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Abstract
Payoff-driven adjustment dynamics lead to stable and
optimal outcomes in decentralized two-sided assign-
ment markets. Pairs of agents from both sides of the
market randomly encounter each other and match if
‘profitable’. Very little information is available, in par-
ticular agents have no knowledge of others’ prefer-
ences, their past actions and payoffs or the value of
the different matches. This process implements opti-
mal and stable – i.e. core – allocations even though
agents interact asynchronously and randomly, and there
is no central authority enforcing matchings or sharing
rules.

Keywords – assignment games, cooperative games,
core, distributed optimization, evolutionary game the-
ory, learning, linear programming, matching mar-
kets

I. Introduction

Internet and communication technologies have created
environments where many agents repeatedly interact
with each other despite having little information about
the structure of the game and other agents’ actions. In-
deed, even after many encounters, agents may learn lit-
tle or nothing about the preferences and past actions of
other participants. In this paper we propose a dynamic
model that incorporates these features and explore its
performance and stability properties.

We shall be interested in decentralized bilateral environ-
ments with transferable utility (TU) where agents from
each side repeatedly interact and submit share demands
at which they are currently willing to be matched. Ar-
eas in which such models have found applications in-
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clude artificial intelligence [1], routing unmanned vehi-
cles (e.g., UAVs) [2], error correcting codes [3], dou-
ble auctions [4], and online markets such as matching
buyers and sellers of goods, for matching workers and
firms, and for matching hotels with clients.1

In this paper, we provide a random, asynchronous and
uncoupled dynamic that converges to the core. This is
of interest in mechanism design for the development of
algorithms for decentralized optimization tasks. Our
work complements a number of existing contributions
from mathematics, computer science, sociology and
economics.2

In economics, TU matching markets have traditionally
been analyzed using game-theoretic methods based on
submission of bid-ask lists to a central authority [10].
There is a sizable literature on centralized matching al-
gorithms and centralized auction mechanisms based on
the assignment game [10]; see, for example, [11, 12,
13]. While decentralized dynamics [14, 15, 16, 17] have
been studied for the related class of non-transferable
utility (NTU) matching problems as introduced by [18],
it is an open problem to characterize the asymptotic be-
havior of such dynamics for TU games.

In [19] we propose the following behavioral model for
assignment games: pairs of agents from the two market
sides randomly encounter each other and enter a new
match if their match is ‘profitable’, which they can see
from their current bids and offers; moreover, depend-
ing on whether an agent is currently matched or single,
aspirations are adjusted up or down, thus, driving bids,
offers and match prices. Importantly, the players do not
have enough information or cognitive capacity to op-
timize the value of the matches. We propose simple
payoff-based adjustment rules that lead to core-stable
outcomes in such environments.3

The result fits into a wider literature showing how coop-
erative game solutions can be understood as outcomes

1Examples for online platforms with a two-sided bid-ask struc-
ture include www.priceline.com’s Name-Your-Own-Price R© and
www.HireMeNow.com’s Name-Your-Own-Wage

TM
.

2See, for example, [5, 1, 6, 7] for mathematics and computer sci-
ence and [8, 9] for sociology.

3See also [20] for a decentralized dynamic without aspiration ad-
justments and [21] for a generalization thereof to roommate problems.
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of a dynamic learning process [22, 23, 24, 25]. The
existing strand of this literature is based on noisy best-
response dynamics and the theory of large deviations
[26, 27, 28]. An alternative approach to learning, and
the one taken in this paper, is based on the idea that
agents adjust their aspiration levels depending on their
realized payoffs. There is no presumption about at-
tempts to play a best-reply. Instead, such rules are com-
pletely uncoupled [29] from information about other
players’ utilities and actions.4 Families of such rules
lead to Nash equilibrium in generic non-cooperative
games (see, for example, [31, 29, 32, 33, 34, 35, 36]).
In this paper, we analyze a completely uncoupled pro-
cedure for assignment games that implements the core
– that is, optimal and stable outcomes – with prob-
ability one after finite time. This is achieved even
though there is no central authority arranging prices or
matches.5

II. TU matching markets

In this section we shall introduce the conceptual frame-
work for analyzing matching markets with transferable
utility (TU).

II.A. The model

II.A.1. Static components. The population N = {F ∪
W} consists of firms F = { f1, ..., fm} and workers W =
{w1, ...,wn}.6

Willingness to pay. Each firm i has a willingness to
pay, p+i j ≥ 0, for being matched to worker j.

Willingness to accept. Each worker j has a willingness
to accept, q−i j ≥ 0, for being matched to firm i.

We assume that these numbers are specific to the
agents and are not known to the other market partici-
pants.

Match value. Assume that utility is linear and separa-
ble in money. The value of a match (i, j)∈ F×W is the
potential surplus

αi j = (p+i j −q−i j)+. (1)

It will be convenient to assume that all values p+i j and
q−i j can be expressed as multiples of some minimal unit

4This definition is a strengthening of uncoupled rules introduced
by [30].

5See [19] for the full proofs.
6The two sides of the market could also, for example, represent

tasks and machines, or areas and UAVs.

of currency δ , e.g., “dollars”.

II.A.2. Dynamic components. Let t = 0,1,2, ... be
the time periods.

Assignment. For all agents (i, j) ∈ F ×W , let at
i j ∈

{0,1}. If (i, j) is matched then at
i j = 1, if (i, j) is un-

matched then at
i j = 0. If, for a given agent i ∈ N, there

exists j such that at
i j = 1 we shall refer to that agent as

matched; otherwise i is single.

Aspiration level. At the end of any period t, a player
has an aspiration level, dt

i , which determines the min-
imal payoff at which he is willing to be matched. Let
dt = {dt

i}i∈F∪W .

Bids. In any period t, one pair of players is drawn at
random and each one makes a bid for the other. We
assume that the two players’ bids are such that the re-
sulting payoff to each player is at least equal to his as-
piration level, and with positive probability is exactly
equal to his aspiration level.

Formally, firm i ∈ F encounters j ∈W and submits a
random bid bt

i = pt
i j, where pt

i j is the maximal amount i
is currently willing to pay if matched with j. Similarly,
worker j ∈W submits bt

j = qt
i j, where qt

i j is the minimal
amount j is currently willing to accept if matched with
i. A bid is separable into two components; the current
(deterministic) aspiration level and a random variable
that represents an exogenous shock to the agent’s as-
piration level. Specifically let Pt

i j, Qt
i j be independent

random variables that take values in δN0 where 0 has
positive probability.7 We thus have for all i, j

for all i, j, pt
i j = (p+i j −dt−1

i )−Pt
i j (2)

and qt
i j = (q−i j +dt−1

j )+Qt
i j (3)

Consider, for example, worker j’s bid for firm i. The
amount q−i j is the minimum that j would ever accept to
be matched with i, while dt−1

j is his previous aspiration
level over and above the minimum. Thus Qt

i j is j’s at-
tempt to get even more in the current period. Note that
if the random variable is zero, the agent bids exactly
according to his current aspiration level.

Profitability. A pair of bids (pt
i j,q

t
i j) is profitable if a

player, in expectation, receives a (strictly) higher payoff
if the match is formed.

Note that, two players whose match value is zero will
never match.

7Note that P[Pt
i j = 0] > 0 and P[Qt

i j = 0] > 0 are trivial assump-
tions, since we can adjust p+i j and q−i j in order for it to hold.
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Random matches. Agents are activated by indepen-
dent Poisson arrival processes. An active agent ran-
domly encounters one agent from the other side of the
market drawn from a distribution with full support. The
two agents

• reveal current bids for each other, and

• identify if these are profitable.

The two agents match if the bids are profitable. (Details
are specified in the next section.)

Prices. When i is matched with j given bids pt
i j ≥ qt

i j,
the resulting price, π t

i j, is the average of the players’
bids subject to “rounding”.8 Namely, there is an integer
k such that, if pt

i j +qt
i j = 2kδ then π t

i j = kδ , and if pt
i j +

qt
i j = (2k+ 1)δ then π t

i j = kδ with probability 0.5 and
π t

i j = (k + 1)δ with probability 0.5. This implies that
when a pair is matched we have pt

i j = qt
i j. Note that

when a new match forms that is profitable (as defined
earlier), neither of the agents is worse off, and if one
agent was previously matched both agents are better off
in expectation due to the rounding rule.

Payoffs. In Zt the payoff to firm i, φ t
i , is p+i j−π t

i j if (i, j)
are matched and 0 if i is single. Similarly, the payoff to
worker j, φ t

j , is π t
i j−q−i j if (i, j) are matched and 0 if j

is single.

II.B. Assignment games

We can now formally define the assignment game as
introduced in [10].

Matching market. The matching market is de-
scribed by [F,W,α,A]. F = { f1, ..., fm} is a set of
m firms, W = {w1, ...,wn} is a set of n workers, α =
(αi j)i∈{1,2,...,m}, j∈{1,2,...,n} is the matrix of match val-
ues, and A = (Ai j)i∈{1,2,...,m}, j∈{1,2,...,n} is the assign-
ment matrix with 0/1 values and row/column sums at
most one. Let A be the set of all possible assign-
ments.

Cooperative assignment game. Given [F,W,α], the
cooperative assignment game G(v,N) is defined as fol-
lows. Define v : S⊆ N→ R such that

• v(i) = v( /0) = 0 ∀ singletons i ∈ N,

• v(S) = αi j ∀S = (i, j) such that i ∈ F , j ∈W ,

• v(S) = max{v(i1, j1)+ ...+ v(ik, jk)} ∀S⊆ N,

8It is not necessary for our result to assume the price to be the
average of the bids. We only need that the price, with positive proba-
bility, is different from a players bid when bids strictly cross. This we
assume to not favor either market side.

where the maximum is taken over all sets
{(i1, j1), ...,(ik, jk)} consisting of disjoint pairs of
firms and workers in S. The number v(N) is the value
of an optimal assignment.

States. The state at the end of period t is given by Zt =
[At ,dt ] where A ∈ A is an assignment and dt are the
aspiration levels. Let Ω be the set of all states.

Optimality. An assignment A is optimal if
∑(i, j)∈F×W ai j ·αi j = v(N).

Pairwise stability. An aspiration level dt is pairwise
stable if ∀i, j with ai j = 1, p+i j−dt

i = q−i j +dt
j, and p+i′ j−

dt
i′ ≤ q−i′ j+dt

j for every alternative firm i′ and q−i j′+dt
j′ ≥

p+i j′ −dt
i for every alternative worker j′.

The Core. (Shapley & Shubik, 1972) The core of an
assignment game, G(v,N), consists of the set C⊆Ω of
all states, [A,d], such that A is optimal and d is pairwise
stable.

Shapley & Shubik formulate this result in terms of pay-
offs. Subsequent literature has investigated the structure
of the assignment game core, which turns out to be very
rich (see, for example, [37, 38]).

III. Evolving play

A fixed population of agents, N = F ∪W , repeatedly
plays the assignment game G(v,N) by making random
encounters with potential partners, by submitting bids
and by adjusting them dynamically as the game evolves.
Agents become activated spontaneously according to
independent Poisson arrival processes. Our results hold
independent of whether the rates differ across agents
and time (for example, single agents might become ac-
tive at a faster rate). The distinct times at which one
agent becomes active will be called periods.

III.A. Behavioral algorithm

We provide the behavioral algorithm in pseudo
code.

3
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Algorithm 1 Random behavioral dynamics

Initialization. Initially t = 0 and set Z0 = [A0,d0] to
any permissible state, e.g., Z0 = [A0,d0] = [0m,n,~0].

Updating rule. For t +1, t ≥ 0:
1. A unique agent, i, becomes active (activated by an

independent Poisson arrival process).
2. He randomly encounters one agent from the other

side of the market, j, drawn from a distribution
with full support.9

If the match is profitable given current bids, then
the new match forms,

else
the match does not form.

end
3. If a new match (i, j) is formed, then

the price governing the new match π
t+1
i j , is the

average (subject to rounding) of pt
i j and qt

i j.
The aspiration levels of the newly matched
pair (i, j) are adjusted according to their
newly realized payoffs: dt+1

i = p+i j −π
t+1
i j

and dt+1
j = π

t+1
i j −q−i j′ .

else
if the active agent i is matched, then

i remains with his previous partner and
keeps his previous aspiration level.

else
i remains single and with positive
probability reduces his aspiration level to

dt+1
i = (dt

i −X t+1
i )+, (4)

where X t+1
i is an independent random vari-

able taking values in δ ·N0, such that X t+1
i =

δ with positive probability.
end

end
4. All other aspiration levels and matches remain

fixed. If i or j are newly matched their previous
partners are now single.

III.B. Example

Let N = { f1, f2} ∪ {w1,w2,w3}, p+1 j = 40,31,20 and
p+2 j = 20,31,40 for j = 1,2,3, and q−i1 = 20,30, q−i2 =

20,20 and q−i3 = 30,20 for i = 1,2. Then one can com-
pute the match values: α11 =α23 = 20, α12 =α22 = 11,
and αi j = 0 for all other pairs (i, j). Let δ = 1.

9In terms of the distribution of encounters, priority could be given
to those involving single agents; or any distribution with full support
can be used.

1f 2f

1w 2w 3w

(40,31,20) (20,31,40)

(20,30) (20,20) (30,20)

III.B.1. Period t: current state. Suppose that, in
some period t, ( f1,w1) and ( f2,w2) are matched and
w3 is single. The illustrations below show the states at
the end of the respective periods. The current aspira-
tion level and bid vector of each agent is shown next to
the name of that agent, and the values αi j are shown
next to the edges (if positive). Solid edges indicate
matched pairs, and dashed edges indicate unmatched
pairs. (Edges with value zero are not shown.) Note
that some of the bids for players which are currently
not matched may exceed the respective aspiration lev-
els. For example f2, at the beginning of the period, was
willing to pay 30 for w3, but w3 was asking for 31 from
f2, 1 above the minimum bid not violating his aspiration
level. Further, some matches can never occur. For ex-
ample f1 is never willing to pay more than 20 for w3, but
w3 would only accept a price above 30 from f1.

1120 2011

1f 2f

1w 2w 3w

tZ

13;(27,15,6) 10;(10,21,30)

7;(27,37) 1;(23,21) 10;(45,31)

Note that the aspiration levels satisfy dt
i + dt

j ≥ αi j for
all i and j, but the assignment is not optimal (firm 2
should match with worker 3).

III.B.2. Period t+1: activation of single agent w3.
w3’s current aspiration level is too high in the sense that
he has no profitable matches. Hence he remains single
independent of his encounter ( f2 in the illustration) and,
with positive probability, reduces his aspiration level by
1.

1f 2f

1w 2w 3w

1tZ +

13;(27,15,6) 10;(10,21,30)

7;(27,37) 1;(23,21) 10 1;(45,31)−

1120 2011

III.B.3. Period t+2: activation of matched agent f2.
f2’s only profitable match, under any possible bid, is
with w3. With positive probability, f2 and w3 meet,
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and f2 bids 30 for w3 and w3 bids 29 for f2 (hence
the match is profitable), in which case the match forms.
With probability 0.5 the price is set to 29 such that f2
raises his aspiration level by one unit (11) and w3 keeps
his aspiration level (9), while with probability 0.5 the
price is set to 30, f2 keeps his aspiration level (10) and
w3 raises his aspiration level by one unit (10). (Thus in
expectation the active agent f2 gets a higher payoff than
before.)

1f 2f

1w 2w 3w

2tZ +

13;(27,15,6) 10 1;(10,21,30)+

7;(27,37) 1;(23,21) 9;(42,29)

1120 2011

III.B.4. Period t+3: activation of matched agent w2.
w2’s current aspiration level is too high in the sense that
he has no profitable matches (under any possible bids).
Hence he remains single independent of his encounter
( f2 in the illustration) and, with positive probability,
reduces his aspiration level by 1.

1f 2f

1w 2w 3w

3tZ +

13;(27,15,6) 11;(9,20,29)

7;(27,37) 1 1;(23,21)− 9;(42,29)

1120 2011

The resulting state is in the core.10

IV. Core stability

Recall that a state Zt is defined by an assignment At

and aspiration levels dt that jointly determine the pay-
offs.

Theorem 1. Given an assignment game G(v,N), from
any initial state Zt ∈Ω, the process is absorbed into the
core in finite time with probability 1.

For the detailed proof see [19]. We shall outline the
main ideas of the proof. See also [20, 21] for models
without aspiration levels for the assignment game and
general graphs.

We shall omit the time superscript since the process is
time-homogeneous. The general idea of the proof is to
show a particular path leading into the core which has

10Note that the states Zt+2 and Zt+3 are both in the core, but Zt+3

is absorbing whereas Zt+2 is not.

positive probability. Since the state space is finite this
will suffice to proof the theorem. It will simplify the
argument to restrict our attention to a particular class
of paths with the property that the realizations of the
random variables Pt

i j,Q
t
i j are always 0 and the realiza-

tions of X t
i are always δ . (Recall that Pt

i j,Q
t
i j deter-

mine the gaps between the bids and the aspiration lev-
els, and X t

i determines the reduction of the aspiration
level by a single agent.) One obtains from equations
(2,3) for the bids, that for all i, j, pt

i j = p+i j −dt−1
i and

qt
i j = q−i j + dt−1

j . Recall that any two agents, with pos-
itive probability, encounter each other in any period. It
shall be understood in the proof that the relevant agents
in any period encounter each other. We can then say
that a pair of aspiration levels dt

i ,d
t
j is profitable if either

dt
i + dt

j < αi j, or dt
i + dt

j = αi j and i, j are single. Re-
stricting attention to this particular class of paths will
permit a more transparent analysis of the transitions,
which can be described solely in terms of the aspira-
tion levels. It now will suffice to establish the following
two claims.

Claim 1. There is a positive probability path to aspi-
ration levels d such that di + d j ≥ αi j for all i, j and
such that, for every i, either there exists a j such that
di +d j = αi j or else di = 0.

Any aspiration levels satisfying Claim 1 will be called
good. Note that, even if aspiration levels are good, the
assignment does not need to be optimal and not ev-
ery agent with a positive aspiration level needs to be
matched. (See the period-t example in the preceding
section.)

Claim 2. Starting at any state with good aspiration lev-
els, there is a positive probability path to a pair (A,d)
where d is good, A is optimal, and all singles’ aspiration
levels are zero.11

Claim 1’s proof is based on the fact that any random
sequence of activations may occur. A straightforward
argument can then be applied. We shall give a more
detailed outline of the proof of Claim 2, since it is more
involved.

Outline proof of Claim 2.

Suppose that the state (A,d) satisfies Claim 1 (d is
good) and that some single exists whose aspiration level
is positive. (If no such single exists, the assignment is
optimal and we have reached a core state.) Starting at

11Note that this claim describes an absorbing state in the core.
It may well be that the core is reached while a single’s aspiration

level is more than zero. The latter state, however, is transient and will
converge to the corresponding absorbing state.
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Figure 1. Example alternating path.

2
f kf

2
w

1
w

…

1
f

kw

any such state, we show that, within a bounded num-
ber of periods and with positive probability (bounded
below), one of the following holds:

(A) The aspiration levels are good, the number of single
agents with positive aspiration level decreases, and the
sum of the aspiration levels remains constant.

(B) The aspiration levels are good, the sum of the as-
piration levels decreases by δ > 0 and the number of
single agents with a positive aspiration level does not
increase.

In general, say an edge is tight if di + d j = αi j. Define
a maximal alternating path P to be a maximal-length
path that starts at a single player with positive aspi-
ration level, and that alternates between unmatched
tight edges and matched tight edges. Note that, for
every single with a positive aspiration level, at least one
maximal alternating path exists. Figure 1 illustrates
a maximal alternating path starting at f1. Unmatched
tight edges are indicated by dashed, matched tight
edges by solid lines.

With this definitions at hand the proof follows the fol-
lowing logic: Starting in a state [A,d] with good aspi-
ration levels d, we successively (if any exist) eliminate
the odd paths starting at firms/workers followed by the
even paths starting at firms/workers, while maintaining
good aspiration levels. The elimination of paths is based
on integer programming arguments [39, 40], carefully
“shifting” one δ along a paths. This process must come
to an end because at each iteration either the sum of as-
piration levels decreases by δ and the number of single
agents with positive aspiration levels stays fixed, or the
sum of aspiration levels stays fixed and the number of
single agents with positive aspiration levels decreases.
The resulting state must be in the core and is absorb-
ing because single agents (demanding zero) cannot re-
duce their aspiration level further and no new matches
can be formed. Since an aspiration level constitutes a
lower bound on a player’s bids we can conclude that

the process is absorbed into the core in finite time with
probability 1.

V. Conclusion

In this paper we have shown that agents in large de-
centralized assignment games can learn to play stable
and efficient outcomes through a trial-and-error learn-
ing process. We assume that the agents have no in-
formation about the distribution of others’ preferences,
their past actions and payoffs, or about the value of dif-
ferent matches. Nevertheless the algorithm leads to the
core with probability one. The proof uses integer pro-
gramming arguments, but the players do not “solve” an
integer programming problem. Rather, a path into the
core is discovered in finite time by a random sequence
of adjustments by the agents.
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