 0.036.
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Figure 2.3: Realized Volatility Sample Autocorrelation Functions

The graphs display the first 200 sample autocorrelations of variances (top panel), standard deviations (middle panel)
and logarithmic variances (bottom panel). The horizontal lines are the upper limit of the 95% confidence interval,
1.96/

√
T . Geweke and Porter-Hudak estimates for the fractional integration parameter are given in the top-right

corner of each plot; standard errors are reported in parentheses. The lines are the theoretical autocorrelations implied
by these estimates.

by these estimates for d match rather well the sample autocorrelations and the parameter

estimates for d are more than two standard errors away from 0.5 and several standard

errors away from zero.8 This suggests that realized volatilities are covariance stationary

and fractionally integrated.
8The unweighted minimum distance estimator proposed by Tieslau, Schmidt and Baillie (1996) minimizes

the sum of squares between the theoretical autocorrelation function of an I(d) process and the sample
autocorrelation function. Upon applying this estimator to the first 200 autocorrelations, we obtain for the
fractional integration parameter estimates of 0.346, 0.389 and 0.401 for variances, logarithmic variances and
standard deviations, respectively.

17



2.4.3 Volatility and Returns

The relation between volatility and returns is of interest for two reasons. First, theoretical

models such as Merton’s (1973) intertemporal CAPM model relate current expected excess

returns to volatility. This has motivated the ARCH in mean, or ARCH-M, model introduced

by Engle, Lilien and Robins (1987). In the ARCH-M specification the conditional mean

of returns (or excess returns) is a linear function of the conditional variance. Second,

Black (1976), Pagan and Schwert (1990) and Engle and Ng (1993), among others, have

documented asymmetries in the relation between news (as measured by lagged returns)

and volatility – suggesting that good and bad news have different predictive power for

future volatility. Generally it is found that a negative return tends to increase subsequent

volatility by more than would a positive return of the same magnitude. This phenomenon

is known as the ‘leverage’ or ‘news’ effect.

In Figure 2.4 the relation between our three volatility measures and current returns is

displayed on the left whereas the relation with lagged returns is given on the right. Through

the scatters, the graphs display an ordinary least squares regression line which is based on

the displayed variables and a constant term. The R2 statistic from each regression is given

in the top-right corner of the plots.

Focusing on the three graphs on the left, we can see that there is no ‘important’ linear

relation between the three volatility measures and current returns – suggesting that the

ARCH-M effect is negligible for our data. It becomes however obvious that volatilities

are non-linear in returns; all three volatility measures increase with positive and negative

returns. Note also how in each of the three plots a convex frontier seems to shape out. This

implies that a particular daily price change generates some minimum level of volatility.

The plots on the right of Figure 2.4 suggest the presence of the leverage effect: lagged

negative returns yield high volatility more frequently than lagged positive returns. This

phenomenon is most pronounced for variances and least obvious for logarithmic variances.
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Figure 2.4: Realized Volatilities and Current and Lagged Returns

The graphs display returns (left panels) and lagged returns (right panels) against variances (top panel), standard
deviations (middle panel) and logarithmic variances (bottom panel). The lines are OLS regression lines which are
based on the displayed variable and a constant term. The regression R2 measures are given in top-right corner of the
plots. In all graphs we omit four observations that are to the left and three observations that are to the right of the
plot region.

It is quite surprising that such asymmetry is less evident when looking at the graphs using

current returns. If the news-effect is indeed the source of asymmetry, one would expect that

current news, rather than past news, yield the suggested effect. Possibly it takes time for

some market participants to react.
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To investigate further the asymmetric response of volatility to past returns, we fit via

ordinary least squares the following regression models to our data:

s2t = ω1 + ω2 I− + ω3 r
2
t−1 + ω4 r

2
t−1 I

− + εt

st = ω1 + ω2 I− + ω3 rt−1 + ω4 rt−1 I− + εt

ln(s2t ) = ω1 + ω2 I− + ω3 rt−1 + ω4 rt−1 I− + εt (2.4.1)

where s2t denotes realized variances; the indicator I− takes value one when rt−1 < 0 and is

zero otherwise. Note that we allow for asymmetry in intercepts as well as slopes and that

we consider for variances a quadratic relation between lagged returns and volatility.9

In Figure 2.5 we plot the regression lines implied by estimates of equation 2.4.1 (solid line)

along with the regression lines implied by the nonparametric models of lagged returns on

each of the three volatility measures (dashed line).10 The R2 statistics from the parametric

and nonparametric regressions (in parentheses) are displayed in the top-right corner of each

plot.

Both the parametric and nonparametric regressions confirm the asymmetric news-effect –

volatility increases more steeply with negative than with positive returns. The news-impact

functions are centered around rt−1 = 0; this suggests that asymmetry is only in slopes and

not in intercepts. The close correspondence between the parametric and nonparametric

regression lines indicates that the models given by equation 2.4.1 characterize well the

news-impact functions for the DJIA portfolio. There are no obvious discrepancies that

would suggest any other parametric specification to capture the lagged return volatility
9In our estimations we find, as one would expect from the results in Section 2.4.2, that the residual

innovations ε̂t are serially correlated and non-normal (see also Figure 2.6 which we shall discuss shortly).
Nonetheless, the least squares estimator yields under these circumstances still unbiased, albeit not efficient,
coefficient estimates.

10The nonparametric regression estimates are obtained using the Nadaraya-Watson estimator with a Gaus-
sian kernel. The bandwidth parameters are determined using cross-validation scores. Estimation was done
over the entire sample, yet the plot regions are restricted to returns in the -2.5 to 2.5 interval. Four obser-
vations are smaller than -2.5 and three observations are greater than 2.5. Note that the kernel estimator
is consistent despite non-normal and correlated residuals. However bandwidth selection by cross-validation
gives under-smoothed estimates (see Härdle and Linton 1994).
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Figure 2.5: Parametric and Nonparametric News Impact Functions

The graphs display the regression lines implied by estimates of equation 2.4.1 and nonparametric regression estimates
of lagged returns on variances (top panel), standard deviations (middle panel) and logarithmic variances (bottom
panel). The R2 of both the parametric and nonparametric regressions (in parentheses) are given in top-right corner
of each plot.

relation.

For the modeling of volatility it becomes of interest whether the news-effect can account

for the asymmetry and excess kurtosis we observe in the distribution of our volatility series

(Figure 2.2). In Figure 2.6, we graph the distribution of the variance, standard deviation

and logarithmic variance series after (using solid lines) and before (dashed lines) accounting

for the news effect. For the ‘after news-effect’ distributions we use the residuals from the

models defined by equation 2.4.1. The skewness and kurtosis coefficients are displayed in the

top-right corner of each plot. The estimates before accounting for news-effects are reported

in parentheses.
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Figure 2.6: Distribution of Realized Volatility and News Impact

The graphs display the density estimates of variances, standard deviations and logarithmic variances before and after
accounting for news-effects. The density estimates after accounting for news-effects (solid line) are obtained from
the OLS residuals of the models defined by equation 2.4.1. The density estimates before accounting for news-effects
(dashed lines) are identical to the ones displayed in Figure 2.2. Skewness (Ŝ) and kurtosis (K̂) coefficients are displayed
in the top-right corner of each plot. The estimates before accounting for news-effects are reported in parentheses.

Even after accounting for the asymmetric response of volatility to lagged returns, the dis-

tribution of variances and standard deviations remains clearly non-normal. News-effects

can however remove some of the asymmetry and flatness in the distribution of the volatil-

ity measures. For variances, standard deviations and logarithmic variances, the skewness

coefficient is reduced from 8.19 to 3.21, 2.57 to 1.44 and 0.75 and 0.60, respectively. The

kurtosis coefficient decreases from 122.59 to 21.43, 16.78 to 6.30 and 3.78 to 3.28 for the

respective volatility measures. As there is little asymmetry in the distribution of logarith-

mic variances, the corresponding reduction in the skewness and kurtosis estimates is only

modest, however. Judged by the standard errors of these estimates (see Section 2.4.1),

normality of logarithmic variances is again rejected.
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2.4.4 Distribution of Returns and Standardized Returns

An empirical regularity found almost universally across all assets is that high frequency

returns are leptokurtic. Early evidence for this dates back to Mandelbrot (1963) and Fama

(1965). Clark (1973) established that a stochastic process is thick tailed if it is conditionally

normal with changing conditional variance. ARCH and Stochastic Volatility models have

this property, but it is often found that these models do not adequately account for lep-

tokurtosis. Specifically, returns divided by the estimated standard deviations (zt = rt/σ̂t)

display frequently excess kurtosis. As a result, several other conditional distributions have

been employed to fully capture the degree of tail fatness (see for instance Hsieh 1989 and

Nelson 1991).

Realized standard deviations allow us to characterize the distribution of standardized re-

turns without modeling changing variances. In Figure 2.7, we plot the density of the daily

return series (rt) on the left whereas we depict the density of this series scaled by daily stan-

dard deviations (zt = rt/st) on the right. In each graph we also plot the normal density.

Skewness (Ŝ) and kurtosis (K̂) estimates are given in the top-right corner of the plots.

Figure 2.7: Distribution of Returns and Standardized Returns

The graphs display the density estimates of daily returns rt (left panel) and scaled returns zt = rt/st (right panel),
where st are daily realized standard deviations. The displayed series are standardized to mean zero and variance one
(the mean and standard deviation of zt equal 0.132 and 1.041, respectively). The standard normal density is plotted
with dashed lines.
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Returns are hardly skewed, but leptokurtic as expected. From the kurtosis estimate of

scaled returns it becomes evident that changing variances can fully account for fat tails in

returns – the estimate even suggests that this distribution is platykurtic. The density of zt

is very close to the one implied by the normal distribution. Based on the standard errors of

the skewness and kurtosis estimates (see Section 2.4.1), normality cannot not be rejected

at the 5% level – Ŝ and K̂ are within two standard errors of their hypothesized values.

Recall from Section 2.4.1 that we found that logarithmic variances are distributed nearly

normal – implying that standard deviations and variances are distributed approximately

lognormal. Combined with the normality of zt, this suggests that returns are approximately

a normal-lognormal mixture which has been proposed by Clark (1973). In Clark’s model,

however, the volatility process is assumed i.i.d. whereas we find that it is serially correlated

(see Section 2.4.2).11

2.4.5 Comparison to Exchange Rates

Our results regarding the distribution and persistency of realized stock volatility are remark-

ably similar to the ones obtained by Andersen et al. (1999) in the setting of exchange rates.

They also found that the distribution of variances and standard deviations is skewed right

and leptokurtic, but that logarithmic variances are distributed approximately normal.12

Exchange rate return variances, standard deviations and logarithmic variances display a

high degree of persistency as well. Depending on the volatility measure and exchange rate

series used, Andersen et al. report Geweke and Porter-Hudak (1993) log-periodogram esti-

mates ranging between 0.346 and 0.421. Results on news impact however differ. Contrary

to our results, they did not find much evidence for the asymmetric volatility effect. This is
11In Clark it is also assumed that the series zt is independent. The BDS test (Brock, Dechert, LeBaron

and Scheinkman 1987) yields test statistics of W2 = −2.721, W3 = −2.839 and W4 = −2.089. As these are
distributed standard normal, we therefore have to reject independence of zt at the 5% level. However, Ljung-
Box portmanteau statistics for up to {10, 20, 100} th-order serial correlation in zt and z2t are insignificant at
the 5% level.

12Without accounting for the leverage effect, our skewness and kurtosis estimates are higher than the
ones reported for exchange rates by Andersen et al. After adjusting for the effect (see Section 2.4.3), our
estimates become quite close to theirs, however.
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to be expected, however, as this phenomenon is generally observed for equities only.

2.5 Realized Volatility Modeling and Predictions

In this section we first build models aimed to capture the temporal dependency of realized

volatility. Treating volatility as observed instead of latent allows us to utilize the time se-

ries techniques employed when modeling the conditional mean. We thus can sidestep the

relatively more complicated ARCH and Stochastic Volatility formulations that model and

measure volatility simultaneously. Later in this section we investigate how well the devel-

oped models predict volatility ex ante one-step-ahead. We shall compare these predictions

to the ones obtained by ARCH models in our next section.

2.5.1 Realized Volatility Modeling

As far as the modeling of our three volatility measures is concerned, the main findings

of our previous section are: (1) the distributions of variances and standard deviations

are asymmetric and leptokurtic, but logarithmic variances are distributed approximately

normal; (2) realized volatilities appear covariance stationary and fractionally integrated; and

(3) volatility is correlated with lagged negative and positive returns. Before detailing the

specific models we shall employ to account for (2) and (3), we discuss first the implications

of the distributional characteristics of our volatility measures for the modeling of these

series.

Assuming that the only deterministic component of a covariance stationary process yt is

a (possibly non-zero) mean ω, then it is well known that the Wold representation of yt

is a (possibly infinite) moving average, i.e. yt = ω + εt +
∑q

i=1 αi εt−i, εt ∼ WN(0, σ2)

where WN denotes serially uncorrelated white noise. Estimation and inference generally

require the stronger assumption that εt ∼ i.i.d.WN(0, σ2) and using this premise it is
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straightforward to show that:

Ky − 3 =
1 +

∑q
i α
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Sε

where Ky, Sy (Kε, Sε) denotes the kurtosis and skewness of yt (εt). Note, as Sy > 0,

Ky > 3, ∃ i s.t. αi �= 0 and 0 ≤ αi ≤ 1 ∀ i then Sε > Sy and Kε > Ky. Because we found in

our previous section that variances as well as standard deviations – even after accounting

for the news effect – are highly skewed and leptokurtic and that the sample autocorre-

lation functions of these volatility measures are positive and slowly decaying (suggesting

0 ≤ αi), a model with a moving average representation would leave these distributional

characteristics unexplained and even amplified in the residuals. When estimation is done

by maximum likelihood, as it is commonly the case, this in turn would require one to ei-

ther rely on quasi-maximum likelihood estimates or to condition the residuals on a density

that allows for skewness and excess kurtosis. However, the former approach may not yield

consistent estimates of the parameters and variance-covariance matrix whereas the latter

would complicate analysis as it requires additional coefficients.13 We found, however, that

the distribution of logarithmic variances is almost symmetric and subject to little excess

kurtosis. For these reasons we restrict our attention to modeling this series only. Of course,

logarithmic variances are rarely of interest. We address this issue by investigating in our

next subsection whether logarithmic predictions transformed into variances and standard

deviations provide useful descriptions of these two volatility measures.

13One density that allows for skewness and kurtosis is the exponential generalized beta (McDonald and Xu
1995). We used this density to estimate the ARFIMAX specification discussed below to model variances and
standard deviations directly. Any improvements, as measured by ex ante one-day-ahead prediction criteria,
were minor only. Alternatively, one may consider estimation in the frequency domain, which can allow one
to relax the normality assumption. However, such models do not easily allow for the type of exogenous
variables we consider.
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To account for long-memory and the correlation of volatility with lagged negative and pos-

itive returns we model logarithmic variances using the following ARFIMAX(p,d,q) model:

(
1− L

)d (
1− β(Lp)

)
ln(s2t ) = w0 + w1 rt−1 I− + w2 rt−1 I+ +

(
1 + α(Lq)

)
εt (2.5.1)

where εt ∼ i.i.d. N(0, σ2), α(Lq) =
∑q

i=1 αi L
i and β(Lp) =

∑p
i=1 βi L

i. Realized variances

are denoted by s2t , the indicator I
− (I+) takes value one when rt−1 < 0 (rt−1 ≥ 0) and is

zero otherwise. Next to the standard ARMA(p,q) coefficients (w0, β(Lp), α(Lq)) the above

specification contains the following three coefficients: a fractional integration parameter (d)

to capture the slow hyperbolic decay in the sample autocorrelation function; lagged negative

(ω1) and positive (ω2) returns to allow for the leverage effect as well as to account for the

slight asymmetry and tail fatness in the distribution of ln(s2t ). We estimate the above model

using the conditional sum-of-squares maximum likelihood estimator suggested by Hosking

(1984). The finite sample properties of this estimator have been investigated by Chung and

Baillie (1993).

Parameter estimates of three specifications nested within the above model – an

ARFIMA(0,d,0) labeled FI, an ARFIMAX(0,d,0) with label FIX and an ARFIMAX(0,d,1)

labeled FIMAX – are given in Table 2.1. Standard errors are reported in parentheses under

the coefficient estimates. All of the parameters are statistically significant at the 5% level

on the basis of either Wald or likelihood ratio tests. The table reports in addition the

Schwartz Bayesian Information Criterion (SBC) and Ljung-Box portmanteau statistics for

up to Kth-order serial correlation in the residuals (QK). The numbers in parentheses below

these statistics report the probability that the K autocorrelations are not significant.

Paying attention to the estimates of the fractional integration parameter d first, we can

see that our estimation results confirm our earlier suspicion that the logarithmic variance

process is stationary and fractionally integrated. Estimates for d range between 0.324 and

0.392 and are several standard errors away from both zero and 0.5. The FI model estimate
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Table 2.1: Realized Volatility Model Estimates

ω̂0 ω̂1 ω̂2 d̂ α̂1 σ̂2 SBC Q10 Q20 Q100

FI -0.043 0.392 0.221 -918.8 8.540 12.969 97.410
(0.156) (0.020) (0.009) (0.287) (0.738) (0.469)

FIX -0.153 -0.316 0.324 0.205 -870.6 16.064 21.866 102.520
(0.020) (0.030) (0.017) (0.008) (0.013) (0.148) (0.306)

FIMAX -0.170 -0.336 0.067 0.344 -0.100 0.203 -871.9 12.880 18.043 94.291
(0.025) (0.034) (0.031) (0.023) (0.037) (0.008) (0.012) (0.205) (0.472)

Coefficients of the ARFIMAX model defined by equation (2.5.1) are obtained by conditional sum-of-squares maxi-
mum likelihood estimation using analytical gradients. The (1 − L)d polynomial is truncated at lag 1000. Standard
errors, based on the second derivatives of the log-likelihood function, are reported in parentheses under the coefficient
estimates. SBC reports the Schwarz Bayesian Information Criterion (SBC = L∗ − 0.5 k ln(1366), where L∗ denotes
the maximized log likelihood and k the number of estimated coefficients). QK refers to the Ljung-Box portmanteau
tests for up to Kth-order serial correlation in the residuals. The numbers in parentheses below these statistics report
the probability that the K autocorrelations are not significant.

of d = 0.392 corresponds closely to the Geweke and Porter-Hudak (1993) log-periodogram

estimate of d = 0.396 obtained in our previous section. The FI model estimate is also in

accordance with Breidt, Crato and de Lima (1998) who on estimating a ARFIMA(1,d,0)

Stochastic Volatility process (without allowing for the asymmetric volatility effect) report

d = 0.444 for the CRSP index. Upon fitting a FIEGARCH model to daily returns on the

S&P 500 composite stock index, Bollerslev and Mikkelsen (1996) however found d = 0.633.

This estimate is much higher than the ones we report and suggests, contrary to our results,

that the logarithmic variance process is not covariance-stationary.

Looking next at the estimates for ω1 and ω2, we find support for the asymmetric news-

effect. It becomes evident, however, that it is mostly negative and not positive returns that

are important for the modeling of logarithmic variances; the estimate of ω2 in the FIMAX

specification is small and only marginally significant at the 5% level.

The addition of lagged negative and/or positive returns to the FI model induces some low-

order serial correlation in the residuals. While for the FI model all reported Ljung-Box

Q statistics are insignificant at the conventional levels, for the FIX and FIMAX model we

cannot – at the 5% significance level – reject the null of no 10th-order serial correlation in
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the residuals. For the FIMAX model we mitigate this problem by allowing next to the two

news-parameters a first-order moving average component; the coefficient on α1 is however

only small and accompanied by a relatively large standard error.

Judged by the Schwarz Bayesian Criterion the asymmetric return-volatility effect is impor-

tant for the modeling of logarithmic variances. Among the two models that allow for lagged

returns, the criterion favors the parsimonious FIX specification which does not include

negative returns and a first-order moving average component.

To investigate further the possibility that the FIX model leaves some time-dependency

of volatility unexplained, we plot in Figure 2.8 its residual autocorrelation function. The

significantQ10 statistic for this model is likely driven by the size of the first, eighth and tenth-

order residual autocorrelation. Judged by the 95 percent confidence interval, ±1.96/√T ,
only the eight and tenth order autocorrelations are significant – however only marginally so.

When considering all 200 autocorrelations it becomes evident that the FIX model captures

logarithmic variance dynamics rather well. The eleven significant autocorrelations may be

attributed to type II error of the test. Above all, the FIX model accounts fully for the slow

hyperbolic decay found in the logarithmic variance autocorrelation function (see Figure 2.3).

In Figure 2.8, no pattern of decay remains.

2.5.2 Realized Volatility Model Predictions

In this subsection we investigate how well the realized logarithmic volatility models set out

above predict our three volatility series ex ante one-step-ahead. To determine the next-

period predictions, it is convenient to rewrite the ARFIMAX model given by equation 2.5.1

more compactly as:

ln(s2t ) = f(Ft−1) + εt, εt ∼ i.i.d. N(0, σ2) (2.5.2)
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Figure 2.8: Realized Volatility Model Residual Autocorrelations

The graph displays the first 200 residual autocorrelations for the FIX model reported in Table 2.1. The parallel lines
are the 95% confidence interval, ±1.96/

√
T .

where Ft−1 denotes the information set available at time t−1. The one-step-ahead variance,

standard deviation and logarithmic variance predictions of (2.5.2) evaluated at the estimates

given in Table 2.1 are given by:

ŝ2t = E
[
s2t |Ft−1

]
= ef̂(·) E

[
eε̂t |Ft−1

]
= ef̂(·)+

1
2
σ̂2

ŝt = E
[
st |Ft−1

]
= e

1
2
f̂(·) E

[
e

1
2
ε̂t |Ft−1

]
= e

1
2
f̂(·)+ 1

8
σ̂2

ln(ŝ2t ) = E
[
ln(ŝ2t ) |Ft−1

]
= f̂(·) + E

[
ε̂t |Ft−1

]
= f̂(·) (2.5.3)

Since in (2.5.2) it is assumed that εt ∼ N(0, σ2) it follows that exp(εt) ∼ LN(0, σ2) and

exp(12 εt) ∼ LN(0, 14 σ
2), where LN denotes the lognormal density.14 Let yt denote one of

our three volatility series, i.e. s2t , st and ln(s2t ), then we evaluate its predictions ŷt, i.e. ŝ2t ,
14As one would expect form the discussion at the beginning of this section, the residual innovations coming

from our logarithmic variance models display slight asymmetry and excess kurtosis. In particular, we obtain
skewness and kurtosis estimates of {0.560, 4.304}, {0.380, 3.984} and {0.362, 4.134} for the FI, FIX and
FIMAX model respectively. However, when we instead compute the expectations of exp(ε̂t) and exp( 1

2
ε̂t)

using the mean of these two measures in order to obtain variance and standard deviation predictions, our
subsequent results change only little. Furthermore, when we condition the residual innovations on non-
normal densities, results hardly change.
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ŝt and ln(ŝ2t ), using the OLS regression:

yt = α+ β ŷt + εt (2.5.4)

If a prediction is unbiased, α = 0 and β = 1. Table 2.2 reports the ordinary least squares

estimates of (2.5.4) and the associated R2 statistic when applied to variances, standard de-

viations and logarithmic variances. Standard errors using White’s (1980) heteroskedasticity

correction are in parentheses.

Table 2.2: Realized Volatility Model Ex Ante Predictions

variances standard deviations log variances

α̂ β̂ R2 α̂ β̂ R2 α̂ β̂ R2

FI -0.079 1.238 0.379 -0.048 1.086 0.486 0.028 1.024 0.515
(0.058) (0.162) (0.031) (0.057) (0.039) (0.030)

FIX 0.000 1.026 0.627 -0.030 1.055 0.576 0.026 1.022 0.551
(0.031) (0.085) (0.023) (0.041) (0.035) (0.027)

FIMAX 0.071 0.843 0.607 0.000 1.003 0.576 0.007 1.006 0.554
(0.040) (0.103) (0.028) (0.049) (0.035) (0.026)

The table reports ordinary least squares coefficient estimates for the model defined by equation 2.5.4 using the
variance, standard deviation and logarithmic variance predictions given by (2.5.3), i.e. the ex ante one-step-ahead
volatility predictions coming from the FI, FIX and FIMAX models reported in Table 2.1. Standard errors using
White’s (1980) heteroskedasticity correction are in parentheses.

For all three models, the estimates of α and β are within two standard errors of their hy-

pothesized values. From the R2 statistics it becomes evident that the realized volatility

specifications can explain much that is observed in volatility over our sampling period. The

R2 statistics for logarithmic variances range between 51.5% and 55.4%, for standard devia-

tions between 48.6% and 57.6% and for variances between 37.9% and 62.7%. The addition

of lagged negative returns to the FI model (therefore yielding the FIX model) improves only

slightly the predictions for logarithmic variances, but has important consequences for the

predictions of standard deviations and most notably for variances; the R2 measure for this

latter volatility measure increases by 24.8 percentage points to 62.7%. Little or nothing

is however gained by adding positive lagged returns and a moving average component to
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the FIX model (therefore yielding the FIMAX model). The R2 for logarithmic variances

increases by only 0.3 percentage points. For standard deviations the R2 measures are iden-

tical and for variances the parsimonious FIX specification yields an even higher R2 measure

than the FIMAX specification that requires two additional parameters.

We plot in Figure 2.9 the one-step-ahead ex ante variance predictions implied by the FIX

model (solid line) along with the realized variance series (dotted line). Clearly, the one-day

ahead predictions do a remarkable job of tracking realized variances over our sample period.

Major discrepancies between the two depicted series are generally only noticeable when

the realized volatility is unusually high (for instance March 31, 1994 and July 16, 1997).

However, for the highest realized variance observation in the sample (October 28, 1997)

the FIMAX model predicts a variance of 10.43 while the corresponding realized volatility

measure takes value of 9.45 for that day.

The question remains whether employment of realized volatility measures to model volatility

leads to improvements or whether perhaps one of the standard techniques yields similar or

even better result. We tackle this issue in our next section.

2.6 ARCH Volatility Modeling and Predictions

The most common tool for characterizing changing variances is to fit ARCH-type models to

daily returns. The performance of some of these models relative to the ones just developed

is the subject of this section. We detail next the exact formulations we shall be using.

Later in this section we evaluate the volatility predictions implied by these models and this

will allow us to directly compare the ARCH models to the realized volatility formulations

employed before.

2.6.1 ARCH Volatility Modeling

For the parameterization of ARCH models the main findings of our previous sections are:

(1) volatilities are covariance stationary and fractionally integrated, (2) volatilities are non-

32



Figure 2.9: Realized Volatility Model Ex Ante Variance Predictions

The graph displays the ex ante variance predictions implied by the FIX model (solid line) along with the realized
variances (dashed line). The FIX model is defined by equation 2.5.1 and its estimates are reported in Table 2.1.

symmetric in lagged returns, (3) returns are not (at best only weakly) correlated with

volatilities and (4) the distribution of returns divided by standard deviations is normal. In

many applications with daily data it is however found that the distribution of standardized

returns is leptokurtic. We shall therefore investigate whether our finding of normality is

particular to the data underlying our study or whether perhaps non-normality is confined

to the ARCH approach to modeling volatility.

Since the introduction of the ARCH model by Engle (1982) numerous extensions have

been proposed.15 However, only the FIGARCH model developed by Baillie, Bollerslev and

Mikkelsen (1996) and the FIEGARCH model formulated Bollerslev and Mikkelsen (1996)
15Recent studies surveying the various ARCH models include Pagan (1996), Palm (1996), Bollerslev, Engle

and Nelson (1994), Bera and Higgins (1993) and Bollerslev, Chou and Kroner (1992).
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explicitly allow for the long-memory property of volatility. We shall focus on these two

specifications although only the FIEGARCH model allows for the news-effect and can be

covariance stationary while allowing for long-memory.

When modeling the conditional variance processes discussed below, we did not find any

evidence for temporal dependencies in the conditional mean of returns (rt) other than a

constant term (µ). Since we in Section 2.4.3 found hardly any evidence for the ARCH-M

effect, we consider return representations of the form:16

rt = µ+ εt

εt = σt zt (2.6.1)

where E[zt] = 0 and E[z2t ] = 1.

The conditional variance process in the FIGARCH(q,d,p) model is defined as:

σ2t =
ω +

[(
1− β(Lp)

) − (
1− α(Lq)− β(Lp)

) (
1− L

)d]
ε2t(

1− β(Lp)
) (2.6.2)

where α(Lq) =
∑q

i=1 αi L
i, β(Lp) =

∑p
i=1 βi L

i. The FIGARCH model is covariance

stationary only in the special case where d = 0 and then it reduces to Bollerslev’s (1986)

GARCH specification. The FIGARCH model displays however the important property of

having a bounded cumulative impulse-response function for any d < 1. As in Bollerslev

(1987), we condition the innovations zt in (2.6.1) on the Student t distribution, i.e. zt ∼
T (0, 1, η1). This density has thicker tails than the normal when η1 < ∞.

Although the FIGARCH model is consistent with our finding of long-memory, for d > 0

the FIGARCH process is, contrary to our findings, not covariance stationary. Furthermore,

variances are symmetric in lagged returns and therefore the FIGARCH model does not
16Nonetheless, for the GARCH(1,1), EGARCH(1,2) and FIEGARCH(0,d,1) models discussed below we

still tested whether the ARCH-M specification is appropriate, i.e. rt = µ1 + µ2σ
2
t + εt. As expected, the

estimates for µ2 were positive, yet insignificant.
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permit the leverage effect. These two deficiencies are addressed by the FIEGARCH(p,d,q)

model which is defined as:

ln(σ2t ) = ω +
α(Lq)

(
γ zt + |zt| − E

[ |zt| ] )
(
1− L

)d (
1− β(Lp)

) (2.6.3)

with all polynomials defined as before. If the leverage effect holds, we expect to find γ < 0.

This formulation nests Nelson’s (1991) EGARCH model when d = 0. We condition – as

in the original formulation of the EGARCH model – the innovations zt on the generalized

error distribution, i.e. zt ∼ GED(0, 1, η2). The density is normal when η2 = 2 while it

displays heavy tails for η2 < 2. The fractional integration parameter in (2.6.3) has the same

interpretation as in the models of our previous section, i.e., the logarithmic variance process

is covariance stationary if d < 0.5. For d < 1 the process is mean-reverting and shocks to

volatility decay.

The FIEGARCH model is similar to our realized volatility model in that it seeks long-

memory in the logarithmic variance process and allows for the asymmetric news-effect.

Whereas our analysis of news impact in Section 2.4 and 2.5 suggests that logarithmic vari-

ances are linear in lagged positive and negative returns, the FIEGARCH model conjectures

that logarithmic variances increase linearly with negative and positive standardized returns

(rt−1 − µ)/σt−1.17 The main difference however is that our earlier specifications are in the

spirit of Stochastic Volatility models and not of ARCH models.

Maximum likelihood estimates of some formulations nested within (2.6.2) and (2.6.3) –

a GARCH(1,1), FIGARCH(1,d,1), EGARCH(1,2) and FIEGARCH(0,1,1) model – are

reported in Table 2.3. Coefficient estimates for η carry suffix 1 when the ARCH innovations

zt are conditioned on the Student t density and suffix 2 when the generalized error density is

used instead. Standard errors, based on the matrix of second derivatives of the log-likelihood

function, are in parentheses. With the exception of the fractional integration parameter d
17Upon holding constant the information dated t-2 and earlier (as in the definition by Engle and Ng 1993),

logarithmic variances are however linear in positive and negative rt−1.
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in the FIGARCH model, all reported estimates are significant at the 5% level on the basis

of either Wald or log-likelihood ratio tests. L∗ reports the maximized log-likelihood.

Table 2.3: ARCH Model Estimates

µ̂ ω̂ β̂1 d̂ α̂1 α̂2 γ̂ η̂1,2 L∗

GARCH 0.063 0.008 0.930 0.054 6.2501 -1340.0
(0.016) (0.005) (0.024) (0.018) (1.043)

FIGARCH 0.063 0.021 0.652 0.375 -0.285 6.5361 -1338.6
(0.016) (0.012) (0.105) (0.108) (0.108) (1.150)

EGARCH 0.050 -0.884 0.972 0.231 -0.117 -0.596 1.4252 -1329.1
(0.015) (0.125) (0.014) (0.043) (0.047) (0.158) (0.075)

FIEGARCH 0.065 -1.245 0.585 0.227 -0.668 1.4182 -1326.7
(0.014) (0.274) (0.056) (0.041) (0.039) (0.072)

Coefficients of the models defined by equations 2.6.1 and either 2.6.2 or 2.6.3 are obtained by conditional sum-of-
squares maximum likelihood estimation using analytical gradients. Coefficient estimates for η carry suffix 1 when the
ARCH innovations zt are conditioned on the Student t density and suffix 2 when the generalized error density is used
instead. Standard errors, based on the second derivatives of the log-likelihood function, are reported in parentheses
under the coefficient estimates. L∗ reports the maximized log-likelihood. The (1− L)d polynomial in the FIGARCH
and FIEGARCH model is truncated at lag 1000. The data are daily percentage returns for the Dow Jones Industrial
Average from January 1993 to May 1998.

Consistent with prior literature on ARCH models, the innovations zt are heavy tailed, the

implied volatility processes are highly persistent and, when we allow for asymmetry in

returns, coefficients on the news parameters suggest the leverage effect. The FIGARCH

and FIEGARCH models indicate that shocks to volatility decay (eventually) at a slow

hyperbolic rate. Our FIEGARCH estimate of d = 0.585 is in line with the one reported

by Bollerslev et al. (1996), who found d = 0.633 for the S&P 500 composite stock index.

Both estimates are however much higher than the ones we obtained in the context of our

realized volatility models and imply, contrary to the findings of our previous sections, that

the logarithmic variance process is not covariance stationary.

Judged by the maximized log-likelihood (L∗), the FIEGARCH model is the most promising

ARCH specification for characterizing changing variances. We shall next investigate whether

this or any other of the above formulations provide useful volatility predictions.
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2.6.2 ARCH Volatility Model Predictions

ARCH model predictions are generally evaluated by means of criteria that match squared

returns with the volatility predictions implied by a particular model (or some transform of

these two series). As we made clear in Section 2.2, the daily squared return is a very noisy

indicator of volatility. Following Andersen and Bollerslev (1998), we therefore use realized

volatilities to evaluate the ARCH model predictions. Specifically, let yt denote one of our

three volatility series, i.e. s2t , st and ln(s2t ), then we evaluate the corresponding ARCH

predictions ŷt, i.e. σ̂2t , σ̂t and ln(σ̂2t ), using the regression:

yt = α+ β ŷt + εt (2.6.4)

If the predictions are unbiased, α = 0 and β = 1. Table 2.4 reports the ordinary least squares

estimates of (2.6.4) and the associated R2 statistics when applied to variances, standard de-

viations and logarithmic variances. Standard errors using White’s (1980) heteroskedasticity

correction are in parentheses.

Table 2.4: ARCH Model Ex Ante Predictions

variances standard deviations log variances

α̂ β̂ R2 α̂ β̂ R2 α̂ β̂ R2

GARCH 0.146 0.526 0.228 0.130 0.682 0.334 -0.443 0.866 0.388
(0.044) (0.098) (0.036) (0.056) (0.037) (0.036)

FIGARCH 0.128 0.562 0.283 0.110 0.713 0.379 -0.421 0.888 0.424
(0.057) (0.123) (0.040) (0.062) (0.035) (0.035)

EGARCH -0.165 1.225 0.518 -0.037 0.953 0.457 -0.366 0.904 0.410
(0.079) (0.175) (0.037) (0.059) (0.034) (0.033)

FIEGARCH -0.121 1.163 0.572 -0.008 0.926 0.495 -0.347 0.877 0.444
(0.059) (0.136) (0.032) (0.051) (0.032) (0.030)

The table reports ordinary least squares coefficient estimates for the model defined by equation 2.6.4 using the
ARCH model variance, standard deviation and logarithmic variance predictions. Standard errors using White’s
(1980) heteroskedasticity correction are in parentheses.
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Turning to the results, we can see that the ARCH model volatility predictions are not

always unbiased, but all models can capture much of the variation we observe for our three

volatility measures. The R2 statistics range between 22.8% and 57.2%. The FIEGARCH

model clearly performs best. For variances and standard deviations the estimates for α and

β are roughly within two standard errors of their hypothesized values and, compared to all

the other ARCH specifications, the R2 statistics are highest for all three volatility measures.

Recall that the FIX model employed in our previous section gave unbiased volatility predi-

cations and that we obtained for this specification R2 statistics of 62.7%, 57.6% and 55.1%

for variances, standard deviations and logarithmic variances, respectively. Judged by these

measures, this realized volatility model clearly improves upon the four ARCH specifica-

tions. Yet, the extent of enhancement depends greatly on which formulation is employed.

Compared to the standard GARCH model, the FIX model R2 measures are higher by 39.9,

24.2 and 16.3 percentage points for the respective volatility measure. Compared to the

FIEGARCH model, the gains are more modest. The R2 measures are higher by only 5.5,

8.1 and 10.7 percentage points.

Our result that the realized volatility model performs better is of course only suggestive.

There may exist other ARCH models that outperform the models used in this section.

Nonetheless, only the FIEGARCH formulation is – in principle – consistent with all the

empirical regularities we document. It is therefore doubtful that any other univariate model

of the ARCH class could disinter anything more from returns that would be relevant for the

prediction of stock return volatility. Moreover, the FIEGARCH model estimates suggest

that scaled returns are non-normal and that the volatility process is not covariance station-

ary – two implications we did not observe using realized volatilities. This perhaps suggests

some mis-specification that is confined to the ARCH approach to modeling volatility. An

open question remains whether Stochastic Volatility models would perform better. The re-

sults throughout this paper suggest that any such formulation would need to account for the

long-memory property of volatility. Although it is possible to obtain parameter estimates of
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fractionally integrated Stochastic Volatility models (e.g. Breidt et al. 1998), for these type

of models one cannot extract volatility predictions from the data.18 Any comparison along

the lines we have pursued is therefore not possible.

2.7 Conclusions

Using 5-minute squared returns on the Dow Jones Industrials Average portfolio over the

January 1993 to May 1998 period, we documented the properties of daily stock return

volatility. We found that the distributions of variances and standard deviations are skewed-

right and leptokurtic, but that logarithmic variances are distributed approximately normal.

All three volatility measures are (a) covariance stationary, (b) highly persistent, (c) very

little correlated with current returns (no ARCH-M effect) and (d) correlated more strongly

with lagged negative than lagged positive returns (news-effect). The news effect can explain

some of the asymmetry and flatness of tails in the distribution of the three volatility series

– most notably for variances and standard deviations.

We fitted a fractionally integrated model that accounts for the news-effect directly to log-

arithmic variances. Using ex ante one-day-ahead prediction criteria we found that this

model yields unbiased and accurate variance, standard deviation and logarithmic variance

predictions and that these predictions are better than the ones obtained by the GARCH,

FIGARCH, EGARCH and FIEGARCH models. Among these four ARCH specifications,

the FIEGARCH formulation performed best. However, the estimate of the fractional inte-

gration parameter given by this specification implies that the logarithmic variance process

is not covariance stationary. For all ARCH models we found that the distribution of returns

divided by the implied standard deviations is leptokurtic. When using realized standard

deviations instead, normality of this distribution cannot be rejected.

18A survey of Stochastic Volatility models can be found in Ghysels, Harvey and Renault (1996).
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Chapter 3

Forecasting Stock Volatility

3.1 Introduction

Shortly after the introduction of the Autoregressive Conditional Heteroskedastic (ARCH)

model by Engle (1982), a new and large research area has developed. The class of spec-

ifications that emerged has been applied to model the return volatility of virtually every

financial asset available. The survey of the literature by Bollerslev, Chou and Kroner (1992)

lists already several hundred papers related to this approach. Subsequent surveys include

Bera and Higgins (1993), Bollerslev, Engle and Nelson (1994), Palm (1996) and Pagan

(1996), among others. The closely related Stochastic Volatility (SV) class of models has

engendered its own voluminous literature, see for instance the survey by Ghysels, Harvey

and Renault (1996).

A factor fuelling this research area is, without doubt, that many interesting propositions

in finance, such as asset and derivative pricing, risk hedging, portfolio selection and risk-

management, explicitly depend upon the volatility of future returns. Thus forecasting

volatility is of critical importance and ARCH and SV models are, in principle, capable to

contribute to this task.
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Of considerable interest is whether and to what extend these models proove useful. The

investigation of this issue is, however, substantially complicated by the fact that volatility

is not a directly observable variable. The standard resolution has been to compare the

variance forecasts to squared daily returns. However, even at the one-day-ahead horizon,

the correlation between these two variables tends to be disappointingly low (the R2 is

typically 5%). It is therefore not surprising that hardly any attention has been given to the

forecasting performance of volatility models when the horizon extends. One exception is the

study by West and Cho (1995) who found, as expected, that the performance of conventional

models cannot be distinguished from a naive homoskedastic model. This suggests that the

usefulness of ARCH and SV models is perhaps limited to one-step-ahead forecasts. Although

such short horizon may be sufficient for trading risk management, in many applications,

such as option-pricing and other forms of risk management, forecasts over longer horizons

are certainly warranted.

Andersen and Bollerslev (1998) give evidence that the apparent poor forecasting perfor-

mance of the standard models may simply result from the fact that the daily squared return

has large measurement error. As an alternative, they suggest a better forecast evaluation

measure: the sum of intraday squared returns or the ‘realized’ volatility. This measure is

free of any error, provided that sufficiently many intraday returns are used.1 In the setting

of exchange rates, they found that the correlation between one-day-ahead GARCH variance

forecasts and realized variances is substantially higher than when the daily square return is

used (the R2 measures are about 50%).

Our previous chapter suggested that the realized volatility should be viewed not only as a

forecast evaluation device, but also as a measure of intrinsic interest. Specifically, we fitted

a time series model directly to realized volatility measures and found that the resulting ex

ante one-day-ahead forecasts are superior to the ones obtained from models of the ARCH
1As a convention, and perhaps abusive of language, we shall refer to ‘intraday’ returns as the sequence

of returns within one day; by ‘intradaily’ we mean this intraday sequence spanning over several days. By
‘daily’ returns we mean the sequence of returns measured for an entire single day spanning over several days.
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class, including those that give proper consideration to the long-run properties in the data

(the realized volatility formulation gives an R2 statistic of more than 60%).

Central to ARCH and SV models is the idea that the squared return process can be decom-

posed as a product of conditional variances and noise. If such decomposition can indeed

be achieved in practice, then this suggests that the realized volatility measure is inefficient.

In this case, it might be better to measure volatility using the sum of squares of intraday

conditional variances. Furthermore, a model that accomplishes such decomposition should

yield superior volatility forecasts.

The central question we seek to answer is which volatility models yield useful forecasts over

long-term out-of-sample horizons. Our results in Chapter 2 suggest that at the one day

horizon the realized volatility model performs better than formulations of the ARCH class.

However, as the realized volatility may be inefficient, this specification may perform worse

than one that models the intradaily volatility explicitly. A third approach will therefore be

considered, specifically, the direct application of ARCH formulations to intradaily returns.

However, moving to higher frequency data, we face the problem of intraday seasonality,

i.e. that the volatility changes systematically within the day. We explicitly address this

problem by extending traditional ARCH models via nonparametric methods.

The empirical analysis of this study is based on five-minute intradaily stock returns on the

Dow Jones Industrials Average (DJIA) portfolio over the period extending from January

4, 1993 to August 31, 1999. We consider the forecasting performance of various models

for up to 40-days-ahead horizons. The sample is divided into two periods: the first spans

from January 4, 1993 to May 29, 1998 and is used for data discovery, estimation and ex

ante forecast evaluation, while the second runs from June 1, 1998 to August 31, 1999 and

is reserved for ex post forecast evaluation only.

This chapter is organized as follows. Following this introduction, Section 3.2 presents a

brief account of the theoretical underpinnings of the realized volatility measure. Section 3.3
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details the construction of the data that provide the basis for the subsequent empirical anal-

ysis. Section 3.4 examines the properties of the five-minute data, where we pay particular

attention to the seasonality of intraday volatility. In Section 3.5 we develop semi-parametric

extensions to long-memory models of the ARCH class to account for both persistence and

seasonality in volatility. Section 3.6 presents the properties of our daily return and realized

volatility series. In Section 3.7 we apply ARCH models to daily data and in Section 3.8 we

present the specifications that model the realized volatility directly. Finally, in Section 3.9

we turn to the ex ante and ex post multi-day horizon forecasting exercises. Section 3.10

concludes this chapter.

3.2 Realized Volatility Measurement

To set forth the notation, consider dividing a day (or trading period) into N evenly spaced

intervals and let pn,t denote the time n ≥ 0 logarithmic price at day t. The time series

process of continuously compounded returns is then defined by:

rn,t = pn,t − pn−1,t

where n = 1, . . . , N and t = 1, . . . , T . If N = 1, for any series we ignore the first subscript

n and thus rt denotes the time series of daily returns.

We assume that the sequence rn,t has the following properties: (a) it has mean zero, E[rn,t] =

0, (b) it is uncorrelated at all leads and lags, E[rn,t rm,s] = 0 ∀n,m, s, t except when

n = m and s = t, (c) the variances and covariances of the squares exists and are finite,

E[r2n,t r
2
m,s] < ∞, and (d) it has the representation:

rn,t = σn,t zn,t

where σ2n,t is the variance of rn,t and zn,t is independent of σ2n,t and independent and

identically distributed (i.i.d.) with E[zn,t] = 0 and E[z2n,t] = 1.
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For any N , an unbiased estimator of the daily return volatility is:

s2t =
N∑

n=1

r2n,t

as:

E
[
s2t

]
=

N∑
n=1

σ2n,t E
[
z2n,t

]
=

N∑
n=1

σ2n,t = σ2t

where σ2t is the return population variance measured at the daily unit.

The variance of s2t is in Chapter 2 derived as:

V
[
s2t

]
=

σ4t
N

(
KN,t − 1

)(
1 + 2

N−1∑
n=1

N − n

N
ρN,n,t

)
(3.2.1)

where KN,t denotes the kurtosis of {rn,t}N1 , and ρN,n,t the nth autocorrelation of {r2n,t}N1 .
The kurtosis and autocorrelations have subscript N as these may change with the number of

intraday returns. For any particular value of N , measurement error increases with the daily

population variance, with the kurtosis of intraday returns and with the autocorrelations of

intraday squared returns.2

In Chapter 2 it is shown that s2t converges in mean-square to σ2t , i.e. limN→∞V [s2t ] = 0,

provided that σ2n,t is stationary and that the discrete time kurtosis of returns is bounded.

The latter assumption implies continuity of the sample paths of σ2n,t by the Kolmogorov

criterion (Revuz and Yor 1991, Theorem I.1.8).3 Thus, by increasing the sampling frequency

of intradaily returns, it is possible to construct volatility measures that are asymptotically

free of any error and, as such, volatility can become an observed variable.
2These results have interesting implications for forecast evaluation when the daily squared return is used,

r2t = s2t when N = 1. By (3.2.1), a volatility model should appear to forecast better when it is applied to
assets with low return volatility and/or kurtosis.

3Consistency may alternatively be established under the assumption that the price process pn,t follows
dpn,t = σn,t dWn,t, where Wn,t denotes a Wiener process. Under the assumption that σn,t is continuous, it
follows from the results in Karatzas and Shreve (1988, Chapter 1.5) or Barndorff-Nielsen and Shephard (1999)
that plimN→∞

∑N
i=1 r

2
n,t =

∫ ∞
1
σ2

n,t dn = σ2
t . See also Andersen et al. (1999) who establish consistency in

the context of special semi-martingales.
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Unfortunately, this convergence result gives little guidance about the actual reduction in

measurement error for finite N . However, one may consider some special cases of (3.2.1)

that offer some insight. For instance, suppose that rn,t is i.i.d., then equation 3.2.1 reduces

to: V [ s2t ] = (Kt − 1)σ4t /N (because returns are assumed i.i.d., the kurtosis does not

depend on N and this subscript is therefore omitted). Under this scenario, measurement

error decreases at rate N . Nonetheless, for various assets it is well documented that the i.i.d.

assumption does not hold as the squares of returns are found to be correlated (the ARCH

effect). Therefore, this expression is expected to give the lower bound of measurement error.

Recall that the results reported thus far are contingent upon the twin assumptions that

returns have mean zero and are uncorrelated. The latter assumption becomes particularly

questionable when N is large, as serial correlation in returns is a common symptom of mar-

ket micro-structure effects such as price discreteness, bid-ask bounces and non-synchronous

trading (see for instance the textbook treatment by Campbell, Lo and MacKinlay 1997;

Chapter 3). The violation of both assumptions can however be easily studied when consid-

ering the MA(q) (moving average) representation of {rn,t}N1 :

rn,t = µn,t + εn,t +
q∑

i=1

ψi,t εn−i,t (3.2.2)

where the residual εn,t is assumed to be uncorrelated across all leads and lags. Note that

we allow the mean µn,t to change either across intraday intervals n (to allow for seasonality

within the day), or across days t (to permit periodicity across days), or both while the mov-

ing average representation may change across t. Upon squaring (3.2.2), taking expectations,

and summing over n = 1, . . . , N , it follows that:

E

[
N∑

n=1

r2n,t

]
= E

[
s2t

]
=

N∑
n=1

µ2n,t + (1 +
q∑
1

ψ2
i,t) E

[
N∑

n=1

ε2n,t

]
(3.2.3)

where E[
∑N

n=1 ε
2
n,t ] = σ2t . At day t, the cumulative squared returns measure has therefore

an additive bias given by the sum of the squared intraday means and a multiplicative bias
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given by the squared dynamic coefficients of the moving average representation. Under

conditions of serial correlation and non-zero means µn,t, the realized volatility measure

therefore unambiguously overestimates actual volatility. One may, of course, test for the

statistical significance of the parameters that are used to capture any temporal dependence

in returns and use (3.2.3) to determine whether either bias is economically important.

Before proceeding, we would like to note that the cumulative squared returns measure does

not require that the return intervals are of equal length throughout the day. This property

might prove useful when there is concern about bias that is due to infrequent trading. Under

these circumstances, it would be sensible to set the ending mark of each intraday interval

once a specific number of trades are accumulated in it. Thus, rather than choosingN a priori

for the calculation of the realized volatility, one could set some cut-off for the accumulated

number of trades. Such a modification should also result in an overall improvement in

measurement error provided that volatility is increasing in the number of trades. While the

measurement error of the realized volatility increases with actual volatility, it decreases with

the number of intervals during the day and this, in turn, increases as the number of trades

rises. However, if one is interested in the volatility of an index, where trading frequencies

differ across components of the index, such a method becomes more difficult to implement.

We shall leave this issue for future research.

3.3 Data Source and Construction

The empirical analysis is based on data from the NYSE Transaction and Quote (TAQ)

database which records all trades and quotations for the securities listed on the NYSE,

AMEX, NASDAQ and the regional exchanges. Our sample consists of the Dow Jones

Industrials Average (DJIA) index constructed from the transaction prices of the 30 stocks

that are contained in it. The data span from January 4, 1993 to August 31, 1999 (1683

observations). Within each day, we consider the transaction record extending from 9:30 to

16:05, the time when the number of trades noticeably dropped. Next to transaction prices,
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volume and time (rounded to the nearest second), TAQ records various codes describing

each trade. We used this information to filter trades that were recorded in error and out

of time sequence. For a more detailed description of the filtering procedure we refer to

Chapter 2.

Taking all 30 stocks together, over our entire sample we observe a trade every 0.9 seconds.

Naturally, the trading frequency of the index components is lower. It also varies greatly

across stocks: the median time between trades for a single stock ranges from a low of 7

seconds to a high of 40 seconds. This suggests that one should worry that non-synchronous

trading induces spurious serial correlation in the return process which, in turn, would render

the cumulative squared returns measure biased. Since we are focusing on an index, the

market micro-structure effects that are due to price discreteness and bid-ask bounces are of

less concern as these tend to wash out in the aggregate (see Gottlieb and Kalay 1985, Ball

1988 and Harris 1990, for instance).

To mitigate the problem of bias, following Andersen and Bollerslev (1998) and Andersen et

al. (1999), we shall rely on five-minute returns. These are constructed from the logarithmic

difference between the prices recorded at or immediately before the five-minute marks.

When considering the transactions record extending from 9:30 to 16:05, this provides us

with 79 returns for each of the 1683 days, or a total of 132, 957 observations over our sample

period.

Of course, it remains an empirical question whether the five-minute cut-off is sufficient large

enough so that the problem of bias due to market micro-structure effects and/or non-zero

means is of no practical concern. In our next section we shall investigate the properties of

our five-minute return series and raise the issue of bias again.

To have meaningful ex post forecast evaluations, we divide our sample into two periods. For

model estimation, we employ data spanning from January 4, 1993 to May 29, 1998 (1366

observations). For ex post forecast evaluation, we reserve the data extending from June 1,
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1998 to August 31, 1999 (317 observations).

3.4 Properties of Intradaily Returns and Volatility

From the results in Section 3.2 it follows that the cumulative squared returns measure will

be biased if five-minute returns are correlated and have non-zero mean values that may vary

within the day. In this section we shall first examine the properties of intradaily returns to

determine whether and to what extent such bias is relevant. If there is indeed evidence for

temporal dependence in the conditional mean of five-minute returns, this cannot be ignored

when modeling the conditional variance. As such, the study of the level returns will help

us to define the ARCH models that we shall apply to five-minute data.

In subsection 3.4.2, we turn to the properties of intraday volatility. As we shall see shortly,

our data display strong seasonal patterns. This is a well-known characteristic of U.S. stock

markets that has been documented in Wood et al. (1985), Harris (1986), Lockwood and

Linn (1990) among others. Despite these findings, this characteristic has been largely ig-

nored in the ARCH and Stochastic Volatility literature. Intuitively it is clear that one

cannot properly account for the temporal dependence in volatility when one takes no notice

of the seasonal relation of volatility within the day. Not surprisingly, the straightforward

application of standard volatility models has given puzzling results. For instance, Kroner

(1994) and Guillaume (1994) find that the GARCH model can imply less volatility persis-

tence when applied to high frequency rather than low frequency returns. This defies the

aggregation results developed in Nelson (1990, 1992), Drost and Nijman (1993) and Drost

and Werker (1996).

There have nonetheless been attempts to correct for intraday seasonality. In the exchange

rate literature, seasonality in intradaily data is considered by Müller et al. (1990) and

Dacorogna et al. (1993). More recently, Andersen and Bollerslev (1997) provide a general

procedure that is applicable to both exchange rates and stocks. Their approach uses a

two-step filtering procedure for removing the intraday volatility seasonality from returns.

48



In the third step, volatility models are applied to the filtered data.

Unfortunately, however promising, filtering procedures inadvertently change the character

of the data. For this reason, we shall in this paper follow a different approach, specifi-

cally, modeling simultaneously the persistence and seasonality of volatility. Such a one-step

procedure is not only more economical but also leaves the returns series intact.

A critical feature of the one-step estimation method is that it assumes that the return process

can be decomposed as a product of three components: deterministic intraday volatility,

seasonal-free volatility and i.i.d. noise. To determine whether such decomposition is in fact

warranted, we propose in subsection 3.4.3 a simple one-step filtering procedure that identifies

the deterministic component using minimal assumptions. This allows us to construct a

filtered return series and then study whether the volatility characteristics of it are free

of any problems that may be related to seasonality. However, given the aforementioned

problems of filtering data, we shall not apply volatility models to returns constructed in

this manner. Nonetheless, as our one-step estimation procedure relies on the idea of a

tripartite decomposition, it will be useful, as a pre-specification exercise, to undertake this

filtering approach.

3.4.1 Seasonality of Intraday Returns

To investigate the intraday seasonality of returns, Figure 3.1 plots the average sample mean

of five-minute returns, r̄n = T−1
∑T

t=1 rn,t for n = 1, . . . , 79 and T = 1366, along with the

1.96 standard error bands of the estimates under the assumption that r̄n = 0.4 If returns are

distributed normal, these bands represent therefore the five percent confidence interval for

the hypotheses that the mean estimates are zero. As the distribution of returns is known

to be leptokurtic, the displayed intervals are likely too tight, however. Taking this into

consideration – and ignoring the first and last five-minute mean observations – one would

possibly not reject the hypotheses that the estimates are significantly different from zero
4Assuming that the sequence {rn,t}T

t=1 has mean zero and is uncorrelated, the variance of r̄n equals s̄2n/T
where s̄2n = T−1 ∑T

t=1 r
2
n,t (see also equation 3.4.1 later in this section).
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at the 5% level. Perhaps this conclusion would remain for the first mean estimate as well,

but certainly not for the last value displayed in Figure 3.1. By Chebyshev’s inequality, it is

significantly different from zero with a probability not greater than 0.370%.5

Figure 3.1: Intraday Average Returns

The solid line displays the 79 consecutive average five-minute returns over the time extending from 9:30 to 16:05. The
doted lines represent the asymptotic five percent confidence interval for the hypotheses that the mean estimates are
zero. The sample period is January 4, 1993 to May 29, 1998.

Figure 3.2 displays the 790 sample autocorrelations of the five-minute returns for up 10

days. The first two values equal 0.080 and −0.018 and are significant judged by the

±1.96√(1/N T ) 5% confidence interval. Consistent with the spurious dependencies that

would be induced in an index by non-synchronous trading, the first order autocorrelation is

positive. Beyond the first few lags however, the realizations resemble white noise. Excluding
5Using the intraday mean return estimates, we found it interesting to determine by what percentage the

DJIA increased over certain times of day. In the period extending from January 4, 1993 to May 29, 1998
it increased between 9:30 and 9:35 by 9.393%, between 9:35 and 16:00 by 14.257% and between 16:00 and
16:05 by 39.685%. Thus the index increased, on average, more during the last five minutes of trading than
during the previous six and a half hours.
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the first two values, 8.73% of the autocorrelations are significant at the 5% level. Although

not all violations may be attributed to Type II error of the test, one should keep in mind

that the chosen confidence interval is asymptotic when the innovations are not i.i.d.

Figure 3.2: Intradaily Return Sample Autocorrelation Function

The graph displays the first 790 sample autocorrelations of five-minute returns. The first and second autocorrelations
are 0.080 and −0.018, respectively. The horizontal lines are the 95% confidence intervals, ±1.96/

√
N T . The sample

period is January 4, 1993 to May 29, 1998.

As the modeling and measurement of volatility is concerned, the main findings of this

subsection are that the mean estimates of 9:30 to 9:35 and 16:00 to 16:05 returns are

sizable and that the return process is serially correlated. However, for the realized volatility

calculations the consequences are minimal. When estimating the MA model defined by

equation 3.2.2, allowing for a non-zero mean in the first and last five-minute returns and

the first two moving average parameters, we obtain µ̂1 = 0.0048, µ̂79 = 0.0293, ψ̂1 = 0.0426

and ψ̂2 = −0.0321. From (3.2.2) it follows that the bias resulting from non-zero mean

estimates is only 0.0009, while the bias emerging from serial correlation scales the volatility
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estimates upward by a factor of merely 1.0028.6 Considering that the mean realized variance

equals 0.4166, we view these biases too small to be of any economic significance. Thus, we

shall not employ any corrections by imposing a structure on the conditional mean dynamics

of returns.

As the estimation of ARCH models is concerned, we shall explicitly allow for the possibility

that returns are correlated and that some of the five-minute returns may have a mean dif-

ferent from zero by modeling simultaneously the conditional mean and volatility of returns.

From these results, as we shall see, it will follow that the expected bias in the cumulative

squared returns measure is even smaller than the above analysis suggests.

3.4.2 Seasonality of Intraday Volatility

The fluctuations in intraday volatility become evident in Figure 3.3 where we plot average

five-minute variances, defined as:

s̄2n = T−1
T∑
t=1

r2n,t n = 1, . . . , N (3.4.1)

for N = 79 and T = 1366. The horizontal line gives the average value of (3.4.1) over all N .

Each estimate s̄2n may be viewed as the realized average five-minute variance, as we take the

mean of nth day squared returns. The properties of the estimator follow therefore readily

from the results in Section 3.2. It will be unbiased if the nth value of the five-minute returns

has mean zero and if all T of these values are uncorrelated. Measurement error will now

depend on T , the autocorrelations of the nth five-minute squared returns and the kurtosis

of nth five-minute returns. As above, the degree of biases stemming from the violations

of the assumptions made for the conditional mean can be assessed using (3.2.3). We shall

however ignore this issue as any bias is, again, found to be negligible.
6We obtained these results by conditioning the residual innovations on Student’s t density to account

for the excess kurtosis in returns. When the normal density is used instead, bias resulting from non-zero
five-minute means is 0.0008 while bias due to serial correlation is 1.0069.

52



Figure 3.3: Intraday Average Variances

The solid line displays the 79 average variance estimates of five-minute returns over the time extending from 9:30 to
16:05 (see equation 3.4.1). The dotted horizontal line gives the mean of these values. The sample period is January
4, 1993 to May 29, 1998.

As it has been documented by Wood et al. (1985), Harris (1986) and others, volatility

follows roughly a U-shaped pattern: it is high during the first hour of trading, reaches its

low around mid-day and is again high during the last trading hour. Noticeable exceptions do

however occur: there is an increase in volatility at the very beginning of the day, volatility

dips at about 10:00 and 15:30 and one observes a fairly steady decline of volatility starting

at 15:45 (the 75th value).

The solid line in Figure 3.4 plots the first 790 sample autocorrelations of five-minute squared

returns, r2n,t (upper panel), absolute returns, |rn,t| (middle panel), and logarithmic squared

returns, ln(r2n,t) (lower panel).
7 We can see that over every subsequent set of 79 correlations

7To circumvent the inlier problem that arises when taking the logarithm of near zero or zero squared
returns, we employ the transformation suggested by Fuller (1996): l̃n(r2n,t) = ln(r2n,t+γ s

2)−γ s2/(r2n,t+γ s
2),

where s2 is the sample variance of r2n,t and, as in Fuller, γ = 0.02.
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a U-shaped pattern reoccurs. When looking at the first 79 autocorrelations, for instance, we

can notice a peak at the first five-minute offset, a low at roughly the 40th five-minute offset,

and again a peak at 79th five-minute offset. Although the amplitude of each cycle appears

to remain the same, the decay in the autocorrelations becomes evident in that subsequent

cycles are at lower levels.

Figure 3.4: Intradaily Volatility Sample Autocorrelation Functions

The solid lines display the first 790 sample autocorrelations of five-minute ‘raw’ squared returns, absolute returns and
logarithmic squared returns. The dotted lines give the sample autocorrelations when the returns are filtered according
to the procedure described in Section 3.4.3. The sample period is January 4, 1993 to May 29, 1998.
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As the measurement of the realized volatility is concerned, the intraday volatility pattern

documented above is of little concern. While measurement error depends on the autocor-

relations in squared returns, the quality of our measure is not compromised when these

correlations follow specific patterns. The pronounced systematic fluctuations in the sample

autocorrelation function of intradaily squared, absolute, or logarithmic squared returns give

however an initial indication that it would probably be hazardous to apply the standard

volatility models to intradaily data. Neither models of geometric decay nor the ones that

allow for hyperbolic decay can accommodate the strong cyclical patterns that the sample

autocorrelation functions display.

3.4.3 Correcting for Intraday Volatility Seasonality

We shall assume that intradaily returns have the representation:

rn,t = σn,t zn,t = bn σ̃n,t zn,t (3.4.2)

where zn,t is i.i.d., mean zero and unit variance and the volatility process σn,t is the product

of a deterministic seasonal component bn (that varies within the day, but not from day to

day) and the intradaily volatility σ̃n,t that is seasonal-free.8,9 All three return components

are assumed to be independent and the volatility variables are nonnegative, i.e. σt,n ≥ 0

and bn ≥ 0.

In our next section we develop models that simultaneously identify all three components

in (3.4.2). In this section we shall propose a simple procedure that filters from returns the

seasonal effects that we observe in intraday volatility. This allows us to study, at an initial

stage, whether the above setup is useful.
8Note that bn is a vector of length N x T where the first N elements are stacked T times.
9Andersen and Bollerslev (1997) consider the more general setup that specifies bn,t rather than bn – thus

the seasonal component is allowed to vary from day to day. However, at the filtering stage it is assumed that:
rn,t = bn,t σt zn,t, where the daily volatility σt has to be estimated (in their application using a GARCH(1,1)
model).
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Upon squaring (3.4.2), averaging over all t, and taking expectations it follows that:

E
[ 1
T

T∑
t=1

r2n,t

]
=

1
T

T∑
t=1

σ2n,t = b2n

[ 1
T

T∑
t=1

σ̃2n,t

]
n = 1, . . . , N (3.4.3)

where the term on the left equals, by (3.4.1), E[s̄2n]: the expectation of the average nth

day interval variance. The factor in brackets on the right is the average seasonal-free

nth interval variance. Because it is seasonal-free, we shall assume that it will equal the

unconditional variance at the five-minute unit, i.e. (N T )−1
∑T

t=1 σ
2
t . Graphically, the

seasonal-free representation of intraday volatility in Figure 3.3 would be a horizontal line

at (N T )−1
∑T

t=1 σ
2
t .

As the sample analogue to (N T )−1
∑T

t=1 σ
2
t is (N T )−1

∑T
t=1 s

2
t = N−1s̄2, this then suggests

the following estimator for bn:

b̂n =

√
s̄2n

s̄2/N
n = 1, . . . , N (3.4.4)

Thus the deterministic seasonal components bn may be estimated as the square-root of the

average nth day interval variance over the average variance at the nth day unit.

Having obtained all N estimates for the deterministic seasonal component bn, one might

then construct the pseudo-return series:

r̃n,t =
rn,t

b̂n
(3.4.5)

which, if the representation of returns in (3.4.2) is correct, should not display any seasonal

volatility patterns.

Note that by construction, N−1
∑N

n=1 b̂
2
n = (

∑N
n=1 s̄

2
n)/s̄

2 = 1 (the sum of average five-

minute variances equals the daily mean variance) and therefore it holds that on on average

the sum of squared pseudo-returns,
∑N

n=1 r
2
n,t/b̂n, will equal the sum of squared returns
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∑N
n=1 r

2
n,t (the realized volatility). Unless, trivially, bn = 1 ∀N , this however is not neces-

sary true for each of the T days.10 It will also not hold that the sum of returns, absolute or

logarithmic squared pseudo-returns are, on average, equal their unadjusted counterparts.

This arises since N−1
∑N

n=1 bn �= 1, N−1
∑N

n=1 |bn| �= 1, and N−1
∑N

n=1 ln(b
2
n) �= 1, unless

the trivial case holds. Of course, one may always find some normalization of bn so that the

above three equations hold with equality, but this again does not imply that the intraday

aggregates will be equal for each day. As such, it becomes evident that this type of filter-

ing procedure – and all others for that matter – ultimately changes the return process in

various ways. Clearly then, one could not comfortably compare the accumulated variance

predictions of a model applied to filtered returns to the realized volatility measure which is

obtained from raw data. It is mainly for this reason that we in our next section employ a

formulation that leaves returns unaltered.

To determine, at an initial stage, whether the above representation of returns in (3.4.2) is

useful, we plot in Figure 3.4 in dotted lines the autocorrelation functions of five-minute

squared pseudo-returns, r̃2n,t, absolute returns, |r̃n,t|, and logarithmic squared returns,

ln(r̃2n,t). Upon comparing the results from filtered to unfiltered returns, it becomes evi-

dent that the correlation structure of five-minute volatilities display a much more coherent

pattern than before. Specifically, the slow hyperbolic decay indicates the presence of long-

memory. Using daily return data, this phenomenon has been documented by Ding, Engle

and Granger (1993) and Crato and de Lima (1994), among others. Close inspection of

the filter-based autocorrelations indicates, however, that perhaps some seasonality remains.

Nonetheless, the cyclical behavior that remains is relatively small to what is observed when

the raw returns are used.
10Consider, for instance, the following N = 2 and T = 2 senario: r21,1 = 1, r22,1 = 2 , r21,2 = 3 and

r22,2 = 4. Thus, s̄21 = 2, s̄22 = 3 and s̄ = 5. Form these values one obtains b̂21 = 2/5 and b̂22 = 3/5. But,
r21,1 + r22,1 = 3 �= 15/2 = r̃21,1 + r̃22,1.
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3.5 Intradaily ARCH Modeling

The most popular approach to measuring and modeling volatility is to fit specifications of

the ARCH class to returns. Since the introduction of the ARCH model by Engle (1982),

various extensions have been proposed. While it has been extensively documented that the

volatility of asset returns displays long-range dependence, only two ARCH-type specifica-

tions have been put forward that attempt to properly account for this. One is the FIGARCH

model by Baille, Bollerslev and Mikkelsen (1996) and the other is the FIEGARCH model by

Bollerslev and Mikkelsen (1996). As the correct specification of volatility dependencies be-

come especially important when one focuses on long-term horizon forecasts, we concentrate

on these two models. Nonetheless, we will also consider the short-memory specifications

that are nested in them (Bollerslev’s (1986) GARCH model and the EGARCH model in

Nelson (1991)) in order to determine what is gained.

In this section we consider the FIGARCH and FIEGARCH specifications in the context

that they are applied to intradaily data. Our previous section indicated that it would likely

be hazardous to apply the standard formulation of these models directly to our five-minute

data. We therefore propose extensions that account for the inherent intraday seasonality.

In order to accommodate temporal dependencies in the conditional mean of returns, we

shall consider the return representation:

(
1 + φ(Lpl)

)
rn,t =

N∑
i=1

µn In +
(
1 + ψ(Lql)

)
εn,t

εn,t = σn,t zn,t (3.5.1)

where it is assumed that E[zn,t] = 0 and E[z2n,t] = 1. The indicator In is one when

n = 1, . . . , N and zero otherwise. Throughout this paper, L denotes the lag operator and a

polynomial of the form a(Ll) is defined by
∑l

i=1 ai L
i. The above representation of returns

thus allows for non-zero nth five-minute means and for serial correlation in the intradaily
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return process.

For the FIGARCH (p, d, q) model, we consider the conditional variance process:

σ2n,t =
exp

(∑J
j=1 ωj xj,(n,t)

)
a

σ̃2n,t

σ̃2n,t =
ω0 +

[(
1− β(Lp)

) − (
1− α(Lq)− β(Lp)

) (
1− L

)d]
ε2n,t(

1− β(Lp)
) (3.5.2)

where a is a normalizing constant and xj,(n,t), j = 1, ..., J is a set of exogenous variables

to be defined later. The FIGARCH model is covariance stationary only in the special case

when d = 0, whereby it reduces to the GARCH specification. The model displays however

the important property of having a bounded cumulative impulse-response function for any

0 ≤ d < 1. As in Bollerslev (1987), we condition the innovations zn,t on the standardized

Student’s t density, i.e. zn,t ∼ T (0, 1, η1). This density has thicker tails than the normal

when η1 < ∞.

We consider for the FIEGARCH(p,d,q) model the following conditional variance process:

ln(σ2n,t) = ω0 +
J∑

j=1

ωj xj,(n,t) +
α(Lq)

(
γ zn,t + |zn,t| − E

[ |zn,t| ] )
(
1− L

)d (
1− β(Lp)

) (3.5.3)

where, again, xj,(n,t), j = 1, ...J is a set of exogenous variables. As in the standard ARFIMA

model that allows for fractional integration in the conditional mean, for −0.5 < d < 0.5,

ln(σ2n,t) is covariance stationary and for 0 < d < 1, the process is mean-reverting and said

to have long-memory. When d = 0, the model reduces to the EGARCH specification of

Nelson (1991). As in that formulation, we condition the innovations zn,t on the density of

the generalized error distribution, i.e. zn,t ∼ GED(0, 1, η2). The density is normal when

η2 = 2, while it displays heavy tails for η2 < 2.

A feature commonly found for equities is that past negative returns tend to have a bigger

impact on future volatility than positive returns of the same magnitude (see for instance
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Black 1976, Pagan and Schwert 1990 and Engle and Ng 1993). This phenomenon is often

called the ‘leverage’ or ‘news’ effect. The EGARCH and FIEGARCH models allow for this

asymmetry of volatility in past returns if γ < 0.

Note that the exponential of the exogenous variables in (3.5.2) and (3.5.3) will scale the

conditional variances up or down. The exponential transformation was chosen so that the

variance process will be strictly non-negative without imposing additional restrictions.

To account for the apparent seasonality that would exactly comply with the representation

of returns set forth in equation 3.4.2, one could specify that xj,(n,t) = Ij for j = 1, ..., N − 1

where Ij would take value one at the jth five-minute mark and zero otherwise (theNth value

is left out as the models contain the constant ω0). As the estimation of N − 1 additional

variables is computationally demanding, we instead account for the intraday seasonality

using the following set of variables:

J∑
j=1

ωj xj,(n,t) = ω1

(
I1 − 1

N

)
+ ω2

(
IN − 1

N

)
+ ω3

(
nN∑N
i=1 i

− 1
)

+
K∑
k=1

ω4+2(k−1) sin
(
2 k π n
N

)
+ ω5+2(k−1) cos

(
2 k π n
N

)
(3.5.4)

where n = 1, . . . , N and N = 79 for our five-minute data. The various normalizations in

equation 3.5.4 guarantee that this expression has mean zero over n = 1, . . . , N .

The sum of trigonometric terms in (3.5.4) is the non-parametric Flexible Fourier Form

(FFF) of Gallant (1981).11 In theory, K must go to infinity to approximate any functional

form, however we found that it was not worthwhile (in terms of significance) to go above

K = 2 once we allowed for the additional terms in (3.5.4): two deterministic variables set to

one at either the first or last intraday mark (w1 and w2) as well as trend component (w3).
11Andersen and Bollerslev (1997) use as well the FFF specification to approximate the intraday volatility

pattern while Dacorogna et al. (1993) using polynomials that correspond to the geographical locations of
exchange markets. In a different context, Pagan and Schwert (1990) apply the FFF formulation to daily
returns in order to account for the leverage effect.
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Whether this extension to the long-memory ARCH models will indeed help us to better

identify the volatility process is a question that we shall answer in our forecasting exercises.

In the context of forecasting volatility over multiple days, some comments and modifications

to the FIGARCH model are in order. From Baille, Bollerslev and Mikkelsen (1996) it

follows that when 0 < d ≤ 1, non-stationarity of the model stems from the fact that that

the coefficients ψi in the infinite binominal expansion of (1− L)d = 1 − ∑∞
i=1 ψiL

i sum to

unity. When 0 < d < 0 it is in practice necessary to truncate (1−L)d, say at lag m. In this

case, however,
∑∞

i=1 ψi < 1. For instance, when d = 0.375 one obtains
∑1,000

i=1 ψi = 0.948,∑2,000
i=1 ψi = 0.960, and

∑10,000
i=1 ψi = 0.978. The process one identifies when estimating

the model is therefore stationary. Let a1, ..., au denote the dynamic coefficients in the

denominator of the conditional variance process (3.5.2), where u = max{m, q}. As in the

standard GARCH model, it therefore should hold that w0/(1−β1, . . . ,−βp−a1−. . . ,−au) =
(TN)−1

∑T
t=1

∑N
n=1 rn,t. That is, the constant estimate over one minus the sum of dynamic

coefficients should equal the unconditional variance of the process. This however was not the

case in our application and as such the forecasts of the model converged to a constant that

was substantially different from the unconditional variance. To circumvent the problem, we

therefore set w0 such that the implied unconditional variance equals the mean variance of

returns. Interestingly, this hardly altered the maximized log-likelihood, yet improved the

forecasting performance of the model in a pronounced manner. We should note that on the

basis of our forecast evaluation criteria, this model would otherwise have been the worst

performing specification.

To forecast variances over s days, i.e. sN five-minute intervals, it is for the FIEGARCH

model necessary to obtain:

E
[
ea1 g(zt+s,N−1)+a2 g(zt+s,N−2)+···+asN−1 g(zt+1,1) | tN

]
(3.5.5)

where g(zn,t) = γ zn,t+ |zn,t| −E[ |zn,t| ] and aj is the jth coefficient of the moving average
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representation. The solution to (3.5.5) is in Nelson (1991; Appendix I) and thus not repro-

duced here. We obtain better in-sample forecasting results when calculating the required

moments using the sample analogs to (3.5.5), i.e. the mean value of the term in brackets

using the in-sample zn,t residuals. We therefore report these results.

Finally, as we shall see shortly, for some models we obtaine significant estimates for the

conditional mean parameters. As our realized volatility measure ignores these, we adjusted

the ARCH model forecast accordingly using the results in equation 3.2.3. For instance,

when we find that µn and ψ1 are significant, we calculate the variance forecast for time n, t

as (1 + ψ̂2
1) σ̂

2
n,t + µ̂2n, where σ̂2n,t is the unadjusted variance forecast.

Maximum likelihood estimates of the GARCH(1,2), FIGARCH(1,d,1), EGARCH(1,2) and

FIEGARCH(1,d,2) models are presented in Table 3.1. We employ the acronym ‘SP’ (Semi-

Parametric) as a prefix to distinguish those versions of these models that account for in-

traday seasonality. Standard errors, based on the matrix of second derivatives of the log-

likelihood function, are in parentheses. All reported estimates are significant at the 5%

level on the basis of either Wald or log-likelihood ratio tests. L∗ reports the maximized

log-likelihood.

We can see that the size of the conditional mean estimates (µ̂1, µ̂79 and ψ̂1) varies across

models. While we universally obtaine large and significant estimates for the 79th intraday

mean, µ79, we find that the first mean, µ1, is significant only in the GARCH, FIGARCH and

EGARCH models (and hence in none of the semi-parametric specifications). In all models

we do not obtain significant moving average parameters beyond the first order, while in the

SP-FIEGARCH model no moving average coefficient is found significant. In Section 3.4 we

reported µ̂1 = 0.0048, µ̂79 = 0.0293, ψ̂1 = 0.0426 and ψ̂2 = −0.0321 under the assumption

that the variance process is homoskedastic. All of these coefficients exceed the size of the

ones reported in Table 3.1. Thus, one may conclude that some of the conditional mean

dependence that was apparent earlier is in fact driven by changing variances.
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Table 3.1: Intradaily ARCH Model Estimates

GARCH FIGARCH EGARCH FIEGARCH

— SP — SP — SP — SP

µ̂1 0.004 0.003 0.003
(0.002) (0.002) (0.002)

µ̂79 0.029 0.023 0.031 0.028 0.027 0.021 0.026 0.019
(0.008) (0.009) (0.009) (0.012) (0.008) (0.009) (0.010) (0.010)

ψ̂1 0.041 0.039 0.039 0.029 0.042 0.043 0.033
(0.009) (0.011) (0.009) (0.009) (0.008) (0.018) (0.016)

ω̂1 -0.893 -0.906 -0.861 -0.884
(0.052) (0.055) (0.051) (0.051)

ω̂2 0.164 0.183 0.129 0.144
(0.049) (0.096) (0.051) (0.051)

ω̂3 -0.351 -0.357 -0.347 -0.352
(0.020) (0.023) (0.023) (0.023)

ω̂4 0.454 0.410 0.570 0.566
(0.010) (0.009) (0.009) (0.010)

ω̂5 -0.371 -0.319 -0.166 -0.169
(0.015) (0.016) (0.017) (0.018)

ω̂6 0.066 0.066 0.065 0.067
(0.008) (0.008) (0.008) (0.009)

ω̂7 -0.070 -0.079 -0.051 -0.051
(0.009) (0.010) (0.011) (0.011)

ω̂0 -5.513 -5.543 -5.509 -5.519
(0.018) (0.028) (0.058) (0.116)

β̂1 0.856 0.948 0.420 0.568 0.960 0.991 0.856 0.785
(0.003) (0.002) (0.023) (0.020) (0.001) (0.001) (0.008) (0.031)

d̂ 0.326 0.300 0.319 0.499
(0.007) (0.007) (0.013) (0.018)

α̂1 0.150 0.119 -0.180 -0.179 0.308 0.238 0.296 0.229
(0.005) (0.005) (0.009) (0.009) (0.008) (0.008 (0.008) (0.008)

α̂2 -0.034 -0.074 -0.055 -0.130) -0.123 -0.137
(0.005) (0.005) (0.008) (0.008 (0.009) (0.013)

γ̂ -0.096 -0.166 -0.105 -0.178
(0.009) (0.013) (0.010) (0.013)

η̂1,2 5.856 6.486 5.977 6.448 1.287 1.371 1.315 1.390
(0.086) (0.111) (0.091) (0.111) (0.007) (0.008) (0.008) (0.008)

L∗ 147604 149031 147744 149220 147294 148790 147668 149096

The table reports conditional maximum likelihood estimates of the models defined by equations 3.5.1 to 3.5.4. The
acronym ‘SP’ distinguishes the models that account for intraday seasonality. Estimates for η carry suffix 1 when
the innovations zn,t are conditioned on Student’s t density and suffix 2 when the generalized error density is used
instead. Standard errors, based on the second derivatives of the log-likelihood function, are reported in parentheses.
L∗ reports the maximized log-likelihood. The (1− L)d polynomial, when used, is truncated at lag 7900. The sample
period is January 4, 1993 to May 29, 1998.
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The seven coefficients accounting for intraday seasonality, ω1 to ω7, are jointly over-

whelmingly significant on the basis of the log-likelihood ratio test. Comparing each pair

of GARCH, FIGARCH, EGARCH and FIEGARCH specifications, the maximized log-

likelihood, L∗, increases by 1428, 1475, 1495 and 1427, respectively.

The dynamic properties of the models change greatly when accounting for the cyclical

behavior of intraday volatility. This is perhaps best illustrated, in a natural way, when

considering the autoregressive representation of the EGARCH and FIEGARCH models. For

the FIEGARCH model we find that the implied end-of-day autocorrelation for the first day

(79th offset) equals 0.4936, for the fifth day (395th offset) 0.0284 and for tenth day (790th

offset) 0.0008. This model therefore clearly accounts for some of the persistence found earlier

in the sample autocorrelation function of logarithmic intradaily squared returns (see Figure

3.4). The corresponding autocorrelations of the SP-FIEGARCH are however much higher:

0.6255, 0.4536 and 0.3783, respectively. Thus, while the FIEGARCH model implies that

volatility at the five-minute unit is essentially uncorrelated with the volatility 19 days earlier,

the SP-FIEGARCH model finds a sizeable correlation. For the EGARCH model, we obtain

an autocorrelation of 0.0418 for the first day, 0.0000 for the fifth day and 0.0000 for the

tenth day. In contrast, the SP-EGARCH specification displays more persistence, yielding

0.3271 for the first day, 0.0031 for the fifth and 0.0001 for the tenth. When comparing

these autocorrelations with those of the FIEGARCH and SP-FIEGARCH specifications, it

becomes however evident that the EGARCH and SP-EGARCH formulations cannot account

for the long-range dependency of volatility we noticed in the autocorrelation functions in

Figure 3.4.12

Notice also that the estimates for the fractional integration parameter d for the FIEGARCH

and SP-FIEGARCH specifications are below 0.5, suggesting that the volatility process is

covariance-stationary. The estimates for the distribution parameter η1 and η2 suggest that
12Unfortunately, the structures of the GARCH and FIGARCH models do not permit a ‘natural’ interpre-

tation of the volatility autocorrelation functions. One may, however, attempt to quantify the persistence in
GARCH or FIGARCH models with the accumulated impulse response functions. See Baillie, Bollerslev and
Mikkelsen (1996).
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the residual innovations zn,t have excess kurtosis: the estimates for η1 are clearly not ‘close

to infinity’ while the estiamtes for η2 are below 2.

The importance of the long-range dependence also becomes evident when comparing the

maximized log-likelihood statistics, L∗. The fractionally-integrated models do better. For

instance, while the EGARCH yields 147294, the FIEGARCH model yields a considerably

higher 147668. Similarly, the GARCH gives us 17604 while the FIGARCH model obtains

the higher 147744. Across all models, we can see that the SP-FIGARCH model yields the

highest statistic.

3.6 Properties of Daily Returns and Daily Realized Volatil-

ities

The properties of the realized volatility measure underlying this study are documented in

great detail in Chapter 2. Here we shall briefly summarize our findings as well as present

summary statistics for our daily return series. This will help for the specification of the daily

ARCH models in our next section and the realized volatility models discussed in Section 3.8.

As we employ realized volatilities for forecast evaluation, the understanding the properties

of this measure will also proof useful to interpret the performance of the various model we

consider.

The time series of realized variances is displayed in Figure 3.5. The solid line portion of

the figure spans from January 4, 1993 to May 29, 1998, the time period used for model

estimation, while the broken line of the figure stretches from June 1, 1998 to August 31,

1999, the time reserved for ex post forecast evaluation. It becomes evident that the return

volatility of the DJIA index changes considerably over time and that volatilities cluster, i.e.

when volatility is high (low), subsequent volatilities tend to be high (low) for a prolonged

period.
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Figure 3.5: Daily Realized Variances

The solid line displays the time series of realized variances over the period extending from January 4, 1993 to May
29, 1998 while the dotted line gives the realized variances over the period from June 1, 1998 to August 31, 1999.

Using the first sub-sample, Table 3.2 presents a menu of summary statistics describing the

properties of daily returns, rt, and standardized returns, (rt−r̄)/st as well the characteristics
of daily realized variances, s2t , standard deviations, st and logarithmic variances, ln(s2t ).

The numbers in parentheses below the Ljung-Box portmanteau statistic, Q20, report the

probability that the 20 autocorrelations are not significant. All other numbers in parenthesis

report standard error estimates.

Paying attention to the three volatility measures first, notice that the skewness and kurtosis

estimates of logarithmic variances are close to the values hypothesized under normality (zero

and three, respectively). As logarithmic variances are distributed approximately normal, it

follows that variances and standard deviations are distributed (approximately) lognormal.

Accordingly, we find that the distributions of variances and standard deviations are skewed
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Table 3.2: Properties of Daily Returns and Daily Realized Volatilities

mean var skew kurt Q20 d rt−1I

rt 0.046 0.514 0.025 14.241 29.980 -0.058
(0.018) (0.078) (0.066) (0.133) (0.070) (0.041)

(rt − r̄)/st 0.045 1.078 0.026 2.751 20.001 0.001
(0.029) (0.037) (0.066) (0.133) (0.458) (0.041)

s2t 0.417 0.223 8.188 122.588 2117.997 0.379 -0.956
(0.034) (0.099) (0.066) (0.133) (0.000) (0.043) (0.258)

st 0.599 0.058 2.574 16.784 4669.983 0.395 -0.447
(0.020) (0.012) (0.066) (0.133) (0.000) (0.041) (0.052)

ln(s2t ) -1.151 0.456 0.748 3.784 6082.372 0.396 -1.093
(0.060) (0.045) (0.066) (0.133) (0.000) (0.039) (0.071)

The table reports summary statistics for daily returns, rt, standardized returns, (rt − r̄)/st, as well as daily realized
variances, s2t , standard deviations, st, and logarithmic variances, ln(s2t ). The first four columns report the mean,
variance (‘var’), skewness (‘skew’) and kurtosis (‘kurt’) estimates. Column five gives the Ljung-Box portmanteau
statistic for up to 20th-order serial correlation, Q20. Geweke and Porter-Hudak (1993) estimates for the fractional
integration parameter d are given in column 6. The last column reports for a series vt the estimate of ω3 in the
regression vt = ω1 + ω2 rt−1 + ω3 rt−1 I + εt, where the indicator function I takes value one when rt−1 < 0. The
numbers in parentheses below the Ljung-Box portmanteau statistic report the probability that the 20 autocorrelations
are not significant. All other numbers in parenthesis report standard error estimates. For columns one, two and seven
we report the autocorrelation consistent Newly-West (1987) standard errors involving 20 lags. For the skewness and

kurtosis estimates we calculate the standard errors as
√
6/T and

√
24/T respectively. The standard errors for the

Geweke and Porter-Hudak estimates are obtained using the usual OLS regression formula. The sample period is
January 4, 1993 to May 29, 1998.

right and leptokurtic.

All three volatility measures display a high degree of temporal dependency. The Ljung-Box

portmanteau statistics, Q20, reject clearly the hypotheses of no joint significance of the

first 20 autocorrelations. Next to the portmanteau statistics, we report the Geweke and

Porter-Hudauk (1993) log-periodogram regression estimates for the fractional integration

parameter d to assess the long-run behavior of volatility. The estimated values are several

standard errors away from both zero and 0.5 and this suggests that the realized volatility

process has long-memory and is covariance-stationary. This is consistent with what we

found in the context of the intradaily FIEGARCH specifications.

Recall that the EGARCH and FIEGARCH model estimates suggested the presence of the

leverage effect, i.e. that negative lagged returns lead to greater future volatility than lagged

67



positive returns of the same magnitude. To determine whether the asymmetry of volatility

in past returns remains important when the model-free daily realized volatility is considered,

the last column in Table 3.2 reports the estimates of ω3 in the regression vt = ω1+ω2 rt−1+

ω3 rt−1 I + εt, where vt denotes one of our three volatility series and the indicator function

I takes value one when rt−1 < 0. As the estimates for ω3 are significantly smaller than zero

at the conventional levels, the leverage effect is clearly an important characteristic of the

realized volatility process.

Turning our attention to the results for daily returns, rt, we can see that the estimated mean

return is two standard errors away from zero, suggesting that one can reject the non-zero

mean hypotheses at the 5% level. This is of course to be expected from our analysis of

intraday returns where we found that the first and particularly the last five-minute means

are sizeable.

Note that the series (rt − r̄)/st is the sample analog to the standard ARCH and SV model

representation of returns: rt − µ = zt σt, where µ is the mean and σt the (time t) standard

deviation of rt. In such a representation, it is assumed that zt is mean zero, unit variance

and i.i.d. noise. Note that (rt − r̄)/st has indeed the desired property that it has a mean

close to zero and a variance of about unity.

Upon comparing the kurtosis estimates for (rt − r̄)/st and rt we can see that changing

volatilities can fully account for the excess kurtosis in the distribution of returns. While the

kurtosis estimate for returns is 14.241, it is only 2.751 for standardized returns, close to the

value hypothesized under normality. This then suggests that the distribution of returns is

(rt − µ) ∼ N(0, σt). In applied work it is often found that when one uses the conditional

time t− 1 standard deviation estimates from ARCH and Stochastic Volatility models, that

the innovations zt have excess kurtosis (see our previous section for instance). This perhaps

suggests model misspecification or that the conditional time t−1 standard deviation process

is different from the unconditional one (or both, of course).
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Note finally that the hypotheses that the first 20 autocorrelations of returns and standard-

ized returns, (rt − r̄)/st, are jointly insignificant cannot be rejected at the 5% level. In

Section 3.4, the significant sample autocorrelations in the five-minute returns series were

likely driven by market micro-structure effects. Thus the absence of serial correlation in

daily returns is to be expected.

3.7 Daily ARCH Models

The vast majority of all empirical studies related to the ARCH approach to modeling volatil-

ity employ daily data. In our forecast comparison we shall therefore consider these models

at the daily return frequency as well. As in Section 3.5, we consider the FIGARCH and

FIEGARCH models to accommodate long-run volatility dependencies. Since we discussed

the basic features of these models at some length previously, we shall in this section only

highlight aspects that arise when daily data are used for estimation.

Recall that we in our previous section concluded that the daily DJIA returns have a positive

mean, but are uncorrelated over the sample extending from January 4, 1993 to May 29. We

therefore consider the following return representation:

rt = µ+ εt

εt = σt zt (3.7.1)

where E[zt] = 0 and E[z2t ] = 1.

When using the FIGARCH(p,d,q) model, we consider the conditional variance process:

σ2t =
ω +

[(
1− β(Lp)

) − (
1− α(Lq)− β(Lp)

) (
1− L

)d]
ε2t(

1− β(Lp)
) (3.7.2)

As in Section 3.5, we condition the innovations zt = εt/σt on the density of the Student’s t

distribution, i.e. zt ∼ T (0, 1, η1).
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The conditional variance process in the FIEGARCH(p,d,q) model is defined by:

ln(σ2t ) = ω +
α(Lq)

(
γ zt + |zt| − E

[ |zt| ] )
(
1− L

)d (
1− β(Lp)

) (3.7.3)

where we shall assume that zt ∼ GED(0, 1, η2), i.e. we condition the residual innovations

on the density of the generalized error distribution.

We noted in Section 3.5 that the constant estimate in the conditional variance process of

the interdaily FIGARCH model implied an unconditional variance that did not match what

we observed in our data. Consequently, we obtained long-horizon variance forecasts that

were substantially biased. Instead of estimating the constant, we solved this problem by

setting it so that the implied unconditional variance was equal to what was found in the

data. In our application of the FIGARCH model to daily data, as we shall see in Section 3.9,

this quandary does not occur and therefore no adjustment is made. Unlike in Section 3.5,

estimates for ω in (3.7.2) are therefore reported. Admittedly, we do not have a convincing

explanation for this discrepancy between the intradaily and daily model.

As we allow for a constant term in the return process given by (3.8.1), we calculate the

variance forecast for day t as: µ̂2 + σ̂2t , where µ̂ is the estimated mean return and σ̂2t is the

unadjusted variance forecast. This adjustment is made so that we do not penalize a model

unfairly, if it should indeed be true that the realized volatility is overestimated.

Maximum likelihood estimates for the GARCH(1,1), FIGARCH(1,d,1), EGARCH(1,2)

and FIEGARCH(0,1,1) models are reported in Table 3.3. Standard errors are given in

parentheses and L∗ reports the maximized log-likelihood. With the exception of the frac-

tional integration parameter d in the FIGARCH model, all estimates are significant at the

5% level on the basis of either Wald or log-likelihood ratio tests.

Consistent with prior empirical work using ARCH models, the innovations zt are heavy-

tailed, the implied volatility processes are highly persistent and, when we allow for asym-
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Table 3.3: Daily ARCH Model Estimates

µ̂ ω̂ β̂1 d̂ α̂1 α̂2 γ̂ η̂1,2 L∗

GARCH 0.063 0.008 0.930 0.054 6.2501 -1340.0
(0.016) (0.005) (0.024) (0.018) (1.043)

FIGARCH 0.063 0.021 0.652 0.375 -0.285 6.5361 -1338.6
(0.016) (0.012) (0.105) (0.108) (0.108) (1.150)

EGARCH 0.050 -0.884 0.972 0.231 -0.117 -0.596 1.4252 -1329.1
(0.015) (0.125) (0.014) (0.043) (0.047) (0.158) (0.075)

FIEGARCH 0.065 -1.245 0.585 0.227 -0.668 1.4182 -1326.7
(0.014) (0.274) (0.056) (0.041) (0.039) (0.072)

The table reports conditional maximum likelihood estimates of the models defined by equations 3.7.1 to 3.7.3. Es-
timates for η carry suffix 1 when the innovations zt are conditioned on Student’s t density and suffix 2 when the
generalized error density is used instead. Standard errors, based on the second derivatives of the log-likelihood func-
tion, are reported in parentheses. L∗ reports the maximized log-likelihood. The (1 − L)d polynomial, when used, is
truncated at lag 1000. The sample period is January 4, 1993 to May 29, 1998.

metry in returns, the news parameters suggest the presence of the leverage effect. Our

FIEGARCH estimate of d̂ = 0.585 is in line with the one reported by Bollerslev et al.

(1996), who found d̂ = 0.633 for the S&P 500 composite stock index. However, this esti-

mate is not consistent with what we found in the context of the two intradaily FIEGARCH

models in Section 3.5. In that application, we obtained d̂ = 0.345 when we did not account

for seasonality while we found 0.499 when intraday patterns were taken into consideration.

In either case, the estimates of the higher frequency models suggest that the logarithmic

variance process is stationary while the estimate for the daily model does not.

Based on maximized log-likelihood, the FIEGARCH model is the most promising ARCH

specification for characterizing changing variances. Thus, this model should perform well

in the forecasting exercises.

3.8 Daily Realized Volatility Models

Models of the ARCH class have been instrumental in capturing the temporal dependencies

of volatility. In Chapter 2 we suggested another approach outside this family. Our method

consists of applying conventional time series models directly to the realized volatility. Thus,
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rather than modeling the conditional variance of returns, we treat the realized volatility as

observed and model its conditional mean. The most obvious advantage of this approach is

its simplicity. On the basis of ex ante one-day-ahead prediction criteria we also found that

it leads to important improvements compared to the traditional ARCH method. One focus

of this study is to determine whether this superiority continues to hold when forecasting

volatility for horizons beyond one-day and out-of-sample.

To capture the time series characteristics of the daily realized volatility, we find that the

following specification, which we denote as RV-ARFIMAX1 (p,d,q), yields good results:

(
1− L

)d (
1− β(Lp)

)
ln(s2t ) = ω0 + ω1 rt−1 I− + ω2 rt−1 I+ +

(
1 + α(Lq)

)
εt (3.8.1)

where I− (I+) is one when rt−1 < 0 (rt−1 ≥ 0) and zero otherwise. It is assumed that

εt ∼ i.i.d. N(0, σ2). Next to the constant and the standard two ARMA(p,q) polynomials,

the above specification contains the fractional differencing operator to capture the long-

run dependencies of volatility and lagged negative and positive returns to account for the

leverage effect.

As the realized volatility is assumed to be stochastic, the above formulation is in the spirit

of Stochastic Volatility (SV) models. The obvious difference though is that SV models

are applied to (transforms of) returns and consequently the volatility process is treated as

unobserved. If ω1 = ω2 = 0, the functional form we propose is however identical to the

one of the SV-ARFIMA model proposed by Breidt, Crato and de Lima (1998). However,

instead of the realized logarithmic volatility, they model the logarithm of daily squared

returns.

Aside from stochastic character, the functional form of our specification also closely re-

sembles the FIEGARCH model of Bollerslev and Mikkelsen (1996) described earlier. In

that specification the logarithmic variance process is allowed to be fractionally integrated

as well. In the FIEGARCH model the leverage effect is accounted for in that the logarithm
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of variances is a function of all past positive and negative standardized returns, (rt− r̄)/σt.

In our formulation, it is the history of raw returns that matters.

As we shall see in our forecasting exercises, the specification of the news-impact using raw

returns leads to important improvements at the one day horizon. However, such specifi-

cation has the considerable disadvantage that for multi-step-ahead variance forecasts, one

requires the solution to:

E
[
ea rt+m|t I− | t ] = ∫ 0

−∞
ea rt+m f(rt+m | t)

where a is a number determined by the moving average representation of the process and

f(rt+m | t) is the conditional time t density of future returns. Although we know from our

previous section that rt ∼ N(r̄, s2t ), this does not imply that rt+s, conditional upon time t,

is distributed normal as well. Assuming that s2t is mean reverting, at least for m = ∞ we

have E[ s2t+m | t ] = E[ s2t ], i.e. the conditional and unconditional expectations are eventually

equal. In that case we know that returns will display excess kurtosis and thus normality

will not hold.

In the EGARCH and FIEGARCH model, this problem is circumvented by considering

standardized returns instead of raw returns. We shall consequently also consider a modified

version of our model, denoted RV-ARFIMAX2 (p,d,q), given by:

(
1− L

)d (
1− β(Lp)

)
ln(s2t ) = w0 + w1 zt−1 I− + w2 zt−1 I+ +

(
1 + α(Lq)

)
εt (3.8.2)

where zt−1 = (rt−1 − r̄)/st−1, I− (I+) is one when zt−1 < 0 (zt−1 ≥ 0) and zero otherwise

and we shall assume that zt−1 ∼ i.i.d.N(0, 1).13 As it now hold that f(zt+m | t ) is normal
13The i.i.d. assumption is perhaps questionable. Although we do not find any evidence for serial correlation

in zt (see Section 3.7) and z2t , the BDS test (Brock, Dechert, LeBaron and Scheinkman 1987) for independence
of zt yields test statistics ofW2 = −2.721,W3 = −2.839 andW4 = −2.089. As these statistics are distributed
standard normal, we therefore have to reject independence at the 5% level.
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for all m, we obtain:

E
[
ea zt+m I− | t ] = ∫ 0

−∞
ea zt+m

1√
2π

e−0.5 zt+m = e0.5a
2
(
− a

|a| Erf (
√
0.5 a2 ) + 0.5

)
(3.8.3)

where Erf is the error function.

For both the RV-ARFIMAX1 and RV-ARFIMAX2 models, we will require for variance

forecasts an adjustment due to the stochastic component εt. From our assumption that

εt ∼ N(0, σ2), it follows:

E
[
ea εt+m | t ] = ∫ ∞

−∞
ea εt+m

1√
2π σ2

e−0.5 ε2t+m/σ2
= e0.5 a

2 σ2
(3.8.4)

where a is, again, given by the moving average representation.

Note that the adjustment terms given by (3.8.3) and (3.8.4) will scale the variance forecasts

and the exact amount of scaling will critically depend upon the assumptions imposed to

derive these two expressions. In practice, as in the EGARCH and FIEGARCH models, one

may alternatively calculate the expectations using the data employed for estimation. For

consistency, this is the approach we shall take.

For our forecasting exercises we shall consider the following five realized volatility (RV)

models with corresponding labels: RV-AR an ARFIMA(7,0,0), RV-FI an ARFIMA(0,d,0),

RV-ARX2 an ARFIMAX2 (7,0,0), RV-FIX2 an ARFIMAX2 (0,d,0) and RV-FIX1 an

AFRIMAX1 (0,d,0). Parameter estimates of these specifications are given in Table 3.4.

Standard errors are reported in parentheses under the coefficient estimates. All of the

estimates are statistically significant at the 5% level on the basis of either Wald or likeli-

hood ratio tests. The table also reports the maximized log-likelihood L∗ and the Schwartz

Bayesian Information Criterion (SBC) which was used to determine the ‘optimal’ length of

autoregressive and moving average polynomials. By the SBC we found that moving average

terms were not warranted in any of the specifications. Furthermore, once we allowed for
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fractional integration of the volatility process, none of the autoregressive terms were found

important either. When we allowed for the news effect, we found that only negative returns

or negative standardized returns matter.

Table 3.4: Daily Realized Volatility Model Estimates

RV-AR RV-FI RV-ARX2 RV-FIX2 RV-FIX1

ω̂0 -0.170 -0.043 -0.253 -0.125 -0.153
(0.030) (0.015) (0.031) (0.018) (0.020)

ω̂1 -0.196 -0.198 -0.316
(0.023) (0.023) (0.030)

β̂1 0.419 0.368
(0.027) (0.027)

β̂2 0.106 0.128
(0.029) (0.029)

β̂1 0.093 0.095
(0.029) (0.029)

β̂1 0.063 0.071
(0.029) (0.029)

β̂1 0.068 0.077
(0.029) (0.029)

β̂1 0.102 0.100
(0.027) (0.026)

d̂ 0.392 0.364 0.324
(0.020) (0.018) (0.017)

σ̂2 0.227 0.221 0.215 0.210 0.205
(0.009) (0.008) (0.008) (0.008) (0.008)

L∗ -923.4 -908.0 -889.5 -871.3 -856.1

SBC -952.3 -918.8 -922.0 -885.8 -870.6

The table reports conditional maximum likelihood estimates of the models defined by equations 3.8.1 and 3.8.2.
Standard errors, based on the second derivatives of the log-likelihood function, are reported in parentheses. L∗ reports
the maximized log-likelihood and SBC reports the Schwarz Bayesian Information Criterion, SBC = L∗ − 0.5 k ln(T ),
where k is the number of estimated coeeficients and T = 1366. The (1− L)d polynomial, when used, is truncated at
lag 1000. The sample period is January 4, 1993 to May 29, 1998.

The estimates for the fractional integration parameter d are several standard errors away

from both one-half and zero – indicating that the logarithmic variance process is covariance-

stationary and highly persistent. It is noticeable that the estimates for d are lower in the

models that account for the leverage effect. Specifically, we obtain d̂ = 0.392 for the RV-FI

model (which does not account for the leverage effect), while the RV-FIX2 model yields

d̂ = 0.364 and the RV-FIX1 model gives d̂ = 0.324. One might be tempted to conclude that
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the two models with lower estimates for d display less persistence. This however may not be

necessarily correct as in these models the current volatility depends not only on the entire

history of past volatilities but also on past negative returns. As such, a negative return

innovation leads to persistent changes in future volatility as does an innovation in the noise

component εt.

When looking at the estimates for the autoregressive coefficients in the RV-AR and RV-

ARX2 mode, it becomes evident that these decay until lag four, but then increase again.

This increase is not consistent with what one would expect when the process is fractionally

integrated with d > 0, as the coefficients in the autoregressive representation of such models

strictly decay. Our forecasting exercises should help us to determine whether the RV-AR

and RV-ARX models find important short-run dynamics or whether the coefficients are just

estimated with error (notice that one can easily find patterns of strict decay when looking

at the two standard error bands of the autoregressive coefficients).

All coefficients estimated for ω1 are negative and highly significant (compare, for instance,

the maximized log-likelihood for the RV-FI model and the RV-FIX1 model). The negative

sign suggests that large negative returns increase future volatility and this is consistent with

the leverage effect.

By the SBC criterion, the models are ranked in decreasing order as follows: RV-FIX2,

RV-FIX1, RV-FI, RV-AR, RV-ARX1. From this one may conclude that (a) long-memory

models perform better than short-memory models, (b) models that account for the leverage

effect outperform those that ignore it, and (c) that the leverage effect is best captured using

negative returns rather than negative standardized returns. In the next section, we will

determine whether these conclusions remain valid in the setting of forecasting.
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3.9 Multi-Step Volatility Forecasting

In this section we shall evaluate how well the various models forecast the variance of the

DJIA index ex ante and ex post over various time horizons, up to 40-days-ahead. In our

first subsection, we shall detail the tools we employ to evaluate the variance forecasts. Next

we discuss the ex ante forecast results, using data from January 4, 1993 to May 29, 1998.

Finally, in our last subsection we turn to the ex post forecasting exercises employing the

sample we have reserved thus far, the data extending from June 1, 1998 through August

31, 1999.

3.9.1 Volatility Forecast Evaluation

We shall denote the conditional time t− 1, M days variance forecasts over t, . . . , t− 1 +M

by σ̂2t,M . It is obtained from either M accumulated daily or M N accumulated intradaily

volatility forecasts:

σ̂2t,M =
1
M

M∑
m=1

σ̂2t−1+m|t−1 =
1
M

M∑
m=1

N∑
n=1

σ̂2n,t−1+m|N(t−1)

where σ̂2t−1+m|t−1 denotes the conditional time t− 1 variance forecast for day t− 1+m and

σ̂2n,t−1+m|N(t−1) denotes the conditional time N , t − 1 (end of day t − 1) variance forecast

for the nth intraday time interval at day t− 1+m. Upon dividing the horizon forecasts by

M , we ensure that σ̂2t,M is measured at the daily unit.

In this setting of volatility forecasts, it has been traditional to compare σ̂2t,1 to the daily

squared return. As made clear in Section 3.2, we know this is a very noisy measure and

consequently any variation found in the forecasts will likely not correspond well to the

variation in squared returns. As in Andersen and Bollerslev (1998) and Ebens (1999), we

shall therefore employ our realized volatility measure for forecast evaluation. Specifically,
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we shall use the accumulated M days realized variance s2t,M defined by:

s2t,M =
1
M

M∑
m=1

s2t−1+m =
1
M

M∑
m=1

N∑
n=1

rn,t−1+m

A central property of optimal forecasts is that these are unbiased. We shall test whether

this holds using the mean error criterion:

ME =
1
T

T∑
t=1

[
s2t,M − σ̂2t,M

]
(3.9.1)

where the period used for forecast evaluation runs from t = 1, . . . , T . We therefore evaluate

the forecasts over days: {1, . . . ,M}, {2,. . . , 1+M}, . . . , {t−M, . . . , T}.

The ME, of course, depends only on the first moment structure of the joint distribution of

the actual and forecasted series. Of considerable interest is the second moment (or some

transform thereof) which reveals variations in forecasts correspond to those found in actual

data.

Many criteria have been suggested that penalize for the mean and variance of the forecast

errors. By far, the most commonly used criterion is the mean squared error (MSE) defined

as: T−1
∑T

t=1( s
2
t,M − σ̂2t,M )2. Note however that the MSE depends on the fourth moment

of estimated and forecasted returns, i.e. , MSE = V [ s2t,M − σ̂2t,M ] + (E[ s2t,M − σ̂2t,M ] )2.

Some of our models, however, imply that these moments do not exist (the GARCH models

in Section 3.5, for instance). Even if they do exist, it is likely that they will be obtained

with great error and this, in turn, would induce large error in the MSE as well. Hence, it

would be difficult to clearly identify the better performing specifications.

An alternative measure that does not depend on the fourth moment of returns is the log-

arithmic loss function (see Pagan and Schwert 1990, Diebold and Lopez 1996): MSLE

= T−1
∑T

t=1( ln(s
2
t,M ) − ln(σ̂2t,M ) )2. This measure is in principle attractive since we from
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our study of the realized volatility know that logarithmic variances are nearly normally dis-

tributed. For a well-specified model one would therefore expect that the logarithmic forecast

error is approximately normal as well and thus symmetric. In the case of symmetry, one

would equally penalize negative and positive deviations from the mean error. However, for

the MSLE it holds that MSLE = V [ ln(s2t,M ) − ln(σ̂2t,M ) ] + (E[ ln(s2t,M ) − ln(σ̂2t,M ] )2. As

we can see, loss depends on the bias of logarithmic variance forecasts. In the setting of

multi-period ARCH forecasts, it will generally not be true that the logarithmic transform

of an unbiased variance forecast will yield an unbiased logarithmic variance forecast. As our

realized volatility specifications are stochastic, this will not even be true for the one-step

ahead forecast. Consequently, such a loss function would embed an automatic bias and thus

an unwarranted penalty.

Considering the difficulties with the MSE and MSLE statistics, we select the mean absolute

error (MAE) criterion as the loss measure. It is defined by:

MAE =
1
T

T∑
t=1

[ | s2t,M − σ̂2t,M | ]

We find it informative to compare the MAE of the various forecasting models to the one of

a naive competitor, the MAE of the homoskedastic forecast:

s̄2 =
1
T

T∑
t=1

s2t

where T = 1366 (the mean realized in-sample variance). Specifically, we shall report the

relative MAE:

RMAEv = ln(MAEs̄2 )− ln(MAEv ) (3.9.2)

In the spirit of Theil’s (1961) U statistic, the RMAEv thus gives for a model v the per-

centage improvement in ‘forecastability’ relative to the naive forecast. Since we calculate

the percentage improvement using logarithms, one may also easily compare the percentage
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improvement of model v1 over v2 using RMAEv1- RMAEv2 .

3.9.2 Ex Ante Volatility Horizon Forecast

It is instructive to first consider our in-sample forecasting results as these are based on

a larger number of observations. Furthermore, if a model should perform poorly within

sample, then there is little hope for a much better performance out of sample (otherwise, the

better performance it is likely to be explained by problems related to forecast evaluation).

The results are presented in Table 3.5 which is organized as follows. There are four sets of

models: intradaily ARCH specifications which do not account for seasonality (prefixed I),

intradaily ARCH models which incorporate seasonality (prefixed SP), daily ARCH models

(prefixed D) and, finally, the daily realized volatility specifications (prefixed RV). For con-

venience, we refer to these four groups of models as the I group, D group, SP group and RV

group, respectively. For each model, we consider nine different horizons: one-day-ahead to

five-day-ahead, then ten-day, twenty-day, thirty-day and finally the forty-day-ahead fore-

casting horizon. The exception is the RV-FIX model, for which we can only obtain one-

day-ahead forecasts (see Section 3.8).

For each model and horizon, we present the mean forecast error, ME, and the relative

mean absolute forecast error, RMAE. The numbers in parentheses below the ME statistic

are the autocorrelation consistent Newey-West (1987) standard errors involving 20 lags.

The standard errors carry an asterisk (in bold) if we reject the hypothesis that the ME is

significantly different from zero at the 5% level. For the SP-GARCH model we can see that

forecasts are biased for the one-day horizon. For the D-EGARCH specification, forecasts are

biased for one-day to five-day horizons, while they are always biased for the D-FIEGARCH

model. Note, however, that these biases are, on the whole, quite small (the mean daily

realized variance is 0.417).

80



Table 3.5: Ex Ante Volatility Horizon Forecasts

1-Day 2-Day 3-Day 4-Day 5-Day 10-Day 20-Day 30-Day 40-Day

ME RMAE

I-GARCH -0.036 15.7 -0.020 12.7 -0.013 9.9 -0.010 8.1 -0.008 6.7 -0.004 3.7 -0.002 1.9 -0.001 1.2 -0.001 0.9
(0.022) (0.027) (0.029) (0.030) (0.031) (0.032) (0.032) (0.031) (0.030)

I-FIGARCH -0.017 35.5 -0.010 40.93 -0.007 42.53 -0.006 44.43 -0.005 45.83 -0.003 47.43 -0.001 43.03 0.001 40.23 0.001 38.33

(0.010) (0.011) (0.013) (0.014) (0.015) (0.018) (0.020) (0.020) (0.020)

I-EGARCH -0.006 13.8 0.003 9.8 0.006 7.6 0.008 6.3 0.008 5.5 0.010 3.8 0.011 3.0 0.012 2.6 0.012 2.4
(0.028) (0.031) (0.032) (0.032) (0.033) (0.033) (0.032) (0.031) (0.030)

I-FIEGARCH 0.009 36.44 0.017 40.5 0.020 42.2 0.022 43.8 0.022 44.3 0.024 46.0 0.026 42.1 0.027 38.4 0.027 34.5
(0.016) (0.018) (0.019) (0.020) (0.020) (0.022) (0.023) (0.022) (0.022)

SP-GARCH -0.032 24.1 -0.024 26.0 -0.018 24.4 -0.015 22.1 -0.013 20.4 -0.007 12.9 -0.003 6.7 -0.002 4.5 -0.002 3.4
(0.012)∗∗∗ (0.016) (0.020) (0.023) (0.024) (0.029) (0.030) (0.030) (0.029)

SP-FIGARCH -0.016 35.6 -0.010 40.7 -0.007 42.2 -0.005 44.0 -0.004 45.2 -0.002 46.6 0.000 41.6 0.001 38.5 0.001 36.4
(0.010) (0.012) (0.014) (0.015) (0.016) (0.019) (0.021) (0.021) (0.021)

SP-EGARCH 0.015 32.9 0.020 31.5 0.020 27.8 0.019 24.0 0.018 21.0 0.015 12.3 0.013 7.1 0.013 5.3 0.012 4.4
(0.017) (0.022) (0.025) (0.026) (0.028) (0.030) (0.031) (0.030) (0.030)

SP-FIEGARCH 0.017 40.92 0.017 44.42 0.018 47.02 0.018 48.52 0.018 50.22 0.019 53.32 0.021 51.22 0.023 49.62 0.024 49.21

(0.012) (0.014) (0.015) (0.015) (0.016) (0.018) (0.019) (0.019) (0.019)

D-GARCH -0.003 16.9 -0.003 17.7 -0.003 17.0 -0.003 16.1 -0.003 16.4 -0.004 18.7 -0.005 18.4 -0.005 22.7 -0.006 25.9
(0.027) (0.027) (0.028) (0.028) (0.029) (0.030) (0.031) (0.031) (0.029)

D-FIGARCH -0.005 20.4 -0.005 20.9 -0.005 20.3 -0.004 19.9 -0.004 20.4 -0.004 23.1 -0.004 23.5 -0.003 24.6 -0.003 25.0
(0.025) (0.025) (0.026) (0.026) (0.026) (0.027) (0.029) (0.028) (0.027)

D-EGARCH 0.039 32.9 0.039 34.0 0.039 34.2 0.039 33.9 0.038 33.8 0.038 35.0 0.039 32.6 0.041 34.6 0.042 34.1
(0.016)∗∗∗ (0.017)∗∗∗ (0.018)∗∗∗ (0.019)∗∗∗ (0.019)∗∗∗ (0.021) (0.023) (0.023) (0.023)

D-FIEGARCH 0.049 36.53 0.049 38.14 0.049 39.04 0.049 39.64 0.049 39.54 0.049 42.04 0.049 39.34 0.050 38.24 0.050 37.24

(0.014)∗∗∗ (0.016)∗∗∗ (0.016) (0.017)∗∗∗ (0.018)∗∗∗ (0.020)∗∗∗ (0.021) (0.021)∗∗∗ (0.020)∗∗∗

RV-AR 0.009 37.7 0.008 40.4 0.008 42.4 0.007 43.9 0.007 44.5 0.008 45.1 0.011 38.9 0.012 32.2 0.011 26.9
(0.012) (0.013) (0.014) (0.015) (0.015) (0.018) (0.022)∗∗∗ (0.023) (0.024)

RV-FI 0.011 39.0 0.011 43.2 0.011 46.0 0.011 47.9 0.011 49.8 0.011 53.7 0.013 52.01 0.014 49.81 0.015 48.82

(0.013) (0.014) (0.015) (0.016) (0.017) (0.019) (0.020) (0.019) (0.019)

RV-ARX2 0.010 41.1 0.011 43.3 0.011 44.6 0.010 45.5 0.010 45.7 0.012 45.8 0.015 39.0 0.015 32.0 0.014 26.5
(0.012) (0.013) (0.014) (0.015) (0.015) (0.019) (0.022) (0.023) (0.024)

RV-FIX2 0.014 42.21 0.015 46.31 0.016 48.51 0.016 49.71 0.016 50.71 0.016 53.81 0.017 51.7 0.019 49.1 0.019 47.4
(0.013) (0.014) (0.016) (0.016) (0.017) (0.019) (0.020) (0.020) (0.019)

RV-FIX1 0.008 46.0
(0.008)

The table presents results on the in-sample forecasting performance of the models defined in Section 3.4, Section 3.6 and Section 3.7. The forecasts are over one-day to
five-day horizons, then ten-day, twenty-day, thirty-day and finally the forty-day horizon. The forecast are evaluated using the mean forecast error criterion (ME) defined
by equation 9.1 and the relative mean absolute error criterion (RMAE) defined by equation 3.9.2. The sample period for estimation and forecast evaluation is January
4, 1993 to May 29, 1998.
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Recall that the RMAE gives the percentage improvement relative to the naive homoskedastic

forecast. The reported numbers in Table 3.5 range from a low of 0.9% to a high of 53.8%

improvement, suggesting that all models outperform the homoskedastic model, but also

indicating that the performance among the models varies greatly.

For each group of models (excluding the anomalous RV-FIX), we select the best-performing

model according to the RMAE criterion (in bold) and then rank these across groups by

an integer ranging from 1 to 4 (1 being the best and 4 the worst of the best-performing

models). For instance, for the one-day-ahead forecast, the D-FIEGARCH model is the best-

performing model among the four daily ARCH specifications, but is only the third best in

overall ranking across groups.

Comparing the two groups of intradaily ARCH specifications, we can see that accounting

for seasonality improves always the forecasting performance for all but one model. The

exception is the FIGARCH model, where the I-FIGARCH specification tends to perform

better than the SP-FIGARCH model.

Within the I group, the I-FIGARCH model is the best-performing specifications, with the

exception of the one-day-ahead horizon, where the I-FIEGARCH performs best. Within the

SP group, the SP-FIEGARCH model performs always better than any other specification.

Similarly, for the D group we find that the D-FIEGARCH model outperforms any other

specification. Finally, for the RV group, the RV-FIX2 model is best-performing up to the

ten-day horizon, while for longer horizons, the RV-FI performs best.

The overall ranking of groups according to the best-performing models is as follows: the

RV group of models perform best, with the exception of the 40-day-horizon, where the

SP class performs better. Notice also that the SP class always ranks second-best at all

other horizons. Thus, overall, the RV and SP classes always take the two top slots, and

thus are clearly better than the I or D groups. Furthermore, notice that the percentage

difference in performance between the best-performing RV and SP models is minimal. At
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the opposite end, we can see that the D group contains the worst-performing specification

for all horizons, with the exception of the one-day-horizon, when the performance of the

I-group model falls below it.

Although not ranked according to the above scheme, the anomalous RV-FIX model performs

best at the one-day-ahead horizon. This suggests that the leverage effect is best captured

using lagged raw returns rather than lagged standardized returns. Overall, the importance

of the leverage effect seems to diminish as the forecast horizon extends. While both the

RV-FIX2 and RV-ARX2 models perform better when the horizon is short, the RV-FI and

RV-AR models do better over long-horizons.

Note that the models which account for long-range volatility dependence (i.e. the fraction-

ally integrated models) always outperform their short-memory counterparts. The improve-

ments offered by the long-memory models become more substantial as the forecast horizon

extends, however. For instance, in the SP group, the SP-FIEGARCH model improves upon

the SP-EGARCH model by 44.8% at the 40-day horizon while the improvement is only 8%

for the one day ahead forecasts.

3.9.3 Ex Post Volatility Horizon Forecast

The results for the ex post forecasts are presented in Table 3.6, organized in a manner

identical to Table 3.5. As fewer observations are available in this forecasting exercise, the

overall picture becomes a bit more blurred – particularly for the longer-range horizons.

Notice that we now obtain for many models biased forecasts and that the degree of bias

tends to become more severe as the horizon is extended. As a general tendency, however, it

is evident that the long-memory models are less affected by bias. The reported percentage

improvements of mean absolute error ranges from a low of -1.1% to a high of 68.5%. We

find only three cases where the naive homoskedastic forecast does better.
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Table 3.6: Ex Post Volatility Horizon Forecasts

1-Day 2-Day 3-Day 4-Day 5-Day 10-Day 20-Day 30-Day 40-Day

ME RMAE

I-GARCH 0.422 31.6 0.564 20.1 0.621 14.3 0.652 11.1 0.671 9.3 0.714 4.7 0.746 2.4 0.769 1.6 0.793 1.2
(0.108)∗∗∗ (0.143)∗∗∗ (0.157)∗∗∗ (0.164)∗∗∗ (0.169)∗∗∗ (0.177)∗∗∗ (0.179)∗∗∗ (0.176)∗∗∗ (0.170)∗∗∗

I-FIGARCH 0.067 47.6 0.105 55.43 0.130 58.43 0.148 63.63 0.164 65.33 0.219 60.93 0.287 55.54 0.336 53.14 0.381 51.24

(0.054) (0.069) (0.080) (0.088) (0.095) (0.119) (0.147) (0.163)∗∗∗ (0.173)∗∗∗

I-EGARCH 0.613 15.5 0.679 7.4 0.704 4.6 0.717 3.1 0.725 2.3 0.748 0.3 0.770 -0.7 0.789 -1.0 0.811 -1.1
(0.164)∗∗∗ (0.175)∗∗∗ (0.178)∗∗∗ (0.180)∗∗∗ (0.181)∗∗∗ (0.183)∗∗∗ (0.182)∗∗∗ (0.178)∗∗∗ (0.171)∗∗∗

I-FIEGARCH 0.236 49.03 0.284 53.0 0.313 54.4 0.333 54.8 0.350 54.4 0.406 49.1 0.472 44.5 0.520 41.2 0.562 37.7
(0.105)∗∗∗ (0.119)∗∗∗ (0.128)∗∗∗ (0.134)∗∗∗ (0.139)∗∗∗ (0.154)∗∗∗ (0.167)∗∗∗ (0.173)∗∗∗ (0.173)∗∗∗

SP-GARCH 0.181 39.9 0.313 38.9 0.405 36.0 0.469 31.4 0.516 28.0 0.632 15.3 0.705 7.7 0.741 5.3 0.771 4.0
(0.052)∗∗∗ (0.083)∗∗∗ (0.105)∗∗∗ (0.121)∗∗∗ (0.132)∗∗∗ (0.158)∗∗∗ (0.171)∗∗∗ (0.171)∗∗∗ (0.166)∗∗∗

SP-FIGARCH 0.080 48.0 0.124 55.7 0.150 60.8 0.170 65.4 0.187 65.8 0.244 59.9 0.313 53.8 0.363 51.3 0.408 48.9
(0.057) (0.073) (0.084) (0.093) (0.099) (0.123)∗∗∗ (0.149)∗∗∗ (0.164)∗∗∗ (0.172)∗∗∗

SP-EGARCH 0.382 39.0 0.501 29.4 0.566 22.6 0.607 17.7 0.635 14.4 0.701 6.7 0.745 2.5 0.772 1.2 0.798 0.6
(0.112)∗∗∗ (0.138)∗∗∗ (0.151)∗∗∗ (0.159)∗∗∗ (0.164)∗∗∗ (0.175)∗∗∗ (0.178)∗∗∗ (0.175)∗∗∗ (0.169)∗∗∗

SP-FIEGARCH 0.101 51.42 0.122 58.01 0.139 63.11 0.153 67.41 0.166 68.51 0.213 62.31 0.281 57.32 0.331 55.63 0.375 54.73

(0.066) (0.080) (0.089) (0.097) (0.103) (0.126) (0.151) (0.165)∗∗∗ (0.173)∗∗∗

D-GARCH 0.254 33.2 0.257 38.4 0.260 40.9 0.264 43.9 0.268 44.8 0.285 43.3 0.317 47.2 0.349 47.8 0.385 38.8
(0.076)∗∗∗ (0.079)∗∗∗ (0.081)∗∗∗ (0.084)∗∗∗ (0.086)∗∗∗ (0.098)∗∗∗ (0.119)∗∗∗ (0.139)∗∗∗ (0.155)∗∗∗

D-FIGARCH 0.175 37.4 0.177 43.5 0.179 46.9 0.181 49.8 0.183 50.2 0.192 48.4 0.208 55.93 0.224 56.72 0.245 59.2
(0.077)∗∗∗ (0.081)∗∗∗ (0.084)∗∗∗ (0.087)∗∗∗ (0.090)∗∗∗ (0.103) (0.127) (0.147) (0.162)

D-EGARCH 0.365 38.2 0.385 40.5 0.397 41.5 0.406 41.4 0.414 41.2 0.449 37.1 0.507 31.6 0.558 26.9 0.606 23.4
(0.091)∗∗∗ (0.098)∗∗∗ (0.101)∗∗∗ (0.104)∗∗∗ (0.107)∗∗∗ (0.117)∗∗∗ (0.131)∗∗∗ (0.140)∗∗∗ (0.144)∗∗∗

D-FIEGARCH 0.194 46.44 0.200 49.74 0.204 52.74 0.206 52.94 0.208 52.84 0.217 52.04 0.231 52.4 0.247 55.6 0.264 59.42

(0.099) (0.107) (0.112) (0.116) (0.119) (0.131) (0.146) (0.156) (0.162)

RV-AR 0.184 47.3 0.211 53.1 0.232 58.2 0.251 62.0 0.270 62.0 0.356 54.4 0.482 40.6 0.564 31.1 0.625 24.7
(0.070)∗∗∗ (0.079)∗∗∗ (0.086)∗∗∗ (0.092)∗∗∗ (0.097)∗∗∗ (0.119)∗∗∗ (0.144)∗∗∗ (0.155)∗∗∗ (0.158)∗∗∗

RV-FI 0.132 47.9 0.146 55.4 0.158 60.02 0.169 64.62 0.178 65.72 0.213 61.92 0.263 59.81 0.300 59.41 0.335 59.71

(0.084) (0.095) (0.104) (0.111) (0.116) (0.137) (0.159) (0.172) (0.178)

RV-ARX2 0.199 52.61 0.228 55.92 0.249 59.5 0.268 63.1 0.286 62.7 0.373 53.7 0.498 38.6 0.578 29.2 0.637 23.0
(0.071)∗∗∗ (0.081)∗∗∗ (0.088)∗∗∗ (0.093)∗∗∗ (0.099)∗∗∗ (0.121)∗∗∗ (0.145)∗∗∗ (0.155)∗∗∗ (0.158)∗∗∗

RV-FIX2 0.146 49.6 0.166 55.2 0.180 59.6 0.191 63.7 0.201 64.6 0.237 61.0 0.288 59.0 0.325 58.7 0.360 59.3
(0.089) (0.100) (0.109) (0.116) (0.121) (0.141) (0.162) (0.173) (0.178)∗∗∗

RV-FIX1 0.077 54.6
(0.053)

The table presents results on the out-of-sample forecasting performance of the models defined in Section 3.4, Section 3.6 and Section 3.7. The forecasts are over one-day
to five-day horizons, then ten-day, twenty-day, thirty-day and finally the forty-day horizon. The forecast are evaluated using the mean forecast error criterion (ME)
defined by equation 3.9.1 and the relative mean absolute error criterion (RMAE) defined by equation 3.9.2. The sample period for estimation is January 4, 1993 to May
29, 1998, the one for forecast evaluation is June 1, 1998 to August 31, 1999.
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The conclusions that can be drawn from the out-of-sample exercises remain largely as before:

the models that account for seasonality tend to improve upon the ones that do not, the

SP and RV groups generally take the top two slots in the rankings; the D group tends

to perform worst and the I-group is the next-to-worst; the fractionally integrated models

tend to do better than the short-memory models; the exceptional RV-FI model is best at

the one-day-horizon; accounting for the leverage effect improves short-horizon forecasts,

but lowers the performance over longer time spans. The only notable difference from our

previous results is that now the SP class tends to perform best while the RV runs a close

second, rather than the other way around.

Group-by-group, the results are virtually identical. Within the I-group, the I-FIGARCH is

best (again with the exception of the one-day-ahead forecasts). Within the SP group, the

SP-FIEGARCH model is again always the best. Within the D-group, the D-FIEGARCH

again does better everywhere, but now with the exception of the twenty-day and thirty-day

horizons (where the D-FIGARCH does better). Finally, in the RV group, departing a bit

from the previous results, the RV-ARX2 does better up to the two-day horizon, while, for

longer horizons, RV-FI performs better again.

3.10 Conclusions

Using five-minute returns on the Dow Jones Industrials Average portfolio over the period

from January 1993 to August 1999, this chapter investigated the short and long horizon

in and out-of sample forecasting performance of ARCH models when these are applied to

daily and intradaily returns as well as realized volatility specifications that model the time

series of squared intraday returns. We proposed semi-parametric ARCH specifications that

simultaneously model intraday seasonality and persistency of volatility.

Our results make a strong case for the temporal dependency in volatility – models that

account for it tend to forecast much better than a naive homoskedastic specification. The

degree of enhancement differs however greatly across the various specifications. Formula-
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tions that give proper consideration to long-range volatility dependencies tend to outperform

their short-memory counterparts. Accounting for the leverage effect improves short-horizon

forecasts, but tends to lower the quality of forecasts over longer time spans. The comparison

of daily and interdaily ARCH models revealed that specifications of the latter type gener-

ally provide better forecasts once consideration to the seasonal dependency of volatility

within the day is given. Overall, a long-memory daily realized volatility and long-memory

interdaily semi-parametric specification gave the most accurate forecasts.
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Chapter 4

Conclusions and Suggestions for

Future Research

This dissertation concerned the measurement, modeling and forecasting of volatility. Our

first chapter introduced the subject matter and outlined the difficulties when the existing

approaches are employed. Specifically, volatility estimates given by statistical and economic

methods are model driven and may therefore not be valid. Direct indicators of volatility,

such as daily squared returns, are subject to substantial error.

In our second chapter, we proposed measuring daily volatility model-free by summing the

squares of intraday returns. We first derived the theoretical properties of this realized

volatility estimator and showed that measurement error – under quite general conditions

– can be made arbitrary small when sufficiently many intraday return data are employed.

Using the transaction price record of the Dow Jones Industrials Average portfolio we next

documented the properties of our stock volatility sample. Our main results have been that

variances are distributed lognormal, that the volatility process is covariance stationary and

highly persistent and that volatility correlates more strongly with lagged negative than

lagged positive returns.
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These findings set the stage for the development of a time series model that captures the

temporal dependency of our volatility variable. On the basis of ex ante one-day-ahead

prediction criteria we found that our proposed specification yields unbiased and accurate

volatility predictions and that these are better than the ones obtained by daily ARCH

specifications, including those that closely match the properties of volatility we documented.

The central topic of our third chapter has been to identify volatility models that yield useful

forecasts over long-term out-of-sample horizons. For this propose we have juxtaposed three

classes of models: intradaily ARCH, daily ARCH and realized volatility models. We have

found that there are clear advantages in using high-frequency data. Forecasts based on

models which use intradaily data – intradaily ARCH and realized volatility models – tend

to outperform daily ARCH specifications.

These results strengthened our findings in the second chapter on the realized volatility

model. Specifically, we have shown that the superiority of the realized volatility specification

over daily ARCH models continues to hold out-of-sample and over long horizons. However,

the application of ARCH formulations to intradaily returns has shown that the realized

volatility may be inefficient. Although we found that the direct application of these models

is hazardous, specifications that model simultaneously intraday seasonality and long-term

persistency of volatility performed effectively as well as the realized volatility specification.

Many promising research projects emerge from the approach we have taken to measure,

model and forecast volatility. First, a key determinant of an option price is the asset return

volatility until expiration of a contract. The forecasting models we developed outperformed

any of the standard techniques and thus should help towards the more efficient pricing of

these derivatives.

Second, our analysis has focused only on the second moments of daily returns and the

relation of second moments to first moments. For modern financial theories, however, the

entire distribution of returns is of interest. Measures of third and fourth moments are readily
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obtained using intradaily data – allowing one to study the relation of these measures over

time and to each other.

Third, for portfolio selection problems considerable interest is on the joint distribution of

returns, e.g. covariances and correlations. Using intradaily data, such measures may be

computed at the daily frequency and thus analyzed, modeled and forecasted using either

the time series techniques we employed or their multivariate extensions.

Fourth, the direct measurement of both daily variances and covariances allows the compu-

tation of daily realized CAPM betas. Their forecasted values may help to determine future

risk factors and identify under priced assets.

Finally, the joint distribution of returns may be related to observed variables such as price

volume, transaction volume, bid-ask spreads, news announcements and so on. Such relations

may explain further characteristics of asset price dynamics.
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