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Abstract

Many interactive environments can be represented as games, but they are so large and

complex that individual players are mostly in the dark about others’ actions and the

payoff structure. This paper analyzes learning behavior in such ‘black box’ environments,

where players’ only source of information is their own history of actions taken and payoffs

received. The context of our analysis are decisions in voluntary contributions games with

high and low rates of return. We identify four robust features of the players’ learning

dynamics: search volatility, search breadth, inertia, and directional bias. These features

are present when players have no information about the game, and also when they have

full information.

JEL classifications: C70, C73, C91, D83, H41

Keywords: black box, learning, information, public goods game

1 Introduction

Some games are so complex and involve so many individuals that for all practical purposes

the game itself is unknown to the players themselves. Examples include bidding in on-

line markets, threading one’s way through urban traffic, or participating in a group effort

where the actions of the other members of the group are difficult to observe (guerrilla

warfare, neighborhood watch programs, tax evasion). In each of these cases a given

individual will have only the haziest idea of what the other players are doing and what

their payoffs are, but their own payoffs are strongly influenced by the actions of the others.

How do individuals learn in such environments and under what circumstances does their

learning behavior lead to equilibrium?

In this paper we investigate these questions in a laboratory environment. Players take

actions and receive payoffs that depend on others’ actions, but in the baseline case they

have no information about the others and they do not know what the overall structure

of the game is. This complete lack of structural information distinguishes our experi-

mental set-up from other ‘low-information’ settings such as Rapoport et al. (2002) and

Weber (2003), who provide information about the structure of the game but withhold

information about the outcome of play and the distribution of players’ types. This also

distinguishes our experimental design from Friedman et al. (2012), who withhold infor-

mation about the payoff structure of the game but do provide information about other
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players’ actions and payoffs, or from Oechssler and Schipper (2003), where players learn

the payoff structure on the basis of their own payoffs and information about other’s

actions.1

The underlying games played in our experiments have the structure of ‘voluntary con-

tributions games’. Rates of return on contributions are either low or high, respectively

resulting either in the standard ‘public goods game’ where free-riding is the dominant

strategy or in a contribution game without social dilemma where fully contributing is the

dominant strategy. Subjects are faced with repeated decisions to allocate their monetary

endowment between two accounts, but do not know that they play a contributions game

at all. Our experiment ties in with a rich literature on public goods experiments (for

surveys of this literature see Ledyard, 1995 and Chaudhuri, 2011), but unlike previous

studies our focus is entirely different. In contrast to the existing literature, our aim is

not to disentangle learning from social preferences (e.g. Andreoni, 1993, 1995; Palfrey

and Prisbey, 1996, 1997; Goeree et al., 2002; Ferraro and Vossler, 2010; Fischbacher

and Gachter, 2010; Burton-Chellew and West, 2013).2 Rather, we study the behavioral

adjustment regularities that govern how agents learn in a minimum-information environ-

ment.3

The closest set-up to ours is that of Bayer et al. (2013) who also reveal no information

about the structure of the game or the actions and payoffs of the other players in the

context of public goods games with low rates of return. Their framework also introduces

an element of ‘confusion’ in which players are told that the game structure (and resulting

payoffs) may change over the course of the experiment. In our setting, by contrast, the

structure of the game and the payoffs, although unknown to the agents, remain explicitly

fixed and the agents know that. Another early antecedent of our experiment are the

repeated two-by-two zero sum games used to test Markov learning models (Suppes and

Atkinson, 1959). However, subjects in their setting had only two available actions and it

was permissible at that time to explicitly ‘fool’ subjects into thinking that they were not

even playing a game.4

In this paper, we study voluntary contributions games in a ‘black box’ environment. As

1See Erev and Haruvy (2013) for a recent survey of equilibrium learning in this spirit. See also Ben
Zion et al. (2010) for a low-information portfolio allocation experiment.

2In fact, social preference motivations (e.g. Fehr and Schmidt, 1999; Fehr and Gächter, 2000, 2002;
Fehr and Camerer, 2007) cannot drive subjects’ behavior in our baseline case because all information
about the structure of the game and about others is withheld.

3We also complement previous studies of experience effects in voluntary contributions games (e.g.
Marwell and Ames, 1981; Isaac et al., 1984; Isaac and Walker, 1988) by analysis of experience effects in
a minimum-information setting.

4The observed learning in Suppes and Atkinson (1959) follows reinforcement (Erev and Roth, 1998;
Erev and Rapoport, 1998).
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the game proceeds, the subjects know only the amount that they themselves contributed

and the payoff that they received as a result. Learning in such an environment is said

to be completely uncoupled (Foster and Young, 2006; Hart and Mas-Colell, 2003, 2006;

Young, 2009). In this setting, many of the standard learning rules used in the empirical

literature, such as experience-weighted attraction, k-level reasoning and imitation, do not

apply because these rules use the actions of the other players as inputs (see Björnerstedt

and Weibull, 1993; Stahl and Wilson, 1995; Nagel, 1995; Ho et al., 1998; Camerer and Ho,

1999; Costa-Gomes et al., 2001; Costa-Gomes and Crawford, 2006; Crawford, 2013).

Nevertheless our experiments show that learning ‘inside the box’ can and does take place

at rates that are comparable to previous studies (see Ledyard, 1995 and Chaudhuri, 2011).

Moreover, the learning process exhibits certain distinctive features:

(i) Search volatility. A decrease in a player’s realized payoff triggers greater variance in

his choice of action next period, whereas an increase in his realized payoff results

in lower variance next period.

(ii) Search breadth. The absolute value of a player’s adjustment is on average larger

after a payoff decrease than after a payoff increase.

(iii) Inertia. A player is more likely to stick with his previous contribution after a payoff

increase than after a payoff decrease.

(iv) Directional bias. If an increase resulted in success this period, the player’s contri-

bution next period will tend to be higher than if it resulted in failure. Similarly, if

a decrease resulted in success, the player’s contribution next period will tend to be

lower than if it resulted in failure.

These four learning components have antecedents in various strands of the learning lit-

erature, although they have not been given the explicit formulation that we do here. In

particular, search volatility, search breadth, and inertia have been proposed in various

forms in biology (Thuijsman et al., 1995), organizational learning (March, 1991), com-

puter science (Eiben and Schippers, 1998), and machine learning (Nowak and Sigmund,

1993). Learning rules with related properties are variously known as ‘exploration versus

exploitation’, ‘win stay, lose shift’ or ‘fast and slow’ learning. The basic idea is that an

agent tends to keep playing a strategy that leads to high payoffs, and switches when

payoffs decrease.5 Financial market traders have also been shown to exhibit this kind of

behavior (Coates, 2012).

5The first names given to behavioral rules based on this principle were ‘simpleton’ (Rapoport and
Chammah, 1965) and ‘Pavlov’ (Nowak and Sigmund, 1993).
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The closest antecedents in the literature are in biology, and in particular, models of

foraging behavior of bees (Thuijsman et al., 1995; Motro and Shmida, 1995). Indeed,

the model of Thuijsman et al. (1995) exhibits three of the four learning components

of our model: search volatility, search breadth, and inertia. Bees typically forage for

nectar by moving from one flower to another within a given ‘patch’. However, if several

attempts lead to flowers with little or no nectar, the bee will fly to a new randomly chosen

patch that lies far away from the previous one. This behavior is called ‘near-far’ learning

(Thuijsman et al., 1995, Motro and Shmida, 1995). In other words, both the breadth and

volatility of search increase after (repeated) failures. Furthermore, behavior is inertial in

that it follows the principle that the bee will “stay in the patch as long as you find food

and leave otherwise”.6 Closely related learning models have recently been proposed in

game theory; in particular there is a family of ‘trial-and-error’ learning rules that leads

to Nash equilibrium in generic n-person games (Foster and Young, 2006; Germano and

Lugosi, 2007; Marden et al., 2009; Young, 2009; Pradelski and Young, 2012).

An additional feature of our framework is the one-dimensional nature of the strategy

space, which induces directional bias in the agents’ adjustments. If a higher contribution

resulted in a higher payoff this period, a player will tend to make a larger contribution

next period than if his previous contribution resulted in a lower payoff.7 Hence, different

regions of the strategy space are explored with higher probability given the directional

feedback from previous adjustments. Directional bias has antecedents in the experimental

literature on ‘directional learning’ and ‘aspiration adjustment theory’ (Sauermann and

Selten, 1962; Cross, 1983; Selten and Stoecker, 1986; Selten and Buchta, 1998).8 A

theoretical model of directional learning that leads to Nash equilibrium in two-by-two

games with one-dimensional strategies has recently been proposed by Laslier and Walliser

(2011). Bayer et al. (2013) investigate another directional learning model in the context

of voluntary contributions games. Our results confirm the presence of such directional

biases, as we shall show in section 3.

In this paper we show that our learning model helps explain the behavior of subjects who

are learning in a ‘black box’ environment. The contribution of this paper is to identify

and to test the four key features mentioned above when subjects have no information

about the game and they cannot observe others’ behavior. Our framework is therefore

fundamentally different from most other models in the literature on experimental games,

6See Thuijsman et al. (1995), p. 309.
7Similarly, if a lower contribution resulted in a higher payoff, he will tend to make a smaller contri-

bution next period than if his prior contribution resulted in a lower payoff.
8See Harstad and Selten (2013) for a recent survey and experimental evidence from Tietz and Weber,

1972; Roth and Erev, 1995; Erev and Roth, 1998; Erev and Rapoport, 1998).
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which generally assume observability of others’ actions and ‘some’ knowledge of the game

(examples include experience-weighted attraction, k-level reasoning, and imitation). As

we shall see, all four features of our model are confirmed at high levels of statistical

significance.

We conclude that even when subjects have virtually no information about the game,

learning does take place and exhibits the four distinctive patterns identified above. Fur-

thermore, these features are still present even when more information becomes available

and/ or players gain experience. While more experience and more information in the

different information treatments lead to different contribution levels and to faster con-

vergence rates for the two rates of return compared to the black box treatment, the four

components of our learning model are still present in the non-black box treatments.

The paper is structured as follows. In section 2 we describe the experimental set-up in

detail. In section 3 we present the black box findings, which we compare with the other

information treatments in section 4. We conclude in section 5. The appendix contains

experimental instructions and supplementary regression tables.9

2 Experimental set-up

A total of 236 subjects, in 16 separate sessions involving 12 or 16 subjects, participated

in our public goods experiments yielding a total of 18,880 observations. Participants

were recruited from a subject pool that had not previously been involved in public goods

experiments.10 The subjects were not limited to university students, but included dif-

ferent age groups with diverse educational backgrounds.11 In the experiment, a group

of subjects plays several voluntary contributions games, where each game was repeated

for twenty rounds with randomly allocated subgroups in each round. Games differ with

respect to two rates of return (‘low’ and ‘high’) such that either ‘free-riding’ or ‘fully con-

tributing’ is the dominant strategy. These are played under three different information

treatments (‘black box’, ‘standard’ and ‘enhanced’). In this section, we shall describe the

underlying stage game, the structure of each repeated game, and the different information

treatments.

9See also Supporting Information for Burton-Chellew and West 2013.
10The subjects were recruited through ORSEE (Online Recruiting System for Economic Experiments;

Greiner, 2004) and subjects who listed prior participation in public goods games were excluded.
11The experiment was programmed and conducted with the software z-Tree (Fischbacher, 2007). All

experiments were conducted at the Centre for Experimental Social Sciences (CESS) at Nuffield College,
University of Oxford.
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2.1 Linear public goods game

Consider the following linear public goods game, known as the “voluntary contributions

game”. Every player i in populationN = {1, 2, ..., n}makes a nonnegative, real-numbered

contribution, ci, from a finite budget B > 0. Given a resulting vector of all players’

contributions, c = {c1, c2, ..., cn}, for some rate of return, e ≥ 1, the public good is

provided in the amount R(c) = e
∑

i∈N ci, and split equally amongst the players.12 Given

others’ contributions c−i, player i’s contribution ci results in the payoff

φi =
e

n

∑
i∈N

ci + (B − ci),

where e
n

is the marginal rate of return. Write φ for the payoff vector {φ1, ..., φn}.

Nash equilibria. Depending on whether the rate of return is low (e < n) or high

(e > n), an individual contribution of zero (‘free-riding’) or B (‘fully contributing’) is

the strictly dominant strategy for all players. The respective Nash equilibrium results in

either nonprovision or full provision of the public good.

2.2 Repeated game

In each experimental session, the same population S (with |S| = 12 or 16) plays four

‘phases’ where each phase is a separate twenty-times repeated voluntary contributions

game. In each period t within a given phase, players in S are randomly matched in

groups of four to play the voluntary contributions game.13 At the start of each period,

each subject is given a new budget B = 40, of which he can invest any amount; however,

subjects cannot invest money carried over from previous rounds. The rate of return is

either low (set at e = 1.6) or high (set at e = 6.4) throughout a given phase.14 Write N t
4

for any of the four-player groups matched at time t, and ρt4 for the partition of S into

such groups. Given others’ contributions ct
−i, each i receives a total of

φi =
∑

t=1,...,20

φt
i =

∑
t=1,...,20

e

4

∑
j∈Nt

4

ctj + (40− cti)

 . (1)

12If e < 1, R(c) is a public bad.
13This follows random ‘stranger’ rematching of Andreoni (1988).
14The Nash equilibrium payoff of the stage game is 40 when e = 1.6, and 256 when e = 6.4.
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For every i, φi represents a real monetary value that is paid after the game.15 Note that,

due to random rematching of players into groups throughout the experiment, for every

player i, his relevant group N t
4 in the above expression 1 (i.e. such that i ∈ N t

4) typically

is a different one in each period t.

2.3 Information treatments

Each experimental session (involving four phases) is divided into two ‘stages’: phases one

and two of the session constitute stage one, phases three and four constitute stage two.

Each phase is a twenty-round voluntary contributions game with either the low (e = 1.6)

or the high (e = 6.4) rate of return, and in each stage both rates of return are played.

The two stages differ with respect to the information treatment.

Before the experiment begins, subjects are told that two separate experiments will be

conducted, each stage consisting of two games. At no point before, during, or in between

the two separate stages of the experiment are players allowed to communicate. Depending

on which treatment is played, the following information is revealed at the start of each

stage.16

All treatments. During each phase, the same underlying game is repeated for 20 peri-

ods. Each player receives 40 monetary units each period, of which he can invest any

amount. After investments are made, each player earns a nonnegative return each

period which, at the end of each game, he receives together with his uninvested

money according to a known exchange rate into real money.

Black box. No information about the structure of the games or about other players’

actions or payoffs is revealed. Subjects play two voluntary contributions games

(one with the high and one with the low rate of return). As play proceeds, subjects

only know their own contributions and payoffs, but do not learn those of others.

Standard. The rules of the game are revealed, including production of the public good,

high and low rate of return, and how groups form each period. As the game

proceeds, players receive a summary of the relevant contributions in their group at

the end of each period.17

15One hundred coins are worth £0.15. The maximal earnings over the whole experiment therefore
amount to £19.2.

16See Appendix A for the full instructions and Appendix B for the output screens displayed during
the experiment for each treatment.

17This follows the standard information treatment design as in Fehr and Gachter (2002) and random
‘stranger’ rematching of subjects as introduced by Andreoni (1988).

8



Enhanced. In addition to the information available in the standard treatment, the pay-

offs of the other group members are explicitly calculated, and players receive a

summary of their own and other players’ payoffs in their group at the end of each

period.

In each experimental session, every player plays two black box games (one with the high

and one with the low rate of return), and either two standard or two enhanced information

games (again one high and one low). Either the black box treatment occurs first, or a

non-black box treatment occurs. Of the total of 18,880 observations, 9,440 are black box,

4,640 are standard, and 4,800 are enhanced. The order of high and low rates of return and

of treatments is different in each session. Sessions lasted between fifty and sixty minutes,

and subjects earned between £6.20 and £15.50 (mean earnings were £12.40).

Black box versus grey box

Black box is our main treatment, and the analysis is based on sessions when black box

is played first. Recall that we require the recruiting system (ORSEE) to select only ‘first

timers’ of public goods experiments. Thus, when black box is played first, subjects are

not likely to have prior knowledge of the structure of the game.

‘Black box’ versus ‘grey box’. We shall reserve the term ‘black box’ for the case when

the no information treatment is played first. Sessions when it is played after the

standard or enhanced treatments will be called ‘grey box’.

In grey box, subjects are told that a new and separate experiment will be conducted and

that all information except for their own payoffs will be withheld. Since play in these

sessions was preceded by two voluntary contributions games where subjects received

full information about the structure of the game, they might (or might not) think that

the grey box treatment has a similar structure. However, they will still be unable to

infer others’ contributions and the underlying rates of return from the information they

receive. We make this distinction between black box and grey box because our black

box learning model applies most evidently in the (pure) black box environment where

more sophisticated learning models cannot apply because of the complete absence of

information (about the structure and about others’ actions).

9



Figure 1: Black box play.
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In the free-riding game (e = 1.6), contributions deteriorate at a faster rate than
contributions rise in the full contribution game (e = 6.4).

3 Black box learning

In this section, we present and test our learning model based on the analysis of the pure

black box data, that is, those sessions when black box was played before the standard

or enhanced treatments. There were eight sessions and 4,960 observations. Recall that

subjects in the black box have no knowledge of the structure of the game and receive no

information about others’ actions or payoffs as the game goes on. Moreover, subjects are

recruited to be ‘first timers’, that is, they have no prior experience playing public goods

games. In the subsequent analysis, unless stated otherwise, “significance” refers to a 95

percent confidence (p < 0.05) with which the null can be rejected and to a 90 percent

confidence interval (p > 0.1) when the null cannot be rejected.

Figure 1 illustrates black box play, averaged over individuals and sessions. The contri-

bution patterns associated with the low rate of return are comparable with those from

previous studies; for a recent review of this literature see Chaudhuri (2011). The high

rate of return has been less frequently studied. For a comparison of the convergence

rates (for black box and for the comparison with the other information treatments), see
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Burton-Chellew and West (2013).

3.1 The learning model

We begin by establishing some terminology.

Adjustment. The adjustment of player i in period t+ 1 is ct+1
i − cti. The adjustment is

an increase if ct+1
i > cti, a decrease if ct+1

i < cti, and a zero adjustment if ct+1
i = cti.

Breadth. The breadth of an adjustment by player i in period t+ 1 is the absolute value

of the adjustment, |ct+1
i − cti|.

Success versus failure. Player i experiences success in period t+1 if his realized payoff

does not go down (φt+1
i ≥ φt

i); otherwise he experiences failure.

Bias. The bias in adjustments of player i in period t + 1 is the difference between the

expected adjustment after success and the expected adjustment after failure, that

is, E(ct+1
i − cti|φt

i ≥ φt−1
i )− E(ct+1

i − cti|φt
i < φt−1

i ).

Our model, called SEARCH, consists of the following four components:

(i) Search volatility. Failure triggers a greater variance in non-zero adjustments than

does success.

(ii) Search breadth. The absolute size of non-zero adjustments is larger after failure than

after success.

(iii) Inertia. Zero adjustments are less likely after failure than after success.

(iv) Directional bias. If an increase in contribution resulted in success this period, the

player’s contribution next period will tend to be higher than if the prior contribution

resulted in failure. Similarly, if a decrease in contribution resulted in success, the

player’s contribution next period will tend to be lower than if the prior contribution

resulted in failure.

Consider the following example. Suppose an agent contributes 10 in one period and 20 in

the next. Search volatility means that if 20 results in a higher realized payoff (success) to

the player, then his next-period adjustment is drawn from some distribution with lower

variance than if 20 resulted in a lower realized payoff (failure). Search breadth states

that the absolute value of the adjustment, in case an adjustment is made, tends to be

larger after failure than after success. Inertia states that he is more likely to stick with

20 again in case of success than in case of failure. Finally, directional bias implies that

he will tend to contribute more if 20 was a success than if 20 was a failure.
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Figure 2: Black box adjustments.
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The figure shows absolute values of adjustments in the current period as a function of
the last-period payoff change. The linear regression reveals that larger adjustments tend
to lie on the side of previous-period failures, while smaller and inertial adjustments tend

to lie on the success-side.

Figure 3: Search volatility, search breadth, and inertia.
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The bar charts summarize search volatility, search breadth, and inertia conditional on
success versus failure under black box information.
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Figure 4: Directional bias.
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The bar charts summarize the directional bias, that is, the difference between
adjustments after success and adjustments after failure conditional on previous-period

increase versus decrease under black box information.

We find that all of these features are present in the data. Consider Figure 2, which plots

the absolute value of adjustments against the performance of previous contributions. The

scatterplot suggests that adjustments after failure are more volatile; larger adjustments

occur more often after failure than after success; and lower or inertial adjustments are

more likely after success than after failure. A summary of all four SEARCH components is

given in Figures 3 and 4 . These patterns are confirmed by statistical tests of significance,

which are summarized in Tables 1 and 2. Comparing columns (c) and (d) in Table 1,

we make the following observations: (i) search volatility breadth is higher after failure

than after success; (ii) search breadth is higher after failure than after success; and (iii)

inertia is lower after failure than after success. From columns (b) and (c) in Table 2,

we see that (iv) directional bias is such that adjustments after increases (decreases) are

higher (lower) in case of success than in case of failure.

The tests of significance were conducted as follows. For search volatility, we applied

Levene’s test, which is a nonparametric test for the equality of variances in different

samples. The null hypothesis of equal variances following success and failure, which

would imply no search volatility, is rejected with 99 percent confidence. This holds for

both high and low rates of return and for different orders of the games (see Appendix C,

Table 3, Tests 1-3).

Next, we test the hypothesis of equal search breadth conditional on success versus failure.

We regress the absolute values of the non-zero adjustments conditional on success versus

failure, controlling for phase, group, period and individual fixed effects with individual-

13



Table 1: Summary statistics for search volatility, search breadth, and inertia (black box
treatment)

(a) (b) (c) (d) (e)
search component failure success difference (c)-(d)

search volatility

standard deviation standard deviation 13.7 11.1 2.6∗∗

of adjustment # observations 2266 2198

search breadth

absolute value mean 11.4 9.2 2.2∗∗

of non-zero adjustments # observations 1746 1476

inertia

probability of relative frequency 0.23 0.33 0.10∗∗

non-zero adjustment # observations 520 722

∗: p < 0.05; ∗∗: p < 0.01.

level clustering. The average adjustment following success is smaller than after failure

at a 1 percent level of significance (see Appendix C, Table 5). The breadth of search is

significantly larger in periods 1-9 than in periods 10-20. Group, phase, and period fixed

effects are not significant.

To test the hypothesis of equal inertia after success and failure, we use an ordered probit

regression of the inertia rate controlling for phase, group, period and individual fixed

effects with individual-level clustering. Success turns out to have a significantly positive

effect on the inertia rate (see Appendix C, Table 5). Moreover, there is significantly less

inertia in the first phase than in the second phase. Period fixed effects are negative until

period six, suggesting that inertia tends to increase over time. Group fixed effects are

not significant.

Finally, we analyze the directional patterns of adjustments. Our hypothesis of directional

bias states that (i) if an increase leads to success, the player’s next-period contribution will

tend to be higher than if it leads to failure; (ii) if a decrease leads to success, the player’s

contribution next period will tend to be lower than if it leads to failure. To test this

14



Table 2: Summary statistics for directional bias (black box treatment)

(a) (b) (c) (d)
mean non-zero adjustment success failure difference (b)-(c)

after increase -1.6 -6.5 4.9∗∗

after decrease 2.5 5.5 -3.0∗∗

∗: p < 0.05; ∗∗: p < 0.01.

hypothesis, we regress the difference between adjustments after success and adjustments

after failure, controlling for the direction of the previous adjustment as well as for phase,

group, period and individual fixed effects with individual-level clustering. The directional

bias is confirmed, for both increases and decreases in prior-period contributions, at a high

level of statistical significance (p < 0.01). The details are given in Appendix C, Table

6.

3.2 Summary

Our black box findings may be summarized as follows. First, there is strong evidence

for SEARCH: search volatility and search breadth are both larger after failure than after

success; inertia is larger after success than after failure; and there is directional bias,

meaning that increases (decreases) tend to be followed by larger (smaller) contributions

after success than after failure. Despite subjects’ lack of information, however, the overall

pattern of the dynamics is in line with previous experiments. In free-riding games (e =

1.6), for example, contributions deteriorate at almost the same rate as in previous studies

(Ledyard, 1995; Chaudhuri, 2011; Burton-Chellew and West, 2013).

4 Non-black box data

In this section, we assess our black box findings in light of the data from grey box and

from the other two treatments, standard and enhanced. In particular, we shall investigate

whether SEARCH describes only black box behavior or whether its components also

persist in the other settings, that is, where players gain experience and/ or have explicit

information about the structure of the game and others’ actions (and payoffs).
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Figure 5: Mean play all treatments (black box, standard, enhanced).
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Figure 5 illustrates play in all treatments.

Figure 5 illustrates play in the different treatments, averaged over individuals and ses-

sions. Different information clearly makes a difference in the level of contributions and/ or

convergence rates (see Burton-Cellew and West, 2013). However, the features of SEARCH

persist in all sessions and in all treatments, as is summarized in Figure 6.18

4.1 Black box versus grey box

First, we shall investigate ‘grey box’ play. Recall that grey box means that black box is

played after either enhanced or standard. Even though subjects are explicitly told that a

separate experiment is started after the first stage of the experiment, players may or may

not make inferences about the game structure. We shall investigate the consequences

of this effect in comparison with (pure) black box behavior. Our analysis reveals that

although there are differences in average levels of contribution in the two cases (Figure

5), all of the features of SEARCH are robust for both rates of return. In particular,

the levels of search volatility and search breadth are not significantly different in the

two cases (Appendix C, Tables 7 and 8). The differences in inertia rates conditional on

18Appendix C, Figure 8 contains a full summary of all SEARCH components in all treatments for both
rates of return separately.
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Figure 6: SEARCH (all treatments).
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The bar charts summarize the four search components in all treatments. The respective
panels are: (i) search volatility, (ii) search breadth, (iii) inertia, (iv) directional bias.

success-versus-failure are similarly robust, however, the level of inertia is higher in grey

box than in black box (Appendix C, Table 5). Directional bias is unchanged in terms

of its size and significance levels compared to black box (Appendix C, Table 10). We

conclude that grey box differs from black box with regard to the absolute level of inertia,

but not qualitatively with respect to any of the SEARCH components.

4.2 Black box versus standard and enhanced

Finally, we consider whether the standard and enhanced treatments lead to different

conclusions. The situation is summarized in Figure 6.19 Search volatility, though smaller

in absolute size in the standard treatment and even smaller in the enhanced treatment, is

higher after failure than after success, just as in the black box case (see panel (i) in Figure

6). Moreover, this difference is significant at the 1 percent level (see Appendix C, Table

19See Appendix C, Figure 8 for a summary for both rates of return separately.
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7). Search breadth exhibits the same success-versus-failure difference as in black box (see

panel (ii) in Figure 6). It continues to be statistically significant at the 1 percent level (see

Appendix C, Table 8). Panel (iii) in Figure 6 illustrates that inertia rates decrease after

failure in all treatments. This success-failure differential in inertia rates is statistically

significant in all four treatments, and there is higher absolute inertia in non-black box

treatment data (see Appendix C, Table 5). Finally, panel (iv) in Figure 6 illustrates the

presence of directional biases across all four treatments. We qualitatively confirm the

increase-decrease directional bias from the black box data when analyzing the non-black

box data at levels that are statistically significant (see Appendix C, Table 10).

5 Conclusion

Much of the prior empirical work on learning in games has focussed on situations where

players have a substantial amount of information about the structure of the game and

they can observe the behavior of others as the game proceeds. In this paper, by contrast,

we have examined situations in which players have no information about the strategic

environment. This takes us to the other end of the spectrum from full information.

Players in such environments must feel their way to equilibrium based solely on the

pattern of their own realized payoffs. Naturally, assuming that players would have no

information whatsoever is somewhat extreme because players in practice will often have at

least some information. To disentangle the role and to highlight the nature of adaptive

learning versus best-reply dynamics, we implemented a black box environment in our

experiment and compared the resulting behavior to play under intermediate and rich

information treatments. We identified four key features of the resulting (completely

uncoupled) learning dynamics – search volatility, search breadth, inertia, and directional

bias. Although these components have precursors in both psychology and biology, they

have not been given the precise formulation that we propose here, nor have they been

subjected to rigorous testing in a laboratory environment. It turns out all four features

are validated at high levels of statistical significance. Moreover, they are present even

when players gain more experience and/ or have more information. Whether this remains

true for other classes of games is an open question for future research.
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Appendices

Appendix A: Instructions

Participants received the following on-screen instructions (in z-Tree) at the start of the

game. The set of instructions in standard and enhanced were the same, different instruc-

tions were given in black box. In black box, participants had to click an on-screen button

saying, “I confirm I understand the instructions” before the game would begin. The

same black box instructions were used for both rates of return. The standard/ enhanced

instructions differ with respect to the relevant numbers for the two rates of return, and

the example is adequately modified.

Black box

The following instructions were used in black box.

Beginning of instruction.

Instructions

Welcome to the experiment. You have been given 40 virtual coins. Each ‘coin’ is worth

real money. You are going to make a decision regarding the investment of these ‘coins’.

This decision may increase or decrease the number of ‘coins’ you have. The more ‘coins’

you have at the end of the experiment, the more money you will receive at the end.

During the experiment we shall not speak of £Pounds or Pence but rather of “Coins”.

During the experiment your entire earnings will be calculated in Coins. At the end of

the experiment the total amount of Coins you have earned will be converted to Pence at

the following rate: 100 Coins = 15 Pence. In total, each person today will be given 3,200

coins (£4.80) with which to make decisions over 2 economic experiments and their final

totals, which may go up or down, will depend on these decisions.

The Decision

You can choose to keep your coins (in which case they will be ‘banked’ into your private

account, which you will receive at the end of the experiment), or you can choose to put

some or all of them into a ‘black box’.

This ‘black box’ performs a mathematical function that converts the number of coins

inputted into a number of coins to be outputted. The function contains a random com-

ponent, so if two people were to put the same amount of coins into the ‘black box’,
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they would not necessarily get the same output. The number outputted may be more or

less than the number you put in, but it will never be a negative number, so the lowest

outcome possible is to get 0 (zero) back. If you chose to input 0 (zero) coins, you may

still get some back from the box.

Any coins outputted will also be ‘banked’ and go into your private account. So, your

final income will be the initial 40 coins, minus any you put into the ‘black box’, plus all

the coins you get back from the ‘black box’.

You will play this game 20 times. Each time you will be given a new set of 40 coins

to use. Each game is separate but the ‘black box’ remains the same. This means you

cannot play with money gained from previous turns, and the maximum you can ever put

into the ‘black box’ will be 40 coins. And you will never run out of money to play with

as you get a new set of coins for each go. The mathematical function will not change

over time, so it is the same for all 20 turns. However as the function contains a random

component, the output is not guaranteed to stay the same if you put the same amount

in each time.

After you have finished your 20 turns, you will play one further series of 20 turns but

with a new, and potentially different ‘black box’. The two boxes may or may not have

the same mathematical function as each other, but the functions will always contain a

random component, and the functions will always remain the same for the 20 turns.

You will be told when the 20 turns are finished and it is time to play with a new black

box.

If you are unsure of the rules please hold up your hand and a demonstrator will help

you.

I confirm I understand the instructions (click to confirm)

End of instructions.

Standard and enhanced

Here, we present the instructions for the rate of return e = 1.6 (one example of an

instruction slide is given in Figure 7). The same instructions apply to standard and

enhanced treatments. Equivalent instructions apply for the rate of return e = 6.4.

Beginning of instructions.

Instructions
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Welcome! You are about to participate in an experimental study of human decision

making. Thank you for your participation in our study. Please pay careful attention to

the instructions on the following screens. If you wish to return to a previous screen, press

the left arrow key. You are now taking part in an economic experiment. If you read the

following instructions carefully, you can, depending on your decisions, earn a considerable

amount of money. It is therefore very important that you read these instructions with

care.

Everybody has received the same instructions. It is prohibited to communi-

cate with the other participants during the experiment. Should you have any

questions please ask us by raising your hand. If you violate this rule, we shall

have to exclude you from the experiment and from all payments.

During the experiment we shall not speak of £Pounds or Pence but rather of “Credits”.

During the experiment your entire earnings will be calculated in Credits. At the end of

the experiment the total amount of Credits you have earned will be converted to Pence

at the following rate: 100 Credits = 15 Pence. In total, each person today will be given

3,200 credits (£4.80) with which to make decisions over two economic experiments and

their final totals, which may go up or down, will depend on these decisions.

We are researching the decisions people make.

This part of the experiment is divided into separate rounds. In all, this part of the

experiment consists of 20 repeated rounds. In each round the participants are assembled

into groups of four. You will therefore be in a group with 3 other participants. The

composition of the groups will change at random after each round. In each round your

group will therefore probably consist of different participants.

In each round the experiment consists of two stages. At the first stage everyone has to

individually decide how many credits they would like to contribute to a group project.

These decisions have consequences for people’s earnings. At the second stage you are

informed of the contributions of the three other group members to the project and how

many credits you have received from the group project. New groups are then randomly

formed and the process repeats itself, with everyone again deciding how many credits

they would like to contribute. This process will repeat 20 times.

At the beginning of each round, each participant receives 40 credits. In the following we

call this your endowment. Your task is to decide how to use your endowment. You have

to decide how many of the 40 credits you want to contribute to a group project and how

many of them to keep for yourself. The consequences of your decision are explained in

detail in the following slides.
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Please note:

• The set-up is anonymous. You will not know with whom you are interacting.

• You will interact with a random set of 3 players in each round.

• Your decisions, and your earnings will remain anonymous to other players, even

after the session has ended.

We now provide an animated illustration of a hypothetical scenario to demonstrate how

the experiment works. In the following demonstration, we will use these green ‘disks’ to

represent ‘credits’. 1 disk equals 1 credit.

Example

Remember! Credits = real money, and the more credits a player has at the end of the

experiment, the more money that player will receive.

There are 4 players in each group, For the sake of convenience, we refer to these players

as Player A, Player B, Player C, and Player D.

These 4 players then each receive an endowment of 40 credits.

Each of the players can then choose to make a contribution to the group project. They

can contribute anything from zero to 40 credits. Non contributed credits are kept in the

player’s private account. They do this at the same time and anonymously.

Each player is then informed of the decisions of all their group members, although no one

will know who the players are and they will randomly change in each round.

After all 4 players have made their decision to contribute or not, and by how much, the

resulting total of contributed credits is automatically MULTIPLIED.

In your experiment, in every round, and in this example here, the total will be multiplied

by 1.6. So for an imaginary total of 10 credits, this would result in 16 credits.

This new total is then always shared out equally between all 4 players. So, after the

multiplication occurs, each player receives one quarter of the credits that are in the

group project.

In this example, each player chooses to contribute 20 of their 40 credits. This means the

group project has 80 credits; 20 + 20 + 20 + 20 = 80 credits. Which when multiplied by

1.6 results in 128 credits; 80 multiplied by 1.6 = 128 credits. These 128 credits are then

shared out equally, giving 32 credits back to each player; 128 divided by 4 = 32 credits

each. This gives each of the players a new total. In this case, they all have a new total
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Figure 7: Standard and enhanced instructions; example slide for e = 1.6.

EXAMPLE
This gives each of the players a new total. In 
this case, they all have a new total of 52 
credits.

Group Project

Player A
Total = 40 – 20 + 32 = 52

10101010

Player B
Total = 40 – 20 + 32 = 52

10101010

Player C
Total = 40 – 20 + 32 = 52

10101010

Player D
Total = 40 – 20 + 32 = 52

10101010

20 + 20 + 20 + 20 = 80 credits
80 multiplied by 1.6 = 128 credits
128 divided by 4 = 32 credits each 

They all started with +40; Contributed -20; and 
all got +32 in return, giving them 52 in total. 

10

10 10

10Press <space bar> to proceed

of 52 credits.

They all started with +40; Contributed -20; and all got +32 in return, giving them 52

in total.

That is the end of the demonstration.

Remember, this was just one of many possible scenarios. In the rounds you will now play,

all players are free to choose how much they wish to contribute to the pot.

End of instructions.

Appendix B: On-screen output in each treatment

The following three tables summarize the post-decision feedback information that par-

ticipants received in z-Tree under the three treatments: (a) feedback in black-box; (b)

feedback screen #1 in standard and enhanced (identical in both treatments); (c) feedback

screen #2 in standard and enhanced (dashed lines border the information that was only

shown in enhanced).
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Appendix C: Regression outputs
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Table 3: Search volatility (black box).

(a) (b) (c) (d)
Test 1: search volatility success failure total
null rejected (W = 83.6, p < 0.01)

standard deviation 13.7 11.1 12.6
mean +0.8 -1.2 -0.2
frequency 2,266 2,198 4,464

Test 2: rate of return e = 1.6 e = 6.4 total
null not rejected (W = 0.1, p > 0.87)

standard deviation 12.5 12.6 12.6
mean -0.6 +0.2 -0.2
frequency 2,232 2,232 4,464

Test 3: phase phase 1 phase 2 total
null not rejected (W = 0.3, p > 0.59)

standard deviation 12.7 12.4 12.6
mean -0.2 -0.1 -0.2
frequency 2232 2232 4464

Test 4: diminishing volatility periods 1-9 periods 10-20 total
null rejected (W = 47.0, p < 0.01)

standard deviation 13.7 11.6 12.6
mean -0.1 -0.2 -0.2
frequency 1,984 2,480 4,464

We use black box data from phases 1 and 2. We perform Levene’s robust variance tests
for search volatility (Test 1), differences in distribution for the two rates of return (Test

2), for phases one and two (Test 3), and diminishing volatility (Test 4). W is the
Levene’s test statistic.
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Table 4: Search breadth (black box).

Coefficient (test statistic)

1 if “failure” 2.73 (9.77)∗∗

1 if “period”<10 2.01 (2.43)∗

1 if “phase”=1 2.32 (10.81)∗∗

Group dummies not significant
Individual fixed effects not listed
Periods not significant

Constant 2.42 (3.52)∗∗

Observations 4,464
Adjusted R2 0.25

∗: p < 0.05; ∗∗: p < 0.01.
We use black box data from phases 1 and 2. We perform an OLS regression of absolute
adjustments on success-versus-failure adjustments controlling for phase, group, period

and individual fixed effects with individual-level clustering.

Table 5: Inertia (black box).

Coefficient (test statistic)

1 if “failure” -0.52 (-10.39)∗∗

1 if “period”<10 0.22 (1.37)
1 if “phase”=1 -1.21 (-50.38)∗∗

Group dummies not significant
Individual fixed effects not listed
Periods negative until period 6, not significant thereafter

Cut 0.04 (0.47)∗∗

Observations 4,464
Adjusted R2 0.40

∗: p < 0.05; ∗∗: p < 0.01.
We use black box data from phases 1 and 2. We perform an ordered probit regression of
absolute adjustments on success-versus-failure adjustments controlling for phase, group,

period and individual fixed effects with individual-level clustering.
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Table 6: Directional bias (black box)

Coefficient (test statistic)

1 if “up” -10.48 (8.93)∗∗

1 if “up” and “success” 5.06 (5.20)∗∗

1 if “down” 3.62 (2.41)∗

1 if “down” and “success” -3.33 (3.37)∗∗

Individual fixed effects not listed
Periods negative, significant
Group dummies not significant
1 if “phase”=1 -24.90 (13.16)∗∗

Observations 3,222
Adjusted R2 0.14

∗: p < 0.05; ∗∗: p < 0.01.
We use black box data from phases 1 and 2. We perform OLS regressions (without
constant) to test for the directional bias of adjustments for each directional success/
failure impulse controlling for phase, group, period and individual fixed effects with

individual-level clustering.

34



Figure 8: SEARCH (all treatments, full details).
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The bar charts summarize the four search components in all treatments for both rates of
return separately. The respective panels are: (i) search volatility, (ii) search breadth,

(iii) inertia, (iv) directional bias.
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Table 7: Search volatility (non-black box).

Test success failure total

Test 1: standard
null rejected (W = 83.1, p < 0.01)

standard deviation 8.9 11.5 10.3
mean +1.5 -2.4 -0.2
frequency 2,314 1,862 4,176

Test 2: enhanced
null rejected (W = 30.6, p < 0.01)

standard deviation 9.0 10.7 9.9
mean +0.6 -1.2 -0.3
frequency 2,189 2,131 4,320

Test 3: grey box
null rejected (W = 61.3, p < 0.01)

standard deviation 10.5 13.5 12.1
mean +1.0 -1.2 -0.0
frequency 2,045 1,987 4,032

We use non-black box data; phases 3 and 4 for grey box, phases 1-4 for standard and
enhanced. We perform Levene’s robust variance tests for search volatility in standard

(Test 1), enhanced (Test 2), and grey box (Test 3. Recall W is the Levene’s test
statistic.
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Table 8: Search breadth (non-black box).

(i) (ii) (iii)
Grey box: Standard: Enhanced:
Coefficient Coefficient Coefficient
(test statistic) (test statistic) (test statistic)

1 if “failure” 2.10 (5.10)∗∗ 1.64 (4.34)∗∗ 1.10 (2.73)∗∗

1 if “period”<10 not significant not significant not significant
Phase dummies “phase”=3, positive not significant if “phase”=2, negative
Group dummies not significant not significant not significant
Individual fixed effects mostly negative mostly negative mostly negative
Periods mostly not significant mostly not significant mostly not significant

Constant 16.28(11.44)∗∗ 36.83 (24.38)∗∗ 12.27 (8.63)∗∗

Observations 2,259 1,861 1,777
Adjusted R2 0.42 0.41 0.54

∗: p < 0.05; ∗∗: p < 0.01.
We use non-black box data; phases 3 and 4 for grey box (panel (i)), phases 1-4 for
standard (panel (ii)) and enhanced (panel (iii)). We perform OLS regressions of

absolute adjustments on success-versus-failure adjustments controlling for phase, group,
period and individual fixed effects with individual-level clustering.
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Table 9: Inertia (non-black box).

Standard & Enhanced Grey box
coefficient (test statistic) coefficient (test statistic)

1 if “failure” -0.23 (2.28)∗∗ -0.29 (2.72)∗∗

1 if “enhanced” 0.02 (0.08) n/a
Phase dummies 5.11 (26.49)∗∗ for “phase”=1 5.17 (26.59)∗∗ for “phase”=3

others not significant
Group dummies not significant not significant
Individual fixed effects not listed not listed
Periods not significant not significant

Cut 6.13 (20.12)∗∗ 6.48 (20.78)∗∗

Observations 8,464 4,032
Adjusted R2 0.40 0.34

∗: p < 0.05; ∗∗: p < 0.01.
We use non-black box data; phases 1-4 for standard and enhanced (panel (i)), and

phases 3 and 4 for grey box (panel (ii)). We perform an ordered probit regression of
absolute adjustments on success-versus-failure adjustments controlling for treatment

effects phase, group, period and individual fixed effects with individual-level clustering.
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Table 10: Directional bias (non-black box)

Treatment Adjustment:
coefficient (test statistic)

1 if “up” black box -10.44 (8.83)∗∗

1 if “up” and “success” black box 5.07 (5.18)∗∗

1 if “down” black box 3.59 (2.37)∗

1 if “down” and “success” black box -3.31 (3.34)∗∗

1 if “up” grey box -10.61 (7.37)∗∗

1 if “up” and “success” grey box 6.55 (5.73)∗∗

1 if “down” grey box 4.69 (3.16)∗∗

1 if “down” and “success” grey box -2.73 (2.70)∗∗

1 if “up” standard -4.81 (3.86)∗∗

1 if “up” and “success” standard 9.85 (8.56)∗∗

1 if “down” standard 10.82 (5.33)∗∗

1 if “down” and “success” standard -0.06 (0.04)

1 if “up” enhanced -5.96 (3.82)∗∗

1 if “up” and “success” enhanced 3.25 (2.49)∗

1 if “down” enhanced 8.04 (4.10)∗∗

1 if “down” and “success” enhanced -1.10 (0.76)

Group dummies not significant
Phase dummies positive, significant
Period dummies not significant
Treatment dummies black box negative, others positive
Return rate dummies negative, significant
Individual fixed effects not listed

Observations 9,119
Adjusted R2 0.15

∗: p < 0.05; ∗∗: p < 0.01.
We use all the data. We perform OLS regressions (without constant) to test for the
directional bias of adjustments for each directional success/ failure impulse in each

treatment controlling for phase, group, period and individual fixed effects with
individual-level clustering.
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