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1. Learning equilibrium in complex interactive systems 

Game theory has traditionally focussed on situations that involve a small number of players. 

In these environments it makes sense to assume that players know the structure of the game 

and can predict the strategic behavior of their opponents. But there are many situations 

involving huge numbers of players where these assumptions are not particularly persuasive. 

Commuters in city traffic are engaged in a game because each person’s choice of route 

affects the driving time of many other drivers, yet it is doubtful that anyone ‘knows the game’ 

or fully takes into account the strategies of the other players as is usually posited in game 

theory. Other examples include decentralized procedures for routing data on the internet, and 

the design of information sharing protocols for distributed sensors that are attempting to 

locate a target. 

These types of games pose novel and challenging questions. Can such systems equilibrate 

even though agents are unaware of the strategies and behaviors of most (or perhaps all) of the 

other agents? What kinds of adaptive learning rules make sense in such environments? How 

long does it take to reach equilibrium assuming it can be reached at all? And what can be said 

about the welfare properties of the equilibria that result from particular learning rules? 

In the last few years the study of these issues has been developing rapidly among computer 

scientists and distributed control theorists (Papadimitriou, 2001; Roughgarden, 2005; Mannor 

and Shamma, 2007; Marden and Shamma, 2008; Marden, Arslan, and Shamma, 2009; 

Marden et al., 2009; Asadpour and Saberi, 2009; Shah and Shin, 2010). Concurrently game 

theorists have been investigating the question of whether decentralized rules can be devised 

that converge to Nash equilibrium (or correlated equilibrium) in general n-person games 

(Hart and Mas-Colell, 2003, 2006; Foster and Young, 2003, 2006; Young, 2009; Hart and 

Mansour, 2010).  A related question is whether decentralized learning procedures can be 

devised that optimize some overall measure of performance or welfare without necessarily 

inducing equilibrium (Arieli and Babichenko, 2011; Marden, Young, and Pao, 2011).  This is 

particularly relevant to problems of distributed control, where measures of system 

performance are given (e.g., the total power generated by a windfarm, the speed of data 

transmission in a communications network), and the aim is to design local response functions 

for the components that achieve maximum overall performance. 
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Much of the recent research on these topics has focussed on potential games, which arise 

frequently in applications (Marden and Shamma, 2008; Marden, Arslan, and Shamma, 2009). 

For this class of games there exist extremely simple and intuitively appealing learning 

procedures that cause the system to equilibrate from any initial conditions. A notable example 

is logit learning, in which an agent chooses actions with log probabilities that are a linear 

function of their payoffs. In this case equilibrium occurs at a local or global maximum of the 

potential function. However, the potential function need not measure the overall welfare of 

the agents, hence the equilibrium selected may be quite inefficient. This is a well-known 

problem in congestion games for example. The problem of inefficient equilibrium selection 

can be overcome by a congestion pricing scheme, but this requires some type of centralized 

(or at least not fully decentralized) mechanism for determining the price to charge on each 

route (Sandholm, 1998). 

The contribution of this paper is to demonstrate a simple learning rule that incorporates log 

linear learning as one component, and that selects an efficient equilibrium in any game with 

generic payoffs that possesses at least one pure Nash equilibrium. (An equilibrium is efficient 

if there is no other equilibrium in which someone is better off and no one is worse off.) By 

‘select’ we mean that, starting from arbitrary initial conditions, the process is in an efficient 

equilibrium in a high proportion of all time periods. Our learning rule is completely 

uncoupled, that is, the updating procedure does not depend on the actions or payoffs of 

anyone else. Thus it can be implemented even in environments where players know nothing 

about the game, or even whether they are in a game. All they do is react to the pattern of 

recent payoffs, much as in reinforcement learning (though the rule differs in certain key 

respects from reinforcement learning). 

Our notion of selection – in equilibrium a high proportion of the time – is crucial for this 

result. It is not true that the process converges to equilibrium or even that it converges to 

equilibrium with high probability. Indeed it can be shown that, for general n-person games, 

there exist no completely uncoupled rules with finite memory that select a Nash equilibrium 

in this stronger sense (Babichenko, 2010a; see also Hart and Mas-Colell, 2003, 2006). 

The learning rule that we propose has a similar architecture to the trial and error learning 

procedure of Young (2009), and is more distantly related to the ‘learning by sampling’ 
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procedure of Foster and Young (2006) and Germano and Lugosi (2007).1 An essential feature 

of these rules is that players have two different search modes: i) deliberate experimentation, 

which occurs with low probability and leads to a change of strategy only if it results in a 

higher payoff than the current aspiration level; ii) random search, which leads to a change of 

strategy that may or may not have a higher payoff. Young (2009) demonstrates a procedure 

of this type that selects pure Nash equilibria in games where such equilibria exist and payoffs 

are generic. However this approach does not provide a basis for discriminating between pure 

equilibria, nor does it characterize the states that are selected when such equilibria do not 

exist. 

In contrast to these earlier papers, the learning rule described here permits a sharp 

characterization of the equilibrium and disequilibrium states that are favored in the long run. 

This results from several key features that distinguish our approach from previous ones, 

including Young (2009). First, we do not assume that agents invariably accept the outcome of 

an experiment even when it results in a strict payoff improvement: acceptance is probabilistic 

and is merely increasing in the size of the improvement. Second, players accept the outcome 

of a random search with a probability that is increasing in its realized level of payoff rather 

than the gain in payoff. Third, the acceptance functions are assumed to have a log linear 

format as in Blume (1993, 1995). These assumptions define a learning process that selects 

efficient pure Nash equilibria whenever pure Nash equilibria exist. Moreover when such 

equilibria do not exist we obtain a precise characterization of the disequilibrium states that 

have high probability in the long run. These states represent a trade-off between welfare and 

stability: the most likely disequilibrium states are those that maximize a linear combination 

of: i) the total welfare (sum of payoffs) across all agents and ii) the payoff gain that would 

result from a deviation by some agent, where the first is weighted positively and the second 

negatively. 

1 Another distant relative is the aspiration-based learning model of Karandikar et al. (1998). In this procedure 
each player has an endogenously generated aspiration level that is based on a smoothed average of his prior 
payoffs. He changes strategy with positive probability if his current payoff falls below his current aspirations. 
Unlike the present method, this procedure does not necessarily lead to Nash equilibrium behavior even in 2 x 2 
games. 
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2. The learning model 

We shall first describe the learning rule informally in order to highlight some of its 

qualitative features. At any given point in time an agent may be searching in one of two ways 

depending on his internal state or ‘mood’. In the content state an agent occasionally 

experiments with new strategies, and adopts the new strategy with a probability that increases 

with the associated gain in payoff. (This is the conventional exploration/exploitation form of 

search.)  In the discontent state an agent flails around, trying out randomly chosen strategies 

every period. The search ends when he spontaneously accepts the strategy he is currently 

using, where the probability of acceptance is an increasing function of its realized payoff. The 

key differences between these modes of search are: i) the rate of search (slow for a content 

agent, fast for a discontent agent); and ii) the probability of accepting the outcome of the 

search. In the content state the probability of acceptance is determined by the change in 

payoff, whereas in the discontent state the probability of acceptance is determined by the 

level of payoff. The rationale for the latter assumption is that a discontent agent will typically 

try out many different strategies before settling on any one of them. Over time his previous 

benchmark payoff fades in importance and his current payoff becomes more salient in 

deciding whether to accept or reject his current strategy.2 This stands in contrast with the 

more deliberative behaviour of a content agent, who compares the payoff from a single 

experiment to the benchmark payoff in the immediately preceding period. 

A second key feature of the learning process is the mechanism that triggers transitions 

between content and discontent states.  A transition from content (c) to discontent (d) occurs 

when an agent’s realized payoff goes down for two periods in succession and he does not 

experiment during those periods. In other words, a c  d  transition is triggered by a drop in 

payoff that was not instigated by the agent, but results from a change of action by someone 

else. By contrast, a d  c  transition occurs when an agent tires of searching and accepts his 

current strategy as ‘good enough.’ 

To illustrate these ideas in an everyday situation, consider a commuter who ordinarily takes a 

particular route to work. A ‘content’ commuter will occasionally experiment with new routes 

just to see if there might be something better out there.  If one of these experiments results in 

2 The algorithm could be modified so that an agent compares his current payoff to a discounted version of his 
old benchmark. We conjecture that this would lead to similar long-run behavior but it would also significantly 
complicate the analysis. 
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lower travel time, he adopts the new route with a probability that is increasing with the gain 

in payoff (the decrease in travel time), and otherwise he returns to his usual route.  However, 

if the travel time on his usual route worsens over several consecutive days, this will prompt 

him to become discontent and to start actively looking for a new route. This search 

eventually comes to an end when he adopts the route he is currently using, where the 

probability of acceptance increases the more desirable the route is. 

It is worth pointing out that these acceptance probabilities depend on cardinal changes in 

payoffs, and therefore go beyond the standard assumptions of von Neumann Morgenstern 

utility theory. In particular, the learning model is not invariant to changes of scale or changes 

of origin in the agent’s utility function. The larger the payoff gain from an experiment, the 

higher the probability that it will be accepted; similarly, the larger the current payoff level 

from a random search, the higher the probability that the current action will be accepted (and 

the benchmarks adjusted accordingly).  Since agents’ payoffs determine their probabilities of 

making various choices, it should not be surprising that the probability of different states of 

the system depends on their welfare properties. In other words the learning process implicitly 

makes interpersonal comparisons of welfare among the agents. Our main theorem will exhibit 

the precise sense in which the long-run probability of the states is related to both their welfare 

and their stability. 

We now describe the learning algorithm in detail. Let  be an n -person game on a finite 

joint action space A  Ai  and let ui ( )  be i ’s utility function. At each point in time the 
i 

state of each player i  is a triple zi i , ,i uim a  consisting of 

i) a mood mi : a state variable that determines his method of search; 

ii) a benchmark action ai : the action he would take when not searching; 

iii) a benchmark payoff ui : the payoff he expects to get, i.e., his aspiration level. 

Each agent has four moods: content (c), discontent (d), watchful ( c  ), and hopeful ( c  ).   We 

shall assume that each benchmark payoff ui  corresponds to a feasible payoff in the game, 

that is, ui ui ( )  for some a A  . Since A  is finite, it follows that the state space is also a  

finite. 
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The learning process evolves in discrete time periods t 1,2,3,... , where the game is played 

once per period. The agents’ exploration rates are governed by a parameter (0,1)  that 

determines the overall level of noise in the system, and two real-valued functions F u( )  and 
F u( )G u( )   , where  is the probability of accepting the outcome of a discontent search when 

G u )the current payoff is u , and (  is the probability of accepting the outcome of a content 

search when the payoff gain is u 0 . We shall assume that F  and G  are strictly monotone 

decreasing, that is, the probability of acceptance is strictly increasing in u  and u 

respectively. For simplicity of exposition we shall also assume that , F , and G  are 

common across all agents.  In section 7 we shall show how to extend our results to the case 

where agents have heterogeneous learning parameters, including different rates of 

experimentation.  

Fix a particular agent i . Conditional on i  being in state zi  at the start of a period, the 

following rules determine i ’s state at the end of the period. (The process is time 

homogeneous, so there is no need to designate the period in question.) 

Content: zi , ,i uic a . At the start of the period i  experiments with probability and does 

not experiment with probability 1 . An  experiment involves playing an action ai ai , 

where the choice of ai  is determined by a uniform random draw from the set Ai {ai} . Let 

ui be i ’s realized payoff during the period whether he experiments or not. 

G u( i ui ) If i  experiments and u u , i  transits to the state c a, ,u  with probability ,i i i i 

G u( u )and remains in state c a, ,i ui  with probability 1  i  i . 

 If i  experiments and ui ui , i ’s state remains unchanged. 

 If i  does not experiment and u u , i  transits to the state c a, ,u .i i i i 

 If i  does not experiment and u u , i  transits to the state c a, ,u .i i i i 

 If i  does not experiment and ui  ui , i ’s state remains unchanged. 
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Thus if i  experiments and the result is a gain in payoff, he accepts the outcome (and adopts 

the corresponding new benchmarks) with a probability that increases with the size of the 

gain. If i  does not experiment and his payoff changes due to the actions of others, he enters a 

transitional state and keeps his previous benchmarks. The notion here is that it would be 

premature to change benchmarks based on the experience from a single period, but if the 

directional change in payoff persists for another period, then i  transits to a discontent state or 

a new content state, as described below. (It is straightforward to modify the algorithm so that 

an agent waits for k periods before transiting to a new content or discontent state.) 

Watchful: c a u . Agent i  plays ai  and receives payoff ui  ., ,i i 

 If u   ui i , i  transits to the state , ,d a  ui i . 

 If u   ui i , i  transits to the state  , ,c a  ui i 

 If ui ui , i  transits to the state , ,c a  ui i 

Hopeful:  , ,c a  ui i . Agent i  plays ai  and receives payoff ui  . 

 If u   ui i , i  transits to the state  , ,c a  ui i 

 If u   ui i , i  transits to the state , ,c a  ui i 

 If ui ui , i  transits to the state , ,c a  ui i 

The logic of these intermediate states is that if i ’s realized payoff confirms his current mood, 

then i  becomes discontent (from the watchful state) or content (from the hopeful state). If i ’s 

realized payoff does not confirm his current mood, i  switches to the opposite intermediate 

state, or back to the content state if the realized payoff equals his benchmark payoff.    
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Discontent: d a, ,u . Agent i  plays an action ai  drawn uniformly at random from A  andi i i

receives the payoff ui  . 

 i  transits to the state , ,c a  ui i  with probability ( ) F ui  ; otherwise i  remains in the 

state , ,d a  ui i . 

Figure 1 illustrates the various transitions diagrammatically. 

Content-content transitions 

ui 

c 

ui 

c 
experiment ( )  

u   ui i 

ui 

 
u   ui i   

accept ( ) q 
q : 

' 
iG u   iu

 

reject (1- )q
 

ui 

c 

d 

Discontent-content transitions 

uu irandom search i acceptance ( )p
   c p :  F ui 

reject (1 p) 
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Intermediate transitions 
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 u u i i 

u u i i 
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c no exp (1 )
 u ui i 
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 u u i i 

u u i i 
ui 

c  
ui 

 

 u u i i 

u ui i  

ui 
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ui 

c 

u u i i 
ui 
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Figure 1. The structure of transitions for a given player i. Payoff benchmarks are above the 

boxes and current period payoffs are above the dots. 

While the details of the learning algorithm are involved, the overall dynamics are 

qualitatively quite simple. The process oscillates between phases in which search is slow and 

search is fast. 

1. When all players are content they occasionally experiment and search is slow. If the 

experiments lead to higher payoffs for some and no decrease for anyone, the players become 

content again with higher payoff benchmarks. This is a hill-climbing phase in which payoffs 

are monotonically increasing. 

2. A sequence of experiments by content players may result in someone’s payoff going below 

his benchmark for two periods in a row. This player becomes discontent and starts searching 
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every period. With some probability his searching causes other players to become discontent 

and they start searching. In effect, discontent search by one individual spreads through the 

population by contagion, creating high variance and leading to fast, wide-area search. This 

phase ends when the discontent players spontaneously settle down and become content again.  

In section 5 we shall walk through an example step-by-step to show how the transition 

probabilities are computed in a concrete case.  Before turning to these calculations, however, 

we shall discuss how this approach relates to earlier work and then state our main theorem. 

3. Discussion 

Learning rules that employ fast and slow search have been proposed in a variety of settings. 

In computer science, for example, there is a procedure known as WoLF (Win or Lose Fast) 

that has a qualitative flavor similar to the rule proposed above (Bowling and Veloso, 2002). 

The basic idea is that when a player’s payoff is high relative to realized average payoff he 

updates his strategy slowly, whereas he updates quickly if his payoff is low compared to the 

realized average. This approach is known to converge to Nash equilibrium in 2 x 2 games but 

not in general (Bowling and Veloso, 2002). Similar ideas have been used to model animal 

foraging behavior (Houston, Kacelnik, and McNamara, 1982; Motro and Shmida, 1995; 

Thuijsman, Peleg, Amitai, and Shmida, 1995). For example, bees tend to search in the 

neighborhood of the last visited flower as long as the nectar yield is high, and search widely 

for an alternative patch otherwise (this is known as a near-far strategy). It would not be 

surprising if human subjects behaved in a similar fashion in complex learning environments, 

but to our knowledge this proposition has not been tested empirically. 

In any event, we make no claim that the rule we have described is accurate from an empirical 

standpoint. The contribution of the present paper is to demonstrate the existence of simple, 

completely uncoupled rules that select efficient equilibria in a wide class of games. This 

addresses an important problem in the application of game theory to distributed control, 

where the object is to guarantee good system-wide performance using completely 

decentralized adaptive procedures. The issue of descriptive accuracy does not arise here, 

because one can build the learning rule into the agents by design. What matters is that the rule 

is simple to execute and requires little information. In our procedure it suffices to keep track 
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of just three items – mood, benchmark action, and benchmark payoff – and to compare these 

with the received payoff each period.  

4. Statement of the main result 

To state our results in the most transparent form we shall impose certain restrictions on the 

acceptance functions F  and G . In particular we shall assume that they are strictly 

decreasing linear functions 

u ,  where  0  ,  (1)F u   1 2 1 

( )  u ,  where 0 .G u    (2)1 2 1 

The coefficients i , i  are chosen so that F u( )  and ( )G u  are strictly positive for all 

 u u U  and U , and are “small” in the following sense:  

0  ( ) 1/ 2  and 0 F u  1/ 2n . (3)G u  ( ) 

This condition implies that the acceptance probabilities are fairly large relative to the 

probability of conducting an experiment. In particular the probability of accepting the 
G uoutcome of an experiment ( ( ) ) is always greater than , and the probability of 

accepting the outcome of a random search is greater still (see figure 2). We do not claim that 

these bounds are best possible, but they are easy to work with and yield sharp analytical 

predictions. The assumption of linearity will be useful for stating our first theorem, but in 

fact a more general equilibrium selection result holds even when the functions are nonlinear 

and differ among agents, as we shall show in section 7. 
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Figure 2. Acceptance probabilities for content agents (left panel) and discontent agents (right 

panel). 

The learning rule described above is a variant of log linear learning that we shall call log 

linear trial and error learning. To see the connection, let  e , where 0 . Then the 

log probability of accepting the outcome of an experiment is 

ln P(accept experiment with payoff gain u 0) ln 1 u 2 ) (  . (4) 

Similarly, the log probability of accepting the outcome of a random search is 

ln P(accept search with payoff u) ln ( 1u 2 ) . (5) 

Notice that the probability of acceptance depends on the cardinality of the payoff gain or 

payoff level respectively. Hence the players’ utilities cannot be rescaled or translated at will, 

as is the case with von Neumann Morgenstern utility functions. The larger the payoff gain 

from an experiment, the higher the probability that it will be accepted. Similarly, the larger 

the payoff level that results from a random search, the higher the probability that the current 

action will be accepted.  

Our equilibrium selection result will be framed in terms of two quantities: the welfare of a 

state and the stability of a state. 
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Welfare. The welfare of state z ( ,m a ,u )  is the sum of the players’ payoffs from their 

benchmark actions: 
n 

W z  ui a . (6) 
i 1 

Stability. An action-tuple a A -equilibrium for some  if is a  0 

i, ai Ai ,  ui ai , a i ui a . (7) 

The stability of state z ( ,m a ,u )  is the minimum 0  such that a  is a -equilibrium: 

S z( ) min { : the benchmark actions constitute a -equilibrium} . (8) 

Note that the larger  is, the less stable the state is, i.e., the greater is the incentive for some 

player to deviate. The following concepts will be needed to state our main result. 

Stochastic stability. The set of stochastically stable states Z *  of the process z t( )  is the 

minimal subset of states such that, given any small 0 , there is a number 0  such that 

whenever 0  z t  Z *  for at least 1 of all periods t. , ( )  

Interdependence. An n-person game  on the finite action space A  is interdependent if, for 

every a A   J N , there exists some player and every proper subset of players 

i J  aJ  such that u a( , a ) u (a ,and a choice of actions  a ) .i J N J i J N J 

In other words, given any current choice of actions a A , any proper subset of players J can 

cause a payoff change for some player not in J by a suitable change in their actions.  Note 

that if a game has generic payoffs (and therefore no payoff ties), interdependence is 

automatically satisfied. However it is a much weaker condition. Consider, for example, a 

traffic game in which agents are free to choose any route they wish. There are many payoff 

ties because a local change of route by one player does not change the payoffs of players who 

are using completely different routes. But it satisfies the interdependence condition because a 
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given player, or set of players, can (if they like) switch to a route that is being used by 

another player and thereby change his payoff. 

Aligned. The benchmarks in state z ( ,m a ,u )  are aligned if the benchmark payoffs result 

from playing the benchmark actions, that is, if ui ui ( )a for every player i . 

Equilibrium state. A state z  is an equilibrium state if all players are content, their 

benchmark actions constitute a Nash equilibrium, and their benchmark payoffs are aligned 

with their benchmark actions. 

Theorem 1. Let  be an interdependent n -person game on a finite joint action space A . 

Suppose that all players use log linear trial and error learning with experimentation 

probability  and acceptance functions F  and G  satisfying conditions (1)-(3).  

i) If  has at least one pure Nash equilibrium, then every stochastically stable state is an 

equilibrium state that maximizes W z( )  among all equilibrium states; 

ii) If  has no pure Nash equilibrium, every stochastically stable state maximizes  

1W z( )  1S( )z .  (9) 

Notice that this result involves a cardinal comparison of the players’ utilities. Players with 

large absolute utility are weighted heavily in the welfare function, and players with large 

utility differences are weighted heavily in the stability function. If a player’s utility function 

were to be scaled up, he would count more heavily in both the welfare and the stability 

function. This would improve the likelihood of states in which this player has a high payoff, 

and decrease the likelihood of states in which this player has an incentive to deviate. 
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5. Examples 

Before turning to the proof we shall consider two simple examples. The first illustrates the 

result when there is no pure Nash equilibrium. The second illustrates it when there are 

multiple Nash equilibria. In this case we shall walk through the algorithm to show why the 

Pareto dominant equilibrium is selected instead of the risk dominant equilibrium.  

Example 1. Let  be a 2 2  game with payoff matrix 

A B 

A 

B 

30,30  0, 40 

24, 23 10, 20 

This game has no pure Nash equilibria, so by theorem 1 the learning process selects the 

combination that maximizes W S . Figure 3 illustrates the case / 1 in which 1 1 1 1 

AA  is selected. 

Figure 3. The tradeoff between welfare (W ) and stability ( S ) in the 2 x 2 game of example 

1, which has no pure Nash equilibrium. 
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In general, the outcome depends on the ratio 1 / 1  as shown in Figure 4. Note that the 

welfare maximizing state AA  is selected whenever 1 / 1  is sufficiently small, that is, 

whenever the marginal change in the rate of acceptance by a discontent player is sufficiently 

large relative to the marginal change in the rate of acceptance of an experiment. 

Figure 4.  Stochastically stable outcomes for example 1 as a function of 1 / 1 . 

Example 2. Let  be a symmetric 2 2  coordination game with payoff matrix  

A B 

A 

B 

40, 40 30,10 

10,30  50,50 

This game has two pure equilibria: AA and BB . The former is risk-dominant and the latter is 

Pareto-dominant. By theorem 1 our learning process selects the Pareto-dominant equilibrium 

over the risk-dominant equilibrium. It therefore differs from many other learning processes in 

the evolutionary literature (Kandori, Mailath and Rob, 1993; Young, 1993; Blume, 1993, 

1995, 2003). It also differs from the algorithm in Young (2009), which provides no clear 

basis for discriminating between the two equilibria. 

It is instructive to walk through the algorithm step-by-step to see how the selection 

mechanism works. For this purpose we need to consider specific acceptance functions. Let us 

choose the following: 

F u( ) 0.001 u  0.1 ,         G( u) 0.01 u  0.5 . 

It is straightforward to verify that these functions satisfy conditions (1)-(3) for the game in 

question. 
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Let us begin by supposing that the learning process is currently in the state AB  and that both 

players are content. In the next period it could happen that the row player experiments by 

playing action B  (probability ) and the column player does not experiment (probability 

1 ). In this case they play BB , hence the row player experiences a payoff gain of 20  while 

the column player experiences a payoff gain of 40 . Since the row player’s experiment led to 

a payoff gain, he accepts his new action as his benchmark action with probability 
( ) G (20)  0.3  G u  . Meanwhile the column player has turned hopeful because he 

experienced a non-self-triggered payoff gain. In the next period, the content row player 

continues to play his new benchmark action B  with probability 1 , and the hopeful 

column player plays his benchmark action B with probability 1. Therefore the column player 

experiences a higher payoff than his benchmark for two consecutive periods, which causes 

him to become content with 50  as his new benchmark payoff and B as his new benchmark 

action. Overall this sequence of transitions from the all-content state AB  to the all-content 
2  0.3  state BB  has probability (1   (see figure 5). ) 

Next let us consider the probability of exiting the all-content state BB . Note that any such 

transition involves a payoff decrease for both players.  Hence for both of them to become 

content in another state, they must both accept lower benchmark payoffs. This can only 

happen if they first become discontent and subsequently become content again. Let D 

denote the set of states in which both players are discontent. We shall compute the probability 

of transiting from the all-content state BB  to some state in D . 

Since BB  is a pure Nash equilibrium no unilateral deviation results in a payoff gain, and 

hence no single player will accept the outcome of an experiment.  In fact, to move to D  some 

player must experiment twice in a row. Suppose that next period the row player experiments 

and the column player does not and that this happens again in the following period. The 

probability of the first event is (1 )  while the probability of the second event is . (The 

reason for the latter is that, by the second period, the column player has become watchful and 

therefore does not experiment.)  Since the column player experiences a payoff below his 

previous benchmark for two successive periods he becomes discontent.  Now over the next 

two periods the probability is (0.5)2 0.25  that the discontent column player chooses A both 

times, and that the row player does not experiment.  This event has probability 0.25 (1 ) 
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because in the meantime the row player has become watchful. Overall this sequence of 

transitions from the all-content state BB  to the set D  has probability 0.25 2 (1 )2 . 

Next we turn to evaluating the probability of moving from a state in D  to an all-content state. 

 F u( )By assumption a discontent player spontaneously turns content with probability in any 

given period. (Note that this probability is independent of his benchmark payoff.) Therefore 

the probabilities of moving from D  to each of the four all-content states are as follows: 

F (40) )2 0.12 F (30) F (10) 0.16(  D  AA , D  AB 
F (10) F (30) 0.16 F (50) 2 0.10 (  ) D BA , D BB 

Note that among all possible ways of moving out of D , the move to all-content BB  has 

highest probability. 

The situation is summarized in Figure 5, which shows the highest probability of transiting 

between D  and each of the four all-content states (possibly via intermediate states, which are 

not shown). 

AB 

2 0.20 0.16 2 0.30(1 )  (1 )    
2 2 0.100.25  (1 ) 

 AA    BBD0.12 0.25 2 (1 )2 

2 0.20 0.16 2 0.30(1 )     (1 )  

BA 

Figure 5. Maximal transition probabilities between the four all-content states and the set D 

in which everyone is discontent. 

The key to the analysis is the relative magnitude of the various transition probabilities when 

 is very small. This is determined by the size of the exponent on  , which is called the 

resistance of the transition. These resistances are shown in figure 6. Note that the two 
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equilibrium states AA and BB are the hardest to leave (resistance 2 in each case) and that 

equilibrium BB is the easiest to enter (resistance 0.10). This provides a hint as to why BB is 

the stochastically stable state but it does not amount to a proof: one must analyze the entire 

structure of transition probabilities in order to characterize the stochastically stable states. 

The method for doing this will be explained in the next section, where we turn to the proof of 

the main theorem. 

AB 

1.20 0.16 1.30    

2 0.10 AA BBD 20.12 

1.20 0.16 1.30   

BA 

Figure 6. Resistance of the transitions between states. 

6. Proof of theorem 1 

For given parameters ,  ,F  and G , the learning process defines a finite Markov chain on the 

state space Z . For every two states z z, ' Z there is a probability (possibly zero) of transiting 

from z  to z '  in one period. We shall write this one-period transition probability as a 

function of the experimentation rate  : Pzz 
 
' . The transition is feasible if Pzz 

 
'  0  whenever 

 0 . The resistance of a feasible transition z  z '  is the unique real number r z( , z ')  0 

P  r z( ,z ')such that 0 lim  zz ' /  . The resistance of an infeasible transition is defined to
0 

be r z( ,  z ') . If the probability of a transition is bounded away from zero when  is small, 

we shall say that the transition has zero resistance or equivalently has probability of order 

O(1) . Similarly a transition with resistance r has probability of order O( r ) . 

In general, a recurrence class of a finite Markov chain is a nonempty subset of states R  Z 

such that: i) for every two distinct states z z, ' R  there is a positive probability path from z 

to z '  and a positive probability path from z '  to z ; ii) there is no positive probability path 
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from any state in R  to a state outside of R . The first step in the proof is to characterize the 

recurrence classes of the unperturbed process P0 , that is, the process when  0 . In this 

situation, no one experiments and no one converts from being discontent to content. 

Notation.  Let Z 0  be the subset of states in which everyone’s benchmarks are aligned. Let 

C0  be the subset of Z 0  in which everyone is content, let E0  be the subset of C0  in which the 

benchmark actions constitute a pure Nash equilibrium and let E*  be the subset of E0  on 

which welfare is maximized.  Finally, let  

D = {all states z Z  in which every player is discontent}.  (10) 

Recall that if a player is discontent, he chooses an action according to a distribution that has 

full support and is independent of the current benchmark actions and payoffs. Moreover, the 

probability of accepting the outcome of such a search depends only on its realized payoff, and 

the old benchmarks are discarded. Hence, for any w D  and any z D , the probability of the 

transition w z  is independent of w . Next consider a transition of form z w  where 

 . In this case the action and payoff benchmarks are the same in the twow D  and z D  

states, hence there is a unique  z w D  such that w . We can therefore collapse the set D 

into a single state D  and define the transition probabilities as follows: 

 D, P(D z) P(w z) for all w D  . (11)z Z  

 D, P(z D) P(zz Z  w) for some  w D . (12) 

Lemma 1. The recurrence classes of the unperturbed process are D  and all singletons { }z 

such that z C0 . 

Proof. First we shall show that every element of C 0  is an absorbing state (a singleton 

recurrence class) of the unperturbed process (  0) . Suppose that z C0 , that is, the 

benchmarks are aligned and everyone is content. Since  0 , no one experiments and 

everyone replays his benchmark action next period with probability one. Hence the process 

remains in state z  with probability one. 
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Next suppose that z D  , that is, everyone is discontent. The probability that any given 

player becomes content next period is  F ( ) 0 . (Recall that F ( )  is strictly positive on the 

domain of all payoffs that result from some feasible combination of actions.)  Hence D  is 

absorbing, i.e. a singleton recurrence class. (Recall that a discontent player chooses each of 

his available actions with a probability that is bounded away from zero and independent of 

 .) 

It remains to be shown that there are no other recurrence classes of the unperturbed process. 

We first establish the following. 

Claim. Given any state z  in which at least one player is discontent, there exists a sequence 

of transitions in the unperturbed process to D . 

Consider a state in which some player i  is discontent. By interdependence he can choose an 

action that alters the payoff of someone else, say j . Assume that i  plays this action for two 

periods in a row. If j ’s payoff decreases then in two periods he will become discontent also. 

If j ’s payoff increases then in two periods he will become content again with a higher 

payoff benchmark. At this point there is a positive probability that the first player, i , will 

revert to playing his original action for two periods. This causes player j ’s payoff to 

decrease relative to the new benchmark. Thus there is a positive probability that, in four 

periods or less, i ’s behavior will cause j  to become discontent. (The argument implicitly 

assumed that no one except for i  and j  changed action in the interim, but this event also has 

positive probability.) It follows that there is a series of transitions to a state where both i  and 

j  are discontent. By interdependence there are actions of i  and j  that cause a third player to 

become discontent. The argument continues in this manner until the process reaches a state 

where all players are discontent, which establishes the claim. 

An immediate consequence is that D  is the only recurrent state in which some player is 

discontent. Thus, to conclude the proof of lemma 1, it suffices to show that if z  is a state in 

which no one is discontent, then there is a finite sequence of transitions to D  or to C0 . 

Suppose that someone in z  is in a transient mood ( c  or c  ). Since no one is discontent and 

no one experiments, there is no change in the players’ actions next period, and therefore no 
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change in their realized payoffs. Hence everyone in a transient mood switches to c or d in one 

period. If anyone switches to d there is a series of transitions to D . Otherwise everyone 

becomes content (or already was content) and their benchmarks are now aligned, hence the 

process has arrived at a state in C 0 .  

We know from Young (1993, theorem 4) that the computation of the stochastically stable 

states can be reduced to an analysis of rooted trees on the vertex set R  consisting solely of 

the recurrence classes. By Lemma 1, R  consists of the singleton states in C 0 , and also the 

singleton state D . Henceforth we shall omit the set brackets  to avoid cumbersome 

notation. 

Edge resistance. For every pair of distinct recurrence classes w  and z , let r w( z)  denote 

the total resistance of the least-resistant path that starts in w  and ends in z . We call w z 

an edge and r w( z)  the resistance of the edge.  

r * -function. Define the function r z  *( )  as follows 

* min{ ( w { }} . (13)z R, r ( )z r z  ) : w R z 

Easy. An easy edge from a state z  is an edge z w  , w z  ( w r *(  )   , such that r z  ) z . An 
1 2 measy path is a sequence w w ... w  in which each edge is easy and all states are 

distinct. An easy tree is a tree all of whose edges are easy. 

This idea was illustrated in figure 6, where the easy edges are shown in black and the other 

edges in grey. Together the four easy edges form an easy tree that is rooted at the state BB. 

This identifies BB as the stochastically stable state in this particular case. While it is not 

always possible to determine the stochastically stable state in this way, the identification of 

the easy edges is a key first step in the analysis. For this purpose we need to evaluate the 

function r *  on the various recurrence classes. This is the purpose of the next three lemmas. 
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Lemma 2. E0 , r * e 2e ( ) and e D is an easy edge . 

Proof. Let e ( ,m a ,u ) E0 , where a  is a pure Nash equilibrium. Consider any outgoing 

edge e z  where  and z e  Since e  and z  are distinct, everyone is content, andz C0  . 

the benchmark payoffs and actions are aligned in both states, they must differ in their 

benchmark actions. Now consider any path from e  to z  in the full state space Z . Along any 

such path at least two players must experiment with new actions (an event with probability 

O( )2 ), or one player must experiment twice in succession (also an event with probability 

O( )2 ) in order for someone’s benchmark action or payoff to change. (A single experiment 

is not accepted by the experimenter because a  is a Nash equilibrium, so the payoff from an 

experiment does not lead to a payoff gain. Furthermore, although some other players may 

temporarily become hopeful or watchful, they revert to being content with their old 

benchmarks unless a second experiment occurs in the interim.)  It follows that r e( z) 2 . 

It remains to be shown that the resistance of the transition e D  is exactly two, which we 

shall do by constructing a particular path from e  to D  in the full state space. Choose some 

player i . By interdependence there exists an action ai ai  and a player j i  such that i ’s 

change of action affects j ’s payoff: j ( ,i a i ) u j (a )u a  . Let player i  experiment by playing 

ai  twice in succession, and suppose that no one else experiments at the same time. This event 

has probability O( )2 , so the associated resistance is two. If u a( ,  a ) u (a ) , player j ’sj i i j 

mood changes to c  after the first experiment and to c  again after the second experiment. 

Note that at this point j  has a new higher benchmark, namely, u a( ,  ) . Now withj i a i 

probability (1 )2n  player i  reverts to playing ai  for the next two periods and no one else 

experiments during these periods. This causes j  to become discontent. By the claim in the 

proof of Lemma 1, there is a zero-resistance path to the all-discontent state. The other case, 

namely u a( ,  a ) u (a ) , also leads to an all-discontent state with no further resistance. We j i i j 

have therefore shown that r e( D) 2 , and hence that e D  is an easy edge.  
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0 0 *Lemma 3. z C  E , r z 1 G S z , and if z  is an easy edge with z C0 , ( )  ( ( ))  z   

then W z( )  W z( ) . 

Proof.  Let  z ( ,m a ,u ) C0 E0 , in which case a  is not a Nash equilibrium. Then there 

exists an agent i  and an action a a  such that u a  , a u a u  . Among all suchi i i i i i i 

agents i  and actions ai  suppose that ui ui ai , a i ui a  is a maximum. Let 

experiment once with this action and accept the outcome of the experiment, and suppose that 
1 G u(  i )no one else experiments at the same time. The probability of this event is O(  ) . If the 

experiment causes everyone else’s payoff to stay the same or go up, and if no one 

experiments in the next period (with the latter event having probability (1 )n ), then a state 

z  is reached after one period in which everyone is content, the benchmarks are aligned 
0(z C  )  and ( ) W z   (W z ) . The total resistance of this path is (r z  z  ) 1 G( ( )) S z . 

(Recall from (8) that ( )S z  is the largest 0  such that someone can gain  by a unilateral 

deviation.) 

The other possibility is that the experiment causes someone else’s payoff to decrease, in 

which case there is a zero-resistance series of transitions to the state D . Hence in this case 

we have r z( D) 1 G(S(  ))z . We conclude that, if there is only one experiment, the 

process either transits to a recurrence class  0  satisfying W z( ) ( ) z C  W z  , or it transits to 

D . In both cases the resistance of the transition is 1 G S( ( ))z . 

If there are two or more experiments, the resistance is at least two. By assumption, however, 

G 1/ 2  (condition 3), hence making two experiments has a higher resistance than making 

one experiment and accepting the outcome (the latter has resistance 1  (  (  ))  < 1.5). ItG S  z  

follows that *( )  1 G(S( ))z , and if z  is an easy edge with z D , thenr z  z  

W z( )  W z( ) .  
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Lemma 4. z ( , , )  C0 , r(D  z) ( (a ))  and r D min   F (ui (a))  .m a u F ui 
*( )  a A  

i i 

m a u 0 (Proof. Let D z ( , , )  C . Recall that the transition probability P w   z)  is the 

same for all  w1 w D  , hence take any state D  as the starting point. The probability is 

O 1  that next period every player i  chooses ai , in which case their realized payoffs are 

ui ui ( )a . They all accept these actions and payoffs as their new benchmarks with 

F u( (i a ))  
F u( (i a ))  iprobability   , hence r D(  z) F (ui ) . 

i i 

We claim that in fact ( z) F (ui ) . Let z m a ,u ) 0r D ( , C and consider a least-
i 

1 2 mresistant path w w, ,..., w z . For each player i  there must be some time in the sequence 

where i  was discontent and accepted a benchmark payoff that was ui or less. (There may 

also have been a time when i  was discontent and accepted a benchmark payoff that was 

strictly more than ui , but in that case there must have been a later time at which he accepted a 

payoff that was ui  or less, which means he must have been discontent.) The probability of 

 F u( )isuch an acceptance is at most , because the probability of acceptance is increasing in ui . 

This reasoning applies to every player, hence the total resistance of this path from D  to z 

must be at least  F ui . This proves that ( z) F (ui ) . The claim( )  r D  that 
i i 

*( )  mina A F ui (a))  follows from the fact that F  is monotone decreasing. r D ( 
i 

w-tree. Identify the recurrence classes R  with the nodes of a graph. Given a node w, a 

collection of directed edges T  forms a w-tree if from every node z w  there is exactly one  

outgoing edge in T  and there is a unique directed path in T  from z to w. 

Stochastic potential. The resistance r T( )  of a w-tree T  is the sum of the resistances of its 

edges. The stochastic potential of w is (w) min{ (r T ) :T  is a w-tree}. 
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The stochastically stable states are precisely those states where  achieves its minimum 

(Young, 1993, theorem 4). In the next two lemmas we compute the stochastic potential of 

each type of recurrence class. From these computations theorem 1 will follow. 

Lemma 5. There exists a D -tree TD 
*  that is easy. 

Proof. We shall conduct the proof on transitions between recurrence classes, each of which 

forms a node of the graph. Choose a node z D  and consider an easy outgoing edge z . 

If here are several such edges choose one that points to D , that is, choose z D  if it is 

easy. This implies in particular that for every  e D . (Thise E0  we select the edge 

follows from Lemma 2.) 

We claim that the collection of all such edges forms a D -tree. To establish this it suffices to 
1 2 m 1show that there are no cycles. Suppose by way of contradiction that  z z ... z z 

is a shortest cycle. This cycle cannot involve any node in E0 , because by construction the 

outgoing edge from any such edge points towards D , which has no outgoing edge. Therefore 
k 0 0 k k 1all z C E . Since all of the edges z z  are easy, Lemma 3 implies that 

k k 1 1 m 1W z( )  W z(  ) . From this we conclude W z( )  W z( ) W z( )  , which is impossible.  

Let * ( )D r(TD 
* ) . (14) 

Lemma 6. For every z C0  let z wz  be the unique outgoing edge from z  in TD 
*  and 

define 

Tz 
*  = TD 

*  with z wz  removed and D z  added . (15) 

*T  is a  z -tree of least resistance andz 

( )z * r(z wz ) r(D z) .  (16) 
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Proof.  Plainly, the tree Tz 
*  defined in (15) is a z-tree. Furthermore all of its edges are easy 

except possibly for the edge D z . Hence it is a least-resistant z-tree among all z-trees that 

contain the edge D z . We shall show that in fact it minimizes resistance among all z-trees. 

Let Tz be some z-tree with minimum resistance, and suppose that it does not contain the edge 

D z . Since it is a spanning tree it must contain some outgoing edge from D , say D z . 

We can assume that r D( z ) (r D z) , for otherwise we could simply take out the edge 

D z and put in the edge D z to obtain the desired result. 

Let u u, ,...,u be the benchmark payoffs in z and let u u, ,...,u  be the benchmark payoffs 1 2 n 1 2 n 

in z . By lemma 4,  

( z) F ui  and r D( z )  ir D ( ) F u( ) . (17) 
i i 

Since ( z ) ( z) and F u( i )  is by assumption monotone decreasing in ui , therer D r D 

must be some i such that ui u . Let I {i u: u } . Consider the unique path in T  thati i i z 

1 2 m kgoes from z to z , say z  z , z ,..., z z , where each z  is in R  and they are distinct. 
k k 1Each edge z z  corresponds to a sequence of transitions in the full state space Z , and 

the union of all these transitions constitutes a path in Z from z to z . Along this path, each 

player i I  ui must eventually lower his payoff benchmark because his starting benchmark 

is greater than his ending benchmark ui . Thus at some point i must become discontent and 

adopt a new benchmark that is ui  or lower.  Assume that this happens in the transition from 

ki ki 1z to z . Since F u( i )  is strictly decreasing, the probability of adopting a benchmark that is 

F u( )i ki ki 1ui  or lower is at most  . Hence, along the path from z to z  someone experiments 

and accepts, and at some stage player i becomes discontent and accepts a payoff that is ui  or 

ilower. The first event has resistance at least 1 ( ( k ))  and the second has resistance at G S z  

least F u( i ) . Therefore 

k k 1 ki i i( z ) ( (  ))  ( i )r z  1 G S z  F u  . (18) 
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iWe know from Lemma 3 that the least resistance of a path out of zk  is 
k k k k 1 * ki i i i i *( ) 1 G S z  Hence r z  z ) F ui r (zr z  (  ( ))  ( ( ) ) . It follows that the total 

1 2 mresistance along the sequence z  z , z ,..., z z satisfies 

m 1 m 1 
k k 1 * kr z( z ) F u( i ) r (z ) . (19) 

1 i I  k  1k  

The resistance of the edge D z satisfies 

( z ) F u( )i F u( ) ( )ir D i F u  . (20) 
 i Ii  i I  

1 2 m 1Hence in the tree Tz  the outgoing edges from the nodes {D z, , z ,..., z } have a total 

m 1 

resistance that is strictly greater than F u( )i r *(zk ) . But in the tree Tz 
*  the edges from 

i k 1 

m 1 

these nodes have a total resistance equal to F u( )i r *(zk ) . Furthermore, at every other 
i k 1 

node the resistance of the outgoing edge in Tz  is at least as great as it is in Tz 
*  (because the 

latter consists of easy edges). We conclude that Tz 
* must minimize resistance among all 

z-trees , which completes the proof of lemma 6.  

To complete the proof of theorem 1, we shall first prove the following chain of inequalities: 

( )i (ii) (iii)
* * 0 * 0 0 * *e E , E E , C E , (e )  ( )  z (e z e  ( )  D) . (21) 

0(Recall that E*  consists of those equilibrium states e E  that maximize W e( )  .) Let 

e ( ,m a u, ) E0 . By construction e D is an edge in the easy tree TD 
*  (see the beginning 

of the proof of Lemma 5), so (16) implies that 

( )e * ( D) ( e) .r e  r D  (22) 

From Lemma 2 we know that r e( D) 2 . From Lemma 4 we know that 

29 



 

  

 

r D e) F u  a  1 ( )  2( ( i (  ))  W e  n  . (23) 
i 

From this and (22) we conclude that 

( )  *   ( )  e  2 1W e n 2 . (24) 

e *  * 0 * *Now suppose that E and e E   W e( )   E . Then W e(  )  , so from (24) we conclude 

that ( )e * ( )e . This establishes (i). 

0 * 0 0To prove (ii), let e E  E  and E . Recall from (16) that  z C  
* 0 0r z  z r D z z C( )z ( w ) ( z) , where z w  is an easy edge. Since E , we 

know from Lemma 3 that ( wz ) 1  ( ( ))  and from Lemma 4 thatr z  G S z  

r D 1 ( )  2( z) W z n . Hence 

0 0 * 1 G S z  1 ( )  2 . (25)z C  E : ( )z  (  ( ))  W z  n  

 0Since e E , (24) implies that  

( )  *   ( )  e  2 1W e n 2 . (26) 

Comparing (25) and (26) we see that ( )e ( )z  provided 

1[ ( )W z  (  )]  G S z(  ( ))   W e  1 . (27) 

The right-hand side of (27) is greater than ½ because we assumed that G S z( ( )) 1/ 2  for all z 

(see condition (3)). The left-hand side is the sum of n differences  F u( )i F u( )i , which is 
i 

smaller than ½ because we assumed that 0 F ( ) 1/ 2n (condition (3) again). Hence (27) 

holds and therefore ( )e ( )z , which proves (ii). 
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To prove (iii), observe that condition (3) implies  

W z( )  n n max  F (u) 1/ 2  . (28)1 2 u 

From this and (25) it follows that ( )z * . This completes the proof of (21). 

We shall now turn to the two cases of the theorem: a pure Nash equilibrium exists and a pure 

Nash equilibrium does not exist. 

Case 1. A pure Nash equilibrium exists ( E0 ). 

By (21) we know that the welfare maximizing equilibrium states e * E*  minimize stochastic 

potential among all recurrence classes, hence they constitute the stochastically stable states. 

This establishes statement (i) of Theorem 1.  

Case 2. No pure equilibrium exists ( E0 ). 

In this case the chain of inequalities (21) reduces to (iii), because there are no equilibrium 

states. In particular, D cannot be stochastically stable. It follows from (25) that the 

stochastically stable states are precisely those  0 that minimize z C  

* 1 G S z  1 ( )  2( )z (  ( ))  W z n 
*

 (29)
 S z( ) W ( )z (n   1) 1 1 2 

which is equivalent to maximizing 1W z( )  1S( )z . This concludes the proof of theorem 1. 

7. Heterogeneous agents 

Thus far we have assumed that , ,F  and G  are common to all agents and that F and G  are 

linear. In this section we generalize theorem 1 to the situation where the agents have 

heterogeneous learning parameters and the acceptance functions may be nonlinear.  First let 

us consider what happens when agents have different rates of experimentation.  Suppose that 
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agent i  has experimentation rate   where 0  is idiosyncratic to i and 0  isi i i 

common across agents. Varying  changes the overall amount of noise in the search process 

while holding the ratio of the search rates fixed.  Assume that agent i  accepts the outcome of 
F u( )i F u( )ia random search with probability i ( i ) , and accepts the outcome of an experiment 

(  i ) G ( ui )with probability G u  ( )  . The introduction of the  ’s does not alter the i i i 

resistances, which are determined by the exponents of  in the transition probabilities. 

Hence the stochastically stable states remain exactly as before, and theorem 1 holds as stated. 

Now suppose that i’s probability of accepting the outcome of a random search is governed by 

some function Fi ui , and i’s probability of accepting the outcome of an experiment is 

governed by Gi ui . Assume that these acceptance functions are strictly monotone 

decreasing but not necessarily linear, and that they satisfy the bounds in (3), that is, 

0 G ( u ) 1/ 2 and 0  F u( ) 1/ 2n for all i. (30)i i i i 

Given a state z ( ,m a u, )  let us redefine the welfare function as follows: 

W z( ) F u a( ) . (31)i i 
i 

Recall that an equilibrium is efficient (Pareto undominated) if there is no other equilibrium in 

which someone is better off and no one is worse off.  Since the functions Fi  are monotone 

decreasing, W z  is monotone increasing in each player’s utility u a . It follows that,i 

among the equilibrium states, W  is maximized at an efficient equilibrium. (If the Fi  are 

linear, W  maximizes a weighted sum of the agents’ utilities.)  

Next let us define 

S m a u  u a  u a a  0S z ( , , )  max u a a,  : , u a   . (32)i i a A i i i i i i i ii i 

Further, let S z G S  z  and define the stability of a state z to be i i i 
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S z  maxi Si z  . (33) 

The larger S z  is, the more likely it is that some player will accept the outcome of an 

experiment, hence the more prone the state is to being destabilized. A straightforward 

modification in the proof of theorem 1 leads to the following: 

Theorem 2. Let  be an interdependent n -person game on a finite joint action space A . 

Suppose that each player i uses a learning rule with experimentation probability i i 

and monotone decreasing acceptance functions Fi  and Gi  satisfying the bounds in (30).  

(i) If the game has a pure Nash equilibrium then every stochastically stable state is an 

equilibrium state that maximizes W z( )  among all equilibrium states, and hence is efficient; 

(ii) If the game has no pure Nash equilibrium, the stochastically stable states maximize 

 ( )  S( )z  among all W z    z C0 . 

8. Concluding remarks 

In this paper we have identified a completely uncoupled learning rule that selects an efficient 

pure equilibrium in any n-person game with generic payoffs that possesses at least one pure 

equilibrium. This provides a solution to an important problem in the application of game 

theory to distributed control, where the object is to design a system of autonomous interacting 

agents that optimizes some criterion of system-wide performance using simple feedback rules 

that require no information about the overall state of the system. The preceding analysis 

shows that this can be accomplished by a variant of log linear learning and two different 

search modes – fast and slow. Theorem 1 shows that by choosing the probabilities of 

experimentation and acceptance within an appropriate range, the process is in an efficient 

equilibrium a high proportion of the time. This allows one to reduce the price of anarchy 

substantially, because one need only compare the maximum welfare state to the maximum 

welfare equilibrium state. As an extra dividend we obtain a simple criterion for the selection 
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of disequilibrium states. This criterion weights total welfare positively and the incentive to 

deviate negatively. As we have shown by example this concept differs from risk dominance. 

It is, of course, legitimate to ask how long it takes for the learning rule to reach an efficient 

equilibrium from arbitrary initial conditions. We know in general that it can take an 

exponentially long time for an uncoupled learning process to converge to Nash equilibrium 

for games of arbitrary size (Hart and Mansour, 2010); it can also take an exponentially long 

time to converge to a Pareto efficient, individually rational state (Babichenko, 2010b).  The 

method that we used to prove theorem 1 involved taking the experimentation rate to zero, in 

which case it takes a very long time in expectation for the process to reach the stochastically 

stable state(s). However, this does not rule out the possibility that the learning process 

strongly favors the stochastically stable states even when the experimentation probability is 

large; indeed this has been shown for 2 x 2 games played by large populations of players who 

make mistakes independently (Young, 1998, Chapter 4). Thus it is possible that the learning 

algorithm with intermediate levels of experimentation would lead quite quickly to an 

approximate equilibrium, at least for some classes of games.  This is a challenging open 

problem that we shall not attempt to tackle here.   

Finally, we should note that the type of learning rules we have proposed are not meant to be 

empirically descriptive of how humans actually behave in large decentralized environments. 

Our aim has been to show that it is theoretically possible to achieve efficient equilibrium 

selection using simple, completely uncoupled rules.  Nevertheless, it is conceivable that 

certain qualitative features of these rules are reflected in actual behavior. At the micro level, 

for example, one could test whether agents engage in different types of search (fast and slow) 

depending on their recent payoff history. One could also estimate the probability that they 

accept the outcome of a search as a function of their realized payoffs. At the macro level, one 

could examine whether agents playing a congestion game converge to a local maximum of 

the potential function, to a Pareto optimal equilibrium, or fail to come close to equilibrium in 

any reasonable amount of time. Whether or not our learning model proves to have features 

that are descriptively accurate for human agents, the approach does suggest some testable 

questions that to the best of our knowledge have not been examined before. 
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