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adaptive heuristics

A ‘heuristic’ is a method or rule for solving problems; in game theory it refers
to a method for learning how to play. Such a rule is ‘adaptive’ if it is directed
towards higher payoffs and is reasonably simple to implement. This article
discusses a variety of such rules and the forms of equilibrium that they
implement. It turns out that even sophisticated solution concepts, like sub-
game perfect equilibrium, can be achieved by relatively simple and intuitive
methods.

‘Adaptive heuristics™ are simple behavioural rules that are directed towards
payofl improvement but may be less than fully rational. The number and
variety of such rules are virtually unlimited; here we survey several prom-
inent examples drawn from psychology, computer science, statistics and
game theory. Of particular interest are the informational inputs required by
different learning rules and the forms of equilibrium to which they lead. We
shall begin by considering very primitive heuristics, such as reinforcement
learning, and work our way up to more complex forms, such as hypothesis
testing, which still, however, fall well short of perfectly rational learning.

One of the simplest examples of a learning heuristic is cumulative payoff
matching, in which the subject plays actions next period with probabilities
proportional to their cumulative payoffs to date. Specifically, consider a
finite stage game G that is played infinitely often, where all payoffs are
assumed to be strictly positive. Let ay(r) denote the cumulative payoff to
player i over all those periods 0 < ' < ¢ when he played action j, including
some initial propensity a;(0)>0. The cumulative payoff matching rule stip-
ulates that in period ¢+ 1, player i chooses action j with probability

pit+1) = ay(0) )Y ax. (1)

Notice that the distribution has full support given the assumption that the
initial propensities are positive. This idea was first proposed by the psychol-
ogist Nathan Herrnstein (1970) to explain certain types of animal behaviour,
and falls under the more general rubric of reinforcement learning (Bush and
Mosteller, 1951; Suppes and Atkinson, 1960; Cross, 1983). The key feature of
a reinforcement model is that the probability of choosing an action increases
monotonically with the total payoff it has generated in the past (on the
assumption that the payoffs are positive). In other words, taking an action
and receiving a positive payoff reinforces the tendency to take that same
action again. This means, in particular, that play can become concentrated
on certain actions simply because they were played early and often, that is,
play can be habit-forming (Roth and Er'ev, 1995; Er'ev and Roth, 1998).

Reinforcement models differ in various details that materially affect their
theoretical behaviour as well as their empirical plausibility. Under cumula-
tive payoff matching, for example, the payoffs are not discounted, which
means that current payoffs have an impact on current behaviour that di-
minishes as 1/t. Laboratory experiments suggest, however, that recent pay-
offs matter more than those long past (Er’ev and Roth, 1998); furthermore,
the rate of discounting has implications for the asymptotic properties of such
models (Arthur, 1991).

Another variation in this class of models relies on the concept of an as-
piration level. This is a level of payoffs, sometimes endogenously determined
by past play, that triggers a change in a player’s behaviour when current
payoffs fall below the level and inertial behaviour when payoffs are above the
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level. The theoretical properties of these models have been studied for 2 x 2
games, but relatively little is known about their behaviour in general games
(Bérgers and Sarin, 2000; Cho and Matsui, 2005).

Next we turn to a class of adaptive heuristics based on the notion of
minimizing regret, about which more is known in a theoretical sense. Fix a
particular player and let «(r) denote the average per period payoff that she
received over all periods ' < 1. Let a,(1) denote the average payoff she would
have received by playing action j in every period through ¢, on the assump-
tion that the opponents played as they actually did. The difference r(1) =
a;(ty — a(r) is the subject’s unconditional regret from not having played j in
every period through 7. (In the computer science literature this is known as
external regret; see Greenwald and Gondek, 2002.)

The following simple heuristic was proposed by Hart and Mas-Colell
(2000; 2001) and is known as unconditional regret matching: play each action
with a probability that is proportional to the positive part of its uncondi-
tional regret, that is,

P+ D =501 /3 (). @

This learning rule has the following remarkable property: when used by any
one player, his regrets become non-positive almost surely as ¢ goes to infinity
irrespective of the behaviour of the other players. When all players use the rule,
their time average behaviour converges almost surely to a generalization of
correlated equilibrium known as the Hannan set or the coarse correlated
equilibrium set (Hannan, 1957; Moulin and Vial, 1978; Hart and Mas-Colell,
2000; Young, 2004). In general, a coarse correlated equilibrium (CCE) is a
probability distribution over outcomes (joint actions) such that, given a
choice between (a) committing ex ante to whatever joint action will be re-
alized, and (b) committing ex ante to a fixed action, given that the others are
committed to playing their part of whatever joint action will be realized,
every player weakly prefers the former option. By contrast, a correlated
equilibrium (CE) is a distribution such that, after a player’s part of the re-
alized joint action has been disclosed, he would just as soon play it as
something else, given that the others are going to play their part of the
realized joint action. It is straightforward to show that the coarse correlated
equilibria form a convex set that contains the set of correlated equilibria
(Young, 2004, ch. 3).

The heuristic specified in (2) belongs to a large family of rules whose time-
average behaviour converges almost surely to the coarse correlated equilib-
rium set; equivalently, that assures no long-run regret for all players simul-
taneously. For example, this property holds if we Ilet
pit+1)= [F}(-')]ifzk[-“k(f)]i for some exponent 0>0; one may even take
different exponents for different players. Notice that these heuristics put
positive probability only on actions that would have done strictly better (on
average) than the player's realized average payoff. These are sometimes
called better reply rufes. Fictitious play, by contrast, puts positive probability
only on action(s) that would have done best against the opponents” frequency
distribution of play.

Fictitious play does not necessarily converge to the coarse correlated
equilibrium set (CCES); indeed, in some 2 x 2 coordination games fictitious
play causes perpetual miscoordination, in which case both players have un-
conditional long-run regret (Fudenberg and Kreps, 1993; Young, 1993). By
choosing ) to be very large, however, we see that there exist better reply rules
that are arbitrarily close to fictitious play and that do converge almost surely
to the CCES. Fudenberg and Levine (1995; 1998; 1999) and Hart and Mas-
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Colell (2001) give general conditions under which stochastic forms of ficti-
tious play converge in time average to the CCES.

Without complicating the adjustment process too much, one can construct
rules whose time average behaviour converges almost surely to the correlated
equilibrium set (CES). To define this class of heuristics we need to introduce
the notion of conditional regret. Given a history of play through time ¢ and a
player i, consider the change in per period payoff if i had played action k in
all those periods ¢’ < t when he actually played action j (and the opponents
played what they did). If the difference is positive, player i has conditional
regret — he wishes he had played & instead of /. Formally, I"s conditional regret
at playing j instead of k up through time ¢, (1), is 1/¢ times the increase in
payoff that would have resulted from playing k instead of j in all periods
t' < t. Notice that the average is taken over all ¢ periods to date; hence, if j
was not played very often, r:fk{r} will be small.

Consider the following conditional regret matching heuristic proposed by
Hart and Mas-Colell (2000): if a given agent played action j in period ¢, then
in period ¢+ 1 he plays according to the distribution

it + 1) = erp(r), for all k#j, and g,(t+1)=1 —eZ&,#er,k{:}Jr‘ 3)

In effect 1—¢ is the degree of inertia, which must be large enough that ¢, (¢ +
1) is non-negative for all realizations of the conditional regrets r;(f). If all
players use conditional regret matching and ¢ is sufficiently small, then al-
most surely the joint frequency of play converges to the set of correlated
equilibria (Hart and Mas-Colell, 2000). Notice that peintwise convergence is
not guaranteed; the result says only that the empirical distribution converges
to a convex ser. In particular, the players’ time-average behaviour may
wander from one correlated equilibrium to another. It should also be re-
marked that, if a single player uses conditional regret matching, there is no
assurance that his conditional regrets will become non-positive over time
unless we assume that the other players use the same rule. This stands in
contrast to unconditional regret matching, which assures non-positive un-
conditional regret for any player who uses it irrespective of the behaviour of
the other players. One can, however, design more sophisticated updating
procedures that unilaterally assure no conditional regret; see for example
Foster and Vohra (1999), Fudenberg and Levine (1998, ch. 4), Hart and
Mas-Colell (2000), and Young (2004, ch. 4).

A natural question now arises: do there exist simple heuristics that allow
the players to learn Nash equilibrium instead of correlated or still coarser
forms of equilibrium? The answer depends on how demanding we are about
the long-run convergence properties of the learning dynamic. Notice that the
preceding results on regret matching were concerned solely with time-average
behaviour; no claim was made that period-by-period behaviour converges to
any notion of equilibrium. Yet surely it is period-by-period behaviour that is
most relevant if we want to assert that the players have ‘learned’ to play
equilibrium. It turns out that it is very difficult to design adaptive learning
rules under which period-by-period behaviour converges almost surely to
Nash equilibrium in any finite game, unless one builds in some form of
coordination among the players (Hart and Mas-Colell, 2003; 2006). The
situation becomes even more problematic if one insists on fully rational,
Bayesian learning. In this case it can be shown that there exist games of
incomplete information in which no form of Bayesian rational learning
causes period-by-period behaviours to come close to Nash equilibrium be-
haviour even in a probabilistic sense (Jordan, 1991, 1993; Foster and Young,
2001; Young, 2004; see also BELIEF LEARNING).
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If one does not insist on full rationality, however, one can design stochastic
adaptive heuristics that cause period-by-period behaviours to come close to
Nash equilibrium — indeed close to subgame perfect equilibrium — most of
the time (without necessarily converging to an equilibrium). Here is one ap-
proach due to Foster and Young (2003); for related work see Foster and
Young (2006) and Germano and Lugosi (2007). Let G be a finite n-person
game that is played infinitely often. At each point in time, each player thinks
that the others are playing i.i.d. strategies. Specifically, at time ¢ player /
thinks that j is playing the i.i.d strategy p{f) on j's action space, and that the
opponents are playing independently; that is, their joint strategies are given
by the product distribution p_(7) = Hjﬂpj{r). Suppose that i's best response
is to play a smoothed best response to p_ (7). Specifically, assume that i plays
each action j with a probability proportional to ¢0r-) where w,(j, p_;) is i's
expected utility from playing j in every period when the opponents play p_,,
and >0 is a response parameter. This is known as a quantal or log linear
response function. For brevity, denote /’s response in period 7 by q’?(.f}; this
depends, of course, on p_J(z). Player i views p_,(7) as a hypothesis that he
wishes to test against data. After first adopting this hypothesis he waits for a
number of periods (say s) while he observes the opponents” behaviour, all the
while playing q{’(r). After s periods have elapsed, he compares the empirical
frequency distribution of the opponents” play during these periods with his
hypothesis. Notice that both the empirical frequency distribution and the
hypothesized distribution lie in the same compact subset of Euclidean space.
If the two differ by more than some tolerance level 1 (in the Euclidean
metric), he rejects his current hypothesis and chooses a new one.

In choosing a new hypothesis, he may wish to take account of information
revealed during the course of play, but we shall also assume he engages in
some experimentation. Specifically, let us suppose that he chooses a new
hypothesis according to a probability density that is uniformly bounded
away from zero on the space of hypotheses. One can show the following:
given any £>0, if the response parameter f is sufficiently large, the test
tolerance 7 is sufficiently small (given f), and the amount of data collected s
is sufficiently large (given § and 1), then the players’ period-by-period be-
haviours constitute an s-equilibrium of the stage game G at least 1 — & of the
time (Foster and Young, 2003). In other words, classical statistical hypoth-
esis testing is a heuristic for learning Nash equilibria of the stage game.
Moreover, if the players adopt hypotheses that condition on history, they
can learn complex equilibria of the repeated game, including forms of sub-
game perfect equilibrium.

The theoretical literature on strategic learning has advanced rapidly in
recent years. A much richer class of learning models has been identified since
the mid-1990s, and more is known about their long-run convergence prop-
erties. There is also a greater understanding of the various kinds of equi-
librium that different forms of learning deliver. An important open question
is how these theoretical proposals relate to the empirical behaviour of lab-
oratory subjects. While there is no reason to think that any of these rules can
fully explain subjects’ behaviour, they can nevertheless play a useful role by
identifying phenomena that experimentalists should look for. In particular,
the preceding discussion suggests that weaker forms of equilibrium may turn
out to be more robust predictors of long-run behaviour than is Nash equi-
librium.

H. Peyton Young
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See also

behavioural game theory;
belief learning;
learning.
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